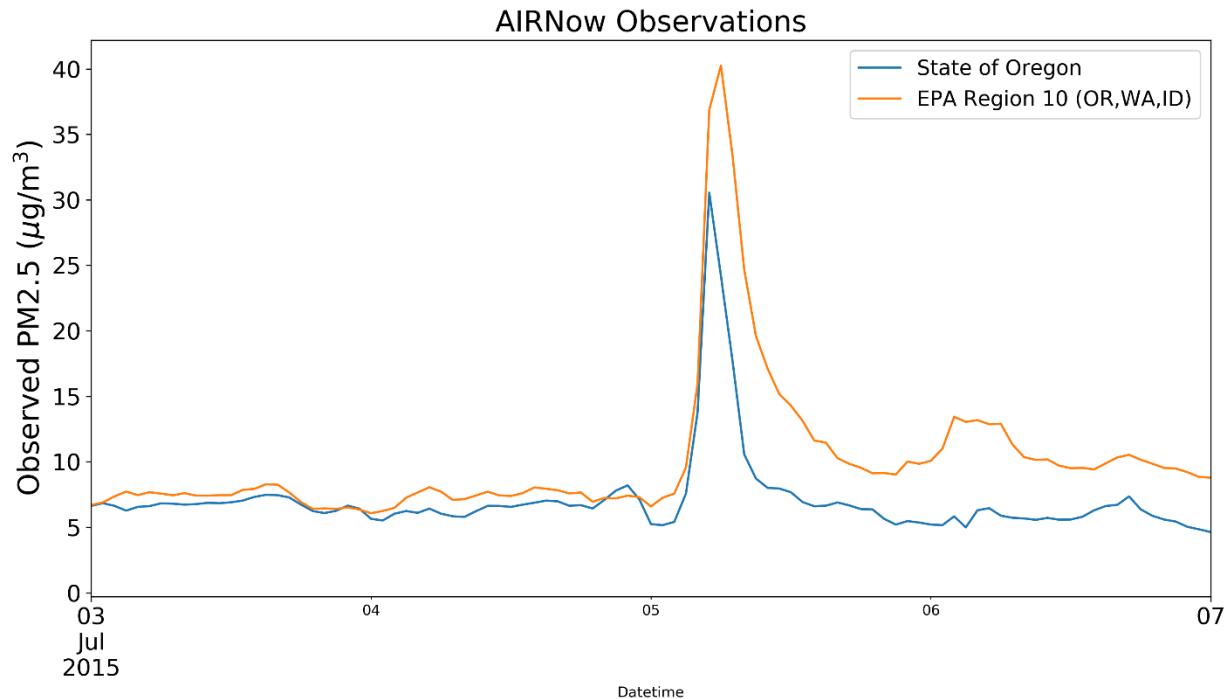


Answer to review #2

Thank you for your review. Here are the answers to your comments

This manuscript describes air quality simulations with EPA's CMAQ model over the contiguous United States with a focus on the use of dynamic chemical lateral boundary conditions from a global model, Geos-chem and investigates the predictive skill for ozone and PM.5 with an emphasis on dust events and fires. CMAQ model predictions for air quality are improved with use of dynamic chemical lateral boundary conditions. The authors identify an important and timely problem and investigate it well. I recommend the paper for publication after the following items are addressed. There has been a lot of work on developing boundary conditions for CMAQ in particular and for aerosols in particular. That literature is not cited here and that surprises me. Can the authors put their work here In that context? Here is one example: <https://gmd.copernicus.org/articles/7/339/2014/>

- You are right that we missed some references. We added the reference that you referred and some corresponding statement in the introduction session.


This work may have implications for policy-relevant background and exceptional event determination. Can the authors provide any context for this?

- *This work is actually for supporting our operational forecast. We added some related statements in the introduction*

When discussing figure 10 in the manuscript the authors point out that they were unable to capture fireworks however the observed [PM2.5] peaks in figure 10 occur on July 5 not July 4. I understand the time is in UTC, but it looks to be a whole day apart and not just eight or nine hours.

- You are right that the local effect of firework emissions won't last long. However, most firework emission were injected in elevated levels, and the associated pollutants can be transported to extended downstream areas. If the downstream area are big and adjacent one another, the regional averaged effect could appear for a longer time. The following figure show the observed PM2.5 over single state (Oregon) and EPA region 8 (three states), and the effect of fireworks obviously last longer in the area of three states than that in one state, as the EPA region 10 represents a bigger receptor area. In Figure 10, the Northcentral region includes 9 states, and Northeastern region represents 12 states, which are much bigger than the EPA region 10. So it is not surprised that the effect could last so long since the receptor areas are so big that the transported pollutants have enough time

to affect extended downstream areas before moving out of the region.

Sonntag et al., 2014 is not the best reference for AERO6.

- You are right. We added another one (Foley, 2010, <https://doi.org/10.5194/gmd-3-205-2010>)

Please provide a link or reference for the wild fire emission method?

- Added a reference <https://doi.org/10.5194/gmd-13-2169-2020>

Thank you again for your comments

Answer to review #1

Thank you for your review. We made comprehensive revisions according to your suggestion. The figures 13/14 were re-plotted and added another run for summer 2018 case. Here are the answers to your comments

Review of Tang et al. “Comparison of Chemical Lateral Boundary Conditions for Air Quality Predictions over the Contiguous United States during Intrusion Events” In this paper, Tang et al., use a number of different methods to set boundary conditions for use in CMAQ as part of the US NOAAs forecasting system. While focusing on PM2.5, they also looked at ozone. Not surprisingly, they found that having boundary conditions that are more representative of actual conditions improved model performance. The manuscript needs to be thoroughly edited for grammar before resubmission. It is replete with incorrect inclusion or exclusion of articles (in the grammatical sense).

- Thank you for your comments. We follow your suggestions to make the literature revision and correct the grammar issues. Please see below for the details.

They also inconsistently used plurals and singulars, including when they used the terms LBC(s) and CLBC(s). Given that you typically set more than one boundary condition, it should almost always be plural, but either way, be consistent. They tend to use ambiguous pronouns (e.g., its).

- Great suggestion. We made changes to be consistent. The LBC(s) and CLBC(s) are used in three circumstances: general term, one LBC vs another LBC, and several LBCs. Now the plural word is used under only the third circumstance.

After fighting through the manuscript, the third sentence of the Conclusion was: “The GEOS dynamic LBC showed the overall best score when comparing with the surface observations during the June-July 2015 while Saharan dust intrusion and Canadian wildfire events occurred.” “LBC” should be “LBCs”, “comparing” should be “compared”, “the June” should be “June”, “while” should be “when”, “Saharan” should be “the Saharan” (at least I think those are appropriate).

- Changed

In the Introduction, they state that there are two roles “it” (actually they, i.e., CLBCs) play. The two are the same. They are setting values of the concentrations used in solving the differential equations that underlie the core of an air quality model. In such a way, they might be called constraints, but that is both awkward and imprecise, as they are not setting a range, but an actual value. This is exactly how external influences are brought into the model. Using the precise definition of boundary condition leads to (1) and (2) being the same.

- You are right that the CLBC has one value, though it can be static or dynamic. Now the sentence is changed to be “The CLBC sets concentration values along the regional domain’s lateral boundary, and those setting values have two effects in the regional modeling system depending on the CLBC types (static or dynamic) and the events.”

Line 14: “Proper” is not the best word here. What defines proper? Do they mean accurate? How accurate?

- You are right that a suitable word is needed here, and “proper” is not the best. We changed it to “certain” since regional model need a lateral boundary condition to run, regardless good or bad LBC.

Line 26: Sentence beginning Tang et al.: What point is being made?

- Changed. We added “For non-intrusion events,”

The description of the 5 model runs should be more clear, with specifics in a Table.

- Changed Table 1 to be clearer.

ACP is an international journal, so the US NOAA should be used at least the first time and NOAA defined.

- Added the definition of NOAA

Page 3 Line 34: : : Not sure what this is adding.

- Changed to “We developed a tool to extract the GEOS-LBC along the NAQFC’s domain boundaries”

The title should be a bit more explanatory as Intrusions can be stratospheric, still impacting lateral boundary conditions.

- Changed to “pollutant intrusion events”. Actually, the two GEOS-LBCs included stratospheric ozone influence (Figure S1) from the GEOS global model, which is the reason of their better correlations (Table 5). This study focused on influence on surface O3/PM2.5, so the stratospheric intrusion was not strongly highlighted.

Page 10, line 35. The surface stations reflect the wildfire intrusions just as well as VIIRs at their location. The issue here is how well the surface stations provide more spatial coverage.

- Yes, your words are better for what it actually means. We changed. In fact, we first tried to use surface monitoring data as indicators as that in-situ surface data is more reliable and has better temporal resolution (hourly). However, its poor spatial coverage is not good enough for this purpose.

Page 11, line 20: I do not think that “a high pressure system controlled western Canada” (the authors should look at that whole sentence).

- Changed to be Figure S4 showed that there was a high-pressure system with peak surface pressure up to 1022 hPa in the western Canada.

P3 L20-21. Why does the CMAQ_BASE simulation use a clean background for aerosols.

- We added the explanation. The clean background aerosol LBC was used in the operational NAQFC before the NGAC model data was available, since the CONUS domain’s boundaries lay on the ocean or less polluted regions. Switched Figures 1 and 2.

According to the introduction, the NAQFC system currently uses NGAC for its aerosol LBCs? Does this not make the performance of the CMAQ_BASE simulation artificially worse than the current NAQFC system? And if your goal is to compare how new CLBCs impact the forecast, shouldn’t the CMAQ_BASE simulation represent what is used in the current NAQFC system? It is not clear to me if any of the 5 simulations listed in Table 1 use the same CLBCs as the current NAQFC system, though I think it may be NGAC-LBC. This should be clarified.

- It was clarified in the introduction “The current NAQFC uses the dust-only aerosol CLBC from NGAC”. So, current NAQFC just use the dust LBC from NGAC, not the full-GOCART aerosol LBC, as there were some issues in NGAC’s other aerosol

prediction, including wildfire. The CMAQ_Base was not artificially worse, and that LBC was actually used in the old NAQFC system before NGAC was available.

Figure 7. There appears to be a discontinuity at the transition between the east and north boundaries. Is this correct, and if so, what could cause this?

- It is correct. CMAQ's boundary index is always from south to north and from west to east. So the boundary index's start points are reset instead of continuous for north and west boundaries. You can find the boundary structure in https://www.cmascenter.org/ioapi/documentation/all_versions/html/THKBDY.jpg. We added the explanation in Figure 3's captions.

If the details of the mapping are important, the chemical mapping is a bit haphazard. Putting all of the MVK in to ISPD would require that all of the MVK comes from isoprene. Splitting all of the INO2 using the coefficients in the ISOP+NO3 reaction would require that all of the species degrade at a similar rate, or that INO2 rapidly reacts to those products.

- Yes, you are right for these issues. GEOS model's MVK comes from Isoprene and there is no MVK emission. So the MVK mapping to ISPD of CMAQ's CB05 is consistent with its source in GEOS. For the intermediate INO2, GEOS has this explicit species, and it has the following reactions, such as $\text{INO}_2 + \text{MO}_2 \rightarrow 0.55\text{NO}_2 + 0.40\text{HO}_2 + 0.425\text{HNO}_3 + 0.025\text{NO}_2 + 0.05\text{MACR} + 0.08\text{CH}_2\text{O} + 0.03\text{MVK} + 0.25\text{RCHO} + 0.75\text{CH}_2\text{O} + 0.25\text{MOH} + 0.25\text{ROH} + 0.05\text{HO}_2$. CMAQ's CB05 mechanism bypasses the intermediate INO2, and assumes ISOP+NO3 directly generate some similar final products. It is true that we can not achieve perfect consistency for these species mapping as these two mechanisms are so different. Fortunately, for the CONUS domain, the isoprene chemistry influence's on the CONUS LBC is less significant compared to the major intrusion events of wildfire plume and dust storm as the short-lived isoprene hardly reach farther downwind. I added the explanation.

ALK4 includes C4 and higher alkanes, so having it turned in to 4 PARs is biased low unless it is all butane isomers. A detailed understanding of both mechanisms are needed to do such a mapping directly if this step is important to be done in detail (which I am not sure it is: : : for boundary conditions, the important species are probably NO, NO2, O3, PM species, SO2, NH3, HCHO and a few others, but that is just a guess: they might check that out. Having to deal with large fires may lead to large fluxes of other organics that then become important. They need to work on a better way of expressing their finding that setting better boundary conditions leads to a better simulation.

- Yes, it is true that this treatment could have a “truncation error”. However, the GEOS global model itself also treat the ALK4 mainly as butane: $\text{ALK}_4 + \text{OH} \rightarrow \text{R}_4\text{O}_2$, $\text{R}_4\text{O}_2 + \text{NO} \rightarrow \text{NO}_2 + 0.32\text{ACET} + 0.19\text{MEK} + 0.18\text{MO}_2 + 0.27\text{HO}_2 + 0.32\text{ALD}_2 + 0.13\text{RCHO} + 0.50\text{A}_3\text{O}_2 + 0.18\text{B}_3\text{O}_2 + 0.32\text{ETO}_2$, or C_n with $n \sim 4$. For the LBC, the issue of C5 or higher alkanes treatment may only appear if strong C5+ alkane emissions existed outside of our domain and were not too far (pentane's lifetime is around 4.6 days (Helmig et al, 2014 (doi:10.5194/acp-14-1463-2014)), and hexane has even short lifetime than butane), and the global model treated the C5+ alkanes emission and reaction more explicitly. For our cases, only big wildfire emission could have this impact in real world, though the wildfire C5+ alkane emission is at least one order of magnitude lower than the corresponding CO/Ethane/Propane emission (Urbanski et al, 2008, DOI:10.1016/S1474-8177(08)00004-1). Also the GEOS did not treat C5+ alkanes explicitly to capture the real-world situation. So, the C5+ alkane mapping for LBC unlikely make big difference

in our simulations with that “truncation error”. In fact, the difference between GEOS and CMAQ’s carbon bond mechanisms, and the uncertainty of wildfire emissions could be bigger issues, but they are beyond the content of this manuscript. We added some related explanations in the manuscript.

The results from the AOT-derived LBC to be a more compelling idea and would have liked to see a comparison of CMAQ performance using the AOT-derived LBC and the dynamic LBC (GEOS-LBC and NGAL-LBC), but these were not modeled for the same time period as the AOT-NLBC case. Is the use of three or four significant figures justified?

- Good suggestion. We added the NGAC-LBC for the summer 2018 comparison. Some related discussion and figures are also expanded.

In the end, there are aspects of this paper of potential interest to ACP readers, but at this juncture, the grammar and some of the set up needs work before it should be further considered for publication in ACPD or elsewhere. The authors need to identify and highlight what is unique about their findings other than “better boundary conditions lead to better results.” What is the best approach and why? (or, what are the positives and negatives of each approach and what is a general recommendation after weighing those attributes?) This should be stated concisely in the Abstract and the conclusions, backed up with specific study results.

- Thank you for your encouragement. We revised the conclusions and abstract, and made thorough literature editing through the manuscript. Please see revised manuscript for detail.

Again. Thank you for your comments

1 **Comparison of Chemical Lateral Boundary Conditions for Air Quality**
2 **Predictions over the Contiguous United States during Pollutant Intrusion**
3 **Events**

4 Youhua Tang^{1,2}, Huisheng Bian^{3,4}, Zhining Tao^{3,5}, Luke D. Oman³, Daniel Tong^{1,2,6},
5 Pius Lee¹, Patrick C. Campbell^{1,2}, Barry Baker^{1,2}, Cheng-Hsuan Lu^{7,10}, Li Pan^{8,9}, Jun Wang⁸,
6 Jeffery McQueen⁸, Ivanka Stajner⁸

7 1. NOAA Air Resources Laboratory, College Park, MD 20740, USA
8 2. Center for Spatial Information Science and Systems, George Mason University, Fairfax, VA
9 3. NASA Goddard Space Flight Center, Greenbelt, MD
10 4. University of Maryland at Baltimore County, Baltimore, MD
11 5. Universities Space Research Association, Columbia, MD 21046
12 6. University of Maryland, College Park, MD 20740, USA
13 7. Joint Center for Satellite Data Assimilation, Boulder, CO, USA
14 8. NOAA/NCEP/Environmental Modeling Center, College Park, MD, USA
15 9. I.M. Systems Group Inc., Rockville, MD
16 10. University at Albany, State University of New York, Albany, NY, USA

17 **Abstract**

18 The existing National Air Quality Forecast Capability (NAQFC) operated at NOAA provides
19 operational forecast guidance for ozone and particle matter with aerodynamic diameter less than
20 $2.5\mu\text{m}$ (PM_{2.5}) over the contiguous 48 U.S. states (CONUS) using the Community Multi-scale
21 Air Quality (CMAQ) model. The existing NAQFC uses a climatological chemical lateral
22 boundary condition (CLBC), which cannot capture pollutant intrusion events originated outside
23 of the model domain. In this study, we developed a model framework to use a dynamic CLBC
24 from the Goddard Earth Observing System Model, version 5 (GEOS) to drive NAQFC. The
25 method of mapping GEOS chemical species to CMAQ CB05-Aero6 species was developed. We
26 evaluated NAQFC's performance using the new CLBC from GEOS. The utilization of the GEOS
27 dynamic CLBC showed an overall best score when comparing the NAQFC simulation with the
28 surface observations during the Saharan dust intrusion and Canadian wildfire events in summer
29 2015: the PM2.5 correlation coefficient R was improved from 0.18 to 0.37 and the mean bias
30 was narrowed from $-6.74 \mu\text{g}/\text{m}^3$ to $-2.96 \mu\text{g}/\text{m}^3$ over CONUS. The influences of CLBCs depend
31 not only on the distance from the inflow boundary, but also on the related species and their
32 regional characteristics. For the PM2.5 prediction, the CLBC's effect on the model's correlations
33 was mainly near the inflow boundary, and its impact on the background concentrations could
34 reach farther inside the domain. The CLBCs could affect background ozone through the inflows
35 of ozone itself and its precursors. It was further found that aerosol optical thickness (AOT) from
36 VIIRS retrieval correlated well to the column CO and elemental carbon from GEOS. Based on
37 this correlation, we tested deriving the new CLBC for wildfire intrusion events. The AOT
38 derived CLBC showed good skills for the wildfire intrusion events for summer 2018 as a case
39 study. It can be a useful alternative in case a reliable CLBC of GEOS is not available.

