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Abstract.  15 

Bioaerosols are produced by biological processes and directly emitted into the atmosphere, where they contribute to ice 

nucleation and the formation of precipitation. Previous studies have suggested that fungal spores constitute a substantial portion 

of the atmospheric bioaerosol budget. However, our understanding of what controls the emission and burden of fungal spores 

on the global scale is limited. Here, we use a previously unexplored source of fungal spore count data from the American 

Academy of Allergy, Asthma, and Immunology (AAAAI) to gain insight into the drivers of their emissions. First, we derive 20 

emissions from observed concentrations at 66 stations by applying the boundary layer equilibrium assumption. We estimate 

an annual mean emission of 62±31 m-2 s-1 across the USA. Based on these pseudo-observed emissions, we derive two models 

for fungal spore emissions at seasonal scales: a statistical model, which links fungal spore emissions to meteorological 

variables that show similar seasonal cycles (2 m specific humidity, leaf area index and friction velocity), and a population 

model, which describes the growth of fungi and the emission of their spores as a biological process that is driven by temperature 25 

and biomass density. Both models show better skill at reproducing the seasonal cycle in fungal spore emissions at the AAAAI 

stations than the model previously developed by Heald and Spracklen (2009) (referred to as HS09). We implement all three 

emissions models in the chemical transport model GEOS-Chem to evaluate global emissions and burden of fungal spore 

bioaerosol. We estimate annual global emissions of 3.7 and 3.4 Tg yr-1 for the statistical model and the population model, 

respectively, which is about an order of magnitude lower than the HS09 model. The global burden of the statistical and the 30 

population model is similarly an order of magnitude lower than that of the HS09 model. A comparison with independent 

datasets shows that the new models reproduce the seasonal cycle of fluorescent biological aerosol particles (FBAP) 

concentrations at two locations in Europe somewhat better than the HS09 model, although a quantitative comparison is 

hindered by the ambiguity in interpreting measurements of fluorescent particles. Observed vertical profiles of FBAP show that 
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the convective transport of spores over source regions is captured well by GEOS-Chem, irrespective of which emission scheme 

is used. However, over the North Atlantic, far from significant spore sources, the model does not reproduce the vertical profiles. 

This points to the need for further exploration of the transport, cloud processing, and wet removal of spores. In addition, more 

long-term observational datasets are needed to assess whether drivers of seasonal fungal spore emissions are similar across 

continents and biomes.  5 

1 Introduction 

Bioaerosols are omnipresent in the global atmosphere (DeLeon-Rodriguez et al., 2013; Després et al., 2012; Fröhlich-

Nowoisky et al., 2016). They contribute to the organic aerosol burden of the atmosphere and therefore can affect weather and 

climate by influencing cloud and precipitation formation. They can act as ice nucleating particles (INP; Haga et al., 2014; Pratt 

et al., 2009; Tobo et al., 2013; Twohy et al., 2016) and can form cloud condensation nuclei (CCN) upon fragmentation in the 10 

atmosphere (China et al., 2016; Steiner et al., 2015). Further, bioaerosols can have adverse impacts on human health by acting 

as pathogens, allergens or toxins (Fröhlich-Nowoisky et al., 2016; Reinmuth-Selzle et al., 2017; Samake et al., 2017) and play 

a role in the transmission of crop and animal pests (Fisher et al., 2012). 

Bioaerosols include bacteria, fungal spore, pollen, and fragments of other organisms, such as plants. The first three groups all 

include species that can act as CCN or INP (Fröhlich-Nowoisky et al., 2016), although their activities as cloud nuclei differs 15 

per species. The significance of bioaerosol for cloud formation on global and regional scales depends on their abundance, and 

their relative contribution to INP and CCN populations compared to other aerosol types. On the global scale, their contribution 

to ice crystal formation is thought to be limited (Hoose et al., 2010; Spracklen and Heald, 2014), although they could still be 

of importance for cloud formation in specific regions, such as the Amazon (China et al., 2016, 2018; Morris et al., 2014; Pöschl 

et al., 2010; Prenni et al., 2009). 20 

Estimates of the emissions of bioaerosols on the global scale vary over almost two orders of magnitude, which prohibits 

accurate assessment of their impact on cloud formation and air quality. An early estimate that was based on extrapolation of 

measurements at a few locations was as high as 1000 Tg yr-1 (Jaenicke, 2005). Subsequently, global model simulations have 

been performed that included parameterizations for three main classes of bioaerosols (i.e. pollen, fungal spores and bacteria). 

These yielded total emission estimates between 62 and 123 Tg yr-1 (Hoose et al., 2010; Myriokefalitakis et al., 2017), with 25 

variations between models due to differences in meteorology and land use maps. The variation of estimates for the global 

bioaerosol burden is large as well, ranging between 121 and 791 Gg resulting from differences between models in emissions, 

assumed size distributions and formulation of removal mechanisms. However, the emission parameterizations that are 

incorporated in these models are based on limited observations. All of the above studies used the same emission schemes, or 

modified versions thereof. The fungal spore emission scheme (Heald and Spracklen, 2009), referred to as HS09 hereafter, is 30 

based on measured concentrations of mannitol, a sugar alcohol that is a proxy for fungal spore concentrations, at a limited 

number of locations, and simulated emissions of fine and coarse spores from all ecosystems as a function of LAI and specific 
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humidity. Note that Myriokefalitakis et al. (2017) used a modified form of the HS09 scheme, based on Hummel et al. (2015). 

