1		Supplementary Materials for
2	Synoptic drivers of co-occurring summertime ozone and PM2.5 pollution in	
3		eastern China
4	Lian Zong ¹ , Yuanjian Yang ^{1,*} , Meng Gao ² , Hong Wang ¹ , Peng Wang ³ , Hongliang Zhang ⁴ , Linlin	
5	Wang ⁵ , Guicai Ning ⁶ , Chao Liu ¹ , Yubin Li ¹ , Zhiqiu Gao ^{1,5}	
6		
7	1.	School of Atmospheric Physics, Nanjing University of Information Science & Technology,
8		Nanjing, China
9	2.	Department of Geography, Hong Kong Baptist University, Hong Kong SAR, China
10	3.	Policy Research Center for Environment and Economy, Ministry of Ecology and Environment
11		of the People's Republic of China, Beijing, China
12	4.	Department of environmental science and engineering, Fudan University, China
13	5.	State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry
14		(LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
15	6.	Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong,
16		Shatin, N.T., Hong Kong, China
17		
18	* (Correspondence to: Dr./Prof. Y. Yang (yyj1985@nuist.edu.cn)

Determining the number of synoptic patterns

21 The explained cluster variance (ECV) ranging from 0 to 1 is selected to assess the performance of

22 synoptic classification and to determine the number of classes (Hoffmann & SchlüNzen, 2013;

23 Philipp et al., 2014). ECV is defined as:

$$ECV = 1 - \frac{WS}{TS}$$
(1)

25 Where *WS* is the sum of squares within synoptic patterns, and *TS* is the total of sum of squares:

26
$$WS = \sum_{j=1}^{k} \sum_{i \in C_j} D^2_{(Y_i, \overline{Y_j})}$$
(2)

27
$$TS = \sum_{i=1}^{n} \sum_{l=1}^{m} (Y_{il}, \overline{Y_l})^2$$
(3)

28 where *k* is synoptic patterns number, C_j is the pattern *j*, and the squared Euclidean distance $D^2_{(Y_i, \overline{Y_j})}$

29 between an element and its centroid is defined as:

30
$$D^{2}_{(Y_{i},\overline{Y_{j}})} = \sum_{l=1}^{m} (Y_{il},\overline{Y_{jl}})^{2}$$
(4)

31 where *l* is the time step (*l*=1, 2, ..., m), Y_{il} is the respective data point, $\overline{Y_{jl}}$ is the estimate of the 32 mean value for synoptic pattern *j*, $\overline{Y_l}$ is the estimate of the total mean.

Then, the synoptic patterns number k can be determined by the increment of the *ECV* value (Ning et al., 2019):

35

$$\Delta ECV = ECV_k - ECV_{k-1} \tag{5}$$

The number of synoptic patterns k is finally determined when the $\triangle ECV$ reaches the highest value, which suggests that the classification performance is improved substantially and tends to be stable (Ning et al., 2019).

Fig. S1. Changes of *AECV* with different numbers of classified synoptic patterns.

Fig. S3. Average concentration of PM_{2.5} under four SWPs.

55 Fig. S6. The number and probability of occurrence of compound pollution days in each site.

58 References

- Hoffmann, P., & Heinke SchlüNzen, K. (2013). Weather pattern classification to represent the urban
 heat island in present and future climate. *Journal of Applied Meteorology and Climatology*,
 52(12), 2(00, 2714, https://doi.org/10.1175/JAMC.D.12.0(5.1)
- 61 52(12), 2699–2714. https://doi.org/10.1175/JAMC-D-12-065.1
- 62 Ning, G., Yim, S. H. L., Wang, S., Duan, B., Nie, C., Yang, X., Wang, J., & Shang, K. (2019).
- Synergistic effects of synoptic weather patterns and topography on air quality: a case of the
 Sichuan Basin of China. *Climate Dynamics*, 53(11), 6729–6744. https://doi.org/10.1007/s00382-
- 65 019-04954-3
- 66 Philipp, A., Beck, C., Esteban, P., Krennert, T., Lochbihler, K., Spyros, P., Pianko-kluczynska, K.,
- 67 Post, P., Alvarez, R., Spekat, A., & Streicher, F. (2014). Cost733 user guide.
- 68