Deleted: the
Deleted: Currently
Deleted: is using
Deleted: s
Deleted: C
Deleted: s
Deleted: from a monthly climatology
Deleted: introduce
Deleted: the
Deleted: time-varying
Deleted: chemical
Deleted: simulation
Deleted: as the CLBCs
Deleted: also
Deleted: then
Deleted: C
Deleted: s
Deleted: C
Deleted: s
Deleted: CLBCs'
Deleted: ed
Deleted: not only
Deleted: C
Deleted: also
Deleted: altered
Deleted: ,
Deleted: based
Deleted: which
Deleted: s
Deleted: was derived
Deleted: s
Deleted: successfully captured
Deleted: in our case study
Deleted: the
Deleted: s
Deleted: are

1 1. Introduction

2 The chemical lateral boundary condition (CLBC) is one of the most important factors affecting
3 the prediction accuracy of regional chemical transport models (Tang et al., 2009; Tang et al.,
4 2007). The CLBC sets concentration values along the regional domain's lateral boundary, and
5 those setting values have two effects in the regional modeling system depending on the CLBC
6 types (static or dynamic) and the events. One effect is imposing a constraint with static
7 background concentrations for some long-lived pollutants, such as CO and O₃, which is the
8 typical role of the climatological CLBC for non-intrusion events. Models like the Community
9 Air Quality Multi-scale Model (CMAQ) hemispheric version (Mathur et al, 2017) can also get
10 this constraint with its CLBC along the equator. The second effect of the CLBC, representing the
11 influences of external intrusion events, can only be achieved with dynamic (time-varying)
12 CLBC. This CLBC can come from a global model, or a regional model with a bigger domain
13 (Tang et al., 2007), or observed profiles (Tang et al., 2009). Henderson et al (2014) compiled a
14 10-year CLBCs database over the Contiguous United States (CONUS) using a global chemical
15 transport model (GEOS-Chem, Bey et al., 2001) and evaluated it against satellite retrieved ozone
16 and CO vertical profiles.

17 As a regional chemical forecast system, the existing National Air Quality Forecast Capability
18 (NAQFC) operated in the National Oceanic and Atmospheric Administration (NOAA) of the
19 United States needs certain CLBC for its daily prediction. The current NAQFC uses the dust-
20 only aerosol CLBC from the NOAA Environmental Modeling System (NEMS) Global Forecast
21 System (GFS) Aerosol Component (NGAC) (Lu et al, 2016; Wang et al, 2018), which is the
22 GFS model coupled with Goddard Chemistry Aerosol Radiation and Transport (GOCART)
23 aerosol mechanism (Chin et al., 2000, 2002; Colarco et al., 2010). Before the implementation of
24 NGAC CLBC, NAQFC used a background static profile LBC for aerosols described in Lee et al.
25 (2017). For gaseous species, NAQFC uses a modified monthly averaged LBC from the GEOS-
26 Chem simulation for 2006 (Pan et al., 2014). To alleviate surface ozone over-predictions, the
27 upper tropospheric ozone LBC from GEOS-Chem has been limited ≤ 100 ppbV.

28 The static CLBC cannot capture the signals of some intrusion events, such as the biomass
29 burning plumes from the outside of the domain, which could affect ozone and particle matter
30 with aerodynamic diameter less than $2.5\mu\text{m}$ (PM_{2.5}). For non-intrusion events, Tang et al. (2007)
31 investigated the sensitivity of the regional chemical transport model (RCTM) to CLBCs, and
32 found that the background magnitude of the pollutant concentrations sometimes were more
33 important than the variation of the CLBC for the near-surface prediction over polluted areas, or
34 the first effect of the CLBC was more critical. Over the CONUS domain, the prevailing inflow
35 lateral boundary includes northern and western USA, where Canadian emission and long-range
36 transported Asian air-masses can affect the CONUS background. Southeastern States could
37 encounter the Saharan dust intrusion during summer time, which usually resulted in a surface
38 PM_{2.5} increase (Lu et al, 2016). In order to assess their impact and support the operational

Deleted: is

Formatted: Font: (Default) Times New Roman, 12 pt

Deleted: It mainly

Deleted: plays

Deleted: roles

Deleted: : 1)

Deleted: to

Deleted: e

Deleted: the

Deleted: s

Deleted: and 2) to represent the external influence for intrusion events

Deleted: The climatological static CLBCs can provide the first role for some long-lived pollutants, such as CO and O₃.

Deleted: role

Deleted: made

Deleted: the

Deleted: s

Deleted: Such

Deleted: s

Deleted: only

Deleted: at

Deleted: proper

Deleted: s

Deleted: the

Deleted: the

Deleted: s

Deleted: (Bey et al., 2001)

Deleted: year

Deleted: have

Deleted: gaseous

Deleted:

Deleted: s

Deleted: role

Deleted: Contiguous United States (

Deleted:)

1 regional air quality forecast, we need a CLBC from global models with those signals. In this
2 study, we extracted the CLBC from the GEOS global chemical circulation model (GCCM)
3 (Strode et al. 2019; Molod et al., 2012) in static (monthly average) and dynamic (every 3 hours)
4 modes. The CMAQ runs with the GEOS CLBC, were then compared to the CMAQ base case and
5 another run with the NGAC aerosol LBC for the summer 2015. During this period, the Canadian
6 wildfire and Sahara dust affected the CONUS domain, which affected the Northern and Southern
7 USA, respectively, and different CLBCs showed their impacts on the CMAQ regional
8 predictions. In addition, we will investigate the method of using historical CLBCs with a certain
9 indicator to derive a new CLBC for the future pollutant intrusion events in case an appropriate
10 global CLBC is not available.

11 2. Model Configuration and Experiment Design

12 Current NAQFC is using CMAQ version 5.0.2, which includes CB05 gaseous chemical
13 mechanism (Yarwood et al., 2005) with updated toluene (Whitten et al., 2010) and chlorine
14 chemistry (Tanaka et al., 2003; Sarwar et al., 2007), and Aero6 ([Foley et al., 2010](#); Sonntag et
15 al., 2014) aerosol module driven by NOAA/NCEP's North American Mesoscale Model (NAM)
16 forecasting. It has 12km horizontal resolution covering CONUS and 35 vertical layers up to 100
17 hPa. Anthropogenic and mobile emissions are the projected U.S. EPA National Emission
18 Inventory (NEI) with base year 2011 and the point emissions have been updated with the U.S.
19 EPA Continuous Emission Monitoring System (CEMS) for the target year (2015). Biogenic
20 emissions are based on the Biogenic Emission Inventory System (BEIS) 3.14 (Pierce et al.,
21 1998). Wildfire emission inside the CONUS domain is estimated using the U.S. Forest Service
22 (USFS) BlueSky fire emissions estimation algorithm with the fire location information provided
23 by NOAA Hazard Mapping System (HMS), which is a satellite-based fire detection system with
24 some manual analysis. The detailed wildfire emission process of this system was described in
25 Pan et al. (2020).

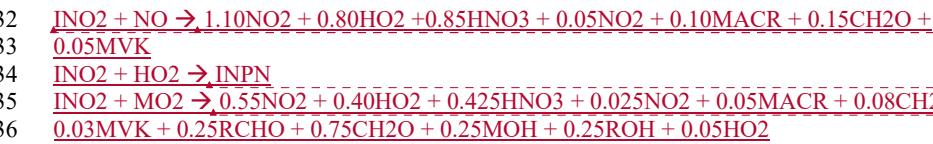
26 In this study, we conducted 5 model runs with different CLBCs (Table 1). The CMAQ base case
27 (referred to as CMAQ_Base) uses the modified GEOS-CHEM 2006 monthly gaseous LBC and
28 clean aerosol background, same as the LBC used in the earlier NAQFC system before the NGAC
29 model data was available. The NAQFC CONUS domain covers southern Canada and Northern
30 Mexico with three boundaries over sea water: western boundary over the Pacific Ocean, Eastern
31 boundary over the Atlantic Ocean, and half Southern boundary over the Gulf of Mexico (Figure
32 1). Most of Canadian anthropogenic emissions are located in Southern Canada covered by the
33 NAQFC domain. During the most non-intrusion periods, the inflow air masses over the
34 boundaries were relatively less polluted. The NGAC-LBC contains NGAC's GOCART aerosol
35 dynamic LBC. The GEOS dynamic LBC (GEOS-LBC) has full chemistry for both gaseous and
36 aerosol species. We also tested its corresponding monthly mean LBC (GLBC-monthly) for the
37 temporal variation. Besides the normal global LBCs, an aerosol optical depth (AOT) derived
38 Northern LBC (AOT-NLBC) is developed, which will be discussed later. These runs used the

Deleted: a proper
Deleted: a
Deleted: that carries
Deleted: is needed
Deleted: -
Deleted: varying
Deleted: s
Deleted:

Deleted:
Deleted: (referred to as CMAQ_Base).

Deleted: is

1 same settings except the~~ir~~ CLBCs. The two CMAQ runs with dynamic CLBCs, the NGAC-LBC
2 and GEOS-LBC, ~~are updated every 3 hours~~. The NGAC-LBC only updates the aerosol LBC
3 from the NGAC global model and ~~it uses the same static~~ gaseous LBC ~~as that of the~~
4 ~~CMAQ Base, The GEOS-LBC includes dynamic variation for~~ both the gaseous and aerosol
5 ~~species. The~~ GLBC-monthly is the static CLBC generated from the monthly mean GCM
6 results, ~~or temporal averaged GEOS-LBC~~. The AOT-NLBC is the same as ~~the~~ GLBC-monthly
7 except that its northern ~~boundary condition~~ is generated from the relationship of VIIRS (Visible
8 Infrared Imaging Radiometer Suite) AOT and ~~GEOS~~-LBC for the wildfire intrusion events,
9 which will be described later.


10 We developed a tool to extract the GEOS-LBC along the NAQFC's domain boundaries. It is
11 based on the existing Global-to-Regional interfaces developed by Tang et al (2008, 2007) for
12 MOZART, RAQMS, and NGAC global models with the enhancement to support GEOS's
13 NetCDF4 format, vertical layers and chemical species. This tool includes two major functions:
14 spatial mapping and species mapping. Spatially, GEOS's concentrations from its 576×361 grid
15 in the $0.625^\circ \times 0.5^\circ$ horizontal resolution with 72 vertical layers are 3-dimensionally interpolated
16 into CMAQ's CONUS lateral boundary periphery in the 12 km horizontal resolution. Since the
17 different chemical mechanisms have been employed in ~~global~~ chemical transport models and
18 CMAQ, the species mapping ~~is~~ required to link both models.

19 2.1 Gaseous Species Mapping

20 The GCM outputs 122 gaseous chemical species and 15 aerosol species. For the species such as
21 O₃, CO, NO, and NO₂, an explicit one-on-one mapping can be achieved. However, some voltaic
22 organic compounds (VOCs) need special treatment during the conversion as ~~GEOS~~ uses
23 different lumping approaches from the CMAQ CB05tcl (carbon bond 5 mechanism with
24 toluene and chloride species). Table 2 lists the VOC species map used to convert GCM's
25 gaseous species to CMAQ's CB05tcl species. Two methods were employed for VOCs'
26 speciation mapping: one was based on the carbon bond structure, e.g. ALK4 \rightarrow 4 PAR (Table 2),
27 and the other was based on the similarity of the reactions. For instance, in the GEOS, the
28 products of isoprene reaction with NO₃ are lumped into INO₂, ~~an intermediate RO₂ radical~~.

30 The radical INO₂ participates in the following reactions (Eastham et al., 2014; Tyndall et al.,
31 2001)

Deleted: imported the corresponding LBC
Deleted: every
Deleted:
Deleted: s
Deleted: its
Deleted: are the same as th
Deleted: e CMAQ
Deleted: base
Deleted: case
Deleted: provides
Deleted: LBCs
Deleted: LBC
Deleted: GEOS
Deleted: An interface between NAQFC and GEOS has been developed to transfer CLBC
Deleted: s
Deleted: e interface
Deleted:
Deleted: are

Deleted:

Deleted: GCM

Formatted: Left

Formatted: Font: (Default) Times New Roman

Formatted: Left, Space After: 0 pt, Line spacing: single, Don't adjust space between Latin and Asian text, Don't adjust space between Asian text and numbers

Formatted: Font: (Default) Times New Roman

Formatted: Font: (Default) Times New Roman

Formatted: Font: (Default) Times New Roman

1 INO2 + MCO3 → MO2 + 0.10NO2 + 0.80HO2 + 0.85HNO3 + 0.05NO2 + 0.10MACR +
2 0.15CH2O + 0.05MVK

Formatted: Font: (Default) Times New Roman

3 INO2+MCO3 → RCHO + ACTA + NO2

Formatted: Font: (Default) Times New Roman

4
5 The CB05tucl mechanism skips the intermediate INO2, and directly represents it as

Deleted: The corresponding CB05tucl reaction

6 ISOP + NO3 = 0.200*ISPD + 0.800*NTR + XO2 + 0.800*HO2 + 0.200*NO2 + 0.800*ALDX +
7 2.400*PAR

8 Therefore, the GEOS species of INO2 is split into seven CB05tucl species with the
9 corresponding factors, respectively (Table 2). It should be noted that this conversion is just an
10 approximation, and we can not achieve perfect consistency for these species mapping as these
11 two mechanisms are so different, especially for the complex isoprene chemistry. Fortunately, for
12 the CONUS domain, the isoprene chemistry influence on the CONUS LBC is less significant
13 compared to the major intrusion events of wildfire plume and dust storm. Most biogenic emitted
14 species are short-lived, and their direct impact on LBC is relatively weak, as they could not be
15 transported farther downstream. A similar situation can also be applied to other short-lived
16 species, such as NOx, which will be discussed later. However, these biogenic emissions can
17 affect local photochemical processes, and generate relatively long-lived species, such as ozone
18 and NTR, outside of our regional domain, which have more chance to reach the LBC and affect
19 downstream. Fortunately, most of these secondary long-lived species are explicitly included in
20 these two mechanisms, and can be directly mapped.

Deleted: should be

21 Some species are represented explicitly in the GEOS, such as methyl vinyl ketone (MVK), which
22 is lumped in CB05tucl's isoprene product (ISPD). In GEOS, the MVK mainly comes from the
23 Isoprene, which is consistent with the CMAQ's ISPD source. Some GEOS species can also be
24 mapped to the CB05 species based on their carbon bonds, e.g. R4N2 (GEOS's C4-5 alkyl
25 nitrates) can be mapped to NTR + 2.0 PAR in the CB05tucl mechanism. Some of the mapping
26 treatments, such as ALK4 (C4 or higher alkanes) conversion to 4 paraffin carbon bonds (table 2),
27 may have "truncation error" as it only counted butane isomers. However, the effect of this
28 truncation error should be relatively limited for this CONUS LBC influence. The GEOS global
29 model also mainly treats ALK4 as butane or Cn with n ~ 4. Although GEOS's ALK4 emission
30 includes some C5 or higher (C5+) alkanes emission, the relatively shorter lifetime of C5+
31 alkanes (Helmig et al, 2014) make them hard to reach CONUS from their major upstream source
32 regions, such as East Asia. In this study, wildfire emissions could also contribute certain amount
33 of C5+ alkane on the CONUS LBC, but these C5+ emissions are at least one order of magnitude
34 lower than the corresponding wildfire CO/Ethane/Propane emissions (Urbanski et al, 2008).
35 Again, this species mapping represents an approximation, and the fundamental difference
36 between these two mechanisms for the complex chemistry make the mapping hard to be perfect.
37 In this study, the effect of complex chemistry on the LBC for the pollutant intrusion events
38 (mainly wildfire events) was not significant for the ozone and PM2.5 prediction, since the major

Deleted: Thus we can map GEOS MVK directly into the CB05tucl's ISPD.

1 wildfire intrusion pollutants from the GEOS global model are CO, NO_x, Ethane, Propane,
2 elemental carbon (EC), and organic carbon (OC).