An early pollen emission scheme (Jacobson and Streets, 2009) was not based on, or tested against, observations. More recently, 

pollen emission schemes have been developed based on pollen count observations, and implemented in regional scale models 

(Wozniak and Steiner, 2017; Zink et al., 2013). Finally, the bacteria emission scheme by Burrows et al. (2009) was developed 

by inverse modeling of measured bacteria concentrations over various ecosystems, and assumes constant emissions for each 5 

land use type. Since estimates of the global bioaerosol burden strongly depend on their emissions, emission models that are 

better constrained by observations are urgently needed. 

In this work, we focus on fungal spores, as they have a smaller size than pollen, which implies that they are more likely to be 

transported over longer distances, and to contribute significantly to the organic aerosol budget on the regional and global scale. 

They can also produce large quantities of submicron fragments after rupturing in the atmosphere, and thereby contribute to 10 

CCN and INP populations (China et al., 2016; O′Sullivan et al., 2015).  Fungi emit spores into the air as part of their 

reproductive strategy. These emissions are thought to depend on temperature and water availability (Boddy et al., 2014; Gange 

et al., 2007; Jones and Harrison, 2004; Löbs et al., 2020), along with biotic factors. Emissions of spores into the atmosphere 

can be either active or passive, depending on the species of fungus. Active emission mechanisms include emissions at high 

relative humidity with liquid jets or droplets (Elbert et al., 2007; Pringle et al., 2005). Factors that have been proposed to drive 15 

the passive emission of fungal spores into the atmosphere include wind (Jones and Harrison, 2004) and rainfall (Huffman et 

al., 2013; Prenni et al., 2013). Since the sources of fungal spores are diverse, it is challenging to develop a mechanistic 

description of their atmospheric emissions, and therefore emissions are usually based on extrapolation of the limited number 

of available observations. These estimated emissions of fungal spores range widely for different methods, including both 

models and educated guesses, from 50 Tg year-1 (Elbert et al., 2007), 28 Tg year-1 (HS09), 186 Tg year-1 (Jacobson and Streets, 20 

2009) to 79 Tg year-1 (Sesartic and Dallafior, 2011). Moreover, the seasonal cycle in these estimates is either absent, or assumed 

to be instantaneously related to the seasonal cycle of the driving variables. 

In this study, we develop two new schemes for the emission of fungal spores on seasonal time scales (Section 2), using a 

previously unexplored source of observed fungal spore concentrations over the United States, and building on available 

knowledge about the drivers of their emissions. Subsequently in Section 3, we implement these new emission schemes in the 25 

GEOS-Chem chemical transport model (Section 3.1) to calculate the global emissions and burden of fungal spores (Section 

3.3). Finally, we evaluate the ability of both emission schemes to simulate spatial and seasonal variations in observed fungal 

spore concentrations and compare results from the new schemes to those from the previously developed Heald and Spracklen 

(2009) scheme (Section 3.4).. 

2. Developing new emission schemes for fungal spores 30 

In this section, we first describe how we infer fungal spore emissions from observed concentrations, and subsequently we 

explain how we develop two new emission parametrizations from these derived emissions. The first parameterization is a 



 

4 

 

purely statistical one, and is derived by relating spore emissions to meteorological and land use variables, using multivariate 

linear regression. The second parameterization is based on the fact that fungal spore production is the result of a biological 

process. We aim to represent the production of spores with a simple population model that accounts for the growth of fungi 

and fungal spores during the year. The overall goal is to obtain emission models that are better constrained and validated by 

observational data than the existing HS09 model, but that are still simple and straightforward to implement in 3D models.  5 

2.1 Fungal spore observations 

Our emission scheme is based on multi-annual time series (6 years, from 2003 to 2008) of spore counts at 66 stations across 

the continental US operated by the American Academy of Allergy, Asthma, and Immunology (AAAAI). Members of the 

National Allergy Bureau monitor spore and pollen counts at these stations, where samples are collected at least 3 days a week 

using a Burkard spore trap (Hirst, 1952; Levetin, 2004). Spore traps are situated on an unobstructed rooftop at least one story 10 

above ground (http://pollen.aaaai.org/nab). In the Burkard spore trap, air is drawn into a 14 mm x 2 mm orifice at 10 L min-1, 

and any airborne particles with sufficient inertia are impacted on either a greased tape or a greased microscope slide beneath 

the orifice. The slides are then examined by microscopy for counting and identification of spores. The standard orifice on the 

Burkard sampler is efficient for particles down to 3.7 µm (Levetin, 2004), which means that the collection efficiency of the 

smallest spores is less than unity. The reported spore counts therefore represent lower limit values: for the size distribution 15 

parameters as defined in Section 3.2, ~40% of the mass concentration and ~83% of the number concentration would fall in the 

size range for which the collection efficiency is below unity. Without a better understanding of how the collection efficiency 

varies with size, we cannot assess what fraction of these particles go undetected by the Burkard spore trap.  

