Supporting information for:

Drivers of the fungal spore bioaerosol budget: observational analysis and global modelling
Ruud H. H. Janssen\textsuperscript{1,\textcolor{red}{a}}, Colette L. Heald1, Allison L. Steiner2, Anne E. Perring\textsuperscript{3,\textcolor{red}{b}}, J. Alex Huffman5, Ellis S. Robinson\textsuperscript{4,\textcolor{red}{b}}, Cynthia H. Twohy6, Luke D. Ziemba7

1 Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
2 Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
3 Department of Chemistry, Colgate University, Hamilton, NY 13346, USA
4 Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO 80305, USA
5 Department of Chemistry and Biochemistry, University of Denver, Denver, CO 80208, USA
6 NorthWest Research Associates, Redmond, WA 98052, USA
7 NASA Langley Research Center Hampton, VA, USA
\textcolor{red}{a} now at: TNO Climate, Air and Sustainability, Utrecht, the Netherlands
\textcolor{red}{b} now at: John Hopkins University, Dept. of Environmental Health and Engineering

Correspondence to: Ruud Janssen (ruud.janssen@tno.nl) and Colette Heald (heald@mit.edu)

Table S1: global emissions, burden and lifetime for the population and statistical model for two sensitivity runs

<table>
<thead>
<tr>
<th>Emission scheme</th>
<th>Simulation</th>
<th>Emission (Tg year-1)</th>
<th>Burden (Gg)</th>
<th>Lifetime (days)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Population model</td>
<td>Dilution factor = 0.3</td>
<td>2.7</td>
<td>15.8</td>
<td>2.1</td>
</tr>
<tr>
<td>Statistical model</td>
<td>Dilution factor = 0.3</td>
<td>2.9</td>
<td>12.0</td>
<td>1.4</td>
</tr>
<tr>
<td>Population model</td>
<td>Rainout efficieny = 0.0</td>
<td>3.4</td>
<td>25.6</td>
<td>2.9</td>
</tr>
<tr>
<td>Statistical model</td>
<td>Rainout efficieny = 0.0</td>
<td>3.7</td>
<td>20.0</td>
<td>2.1</td>
</tr>
</tbody>
</table>
Figure S1: ratio of storage+entrainment vs. the net surface flux and vertical advection for different averaging times
Figure S2: relationship between spore counts and derived emissions for different land use types. Each point represents a daily spore count at a single AAAAI station.
Figure S3: sensitivity to chosen temperature threshold of modeled spore concentrations at the sites in Germany and Finland. No temperature threshold (top), threshold of 0°C (middle) and threshold of 5°C (bottom)