3 **2.2 Aerosol Species Mapping**

4 Both GEOS and NGAC use the GOCART aerosol scheme though in different versions (Bian et
5 al, 2017 and Colarco et al 2010, respectively), and GEOS has additional species of ammonium
6 and 3-bin nitrates (NO3an1, NO3an2 and NO3an3). Table 3 lists the aerosol species mapping
7 from GEOS aerosols to CMAQ Aero6 species used in this study. GEOS aerosols have fixed size
8 bins defined by their diameters, while CMAQ aerosols use 3 size modes: Aitken (ATKN),
9 accumulations (ACC) and coarse (COR) modes (i, j, k modes) (Appel et al., 2010) and each size
10 mode has its own lognormal size distribution (Whitby and McMurry, 1997). To convert the
11 aerosol species from GEOS to CMAQ's Aero6, we need to consider not only the aerosol
12 composition and the conversion from GEOS size bins to the CMAQ size modes, but also the size
13 distribution within each CMAQ size mode that is controlled by the CMAQ aerosol number
14 concentrations (the 3rd column of Table 3). GEOS's dust aerosols are mapped to AOTH RJ (other
15 unreactive aerosols in accumulation mode) and ASOIL (soil particles in coarse mode) in CMAQ.
16 They do not participate in any aerosol reaction, but are only counted in total PM2.5 and PM10.
17 Although the CMAQ Aero6 has explicit elemental ions, like Ca and Mg, which are possible dust
18 ingredients, we do not consider the reaction effect due to these ions. Tang et al. (2004) studied
19 the dust outflow during the ACE-Asia field experiment and found that only a small portion of
20 cations in dust particles are available for aerosol uptake or reactions, which was nearly none for
21 aged dust air masses.

Deleted: Dust
Deleted: is
Deleted: converted
Deleted: just

22 **3. Case Studies for the CLBC in Summer 2015**

Deleted: s

23 To evaluate the impact of the CLBC on the model simulations, we chose the period with
24 pollutant intrusion events. During summer 2015, two intrusion events occurred in the
25 Southeastern USA and Northern USA, respectively. The Southeastern intrusion was brought by
26 the long-range transported dust storm from the Saharan desert. The northern intrusion was
27 caused by the Canadian wildfire and its southward transport into the CONUS. Figure 1 shows the
28 aerosol optical thickness retrieved from Suomi-NPP satellite's VIIRS instrument from later June
29 to early July, 2015, which highlights these two intrusion events.

Deleted: s
Deleted: that covered
Deleted: the
Deleted:

30 **3.1 Dust Storm Events in Summer 2015**

Deleted:

31 As shown in Figure 2, a dust storm originating from the Saharan desert reached the Southeastern
32 USA via the trans-Atlantic transport. The two global models, GEOS and NGAC, captured this
33 dust intrusion, and fed the NAQFC with signals of aerosol increments via their CLBCs. Figure 3
34 shows the corresponding three LBCs for ASOIL and AOTH RJ along the model's boundary
35 locations on July 2, 2015 as the GOCART dusts have been mapped into two CMAQ aerosol
36 species (Table 3). The base run (CMAQ_BASE) used the clean background for these two
37 CMAQ aerosols. All three LBCs show enhanced ASOIL and AORTH RJ near the domain's

Deleted: 1
Deleted: was
Deleted: ed
Deleted: , and brought
Deleted: to
Deleted: provided
Deleted: to NAQFC
Deleted: Figure 2 shows the NAQFC domain and its southeastern corner covered the Bermuda and Bahamas Islands.

1 southeastern corner and central Southern boundary. The GLBC-Monthly represents the monthly
2 average of GEOS-LBC for July 2015, and has the lowest increments for the two types of
3 aerosols. The two dynamic LBCs, the GEOS-LBC and NGAC-LBC, show the similar aerosol
4 increments over similar locations. However, the NGAC aerosols tended to spread broader than
5 those of the GEOS-LBC, especially for ASOIL, which could reach above the altitude of 10km
6 with concentrations $> 5 \mu\text{g}/\text{m}^3$ (Figure 3e). The NGAC-LBC also showed some signals over the
7 western boundary, where the GEOS-LBC did not show any dust-related aerosols. Another
8 difference between these two LBCs is their ratio of AORTHJ versus ASOIL. The dynamic
9 NGAC-LBC had the higher ASOIL, the coarse-mode dust, than that of GEOS-LBC (Figure 3a,
10 3e), but its AOTHRJ (accumulation-mode dust) was lower than the latter (Figure 3b, 3f),
11 especially over the central southern boundary, where the GEOS-LBC had AOTHRJ up to 30
12 $\mu\text{g}/\text{m}^3$. It implied that these two global models could have some difference on their dust size
13 distributions, besides their difference on transport patterns due to their dynamics or physics.

14 Figure 4 shows the regional PM2.5 comparisons with the observations from the U.S.EPA
15 AIRNow stations. The CMAQ_Base represented the clear background situation, which
16 obviously missed this dust intrusion event, and underestimated the PM2.5 over Southern and
17 Southeastern USA. The two dynamical LBCs, GEOS-LBC and NGAC-LBC, well captured the
18 intrusion signals and yielded the best results. Their performance was similar in Florida, which
19 was much better than the CMAQ_BASE, but still underpredicted the PM2.5 over central Florida.
20 Over Texas, the further downwind region of this dust intrusion, the GEOS-LBC yielded broader
21 and higher PM2.5 increments than that of the NGAC-LBC, and agreed better with observations,
22 though it had some overprediction over Northern Texas. The monthly averaged GLBC-Monthly
23 had moderate PM2.5 enhancement and still underestimated the dust intrusion, ranking between
24 the CMAQ_BASE and two dynamic LBCs. Figure 5 shows a similar story for the scenario of 3
25 days later. The GEOS-LBC yielded the best overall results, though it still underpredicted the
26 PM2.5 over Florida and Northern Texas. Figure 6 illustrates the time-series comparison for this
27 dust intrusion case over Florida and Texas. In general, the performance ranking of these
28 simulations had GEOS-LBC > NGAC-LBC > GLBC-Monthly > CMAQ_Base, except the
29 NGAC-LBC's underprediction over Florida in June. Even though these dynamic LBCs had
30 overall better results than the static LBCs, they still missed some intrusion peaks, such as June
31 30th over Texas, and had some inconsistent time-variation patterns compared with the
32 observations, e.g. July 1st over Florida, and July 8th over Texas. The two dynamic LBCs had
33 similar performance over Florida in July. However, in the further downwind area, such as Texas,
34 the GEOS-LBC showed better results than that of the NGAC-LBC. These model-observation
35 comparisons showed the advantage of the dynamic LBCs for capturing intrusion events. It
36 should be noted that the PM2.5 spike at night of July 4th (July 5th in UTC time) was not related to
37 the dust intrusion, but caused by firework emissions at night for Independence Day, and that
38 emission was not included in our anthropogenic emission inventory. Deleted: night
Deleted: the
Deleted:

1 3.2 The Wildfire Event in Summer 2015

2 During the same period of summer 2015, a wildfire event occurred in Canada and the biomass
3 burning plume was transported to the United States and affected the Northern USA, as shown in
4 Figure 2. Differing from the dust storm intrusion that mainly affected the particle matter (PM)
5 concentrations, the biomass burning plumes also included gaseous pollutants, such as enhanced
6 level of CO, NO_x, and volatile organic compounds (VOCs), which could contribute to the
7 photochemical generation of ozone. For aerosol species, the biomass burning air mass ~~was~~
8 mainly represented with the enhancement of elemental carbon (EC) and primary organic carbon
9 (POC), or AECJ and APOCJ in CMAQ (Table 3). Figure 7 shows a snapshot of the LBCs along
10 the domain boundaries for AECJ+APOCJ and CO. The GEOS-LBC showed the highest aerosol
11 and CO concentrations with AECJ+APOCJ up to 300 $\mu\text{g}/\text{m}^3$, and CO up to 3000 ppbV along the
12 domain's northern boundary. Another noticeable feature is that the GEOS-LBC showed CO
13 enhancement appeared at elevated altitudes up to 12km (Figure 7b). The monthly averaged
14 GLBC-monthly showed the similar features to the GEOS-LBC, but with much lower
15 concentrations (Figure 7c, 7d). The NGAC-LBC had the similar AECJ+APOCJ profiles to
16 GLBC-monthly, and it used the static profile CO boundary condition (same as the CMAQ_base)
17 that did not reflect the wildfire influence (Figure 7e, 7f).

Deleted: 1

Deleted: were

Deleted: important feature of

Deleted: was that its

Deleted:

18 As enhanced gaseous pollutants brought by the full-chemistry LBCs would increase the
19 photochemical generation of ozone, the higher ozone also appeared along the northcentral
20 boundary (Figure S1a, S1b), where the GEOS-LBC showed 10 ppbv or higher O₃ concentration
21 than that in the static NGAC-LBC or CMAQ Base for the altitudes < 4km (Figure S1c). The
22 wildfire induced ozone enhancement appeared not only in the lower troposphere, but also at
23 higher altitudes, e.g. 11km, where the high ozone did not solely come from the stratosphere
24 (Figure S1a). Figure S2 showed the other species from GEOS-LBC, in which the short-lived
25 NO_x had less than 1 ppbv increment (Figure S2a) due to the wildfire intrusion. However, its
26 NO_z (sum total of all NO_x oxidation products, NO_z=NO_y-NO_x) enhancement could reach 30
27 ppbv (Figure S2b) along the northern boundary around 10-12km altitude, with the co-existed CO
28 increment (Figure 7b). NO_z is a good indicator for NO_x's photochemical formation of ozone
29 (Sillman et al., 1997) and the O₃/NO_z ratio is used as the ozone photochemical efficiency per
30 NO_x. The CO and NO_z appearance in the high altitudes reflected that the GEOS injected the
31 wildfire emissions to the upper troposphere due to the strong fire plume rise. Besides these
32 species, the VOCs also showed increment due to the wildfire plume, such as ethane (Figure S2c)
33 and HCHO (Figure S2d). HCHO is a short-lived species, and an indicator of VOC oxidation
34 (Arlander et al., 1995). With these magnitudes of CO, VOC and NO_x increments, the GEOS-
35 LBC mainly provided the VOC and CO rich airmass with limited NO_x to the regional CMAQ
36 model. When this CO/VOC rich airmass arrived at NO_x-rich regions, such as the urban areas, it
37 would contribute to the photochemical generation of ozone.

Deleted: <

Deleted: be

Deleted: up to

Deleted: where

Deleted: also co-existed

Formatted: Subscript

Deleted: from

Deleted: case

Deleted: Considering

Deleted: in this LBC

Deleted: kind of

38 Figure 8 shows the comparison of PM2.5 predictions at 18 UTC, 07/03/2015. The CMAQ_Base
39 missed the intruded biomass burning plumes and the corresponding high PM2.5 over

1 North/South Dakoda, Montana, and Minnesota (Figure 8a). The GEOS-LBC predicted the
2 highest PM2.5 increment (up to $200 \mu\text{g/m}^3$) over these states, agreed best with the AIRNow
3 observation, though still had some missed predictions, including both underprediction and
4 overprediction (Figure 8b). The dynamic NGAC-LBC and static GLBC-Monthly showed the
5 similar PM2.5 enhancements over the affected states, but were almost one order of magnitude
6 lower than that of GEOS-LBC. Figure 9 showed the similar predictions but for ozone. Again,
7 the GEOS-LBC yielded the highest ozone increment due to its relatively high ozone
8 concentration from the wildfire plume, which, however, still underestimated the ozone over
9 North Dakota (Figure 9b). The monthly mean LBC, GLBC-Monthly, systematically
10 underestimated the ozone over these regions. The CMAQ_Base and NGAC-LBC used the same
11 static gaseous LBC, including that for ozone, and underestimated more. Since the NGAC-LBC
12 had more wildfire-induced aerosol loading than that of CMAQ_Base, the former's photolysis
13 rate was lower than the latter. As both of NGAC-LBC and CMAQ_Base had the "clean" air
14 mass with low-concentration ozone precursors over the Northern USA, the photolysis reduction
15 due to aerosols mainly led to the reduced ozone's photolytic destruction, such as $\text{O}_3 \rightarrow \text{O}^1\text{D} + \text{O}_2$
16 or $\text{O}_3 \rightarrow \text{O}^3\text{P} + \text{O}_2$, instead of its photochemical generation. For the same reason, the ozone's
17 lifetime in winter is longer than in summer (Janach, 1989). On the contrary, over polluted
18 regions, the photolysis reduction would cause a lower ozone concentration by limiting its
19 photochemical production. Overall, this effect of photolysis rates on ozone was relatively small.
20 Figure 10 shows the time-series comparison over the Northcentral and Northeastern USA for
21 PM2.5 and ozone. Except the systematic PM2.5 underestimation on the night of July 4th due to
22 the missed firework emissions, the GEOS-LBC showed better PM2.5 prediction than the others,
23 especially from June 29 to July 2 over Northern USA. It should be noted that this run was still
24 not perfect, showing the underestimated PM2.5 in the further downwind, the Northwestern USA.
25 The GEOS-LBC also better captured the peak ozone concentrations, e.g. July 1st and July 2nd,
26 though it sometimes overpredicted ozone, especially during nighttime. The small ozone
27 difference between the CMAQ_Base and NGAC-LBC reflected the impact of wildfire aerosols
28 on photolysis rates, which was very small with regional averages $< 1 \text{ ppbv}$ throughout this period
29 (Figure 9c, 9d).

30 3.3 Statistics and Discussion

31 Table 4 summarizes the PM2.5 statistic results during the two weeks of the intrusion events over
32 the CONUS domain and sub-regions. The dynamic LBCs, GEOS-LBC and NGAC-LBC,
33 showed significant improvements for almost all scores over these regions as compared to the
34 CMAQ_Base. The GLBC-Monthly was also better than the base case, though its improvement
35 on correlation coefficient R and index of agreement (IOA) was relatively moderate compared to
36 the dynamic LBCs, as the time-averaging method removed the temporal variations. Over the
37 further downwind regions of the intrusion events, the LBCs' improvement depended on the
38 regional characteristics of pollutant concentrations. For instance, since the Rocky Mountain
39 region was relatively clean due to its low local PM sources, the external influence weighed more,

Deleted: the

Deleted: and

Deleted: it

Deleted: shows

Deleted: i

Deleted: they

Deleted: carried

Deleted: as it

Deleted: its

Deleted: For

1 and the LBCs also showed more significant impact there. Over more polluted regions where
2 relatively strong local PM emissions existed, such as Pacific Coast and Northeastern USA, the
3 LBCs mainly changed the background concentration for PM2.5, and had a very limited impact
4 on R or IOA. Overall, the GEOS-LBC yielded the best prediction by reducing the mean bias
5 (MB), root mean square error (RMSE) and increasing the R and IOA. Another dynamic LBC,
6 NGAC-LBC, ranked second. All these LBCs showed better performance than the base case for
7 PM2.5 prediction.

Deleted: sources
Deleted: their
Deleted: were very limited
Deleted: The

8 Table 5 shows the similar statistics for ozone. It should be noted that the CMAQ_Base had a
9 systemic O₃ overprediction, especially over the Southcentral region, which affected the
10 improvement of LBCs. Differing from PM2.5, ozone had strong diurnal variation during the
11 summertime, which made the LBCs' impact on R and IOA less significant. It should also be
12 noted that the NGAC-LBC did not change any precursor concentrations related to ozone
13 production, and only affected the ozone formation by reducing photolysis rates. Therefore, as
14 compared to CMAQ_Base, the NGAC-LBC had very weak influence on O₃ and only reduced the
15 regional O₃ by around 0.2 ppbV, and had almost no impact on R or IOA. The GEOS-LBC tended
16 to increase ozone concentrations in most regions, except the Southcentral USA, where the
17 GEOS-LBC showed general improvement for all scores. It had the weakest impact on ozone
18 over Pacific Coast and Rocky Mountain regions, or the farther downstream areas. The GLBC-
19 monthly had the highest ozone increment over most regions except the Southcentral, and also
20 had the slightly higher RMSE. This result showed that removing temporal variation of LBCs
21 might not affect ozone prediction linearly. The GEOS-LBC got better scores except the mean
22 bias over most regions, though the improvement on O₃ was not as significant as that on PM2.5.
23 As discussed above, the LBC's impact on ozone inside the domain was realized through
24 changing inflow concentration of O₃ itself and/or O₃ precursors, such as NO_x, VOC or CO. The
25 distance or depth of LBC's effective impact from the inflow boundary depended on the lifetime
26 of these species. All these species have a longer lifetime in winter than those in summer. Our
27 other study showed that the LBC's impact on ozone in winter was stronger than that in summer.