Specified spore counts are available at the genus level, but for our analysis we only use the total daily spore counts. The 

observed concentration ranges between 0 and 6.3x104 m-3 for all stations and years with a mean of 5.4x103 m-3. Figure 1 shows 20 

a map with an overview of the AAAAI stations used in this analysis (with the exception of Anchorage, AK), and the mean 

spore concentration over the full length of the measurement period for each station. For 36% of the stations, no observations 

were available during winter, which has consequences for the derived fluxes during that time of year (see Section 3.1). The 

map also shows the land use, which is a simplified version of the Olson Terrestrial Ecoregions data set (Olson et al., 2001) and 

uses the same lumping into broad land use categories as Burrows et al. (2009). The concentrations show no clear relation to 25 

land use types, although the 3 stations with the lowest concentrations are located in regions that are dominated by deserts and 

shrubs.  

 

2.2 From concentrations to fluxes 

To develop an emission scheme from these observations, emission fluxes need to be derived from measured concentrations 30 

first. This derivation consists of two steps: 1) the conversion from concentrations to net surface fluxes and 2) the conversion 
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from net surface fluxes to emissions fluxes, by subtracting the deposition flux. We describe this procedure here, using Figure 

2 to visually present an example at one site.  

Rainfall poses a challenge for deriving bioaerosol fluxes. A number of studies (e.g. Geagea et al., 2000; Huffman et al., 2013; 

Prenni et al., 2013) have demonstrated that rain can act as a trigger for the release of bioaerosols from vegetation and soils. 

However, at the same time, wet deposition removes aerosols from the atmosphere. This offsetting effect complicates the 5 

relationship between rainfall and net fungal spore fluxes. Therefore, to simplify our analysis, we remove spore counts from 

our observational dataset that were made on days on which any rainfall occurred (on average 32% of the days at each station), 

as established by the categorical rain (crain) variable in the National Centers for Environmental Prediction (NCEP) North 

American Regional Reanalysis (NARR) product (Mesinger et al., 2006) dataset. This necessarily prohibits an assessment of 

the influence of rainfall on fungal spore emissions on the same day. We note that this is a coarse filtering and that emissions 10 

of fungal spores may respond to rainfall on timescales up to three days (Sarda-Estève et al., 2019). Given our focus on 20-day 

average emissions (see below), we do not apply a more sophisticated treatment, but note that further effort to characterize the 

relationship between fungal spore emissions and rainfall could inform higher temporal resolution modeling. 

There are several methods available for translating atmospheric concentrations to surface fluxes. Here, we apply the 

equilibrium boundary layer assumption (Betts, 2000), which states that over sufficiently long periods (at least several days), 15 

boundary layer depth over land reflects a statistical equilibrium between surface heating that acts to deepen the boundary layer 

and subsidence of free-tropospheric air that acts to decrease boundary layer height. The surface flux can then be calculated 

from boundary layer concentrations by applying the tracer conservation equation, which accounts for the effects of horizontal 

and vertical transport. We assume that convection maintains a well-mixed boundary layer, in which scalars, reactants, and 

aerosols have a constant profile over the depth of the boundary layer. This method has been used before to infer seasonal CO2 20 

surface fluxes from measured concentrations (Bakwin et al., 2004; Helliker et al., 2004). We have to note here that it is hard 

to assess the validity of the assumption of well-mixed profiles of fungal spores in the boundary layer, since only limited 

observations of vertical profiles throughout the boundary layer are available. Observations show that concentrations of spores 

are actually highest in the surface layer (Perring et al., 2015), where the AAAAI measurements are taken. Taking these 

concentrations as representative of boundary layer values means that we overestimate their emission fluxes. Calculated 25 

emissions in this work should therefore be regarded as upper limit values. We explore the sensitivity of these emissions to 

assumptions on vertical mixing parameters in Section 4. 

The tracer conservation equation in a simplified form, which does not account for horizontal advection, is as follows: 

 

𝐹𝑠 = (〈𝐶〉 − 𝐶𝐹𝑇)𝑤𝑚 + ℎ
𝜕〈𝐶〉

𝜕𝑡
− 𝐶𝐹𝑇

𝜕ℎ

𝜕𝑡
(1) 30 

 

in which Fs is the surface flux (m-2 s-1), <C> the boundary layer concentration of species C (m-3), CFT the free tropospheric 

concentration of C (m-3), wm the subsidence velocity at boundary layer top (m s-1), h the well-mixed boundary layer height 
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(m), and t is time. The three terms on the right hand side of Eq. 1 represent the vertical advection, storage, and entrainment 

terms, respectively. 