Deleted: just
Deleted: by
Deleted: generally
Deleted: ing

Deleted: its
Deleted: was also slightly higher
Deleted: a
Deleted: Except the mean bias, the

Deleted:

28 Figure 11 further illustrated the impact of LBCs (using GEOS-LBC as an example) on prediction
29 statistics and their relations to the distance from the domain boundary during the intrusion
30 events: Southern USA for the Saharan dust intrusion (Figure 11 a,b), and Northern USA for the
31 wildfire intrusion case (Figure 11 c, d). As discussed before, the CLBC could have two effects in
32 the regional predictions: provide a constraint for background concentrations, represented by the
33 mean biases, and introduce the dynamic external influence, represented by the correlation
34 coefficients. Both the background and the variation of CLBCs affected the RMSE of predictions.
35 Over the Southern USA, the Saharan dust storm intruded through the states of Texas and
36 Louisiana, or -100°W to -86°W, and moved northward (Figure 4). Figure 11a showed that the
37 GEOS-LBC's improvement on the correlation coefficient R for the PM2.5 prediction reached the
38 highest near the southernmost near-boundary region, and gradually reduced along the latitude for
39 the inland region. On the other hand, the corresponding MB improvement for PM2.5 did not

Deleted: has
Deleted: roles
Deleted: variational
Deleted: States
Deleted: ly

1 show significant reduction along the distance from the influenced boundary. The second effect of CLBC_s, constraining background concentrations for PM2.5, can affect farther inside of the domain. The PM2.5 RMSE change reflected the combined changes of MB and R, and the improvement brought by the GEOS-LBC also reduced along the distance from the influenced boundary since the MB improvement did not vary much and the trend of the RMSE change mainly followed the change of R along the latitude. The spatial variations of O₃ statistics differed obviously from those of PM2.5 statistics (Figure 11b), and the most significant R improvement for O₃ was not near boundary, but in some middle latitudes (29°N to 32°N) before being reduced in the farther inland. With the dynamical LBC, the ozone's MB and RMSE improvements had the similar spatial variations, and they were the highest near the boundary and reduced along the latitude increment. One reason for this difference between PM2.5 and O₃ statistics is that the O₃ usually has stronger local diurnal variation in summer driven by the photochemical activities, and that influence on R could be stronger than the external influence over polluted areas. So, for this event in which O₃ was not the key species, the GEOS-LBC's influence on O₃ prediction was mainly about changing O₃ background concentration. Figure 11b also showed that the O₃ MB of the GEOS-LBC run could change from lower to higher than that of the reference run (CMAQ_base) along with the latitudinal increment. Although the ozone concentration of the GEOS-LBC over the south boundary was lower than that of the CMAQ_base in low altitudes, the GEOS-LBC had higher ozone values in the altitudes higher than 14000 m (Figure S1). That high ozone concentration could reach the surface after a certain distance of downward transport in the model system with strong vertical mixing (Tang et al., 2009), which resulted in the higher ozone MB of the GEOS-LBC over the deeper inland region.

23 For the wildfire intrusion event over Northern USA, the PM2.5 statistical difference between
24 GEOS-LBC and CMAQ_Base showed the similar spatial distribution to the dust intrusion event:
25 the most significant R and RMSE improvements brought by the GEOS-LBC appeared near the
26 boundary, and these improvements reduced along the distance from the boundary. The
27 corresponding MB difference could exist deeper inland (Figure 11c). For the O₃ statistic, the
28 difference between GEOS-LBC and CMAQ_Base became more complex as the wildfire plume
29 also contained the intrusion influence for O₃ and its precursors. The GEOS-LBC run generally
30 yielded higher O₃, which exaggerated the existing overprediction bias near the boundary, but
31 helped correct the underprediction bias when moving farther inland (Figure 11d). The biggest
32 difference of O₃ MB also appeared in the middle latitude as the O₃ precursors brought by the
33 full-chemistry LBC took some time to contribute to O₃ photochemical formation. The spatial
34 variation of O₃ RMSE difference was similar to that of O₃ MB except for the farther inland
35 region with latitude < 43°N where the GEOS-LBC did not improve the RMSE. The similar issue
36 also appeared for the R difference for the region south of 46°N, implying that the wildfire plume
37 represented by the GEOS-LBC could introduce some spatial or temporal biases for O₃
38 precursors. So, the quality and accuracy of the LBC are important for regional predictions.

1 4. AOT Derived Lateral Boundary Conditions

2 The dynamic CLBCs, such as GEOS-LBC, showed overall better prediction for the intrusion
3 events by capturing the external influence at right time over right locations. However, this full-
4 chemistry LBC sometimes is not easy to obtain, especially for the near-real-time forecast. Its
5 event-dependent emissions, such as the wildfire emission, also need some time to get relatively
6 accurate estimation, and their impacts on regional domains could lag behind the scene for the
7 forecast. In order to get the intrusion influence when the real-time LBC was not available, we
8 tested the method of developing an alternative LBC based on the historical data with certain
9 indicators. Here we focused on the wildfire intrusion, since it was more difficult to capture the
10 sudden outbreak of wildfire signal than the long-range transport dust intrusion. In addition, the
11 operational NGAC dust forecast has been available to NAQFC (Wang et al, 2018).

12 4.1 Development of the LBC with VIIRS AOT for Wildfire Plumes

13 A reliable global-model LBC may not be available in some circumstances, and an alternative
14 method is needed for this situation. Here we developed and tested an indicator-derived LBC.
15 AIRNow surface stations could be such an indicator, as these surface data are reliable and in
16 hourly resolution. However, their spatial coverage along the wildfire intrusion boundary (north
17 boundary) is not dense enough for this purpose. Figure 2 showed that the VIIRS retrieved AOT
18 well reflected the wildfire intrusion with broad spatial coverage, superior to the sporadic surface
19 stations along the north boundary of the CONUS domain. So VIIRS AOT could be used as an
20 indicator for wildfire plumes. Figure S3 showed the comparison of extracted VIIRS AOT versus
21 GEOS CO and EC column loading along the northern boundary for June-July, 2015, with their
22 correlation coefficients $R > 0.5$. The regression relationship derived out of Figure S3 can then be
23 used to resample the historical GEOS-LBC data to derive a new LBC for wildfire intrusion
24 events when the corresponding AOT is available. The domain's northern boundary was
25 relatively clean in most periods of the summer, unless the wildfire events occurred. During the
26 June and July 2015, the VIIRS AOT data was available once or twice per day around local
27 noontime under cloud-free condition. To get more VIIRS AOT data along the northern
28 boundary, we relaxed the influencing distance up to 300 km when pairing the VIIRS AOT
29 geolocation and the northern boundary location with the nearest neighbor method. In this study,
30 we paired the GEOS's northern LBC (NLBC) for 18UTC with the daily VIIRS AOT along the
31 same location, and made an average of the whole column with AOT interval of 0.2 to build a
32 LBC database sorted in AOT. We only chose to resample the LBC for primarily emitted species
33 from the wildfire sources, including POC, EC, CO, NO_x, and two NO_z species: PAN and HNO₃,
34 but did not include the ozone LBC. When the VIIRS AOT for the new events are available for
35 NLBC, the whole-column species concentration data from that database are chosen to form the
36 new LBC based on the VIIRS AOT value in the nearest neighbor.

Deleted: depended

Deleted: 1

Deleted: GEOS

Deleted: time

1 4.2 A Case Study with VIIRS AOT Derived LBC in August, 2018.

2 In the middle-later August 2018, a wildfire occurred in western Canada. Figure S4 showed that
3 there was a high-pressure system with peak surface pressure up to 1022 hPa in the western
4 Canada, and the dry weather made the wild fire easily spread. There was prevailing northern or
5 northeastern wind, which brought the fire pollutants southward to affect the northwestern and
6 northern U.S. states. Figure 12a shows the VIIRS AOT for this event with the high AOT
7 appearing in the western Canada, the main source region, and the Northern and Northwestern
8 USA. We used this AOT data to derive the new LBC along the northern boundary (Figure 12b,
9 c) for CO and wildfire emitted aerosols (AECJ+APOCJ) by resampling the historical GEOS-
10 LBC database from the Jun-Jul, 2015 period. This AOT derived northern LBC (AOT-NLBC)
11 was updated once per day due to the VIIRS data availability, while its western, southern, and
12 eastern boundaries came from the climatological monthly-mean GEOS-LBC (averaged from
13 2011 to 2015). The AECJ+APOCJ increment of the AOT-NLBC mainly existed below 3km, but
14 its CO enhancement could reach up to the altitude of 10km, due to the elevated CO plume in the
15 original GEOS-LBC, e.g. Figure 7b. The NGAC-LBC (Figure 13d) also showed the enhanced
16 AECJ+APOCJ concentrations along the north boundary, but it was much lower than that of
17 AOT-NLBC. Also, unlike the AOT-NLBC's two peaks, the NGAC-LBC mainly just showed
18 one peak near the northwest boundary.

19 Figure 13 shows the surface ozone and PM2.5 over this region one day later (08/17/2018). The
20 CMAQ_Base underpredicted both species over this region, and the AOT-NLBC reduced the
21 underprediction with increased background concentration from the northern boundary. Since the
22 AOT-NLBC did not include the dynamic ozone boundary condition, the enhanced ozone
23 concentration was mainly brought by the CO and NOx increments from the northern boundary,
24 which sometimes caused the overprediction over further downwind areas, such as North Dakota.
25 Overall, the AOT-NLBC showed better PM2.5 prediction over Southwestern Canada and
26 Northwestern USA with its higher background concentrations. The NGAC-LBC yielded almost
27 the same ozone concentration as that of the CMAQ_Base (Figure 13e), and had similar PM2.5
28 background enhancement to that of the AOT-NLBC over Northwestern USA. Unlike the AOT-
29 NLBC, the NGAC-LBC did not show PM2.5 increment in east of -96°W compared to the
30 CMAQ_base run, as the AOT-NLBC had additional aerosol incremental peak over the domain's
31 north central boundary. However, that aerosol background increment of the AOT-NLBC led to
32 the PM2.5 overprediction over Minnesota, implying that the derived LBC could bring errors.

33 Figure 14 shows the corresponding time-series comparison over EPA region 8 (states of
34 Montana, North and South Dakotas, Wyoming, Colorado, and Utah), region 10 (states of
35 Washington, Idaho, and Oregon), region 5 (states of Minnesota, Wisconsin, Illinois, Indiana,
36 Michigan, and Ohio) and region 8 (states of California, Nevada and Arizona). Both observed and
37 predicted ozone showed strong diurnal variation. The AOT-NLBC showed better skill on
38 capturing daytime ozone maximum for the region 8 and 10, and was about 3-10 ppbv higher than
39 the CMAQ_base prediction, though it tended to overpredict ozone at night. Over the EPA region

Deleted:

Deleted: a

Deleted: controlled

Deleted: to

Deleted: were

Deleted: climatologic

Deleted: while

Deleted: greatly

Deleted: LBC

Deleted: its

Deleted: Colorado

Deleted: Dokotas

Deleted: and

Deleted: 5

Deleted: , especially over the region 8

5 (north central USA), the ozone difference between the AOT-NLBC and CMAQ base runs
2 became narrower as the major pollutant intrusion of this event occurred in the northwestern
3 USA. The AOT-NLBC increased the existing ozone high bias over the region 5. The region 9
4 (Southwestern USA) was located in further downwind from the domain's north boundary, which
5 should get much weaker influence from the AOT-NLBC. However, during a certain period
6 (08/21-08/25/2018), the impact of the AOT-NLBC on ozone could still reach about 5 ppb, and
7 the derived LBC generally improved the ozone prediction scores over that region. It implies that
8 the long-lived wildfire pollutant, such as CO, could be transported to the farther downwind, and
9 had an impact on ozone. Throughout this period, the ozone difference between the NGAC-LBC
10 and CMAQ Base was very small, mainly caused by the aerosol effect on the photolysis.

11 For PM2.5, the CMAQ Base run had systemic underprediction for all the 4 EPA regions in
12 Figure 14, especially over the region 10, as the northwestern states encountered the major
13 wildfire inflow. The AOT-NLBC and NGAC-LBC improved the predictions by narrowing the
14 mean bias up to $10 \mu\text{g}/\text{m}^3$ over the region 10 (Figure 14d), though still underpredicted PM2.5.
15 These two dynamic LBCs had similar performance over the northern states, or the regions 8, 10,
16 and 5. In the region 9, they showed some difference for their temporal variation (Figure 14h) as
17 the AOT-NLBC only changed the north boundary. The AOT-NLBC overpredicted PM2.5 during
18 08/21-08/23/2018, and the NGAC-LBC yielded higher PM2.5 after 08/25 over the region 9.
19 Even though the AOT-NLBC only changed the north boundary, that LBC could influence the
20 whole domain during the intrusion events. The domain-wide statistics of surface PM2.5
21 prediction are $R=0.39, 0.45, 0.50$; $MB=-7.53, -2.33, -2.70$; $RMSE=25.12, 24.04, 22.93$ for the
22 CMAQ Base, NGAC-LBC, and AOT-NLBC runs, respectively. The AOT-NLBC had the best
23 overall scores, except that the NGAC-LBC had slightly better mean bias with its dynamically
24 changed four boundaries.

25 This result showed that the alternative LBC could be useful for capturing the key intrusion
26 signals in case the global LBC was not available. This alternative approach was especially
27 important for the forecast as the satellite AOT can be obtained in near-real-time. In this case
28 study of summer 2018, the wildfire events were similar to the wildfire cases that occurred in
29 summer 2015, which made the quantitative derivation of LBC possible. However, this method
30 may also bring some biases, which could be due to two reasons. One reason is that the
31 correlation shown in Figure S3 is not very strong and some value discrepancies may exist in the
32 derivation. Another reason is that either AOT or the total column loading of pollutants does not
33 include any vertical distribution information, but depends on the based database of summer
34 2015, in which the major aerosol intrusion occurred below 3km (Figure 7). If the new events had
35 major elevated aerosol signals, the AOT derived LBC could put too many aerosol in lower layers
36 and cause surface PM2.5 overprediction.

Deleted: observation clearly showed two peaks related to wildfire plumes over two regions: 08/19-08/21 and 08/24-08/25 for EPA region 8; 08/14-08/17 and 08/19-08/22 for EPA region 10. Without the boundary influence, the CMAQ Base missed all these PM2.5 peaks even though it had the same inside-domain wildfire emissions.

Deleted: successfully captured

Deleted: these

Formatted: Superscript

Deleted: intrusion signals

Deleted: ,

Deleted: overpredicted

Deleted:

Deleted: before 08/18 over EPA region 8

Deleted: alternative

Deleted:

Deleted:

1 5. Conclusion

2 In this study, we examined the influence of CLBCs on our regional air quality prediction,
3 verified with surface ozone and PM2.5 monitoring observations. We developed the full-
4 chemistry mapping table from the global model GEOS to CMAQ's CB05-Aero6 species. The
5 GEOS dynamic LBC showed the overall best score compared with the surface observations
6 during June-July 2015 when the Saharan dust intrusion and Canadian wildfire events occurred.
7 The base simulation (CMAQ_Base) ranked last as it missed all these external influences. The
8 NGAC-LBC only considered the GOCART aerosols, and had the good performance for
9 capturing the dust storm intrusion but missed the ozone enhancement due to the Canadian fire
10 events. The LBC's influences on the model performance depended on not only the distance from
11 the inflow boundary but also species and their regional characteristics, as the LBCs' influence on
12 ozone and PM2.5 differed significantly. During the studied events of summer 2015, The CLBCs
13 affected both PM2.5 mean background concentration and its temporal/spatial variation. Their
14 influences on PM2.5's correlation coefficient R mainly appeared near the inflow boundary, and
15 reduced along with the distance from the boundary. However, their influence on PM2.5
16 background concentration could be kept in the farther inside domain. The CLBC influence on
17 ozone could be more complex, and affected by the boundary inflow of ozone and/or its
18 precursors, and downward transport from the upper troposphere. In this study, the influences
19 with temporal/spatial variation were mainly shown in the aerosol dynamic LBC, e.g. the GEOS-
20 LBC or NGAC-LBC. All other LBCs mainly changed the background concentrations and shifted
21 the mean bias of the corresponding predictions. It should be noted that this study mainly focused
22 on the CLBCs influence on surface sites. For elevated locations, such as airborne measurements,
23 the temporal/spatial variation of the CLBCs can also affect ozone due to the relatively fast
24 transport and weak local ozone production in the upper layers (Tang et al., 2007)

25 The AOT-derived LBC can be used as an alternative method to capture the intrusion when a
26 reliable dynamic LBC is not available. Although the VIIRS AOT was updated only once per day
27 and the derived LBC had noisy spatial distribution, this method still showed its value to replace
28 the static LBC in the air quality forecast. In the wildfire intrusion events of summer 2018, the
29 AOT-derived LBC showed better scores than the NGAC-LBC. Using this derivation method
30 needs some cautions as it could bring some biases due to the value discrepancy or inconsistent
31 vertical distribution between the new event and the original events used to make the derivation. It
32 should be noted that other indicators, such as surface monitoring data, can be also used to derive
33 the similar LBC if the historical LBC has good correlation with these data and there are
34 relatively dense stations available near the inflow boundary. Geostationary satellites can achieve
35 a near-real-time AOT retrieval in a time interval of several minutes, which will provide a better
36 solution for fast capturing the intrusion signals. Currently the main issue for using geostationary
37 AOT is their relatively poor retrieval quality over high latitude or under high zenith angles. Once
38 that issue gets resolved, its AOT can be used as an indicator to derive the LBC or even replace
39 the LBC provided by the global models.

Deleted: the C

Deleted: when comparing

Deleted: the

Deleted: while

Deleted: further

Deleted: s'

Deleted:

Deleted:

Code and Data availability

The source code used in this study is available online at https://github.com/NOAA-EMC/EMC_aqfs (last access: 4 May 2020; NOAA-EMC, 2020). The VIIRS AOT data used here are in ftp://ftp.star.nesdis.noaa.gov/pub/smcd/VIIRS_Aerosol/npp.viirs.aerosol.data/epsaot550/. The surface AIRNow monitoring data can be obtained via <https://airnow.gov>.

Acknowledgements

This research was supported by National Oceanic and Atmospheric Administration (NOAA) under its Office of Weather and Air Quality program with funding number NA16OAR4590118 and NOAA National Air Quality Forecast Capability (grant # T8MWQAQ). We thank the NASA MAP program and NASA Center for Climate Simulation for support in of the GEOS GMI model.

Reference

Appel, K. W., S. J. Roselle, R. C. Gilliam, and J. E. Pleim, Sensitivity of the Community Multiscale Air Quality (CMAQ) model v4. 7 results for the eastern United States to MM5 and WRF meteorological drivers. *Geosci. Model Dev.*, 3, 169–188, 2010.

Arlander, D.W., Brüning, D., Schmidt, U. and Ehhalt, D.H., 1995. The tropospheric distribution of formaldehyde during TROPOZ II. *Journal of atmospheric chemistry*, 22(3), pp.251-269.

Bey, I., D.J. Jacob, J.A. Logan, R.M. Yantosca, Asian chemical outflow to the Pacific in spring: origins, pathways, and budgets. *J. Geophys. Res.*, 106 (D19), pp. 23097-23113, 2001.

Bian, H., M. Chin, D. A. Hauglustaine, M. Schulz, G. Myhre, S. E. Bauer, M. T. Lund, V. A. Karydis, T. L. Kucsera, X. Pan, A. Pozzer, R. B. Skeie, S. D. Steenrod, K. Sudo, K. Tsigaridis, A. P. Tsimpidi, and S. G. Tsyró (2017), Investigation of global particulate nitrate from the AeroCom phase III experiment *Atmos. Chem. Phys.*, 17, 12911–12940 (<https://www.atmos-chem-phys.net/17/12911/2017/>).

Chin, M., Rood, R. B., Lin, S.-J., Muller, J.-F., and Thompson, A. M.: Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties, *J. Geophys. Res.*, 105, 24671–24687, doi:10.1029/2000JD900384, 2000.

Chin, M., Ginoux, P., Kinne, S., Torres, O., Holben, B. N., Duncan, B. N., Martin, R. V. , Logan, J. A., and Higurashi, A.: Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and Sun photometer measurements, *J. Atmos. Sci.*, 59, 461–483, 2002.

Colarco, P., da Silva, A., Chin, M., Diehl, T., Online simulations of global aerosol distributions in the NASA GEOS-4 model and comparisons to satellite and ground- based aerosol optical depth. *J. Geophys. Res.* 115, D14207. <https://doi.org/10.1029/2009JD012820>. 2010.

Eastham, S.D., Weisenstein, D.K. and Barrett, S.R., Development and evaluation of the unified tropospheric–stratospheric chemistry extension (UCX) for the global chemistry-transport model GEOS-Chem. *Atmospheric Environment*, 89, pp.52-63.
<http://dx.doi.org/10.1016/j.atmosenv.2014.02.001>, 2014.

Deleted:

Foley, K. M., Roselle, S. J., Appel, K. W., Bhave, P. V., Pleim, J. E., Otte, T. L., Mathur, R., Sarwar, G., Young, J. O., Gilliam, R. C., Nolte, C. G., Kelly, J. T., Gilliland, A. B., and Bash, J. O.: Incremental testing of the Community Multiscale Air Quality (CMAQ) modeling system version 4.7, Geosci. Model Dev., 3, 205–226, <https://doi.org/10.5194/gmd-3-205-2010, 2010>.

Helmig, D., Petrenko, V., Martinerie, P., Witrant, E., Rockmann, T., Zuiderweg, A., Holzinger, R., Hueber, J., Thompson, C., White, J.W.C. and Sturges, W., Reconstruction of Northern Hemisphere 1950-2010 atmospheric non-methane hydrocarbons. Atmospheric chemistry and physics, 14(3), pp.1463-1483, doi:10.5194/acp-14-1463-2014, 2014.

Henderson, B. H., Akhtar, F., Pye, H. O. T., Napelenok, S. L., and Hutzell, W. T.: A database and tool for boundary conditions for regional air quality modeling: description and evaluation, Geosci. Model Dev., 7, 339–360, <https://doi.org/10.5194/gmd-7-339-2014, 2014>.

Janach, W.E., 1989. Surface ozone: trend details, seasonal variations, and interpretation. *Journal of Geophysical Research: Atmospheres*, 94(D15), pp.18289-18295.

Lee, P., J. McQueen, I. Stajner, J. Huang, L. Pan, D. Tong, H.-C. Kim, Y. Tang, S. Kondragunta, and M. Ruminiski, NAQFC developmental forecast guidance for fine particulate matter (PM2. 5), *Weather and Forecasting*, 32: 343-60. doi:10.1175/waf-d-15-0163.1, 2017.

Lu, C.-H., da Silva, A., Wang, J., Moorthi, S., Chin, M., Colarco, P., Tang, Y., Bhattacharjee, P. S., Chen, S.-P., Chuang, H.-Y., Juang, H.-M. H., McQueen, J., and Iredell, M.: The implementation of NEMS GFS Aerosol Component (NGAC) Version 1.0 for global dust forecasting at NOAA/NCEP, *Geosci. Model Dev.*, 9, 1905-1919, <https://doi.org/10.5194/gmd-9-1905-2016, 2016>.

Molod, A., L. Takacs, M. Suarez, J. Bacmeister, I.-S. Song, and A. Eichmann, The GEOS Atmospheric General Circulation Model: Mean Climate and Development from MERRA to Fortuna. Technical Report Series on Global Modeling and Data Assimilation, 28, 2012.

Pan, L., Tong, D., Lee, P., Kim, H.C. and Chai, T.. Assessment of NOx and O₃ forecasting performances in the US National Air Quality Forecasting Capability before and after the 2012 major emissions updates. *Atmospheric Environment*, 95, pp.610-619, 2014.

Pan, L., Kim, H., Lee, P., Saylor, R., Tang, Y., Tong, D., Baker, B., Kondragunta, S., Xu, C., Ruminiski, M. G., Chen, W., Mcqueen, J., and Stajner, I.: Evaluating a fire smoke simulation algorithm in the National Air Quality Forecast Capability (NAQFC) by using multiple observation data sets during the Southeast Nexus (SENEX) field campaign, Geosci. Model Dev., 13, 2169–2184, <https://doi.org/10.5194/gmd-13-2169-2020, 2020>

Pierce, T., C. Geron, L. Bender, R. Dennis, G. Tonnesen, and A. Guenther A, Influence of increased isoprene emissions on regional ozone modeling. *J. Geophys. Res.* 103:25611–25629, 1998.

Mathur, R., Xing, J., Gilliam, R., Sarwar, G., Hogrefe, C., Pleim, J., Pouliot, G., Roselle, S., Spero, T.L., Wong, D.C. and Young, J., Extending the Community Multiscale Air Quality (CMAQ) modeling system to hemispheric scales: overview of process considerations and initial applications. *Atmospheric chemistry and physics*, 17, p.12449. doi: 10.5194/acp-17-12449-2017, 2017

Sarwar, G., Luecken, D., and Yarwood, G.: Chapter 2.9 Developing and implementing an updated chlorine chemistry into the community multiscale air quality model, in: Air Pollution Modeling and Its Application XVIII, edited by: Borrego, C. and Renner, E., vol. 6 of Developments in Environmental Science, 168– 176, Elsevier, Amsterdam, the Netherlands, doi:10.1016/S1474- 8177(07)06029-9, 2007.

Sillman, S., He, D., Cardelino, C. and Imhoff, R.E., The use of photochemical indicators to evaluate ozone-NO_x-hydrocarbon sensitivity: Case studies from Atlanta, New York, and Los Angeles. *Journal of the Air & Waste Management Association*, 47(10), pp.1030-1040, 1997.

Sonntag, D. B., R. W. Baldauf, C. A. Yanca and C. R. Fulper, Particulate matter speciation profiles for light-duty gasoline vehicles in the United States, *Journal of the Air & Waste Management Association*, 64:5, 529-545, DOI:10.1080/10962247.2013.870096, 2014.

Strode S.A., J.R. Ziemke, L.D. Oman, L.N. Lamsal, M.A. Olsen, J. Liu, Global changes in the diurnal cycle of surface ozone, *Atmospheric Environment*, 199, 323-333, <https://doi.org/10.1016/j.atmosenv.2018.11.028>, 2019.

Tanaka, P. L., Allen, D. T., McDonald-Buller, E. C., Chang, S., Kimura, Y., Mullins, C. B., Yarwood, G., and Neece, J. D.: Development of a chlorine mechanism for use in the carbon bond IV chemistry model, *J. Geophys. Res.-Atmos.*, 108, 4145, doi:10.1029/2002JD002432, 2003.

Tang Y., Carmichael G. R., Thongboonchoo N., Chai T., Horowitz L.W., Pierce R. B., Al-Saadi J. A., Pfister G., Vukovich J. M., Avery M. A., Sachse G. W., Ryerson T. B., Holloway J. S., Atlas E. L., Flocke F. M., Weber R. J., Huey L. G., Dibb J. E., Streets D. G., and Brune W. H.: Influence of lateral and top boundary conditions on regional air quality prediction: a multiscale study coupling regional and global chemical transport models. *J. Geophys. Res.* 112:D10S18. doi:10.1029/2006JD007515, 2007.

Tang, Y., Lee, P., Tsidulko, M., Huang, H.C., McQueen, J.T., DiMego, G.J., Emmons, L.K., Pierce, R.B., Thompson, A.M., Lin, H.M. and Kang, D.: The impact of chemical lateral boundary conditions on CMAQ predictions of tropospheric ozone over the continental United States. *Environmental Fluid Mechanics*, 9(1), pp.43-58, DOI:10.1007/s10652-008-9092-5, 2009

Tyndall, G. S., Cox, R. A., Granier, C., Lesclaux, R., Moortgat, G. K., Pilling, M. J., Ravishankara, A.R. and Wallington, T. J.: Atmospheric chemistry of small organic peroxy radicals. *Journal of Geophysical Research: Atmospheres*, 106(D11), pp.12157-12182, 2001

Urbanski, S.P., Hao, W.M. and Baker, S., Chemical composition of wildland fire emissions. *Developments in environmental science*, 8, pp.79-107. DOI:10.1016/S1474-8177(08)00004-1. 2008

Wang, J., Bhattacharjee, P.S., Tallapragada, V., Lu, C.H., Kondragunta, S., da Silva, A., Zhang, X.Y., Chen, S.P., Wei, S.W., Darmenov, A.S. and McQueen, J.: The implementation of NEMS GFS Aerosol Component (NGAC) Version 2.0 for global multispecies forecasting at NOAA/NCEP-Part 1: Model descriptions. *Geosci. Model Dev.*, 11, 2315–2332, <https://doi.org/10.5194/gmd-11-2315-2018>, 2018

Whitby, E. R., and P. H. McMurry, Modal aerosol dynamics modeling. *Aerosol Science and Technology* 27: 673-688, 1997

Whitten, G. Z., Heo, G., Kimura, Y., McDonald-Buller, E., Allen, D. T., Carter, W. P., and Yarwood, G.: A new condensed toluene mechanism for Carbon Bond: CB05-TU, *Atmos. Environ.*, 44, 5346–5355, doi:10.1016/j.atmosenv.2009.12.029, 2010.

Yarwood, G., S. Rao, M. Yocke, and G. Whitten. Updates to the Carbon Bond Chemical Mechanism: CB05, Technical Report RT-0400675 ENVIRON International Corporation Novato, CA, USA. 2005.

Table 1 . The runs with different lateral boundary conditions conducted in this study

Deleted: CLBC

Runs	Aerosol LBC	Gaseous LBC	Temporal Resolution
CMAQ_Base	static clean background	<u>static</u> GEOS-Chem 2006 with O ₃ limit ≤ 100 ppbV	static monthly mean
GEOS-LBC	<u>dynamic</u> full aerosol	<u>dynamic</u> full chemistry	3 hours
GLBC-Monthly	<u>monthly mean</u> full aerosol	<u>monthly mean</u> full chemistry	static monthly mean
NGAC-LBC	<u>dynamic</u> GOCART simple aerosol	<u>Same as CMAQ_Base</u>	3 hours
AOT-NLBC	<u>daily</u> AOT derived Northern LBC (NLBC) for EC and POC	<u>daily</u> AOT derived Northern LBC for CO, NO _x , PAN, and HNO ₃	24 hours for derived NLBC; static monthly mean for all others

Formatted Table

Deleted: GEOS-Chem 2006 with O₃ limit ≤ 100 ppbV

Table 2. VOC species mapping table from GEOS to CMAQ CB05tucl

GEOS species (mole)	CMAQ Species (mole)
HCOOH	FACD
MO ₂ (CH ₃ O ₂)	XO ₂
MP (methylhydroperoxide)	MEPX
A ₃ O ₂ (primary RO ₂ from C ₃ H ₈ : CH ₃ CH ₂ CH ₂ OO)	PAR + XO ₂
ACTA (acetic acid)	AACD
ATO ₂ (RO ₂ from acetone: CH ₃ C(O)CH ₂ O ₂)	2*PAR + XO ₂
B ₃ O ₂ (secondary RO ₂ from C ₃ H ₈ : CH ₃ CH(OO)CH ₃)	2*B ₃ O ₂
ALK4 (C ₄ or higher alkanes)	4*PAR
C ₃ H ₈	1.5*PAR + NR
ETO ₂ (ethylperoxy radical: CH ₃ CH ₂ OO)	MEO ₂ + PAR
ETP (ethylhydroperoxide: CH ₃ CH ₂ OOH)	MEPX + PAR
GCO ₃ (hydroxy peroxyacetyl radical: HOCH ₂ C(O)OO)	C ₂ O ₃
GLYX (glyoxal)	FORM + PAR
GLYC (glycolaldehyde: HOCH ₂ CHO)	FORM + 2*PAR
GP (peroxide from GCO ₃ : HOCH ₂ C(O)OOH)	ROOH
GPAN (Peroxyacetyl nitrate: HOCH ₂ C(O)OONO ₂)	PANX
HAC (hydroxyacetone: HOCH ₂ C(O)CH ₃)	2*PAR
IALD (hydroxy carbonyl alkenes from isoprene)	ISOPX
IAO ₂ (RO ₂ from isoprene oxidation products)	ISOPO ₂
IAP (peroxide from IAO ₂)	ROOH
INO ₂ (RO ₂ from ISOP+NO ₃)	0.2*ISPD + 0.8*NTR+ XO ₂ + 0.8*HO ₂ + 0.2*NO ₂ + 0.8*ALDX + 2.4*PAR'
INPN (peroxide from INO ₂)	0.2*ISPD + 0.8*NTR+ ROOH + 0.8*H ₂ O ₂ + 0.2*PNA + 0.8*ALDX + 2.4*PAR
ISN1 (RO ₂ from isoprene nitrate)	NTRI
ISNP (peroxide from ISN1)	NTRIO ₂
KO ₂ (RO ₂ from C ₃ or higher ketones)	XO ₂ + PAR
MACR (methacrolein)	ISPD
MAN2 (RO ₂ from MACR+NO ₃)	0.925*HO ₂ + 0.075*XO ₂
MAO ₃ (peroxyacetyl from MVK and MACR)	MACO ₃
MAOP (peroxide from MAO ₃)	ISPD
MAP (peroxyacetic acid, CH ₃ C(O)OOH)	PACD
MCO ₃ (peroxyacetyl radical)	C ₂ O ₃
MEK (C ₃ or higher ketones)	4*PAR
MRO ₂ (RO ₂ from MACR+OH)	0.713*XO ₂ + 0.503*HO ₂
MRP (Peroxide from MRO ₂)	ROOH
MVK (methylvinylketone)	ISPD
MVN2 (RO ₂ from MVK+NO ₃)	0.925*HO ₂ + 0.075*XO ₂
PMN (peroxymethacryloyl nitrate)	OPEN

PO ₂ (RO ₂ from propene)	XO ₂
PP (peroxide from PO ₂ : HOCH ₂ OOH)	ROOH
PPN (peroxypropionyl nitrate)	PANX
PRN1 (RO ₂ from propene+NO ₃)	XO ₂
PRPE (propene)	OLE + PAR
PRPN (peroxide from PRN1)	ROOH
R4N1 (RO ₂ from C ₄ and C ₅ alkyl nitrates)	ROOH + 2*PAR
R4O2 (RO ₂ from C ₄ alkane)	XO ₂
R4P (peroxide from R4O2)	ROOH
RA3P (peroxide from A ₃ O ₂)	ROOH
RB3P (Peroxide from B ₃ O ₂)	ROOH
RCHO (C ₃ or higher aldehydes)	ALDX
RCO3 (peroxypropionyl radical: CH ₃ CH ₂ C(O)OO)	XO ₂
RCOOH (C ₂ or higher organic acids)	AACD
RIO1 (RO ₂ from isoprene oxidation products)	ISPD
RIO2 (RO ₂ from isoprene)	ISOPPO ₂
RIP (Peroxide from RIO ₂)	ISOPX
ROH (C ₂ or higher alcohols)	3*PAR
RP (peroxide from RCO ₃)	ROOH
VRO ₂ (RO ₂ from MVK+OH)	ISOPPO ₂
VRP (peroxide from VRO ₂)	ROOH
ACET (acetone)	3*PAR