In our analysis, C is the concentration of fungal spores in the boundary layer as reported at the AAAAI stations. The 

measurement heights for the AAAAI stations are not specified, but the measurement locations are at least one story above the 

ground. This means that the sampling locations are in the atmospheric surface layer, which likely leads to an overestimation 5 

of the boundary layer concentrations. For instance, Perring et al. (2015) found that PBAP concentrations aloft (up to the 900 

hPa level) are only between 5-55% of those at the surface. The concentration of fungal spores in the free troposphere (CFT) is 

not well characterized. Based on the vertical profile of fluorescent bioaerosol concentrations observed in and above the 

boundary layer over the US western plains (Twohy et al., 2016), we assume that the concentration of spores decreases by about 

an order of magnitude between boundary layer (BL) and free troposphere (FT). Hence, we set CFT=0.1<C>. This is clearly a 10 

crude assumption and we discuss the sensitivity of the calculated fluxes to different values of this dilution factor in Section 5.  

We take the subsidence velocity from the NARR data, as vertical velocity interpolated to the mean height of the afternoon 

(12:00-18:00 local time) boundary layer top (Figure 2b). With a spatial resolution of 32 km (about 0.3⁰) and 8 output fields 

per day (representing 3-hourly averages), NARR output provides a reasonable spatial and temporal match for each of the 

AAAAI stations of interest. In the boundary layer equilibrium assumption, we take the mean height of the afternoon boundary 15 

layer from NARR as the daily boundary layer height (Figure 2c). We assume that the height of the mixed-layer during daytime 

is representative of the mean boundary layer height for each day, and that the summed depth of the nocturnal boundary layer 

and the residual layer during night-time is similar to the daytime boundary layer height (Bakwin et al., 2004; Helliker et al., 

2004). 

Williams et al. (2011) found that for CO2, horizontal advection can be of the same order of magnitude as vertical advection. 20 

For fungal spore concentrations, the horizontal heterogeneity is likely stronger than for a long-lived tracer like CO2, due to the 

short atmospheric lifetime of these coarse particles and the heterogeneity of their sources. Therefore, horizontal advection 

possibly has a large influence on spore concentrations. By applying running averages over a period of 20 days, we aim to 

average out some of this horizontal variability, while acknowledging that this implicitly assumes long-term horizontal 

homogeneity, which may not be realistic for every AAAAI station. In Equation 1, horizontal advection is neglected, because 25 

there is no reliable way to constrain the horizontal transport of fungal spores.  

We use Eq. 1 to calculate running average fluxes over 20 days in order to minimize the effects of synoptic scale variability on 

the relationship between concentration and flux while maintaining the seasonal cycle (Bakwin et al., 2004). A consequence of 

this choice is that the contribution of short-term storage and entrainment effects to the calculated surface flux is minimal 

(Williams et al., 2011). Figure 2d shows the calculation of the three terms from Equation 1. The vertical advection term 30 

contributes most to the calculated net surface flux, and therefore we explore how assumptions related to this term impact 

derived fluxes in Section 3.4. In contrast, the combined storage+entrainment term becomes negligible in magnitude (<10%) 

compared to the surface flux for most stations when an averaging period of 20 days is applied (Figure S1) which shows that at 

seasonal time scales storage and entrainment contributions can be neglected without introducing large errors in the surface 
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flux calculation. Whether inclusion of horizontal advection in the boundary layer budget equation would substantially impact 

these results remains an open question. It likely varies per site, depending on whether there are spore sources upwind of the 

site or not.  

As a final step in the derivation of the emission flux of fungal spores, we calculate the dry deposition flux with an offline 

version of the aerosol dry deposition scheme that is also used in the GEOS-Chem model (Zhang et al., 2001). To run this bulk 5 

deposition scheme, we use meteorological fields from the NARR as input and we assume a mean fungal spore diameter of 2.5 

µm (see Section 3.2) and a density of 1 g cm-3 (Heald and Spracklen, 2009). The calculated deposition velocities are low (<0.1 

cm s-1) at all stations and seasons, so the deposition flux is of minor influence in the derivation of the emission flux from the 

net surface flux (Figure 2e). 

The conversion of the fungal spore counts to emission fluxes yields a mean emission of 62±31 m-2 s-1 over all years and stations, 10 

with a strong seasonal cycle. The mean ratio between concentrations and fluxes does not vary substantially between sites and 

land use types (Figure S2). About a third of the stations (26) are associated with the ‘forests’ land use type, while other land 

use types are not as well represented in the dataset (Figure 1). Therefore, for the purpose of developing the emission scheme, 

we do not distinguish between land use types. Very few flux measurements of bioaerosols in general and fungal spores in 

particular are available to compare the magnitude of emission that we estimate here. Carotenuto et al. (2017) measured 15 

microbial fluxes over a Mediterranean grassland, reporting mean fluxes of 8.3±11.1 m-2 s-1 in 2008-2010 and 10.6±6.2 m-2 s-1 

in 2015. However, comparison with our derived fluxes is complicated by the fact that they report net fluxes of viable 

bioaerosols, which represent only a fraction of the total bioaerosol population and are likely composed of both fungal spores 

and bacteria. Crawford et al. (2014) derived fluorescent bioaerosol fluxes over a Colorado pine forest by applying flux-gradient 

relationships. Fluorescent clusters that were tentatively associated with fungal spores showed estimated night-time emissions 20 

up to 6000 m-2 s-1 under humid conditions, although they observed net deposition fluxes during much of the rest of the day and 

under dry conditions. Finally, Ahlm et al. (2010) reported upward fluxes of accumulation mode particles in a tropical forest of 

up to 5000 m-2 s-1. They claim that these emitted particles could be fungal spores, although their observations are complicated 

by dry deposition of particles of supposedly anthropogenic origin. More definitive measurements of spore fluxes would be 

useful for further comparison with our derived fluxes. 25 

2.3 Statistical model for spore emissions 

For our initial model, we take a purely statistical approach in quantifying fungal spore emissions at seasonal time scales and 

perform a multivariate linear regression (MLR) on the derived fungal spore fluxes. For this purpose, we combine the AAAAI 

data with MERRA2 meteorological data (Gelaro et al., 2017) at 0.5˚x0.625˚ resolution. With our objective of implementing 

this emission scheme into the GEOS-Chem model, we use MERRA2 meteorology here (as used in GEOS-Chem), rather than 30 

the NARR dataset used in Section 2.2. In addition, the NARR archive does not contain some surface variables that are relevant 

for describing land surface-atmosphere exchange, such as friction velocity and roughness length. For the most important 

variables in our analysis (temperature at 2 m (T2m) and specific moisture at 2 m (q2m)), we verify that the MERRA2 and NARR 
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datasets are consistent. We find very good agreement between the two datasets despite different origins and spatial resolutions, 

with r2=0.94 and NMB=0.0 for T2m and r2=0.92 and NMB=0.03 for q2m. For wind speed at 10 m (U10m), we do not find good 

agreement (r2=0.01 and NMB=-0.59), but this variable is less important in our analysis than T2m and q2m. Therefore, we 

conclude that the choice of meteorological dataset does not have a major impact on our analysis. 

In addition to MERRA2 data, we use 4-day LAI observations from MODIS (Myneni et al., 2015) aggregated to 0.25˚x0.25˚ 5 

resolution as a variable in our regression analysis. The LAI data used here shows good agreement with the LAI used in the 

GEOS-Chem simulations, with r2=0.80 and NMB=-0.02. We also include time (measured in days from the start of the AAAAI 

time series) to account for any linear trend in fungal spore emissions, as in Porter et al. (2015). Variables showing a strongly 

skewed distribution (e.g LAI and 2m temperature) were log-transformed to fulfill the MLR requirement of normally distributed 

variables. 10 

In the MLR, the first independent variable is selected based on the r2 score. Subsequently, all other variables are tested and the 

one that leads to the largest decrease in the Bayesian Information Criterion (BIC) is kept as second independent variable.  

This procedure is repeated until all meteorological and land surface variables are evaluated. Finally, we only keep the variables 

that lead to a significant decrease in BIC for inclusion in the statistical model. The BIC provides a measure of relative model 

performance, and can be used to find an optimum number of explanatory variables in statistical models, by including a penalty 15 

for overfitting (Porter et al., 2015). Unlike the r2, it will not increase whenever a new variable is added, but rather yields a 

minimum value at which a maximum model skill is reached without including redundant variables. 

The regression analysis identifies specific humidity at 2 m (q2m), leaf area index (LAI), and friction velocity (u*) as the top 

independent variables that explain the seasonal cycle in fungal spore emissions (Fig. 3). Figure 3 shows that a minimum in 

ΔBIC is not reached until after the inclusion of about 6 variables. Given that including this many variables is somewhat 20 

impractical and the gain in model skill (represented by r2) by adding additional variables is small, we choose to limit the 

number of predictors to 3. Several independent variables have similar correlations with the spore emissions, therefore we have 

tested the robustness of our variable selection method by forcing different variables as the first variable in the MLR analysis 

(LAI and 2 m temperature T2m). In each of these cases, the top 3 of independent variables are a combination of q2m, LAI, u* and 

T2m, which gives confidence in the selection of q2m, LAI and u* as driving variables in our statistical model. Our statistical 25 

emission function is thus: 

𝐹𝑠𝑡𝑎𝑡 = 𝑏0 + 𝑏1 ∙ 𝑞2𝑚 + 𝑏2 ∙ 𝐿𝐴𝐼 + 𝑏3 ∙ 𝑢∗ (2) 

 

with coefficients b0-b3 as in Table 1 (determined from fitting procedure described in Section 2.5). 