Table 3. Aerosol species mapping table from GEOS to CMAQ Aero6 (“D” represents the diameter of GEOS aerosol bin)

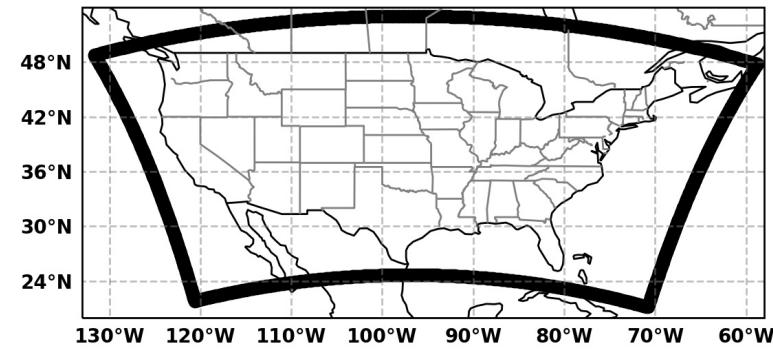
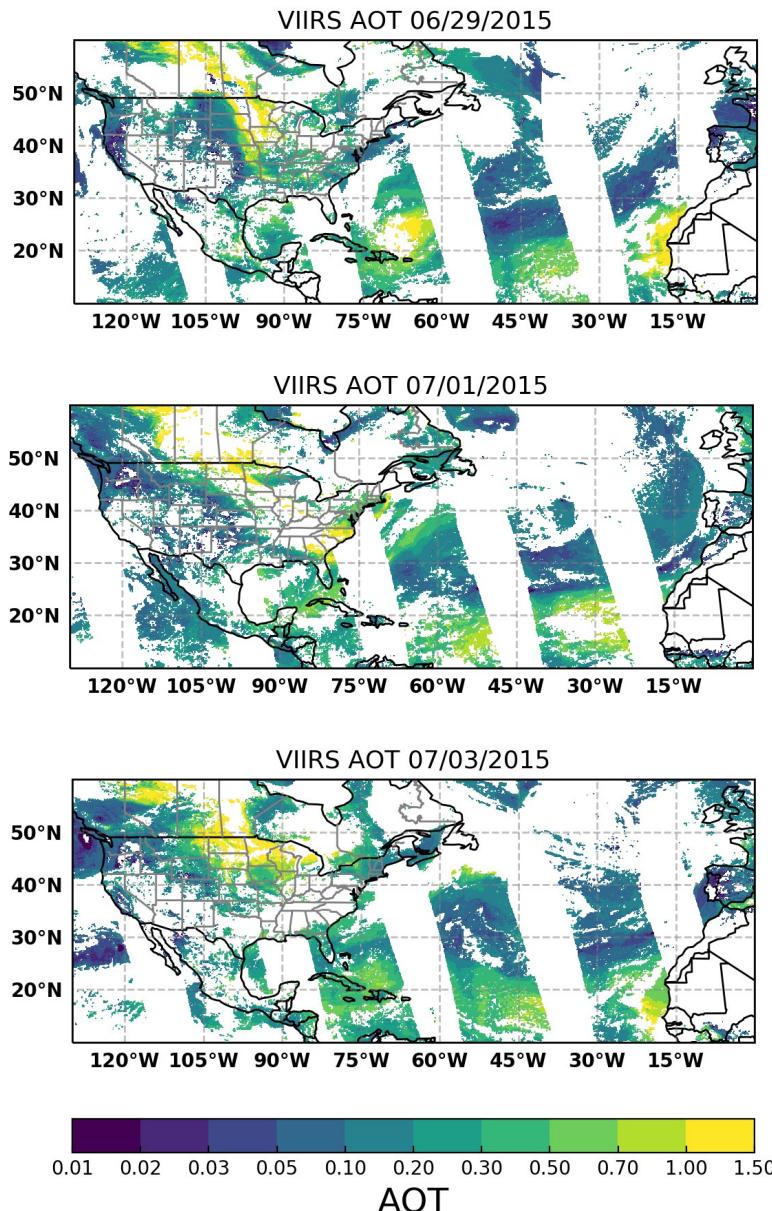
GEOS Aerosol ($\mu\text{g}/\text{m}^3$)	CMAQ Aerosol Mass Concentration ($\mu\text{g}/\text{m}^3$)	CMAQ Aerosol Number Concentration ($#/ \text{m}^3$)
BCPHILIC	AECJ	2.72×10^7 (ACC)
BCPHOBIC	AECJ	2.72×10^7 (ACC)
OCPHILIC	APOCJ	2.72×10^7 (ACC)
OCPHOBIC	APOCJ	2.72×10^7 (ACC)
SO4	ASO4J	2.72×10^7 (ACC)
NH4a	ANH4J	2.72×10^7 (ACC)
NO3an1 (mean D=0.5 μm)	ANO3J	2.72×10^7 (ACC)
NO3an2 (mean D=4.2 μm)	$0.8 * \text{ANO3J} + 0.2 * \text{ANO3K}$	5.4×10^6 (ACC) + 1.2×10^4 (COR)
NO3an2 (mean D=15 μm)	ANO3K	6×10^3 (COR)
DU001 (D: 0.2 – 2 μm)	AOTHRJ	2.72×10^7 (ACC)
DU002 (D: 2 – 3.6 μm)	$0.45 * \text{AOTHRJ} + 0.55 * \text{ASOIL}$	3.3×10^5 (ACC)+ 5.1×10^4 (COR)
DU003 (D: 3.6 – 6 μm)	ASOIL	1.15×10^4 (COR)
DU004 (D: 6 – 12 μm)	0.75*ASOIL	1.4×10^3 (COR)
SS001 (D: 0.06-0.2 μm)	$0.39 * \text{ANAI} + 0.61 * \text{ACLI}$	7.4×10^8 (ATKN)
SS002 (D: 0.2 - 1 μm)	$0.39 * \text{ANAJ} + 0.61 * \text{ACLJ}$	2.72×10^7 (ACC)
SS003 (D: 1- 3 μm)	$0.312 * \text{ANAJ} + 0.488 * \text{ACLJ}$ + $0.078 * \text{ASEACAT} + 0.122 * \text{ACKL}$	1.7×10^5 (ACC)+ 1.26×10^4 (COR)
SS004 (D: 3- 10 μm)	$0.39 * \text{ASEACAT} + 0.61 * \text{ACKL}$	1.36×10^4 (COR)

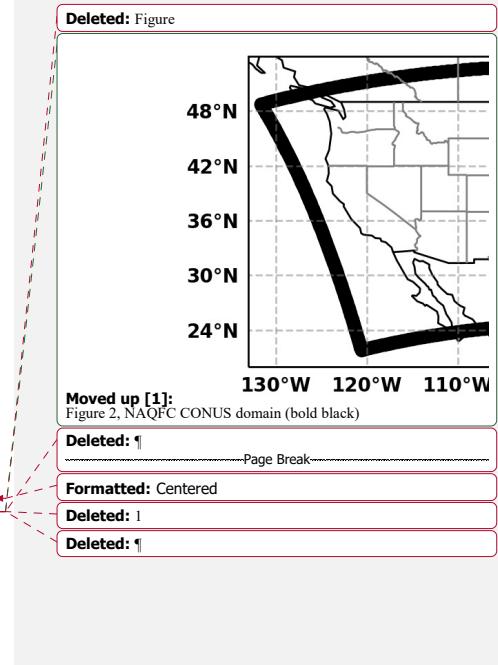
Table 4. Regional PM_{2.5} statistic of the 4 simulations (CMAQ_BASE, GEOS-LBC, GLBC-Monthly and NGAC-LBC) from June 24 to July 8, 2015.

Regions	Simulations	Mean Bias ($\mu\text{g}/\text{m}^3$)	Root Mean Square Error ($\mu\text{g}/\text{m}^3$)	Correlation Coefficient, R	Index of Agreement
CONUS	CMAQ_BASE	-6.74	13.69	0.18	0.37
	GEOS-LBC	-2.96	12.16	0.37	0.55
	GLBC-Monthly	-4.10	12.39	0.27	0.41
	NGAC-LBC	-3.30	12.09	0.30	0.44
Northeastern USA	CMAQ_BASE	-5.52	10.93	0.33	0.43
	GEOS-LBC	-3.81	9.89	0.40	0.50
	GLBC-Monthly	-4.25	10.31	0.34	0.45
	NGAC-LBC	-3.70	10.05	0.35	0.46
Pacific Coast	CMAQ_BASE	-3.96	10.63	0.16	0.31
	GEOS-LBC	-2.02	10.22	0.18	0.34
	GLBC-Monthly	-1.53	10.21	0.17	0.34
	NGAC-LBC	-0.79	10.33	0.16	0.34
Southeastern USA	CMAQ_BASE	-8.18	11.35	0.14	0.44
	GEOS-LBC	-3.07	8.39	0.37	0.58
	GLBC-Monthly	-4.78	9.08	0.27	0.49
	NGAC-LBC	-3.83	8.58	0.35	0.56
Rocky Mountain States	CMAQ_BASE	-7.62	17.57	0.02	0.31
	GEOS-LBC	-3.66	15.98	0.39	0.58
	GLBC-Monthly	-5.42	16.06	0.23	0.36
	NGAC-LBC	-4.65	15.78	0.24	0.36
North Central	CMAQ_BASE	-8.32	17.63	0.25	0.38
	GEOS-LBC	-2.95	16.47	0.33	0.52
	GLBC-Monthly	-5.25	16.41	0.27	0.40
	NGAC-LBC	-4.48	15.98	0.31	0.43
South Central	CMAQ_BASE	-9.65	13.12	0.07	0.42
	GEOS-LBC	-2.00	7.79	0.51	0.69
	GLBC-Monthly	-4.73	9.45	0.24	0.48
	NGAC-LBC	-3.52	8.31	0.46	0.63

Table 5. Same as Table 4 but for ozone

Regions	Simulations	Mean Bias (ppbV)	Root Mean Square Error (ppbV)	Correlation Coefficient, R	Index of Agreement
CONUS	CMAQ_BASE	2.10	12.35	0.64	0.77
	GEOS-LBC	3.47	12.01	0.68	0.79
	GLBC-Monthly	4.84	12.52	0.68	0.78
	NGAC-LBC	1.88	12.29	0.64	0.77
Northeastern USA	CMAQ_BASE	1.87	10.68	0.66	0.78
	GEOS-LBC	4.88	11.54	0.68	0.78
	GLBC-Monthly	5.60	12.02	0.66	0.76
	NGAC-LBC	1.62	10.64	0.66	0.78
Pacific Coast	CMAQ_BASE	-2.58	12.04	0.78	0.86
	GEOS-LBC	-2.16	11.83	0.79	0.87
	GLBC-Monthly	0.46	11.79	0.78	0.87
	NGAC-LBC	-2.76	12.08	0.78	0.86
Southeastern USA	CMAQ_BASE	7.26	13.66	0.59	0.68
	GEOS-LBC	7.94	13.34	0.66	0.72
	GLBC-Monthly	9.06	14.20	0.65	0.70
	NGAC-LBC	7.04	13.50	0.60	0.69
Rocky Mountain States	CMAQ_BASE	-1.91	10.61	0.67	0.80
	GEOS-LBC	-0.17	10.45	0.67	0.80
	GLBC-Monthly	1.68	10.75	0.66	0.79
	NGAC-LBC	-2.08	10.63	0.67	0.80
North Central	CMAQ_BASE	-0.47	10.78	0.65	0.78
	GEOS-LBC	2.55	11.01	0.66	0.79
	GLBC-Monthly	3.00	11.22	0.65	0.78
	NGAC-LBC	-0.75	10.76	0.65	0.78
South Central	CMAQ_BASE	13.36	17.76	0.51	0.58
	GEOS-LBC	10.90	14.71	0.68	0.68
	GLBC-Monthly	12.66	16.24	0.66	0.64
	NGAC-LBC	13.12	17.56	0.51	0.58


Figure 1. NAQFC CONUS domain (bold black)

Moved (insertion) [1]

Deleted: 2

Figure 2. S-NPP VIIRS Aerosol Optical Thickness (AOT) on 06/29, 07/01, and 07/03 of 2015.

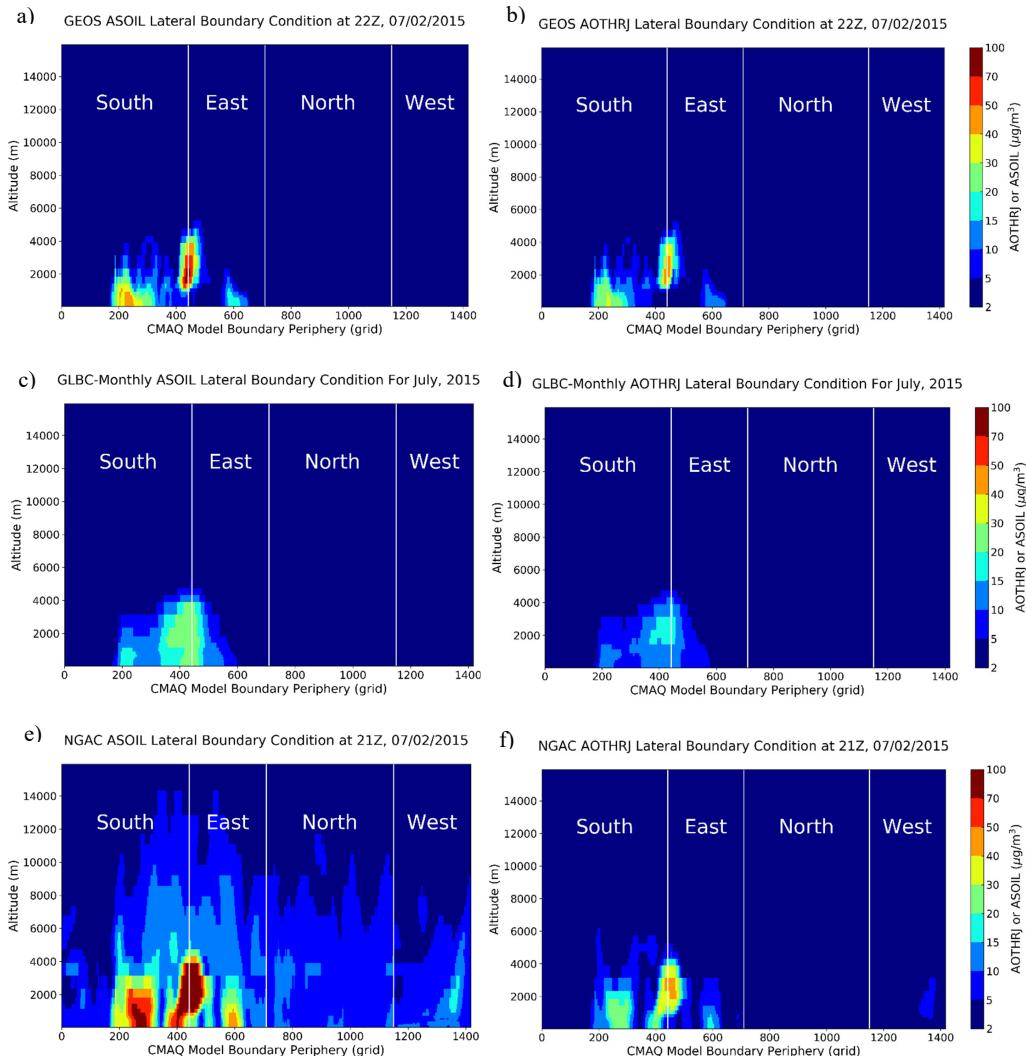


Figure 3. The lateral boundary conditions for ASOIL (left) and AOTHRJ (right) along the domain periphery for July 02, 2015. The CMAQ LBC's grid index for each LBC segment is always from south to north and from west to east, so the LBC index's start-points are reset instead of continuous for the north and west boundaries.