This selection does not mean that the chosen variables specific humidity, LAI and friction velocity are in fact the actual drivers 30 

of fungal spore emissions on seasonal time scales. Rather, they are variables which show a similar seasonal cycle as, and 

therefore a statistical relationship with, the emissions over all stations and years. Therefore, they can be tentatively associated 

with the growth of fungi and the emission of spores. In other words, it seems likely that humidity and vegetation biomass in 

some form play a role in the growth of fungi and wind speed in the emission of their spores, and it is therefore plausible that 
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the correlations are indicative of the actual underlying mechanisms. Note that the first two variables are the same as identified 

in the previous fungal spore scheme developed by HS09. Furthermore, we note that other meteorological drivers, including 

rain which is specifically excluded here, may become important for controlling fungal spore emissions at shorter time scales. 

 

2.4 Population model for spore emissions 5 

A model that explains and quantifies the emissions of fungal spores at the seasonal time scale should contain the driving 

variables of spore emissions at the appropriate time scale. These drivers may include both environmental and biological factors. 

In the literature on fungal growth, temperature and moisture are often mentioned as environmental factors that determine fungal 

fruiting patterns (Boddy et al., 2014; Damialis et al., 2015; Gange et al., 2007; Kauserud et al., 2008), while resource 

availability and competition are also thought to play a role.  10 

Here, we take a first order approach and assume that fungal fruiting (and subsequent spore production) is a biological process 

that is temperature driven. Further, we assume that greater vegetation biomass can sustain larger fungal populations, by 

providing more resources for fungi to thrive on. Hence, we represent fungal growth by a logistic growth model, in which the 

growth rate is a function of temperature and the carrying capacity a function of LAI: 

 15 

𝑑𝑁

𝑑𝑡
= 𝑟𝑁

𝐾 − 𝑁

𝐾
− 𝑚𝑁 (3) 

 

 

in which N is the population size (m-2), r the growth rate (s-1), K the carrying capacity (m-2) and m the mortality rate (s-1). The 

mortality term is added to ensure that the fungal population decays when conditions are not suited for growth. The growth rate 20 

is represented as follows: 

𝑟 = 𝑟𝑚𝑎𝑥 (
𝑇𝑚𝑎𝑥 − 𝑇

𝑇𝑚𝑎𝑥 − 𝑇𝑜𝑝𝑡

) (
𝑇 − 𝑇𝑚𝑖𝑛

𝑇𝑜𝑝𝑡 − 𝑇𝑚𝑖𝑛

)

(
𝑇𝑜𝑝𝑡−𝑇𝑚𝑖𝑛
𝑇𝑚𝑎𝑥−𝑇𝑜𝑝𝑡

)

(4) 

 

in which rmax is the maximum growth rate (s-1), Tmax, Tmin and Topt are the maximum, minimum and optimal temperatures for 

fungal growth (oC), respectively, and T is the actual temperature (oC). 25 

The carrying capacity K is assumed to be a linear function of LAI: 

𝐾 = 𝑙1 + 𝑙2𝐿𝐴𝐼 (5) 

  

, in which l1 and l2 (m-2) are two fitting parameters that determine the sensitivity of K to LAI. 

Emissions of spores from the fungi are then modeled as a function of friction velocity, following a saturation function 30 

(Carotenuto et al., 2017; Zink et al., 2013): 
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𝑓𝑢∗
=

1

1 + 𝑒−𝑠1(𝑢∗−𝑠2)
(6) 

 

in which fu* is a dimensionless emission factor which is a function of friction velocity u* (m s-1), and in which s1 and s2 are two 

fitting parameters that determine the sensitivity of fu* to u*. 

Finally, the emission flux of fungal spores Fpop (m-2 s-1) is calculated as: 5 

 

𝐹𝑝𝑜𝑝 = 𝑓𝑢∗
𝑁 (7) 

  

An important simplification in this model is the fact that we do not make any distinction between the population size of the 

fungi and the number of spores that they produce. In principle, this distinction could easily be included in this formulation by 10 

separating the number of fungi and fungal spores into two variables in Eq. 3. However, we have no observational constraints 

on the size and number of fungi, and therefore such a distinction would only increase the number of variables and free 

parameters in the set of equations, without providing any verifiable results for the fungal population size. An implicit 

assumption in this model, which is a consequence of not explicitly including a reservoir of spores, is that emissions have no 

effect on the fungal spore population size.  15 

2.5 Model fitting  

We fit the statistical model, the population model and the HS09 model to the mean calculated emission time series over all 

stations (Figure 4), using a non-linear least-squares minimization algorithm (Newville et al., 2014). Meteorological fields from 

MERRA2 were used in this fitting procedure to ensure consistency with the meteorological data that is used to drive 

atmospheric transport in GEOS-Chem. When we fit the statistical model with q2m, LAI and u* as independent variables to the 20 

emission time series, we find that it has reasonable skill in explaining the seasonality of the observation-based emissions, with 

r2=0.74 and NMB=-0.004 (Figure 4a). Table 1 shows the parameter values for the best fit. The fitted population model captures 

the seasonal cycle in fungal spore emissions better than the statistical model with r2=0.85 and NMB=0.004. Table 2 shows the 

fitted parameters for the population model. In essence, spore emissions in the population model follow a delayed response to 

temperature and LAI, due to the growth and mortality of the fungi. The friction velocity has only a minor influence on the 25 

emissions. Of the three models, the HS09 model, which shares two variables with the statistical model, but has only one 

regression coefficient (i.e. it is of the form Fsp = c·q2m·LAI) shows the least skill in representing the timing and magnitude of 

the seasonal cycle (r2=0.72 and NMB=-0.193). The fitted coefficient c here has a value of 2.9x10-8 gC m2 s-1 (4.4x103 m-2 s-1), 

which is substantially lower than the original value of 5.2x10-8 gC m-2 s-1 for the fine mode in HS09. We note that the original 

HS09 scheme was derived using a much more limited set of mannitol observations. These mannitol observations (which are 30 

an indirect constraint on spore counts) were taken from a handful of sites around the world and did not have the fully resolved 

seasonal cycle that the AAAAI observations have, and these differences and uncertainties result in a factor of two difference 
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when fitting HS09. Both the statistical and the HS09 model predict a seasonal cycle which is out of phase with the derived 

emissions by roughly 1 to 2 months (Figure 4). Some years show two peaks in derived spore emissions (for instance, there are 

peaks in June and August-September 2005, and in June and September-October 2008), which are not reproduced by any of the 

models. 

3. Integrating fungal spore emissions in a global model 5 

3.1 Chemical transport model 

We implement our newly developed fungal spore emission schemes in the GEOS-Chem chemical transport model (v11-01; 

www.geos-chem.org). Simulations are run for two years (2015 and 2016), of which the first year is used for spin up, with an 

emission and transport time step of 30 and 10 min., respectively. The model is driven by assimilated meteorology from the 

NASA Global Modeling and Assimilation Office (GMAO), here using the MERRA2 product (Gelaro et al., 2017). Global 10 

simulations are performed at a horizontal resolution of 2 x 2.5 degree and 47 vertical levels. Spore emissions are implemented 

as a Harvard–NASA Emission Component (HEMCO; Keller et al., 2014) extension, which uses the model meteorology at 

either the surface or the lowest vertical level, and MODIS LAI product from Yuan et al. (2011) for the year 2008 to calculate 

emissions (note that the MODIS product used here is not available for 2016, but we find only a minor difference in LAI 

between 2008 and 2016 in an offline comparison, and therefore do not expect this to noticeably impact results shown here).  15 

The dry deposition and sedimentation of aerosol particles is described by the Zhang et al. (2001) bulk aerosol deposition 

scheme. We made minor adaptations to this scheme to accommodate sedimentation of bioaerosols as a new coarse aerosol 

class, in addition to dust and sea salt. The mean diameter of the assumed size distribution for the different schemes is applied 

in the dry deposition calculations (see Section 3.2 for a discussion of assumed particle size). Wet deposition is treated by the 

Liu et al. (2001) scheme, assuming that spores are in the coarse mode. In this scheme, we assume efficient scavenging of 20 

fungal spores by rainout and conversion of cloud condensate to precipitation. We address the validity of this assumption in a 

sensitivity analysis (see Section 5).  

In our initial simulations, we found unrealistically high fungal spore concentrations in winter for several locations in the US 

and Europe in our new schemes (see Section 3.5). This is the result of the interplay between low but steady emissions in winter 

and a (lack of) wet deposition for the simulated year. Since the AAAAI data show gaps for many stations in winter and our 25 

observational analysis does not explicitly take into account wet removal, it is likely that our emission schemes are not 

representative of winter conditions. Therefore, we apply a 2 m temperature threshold of 0⁰C, below which there is no emission 

of fungal spores. This value corresponds to the minimum temperature for fungal growth as derived for the population model, 

and it makes sense physically to not have emissions from frozen surfaces. Since the emissions in winter are already low, this 

threshold does not affect the global budget substantially, while improving the simulated seasonal cycle significantly (Section 30 

3.5). Note that this threshold is only applied to our new schemes and not to the original HS09 scheme to which we compare. 

http://www.geos-chem.org/
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3.2 Size distribution 

The assumed geometric mean diameter (Dp) and standard deviation (σ) of the size distribution of fungal spore is central in 

linking their number concentration to mass concentration and for calculating dry and wet deposition. Previous studies made 

different assumptions on the size distribution of fungal spores. Based on mannitol observations in both the fine and coarse 

mode, HS09 assumed two modes: a fine (0<Dp<2.5 µm) and a coarse (2.5<Dp<10 µm) mode with a geometric standard 5 

deviation σ of 1.59 (Spracklen and Heald, 2014). Hoose et al. (2010) and Myriokefalitakis et al. (2017) applied a monodisperse 

distribution with diameters of 5 µm and 3 µm, respectively. Here, we constrain the fungal spore size distribution by using 

WIBS observations in regions of the US that are thought to be dominated by fungal spores from a recent campaign (Fig. 5). 