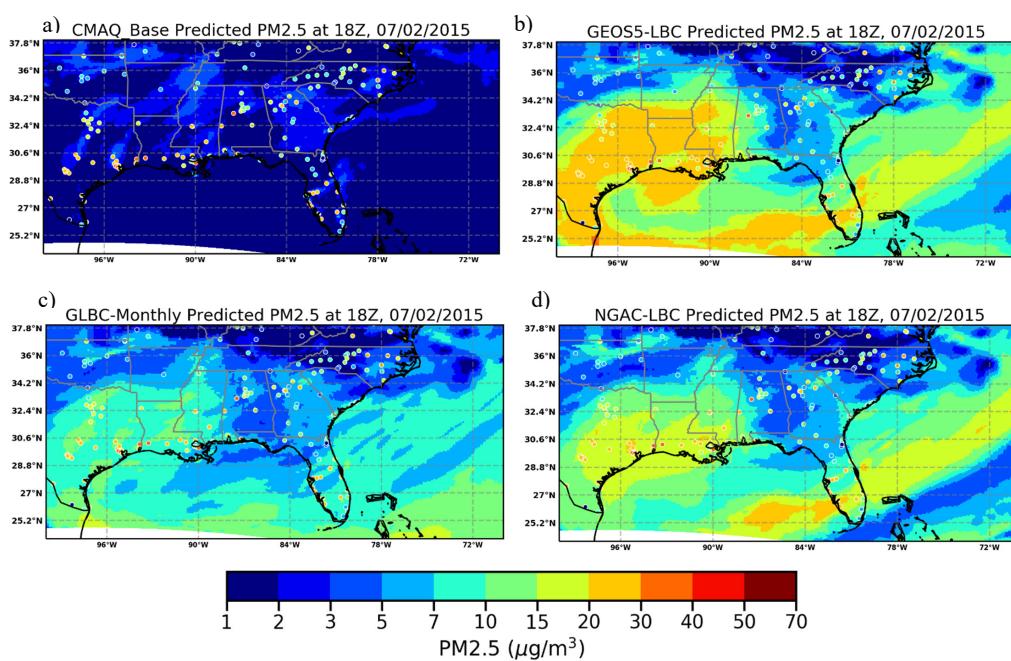


Figure 4. Model Predicted surface PM2.5 with the four LBCs for July 02, 2015 (the colored circles show the AIRNow observations)

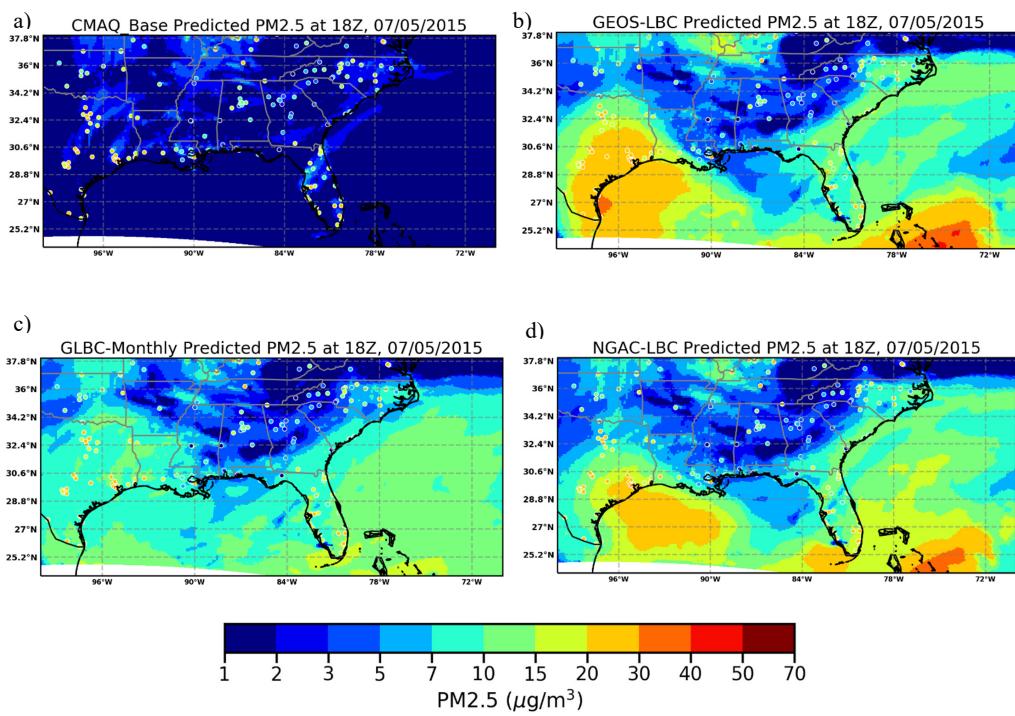


Figure 5. Same as figure 4 but for July 05, 2015

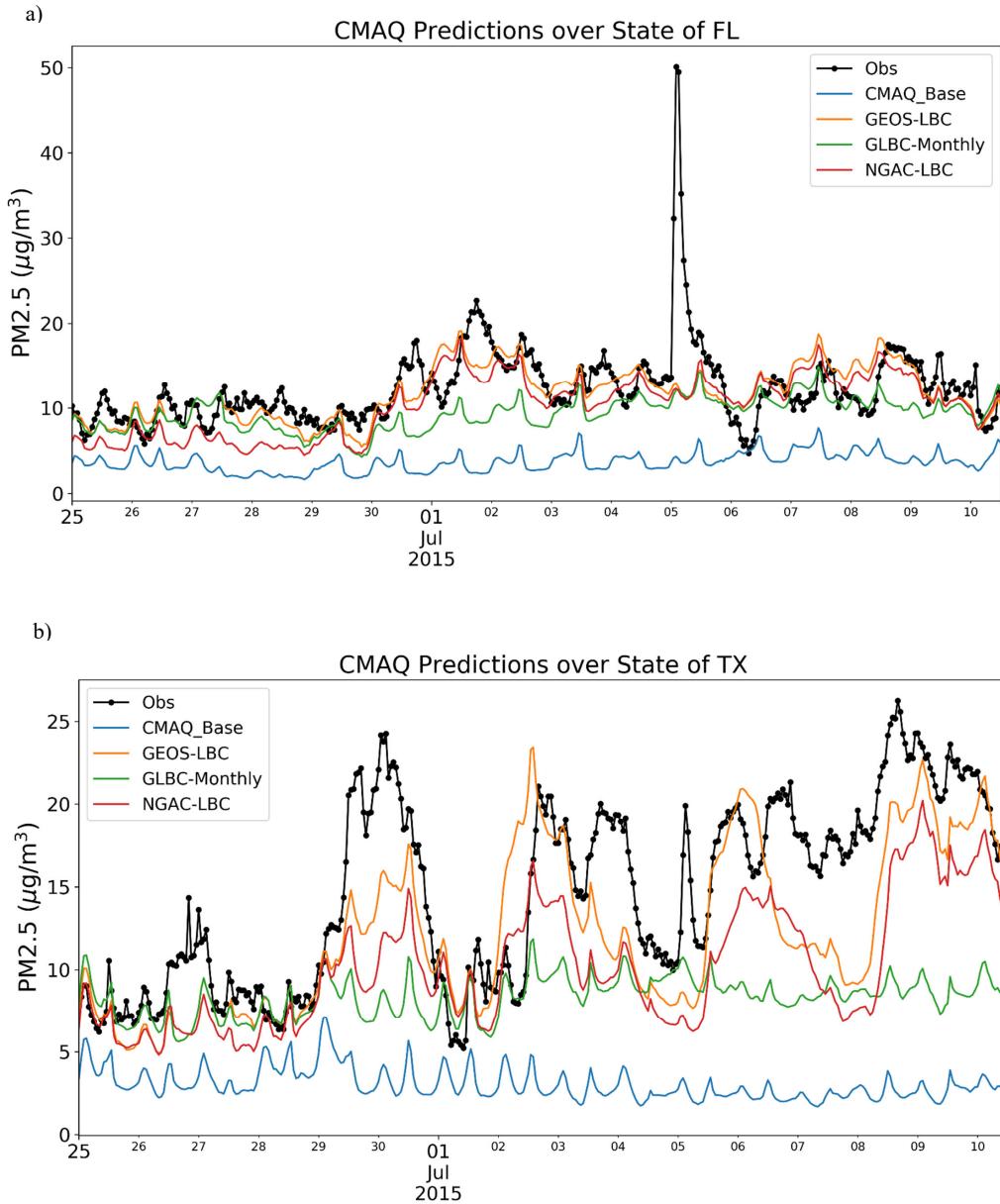


Figure 6. Time-series PM2.5 comparisons over the states of Florida and Texas. All the times are in UTC.

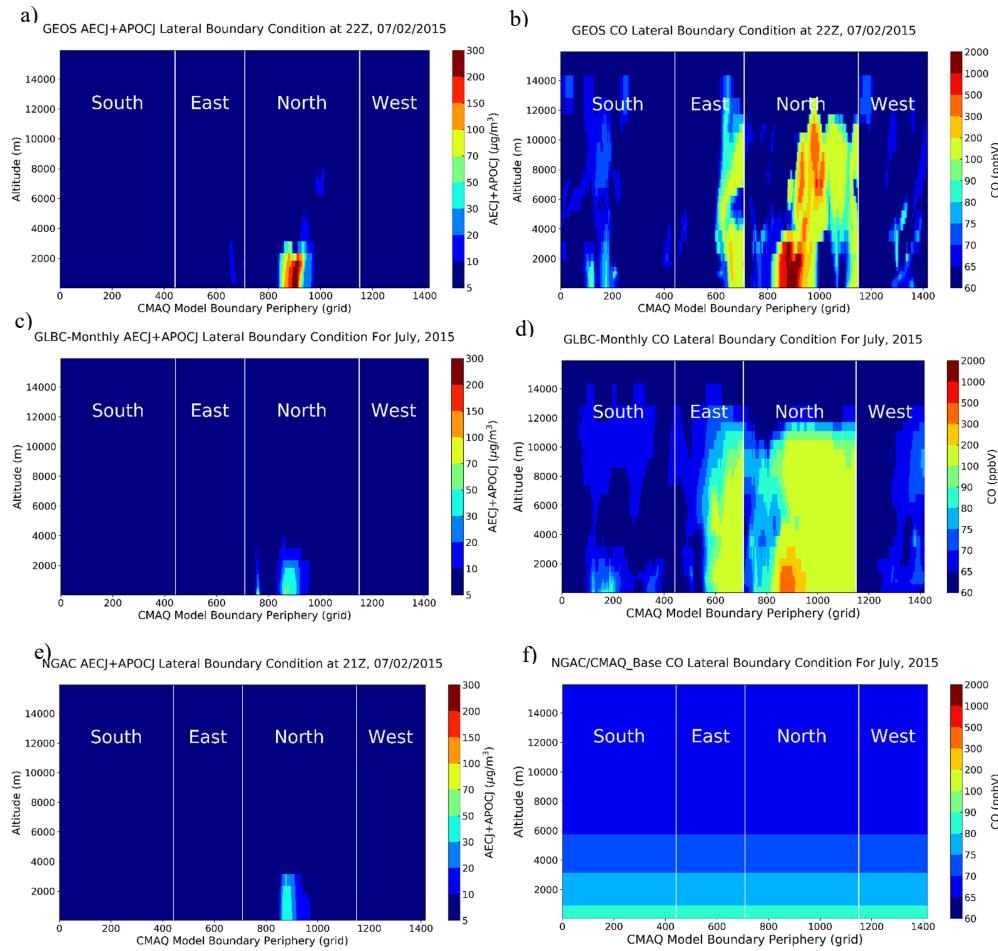


Figure 7, same as Figure 3 except for total EC and POC (AECJ+APOCJ) (left) and CO (right).

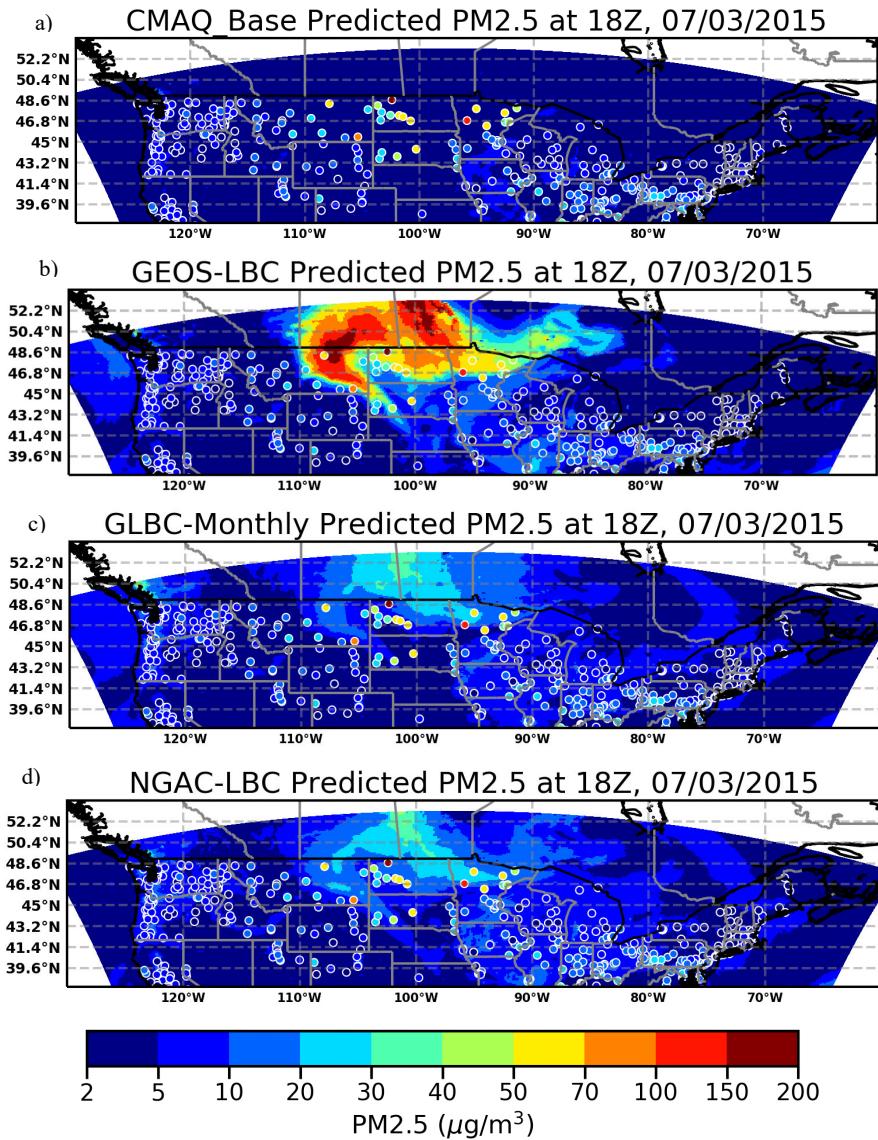


Figure 8, same as Figure 4, but for Northern USA on July 3, 2015

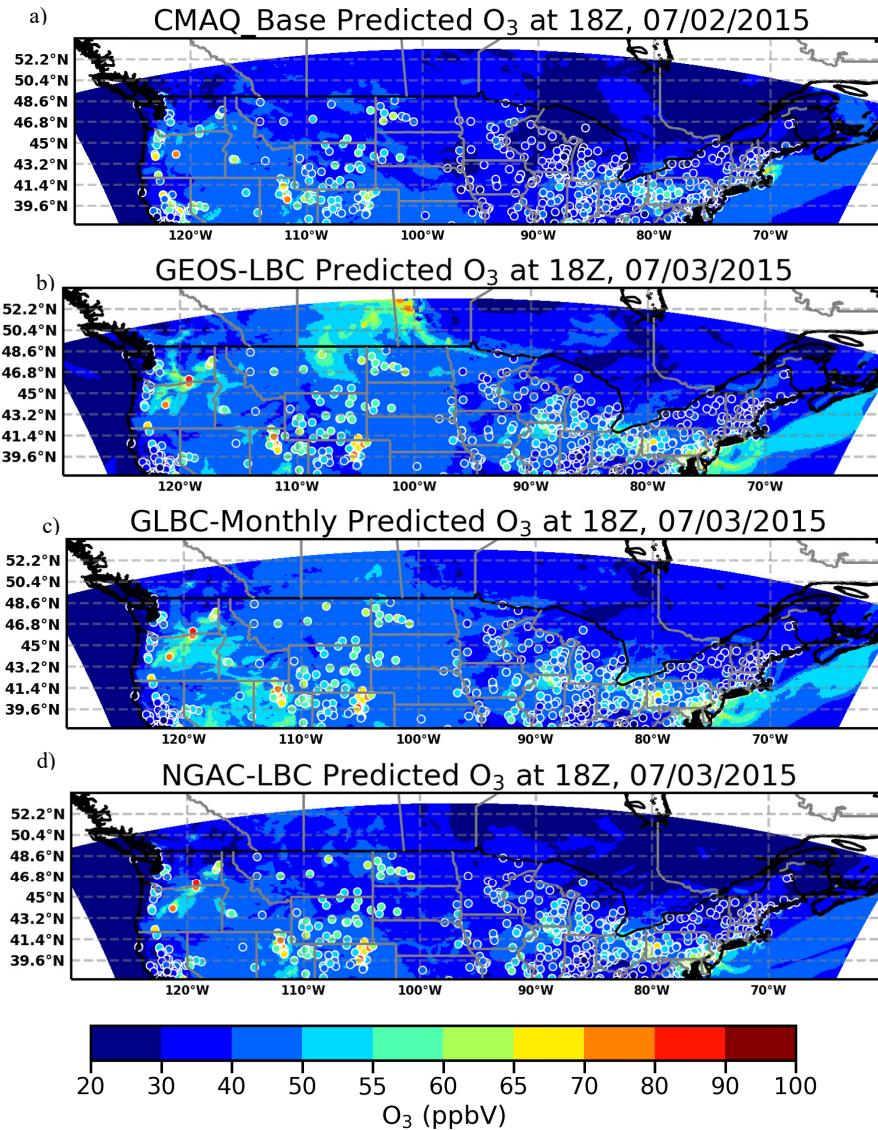


Figure 9, same as Figure 8, but for O₃.

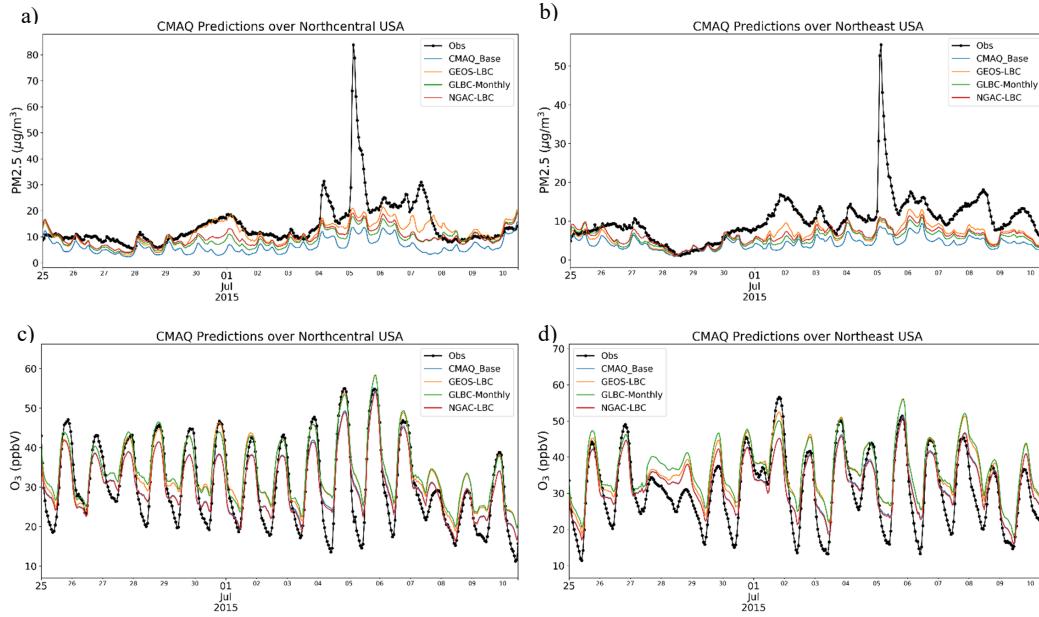


Figure 10. Time-series comparisons for PM2.5 (top) and O₃ (bottom) over the Northcentral (left) (States of Illinois, Indiana, Iowa, Kentucky, Michigan, Minnesota, Missouri, Ohio, and Wisconsin) and Northeastern USA (right) (States of Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island and Vermont and District of Columbia). All the times are in UTC.

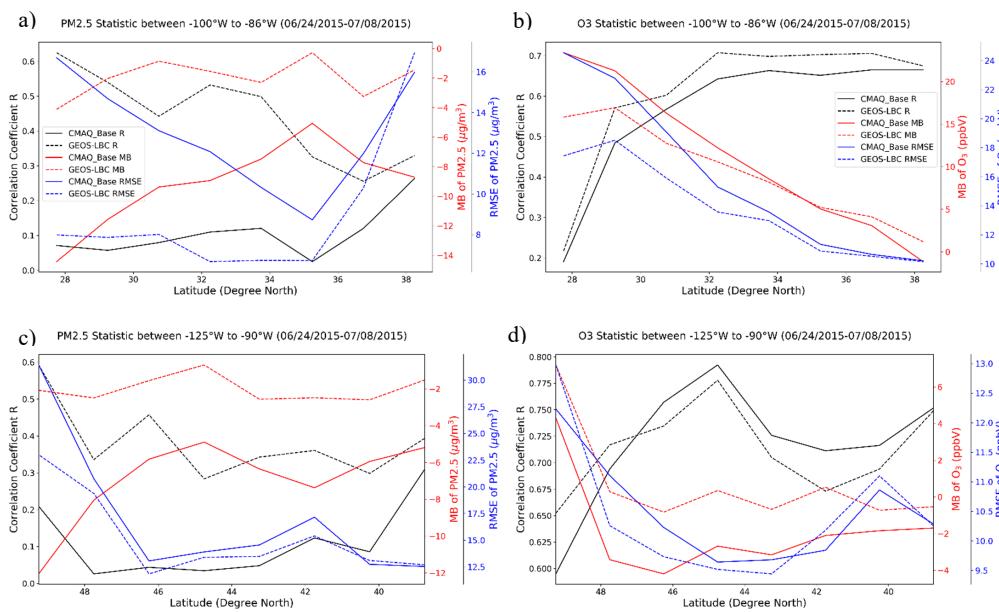
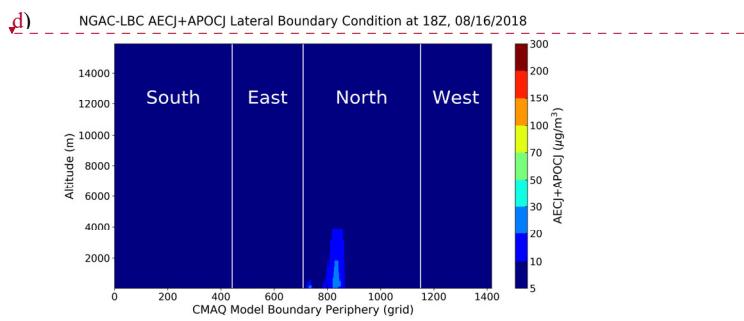
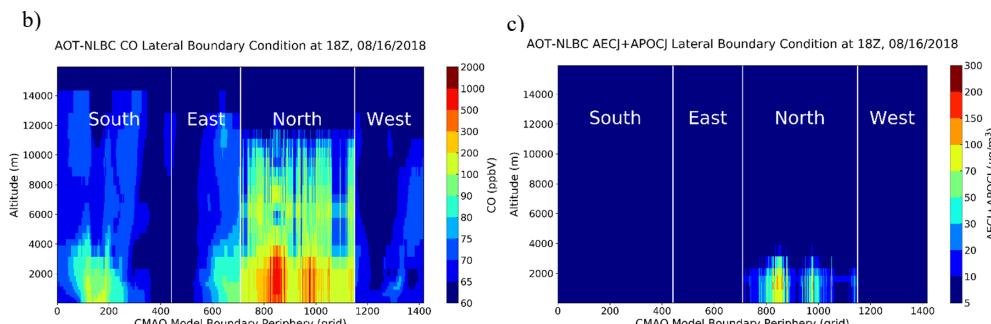
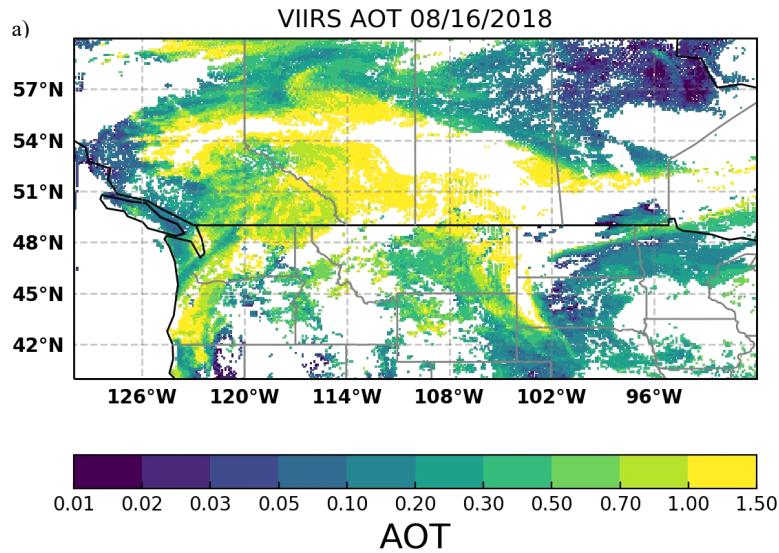





Figure 11, The latitudinal distributions of correlation coefficient R (black), mean bias (MB) (red), and root mean square error (RMSE) (blue) of PM_{2.5} (left) and O₃ (right) from June 24 to July 8, 2015 over Southern USA (top) and Northern USA (bottom) for CMAQ_Base (solid line) and GEOS-LBC (dash line) runs.

Deleted: a
Formatted: Left

Figure 12. VIIRS-AOT (a) on 08/16/2018 and the corresponding derived AOT-NLBC for CO (b) and AEC~~J~~+APOCJ (c). The plot d shows the NGAC-LBC's AEC+APOCJ at the same time.

Deleted: 1

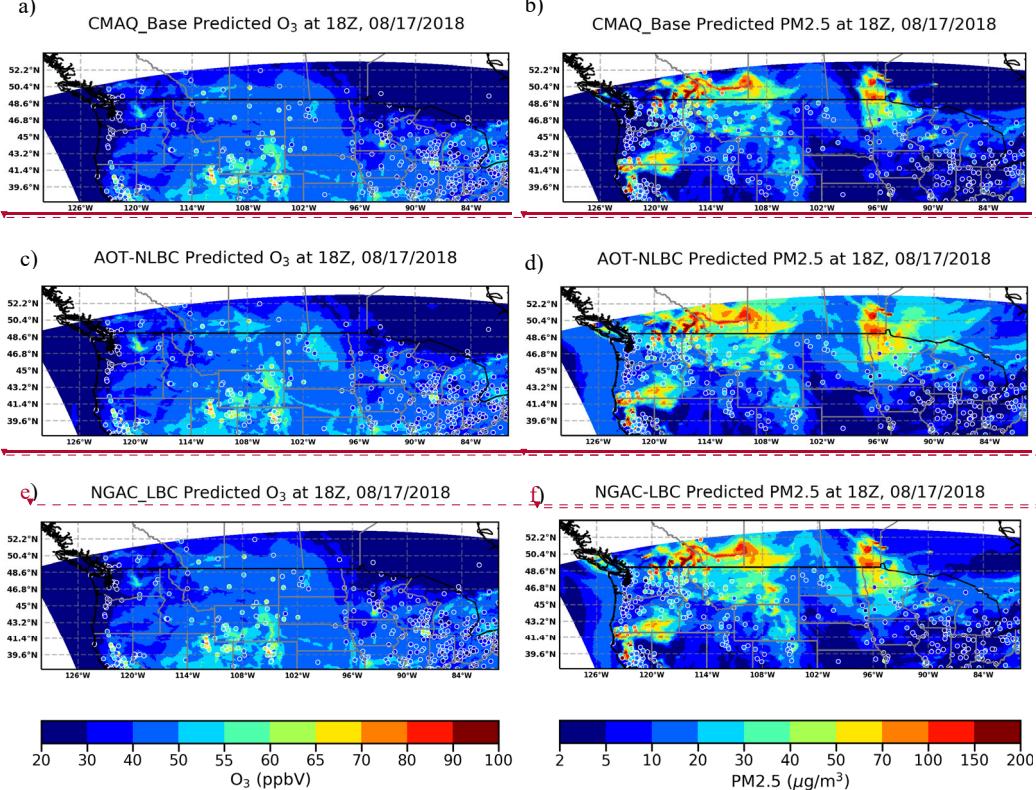
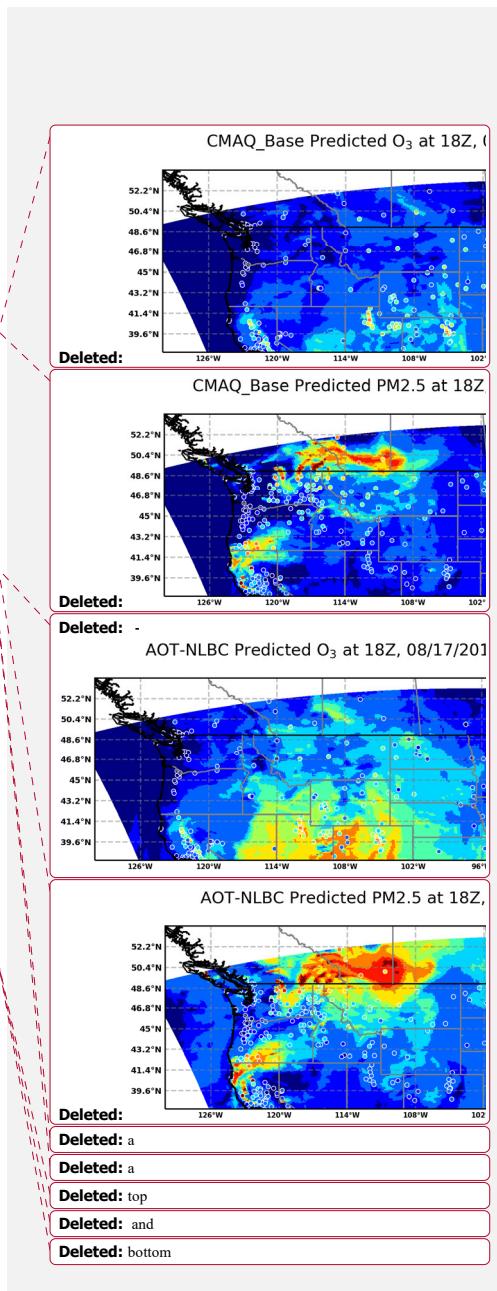



Figure 13. Model Predicted surface ozone (left) and PM2.5 (right) with the CMAQ_Base (a, b), AOT-NLBC (c, d) and NGAC-LBC (e, f) for August 17, 2018 (the colored circles show the AIRNow observations)

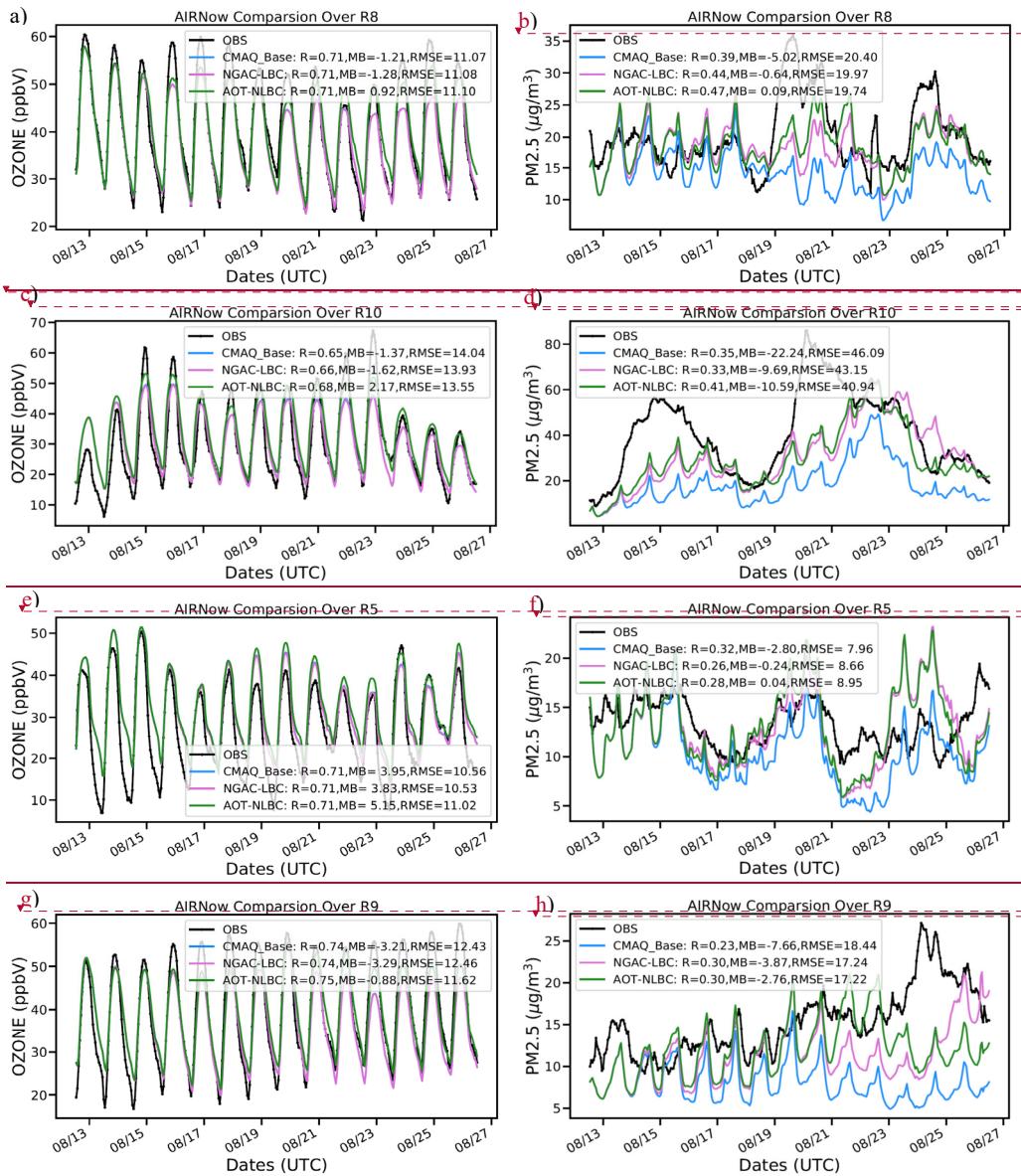


Figure 14, AIRNow time-series comparisons for surface ozone (left) and PM2.5(right) over EPA region 8 (R8, states of MT, ND, SD, WY, CO and UT), region 10 (R10, states of WA, ID and OR), region 5 (R5, states of MN, WI, IL, IN, MI, OH) and region 9 (R9, states of CA, NV, AZ) predicted by CMAQ_Base, NGAC-LBC and AOT-NLBC in 2018

Deleted: 1

Deleted: Space After: 0 pt

CMAQ Predictions over EPA Regi

Deleted:

CMAQ Predictions over EPA Region 8

Deleted: a

Deleted: a

Deleted: a

CMAQ Predictions over EPA Regic

Deleted:

Deleted: a [1]

Deleted: a

Deleted: a

Deleted: a

Deleted: a

Deleted: Time
Deleted: and