The campaign was conducted in summer of 2016 on a NOAA Twin Otter aircraft using a WIBS-4A from Droplet 

Measurements Technologies. Operations were based out of Mobile, AL (June 11–16), Asheville, NC (June 16-23), and 10 

Madison, WI (June 23-29) to target latitudinal differences in fluorescent particle sources and distributions. The inlet and flight 

conditions were selected specifically to allow sampling of coarse-mode aerosol (>80% transmission for sizes below 5.4 µm 

dropping to 35% at 10 µm) and data was analyzed using the seven-type methodology presented in Perring et al. (2015). To 

extract “fungal-like” concentrations and size distributions, we include type A, AB and ABC fluorescent particles with optical 

sizes between 1 and 5 µm. The size distributions from the 2016 campaign were nearly identical to those reported in Perring et 15 

al. (2015) for the same fluorescent particle types in the Eastern US. The parameters for the ambient distributions are similar 

across a wide band of latitudes, so we have chosen to use a Dp of 2.5 µm and a σ of 1.5. These ambient size distribution 

parameters are generally in good agreement with size distributions for known fungal spore cultures in the laboratory, although 

the lab distributions for individual species are somewhat narrower with 1.2<σ<1.4, which may be related to spores being mixed 

and aged in the atmosphere. Although a direct comparison is hard due to the different data sources, we think that these 20 

constraints on emitted number and size distribution of spores are more robust than those that were available for HS09. As in 

previous studies (Heald and Spracklen, 2009; Sesartic and Dallafior, 2011), we assume a fungal spore density of 1 g cm-3. A 

molecular weight of 31.0 g mol-1 is applied in the conversion of fungal spore mass from g to gC in the HS09 scheme. 

3.3 Global emissions and burden 

We implement both the population model and the statistical model in GEOS-Chem to calculate global emissions and burden 25 

of fungal spores and compare these results to those of the HS09 scheme. Table 3 shows an overview of all GEOS-Chem 

simulations, and Table 4 shows global spore emissions, burden and lifetime from the CTRL run for the three schemes as 

implemented in GEOS-Chem. Both the statistical model and the population model produce emissions that are about an order 

of magnitude lower (3.7 and 3.4 Tg yr-1, respectively) on the global scale than the HS09 scheme (31 Tg yr-1; note that we 

implement the scheme with the original coefficients in GEOS-Chem, and not the optimized version as in Section 2.4). These 30 

differences have several causes: first, there is a coarse mode in HS09, which contains 74% of the emitted mass in that scheme 

(but note that the fine mode from HS09 alone contains about 2 times more emitted mass than the two new schemes). Then, 
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there are different assumptions on the size distribution of spores, as discussed in Section 3.2. Finally, the locations of the 

observations differ: HS09 used observations from tropical forests, which are expected to show higher concentrations of spores 

than temperate ecosystems as used in the present study. The absence of observations from tropical ecosystems is a limitation 

on the new parameterizations, so more spore count data from those ecosystems would be very valuable for evaluating the new 

schemes and/or to develop emission parameterizations for tropical ecosystems.  5 

The HS09 scheme total spore emission of 31 Tg year-1 (of which 8 Tg yr-1 are in the fine mode and 23 Tg yr-1 in the coarse 

mode, following sizes specified in that study) is 10% higher in the current implementation than in the original study. This 

difference is due to different model meteorology (GEOS-4 versus MERRA2), LAI and year of simulation. Despite the slightly 

higher emissions in our simulations, we find that the burden is about 30% lower than in the original study, due to more efficient 

wet deposition of coarse particles in the newer model version. Similar to the emissions, the burdens for the statistical and 10 

population model are also about an order of magnitude lower than the burden for the HS09 scheme. The fungal spore lifetime 

for the statistical model is lower than for the population model (1.4 vs. 2.1 days), because the statistical model emissions are 

more concentrated in regions that are characterized by high rainfall (i.e. the tropics), and therefore with faster wet removal of 

particles.  

All three emission schemes yield a similar spatial pattern of annual mean emissions with emission peaks across the tropics and 15 

minor peaks in the southeastern US, Europe and south-east Asia (Figure 6). This similarity is not surprising, as all schemes 

use LAI as input, and in the tropics high temperatures accompany high specific humidity. The seasonal cycles in emissions 

and concentrations, however, show more pronounced differences between the schemes (Figure 7). Over North America and 

Asia, for instance, emissions from the statistical and the HS09 model peak in July while those of the population model peak in 

August. These differences in emissions are reflected in the concentrations. Over North America, peak concentrations of spores 20 

from the statistical and the HS09 model peak one month after the emissions in August, but spores from the population model 

concentrations peak in September, with a secondary peak in November. These delays between emissions and concentrations 

are mainly caused by the occurrence of wet deposition (see Figure S3); in months when high emissions coincide with high 

rainfall, the resulting concentrations may be lower than in months with somewhat lower emissions, but also with lower amounts 

of precipitation. Also in Europe, the population model emissions start increasing later than in the other two schemes (May 25 

versus April), but when they increase it happens more rapidly. Over Asia, simulated concentrations from the statistical and the 

HS09 model follow quite different seasonal cycles than the population model, with the former two peaking in August and the 

latter in November. This is a consequence of the interplay between emissions and wet deposition: rainfall maxima occur in 

July and August in this region, related to the East Asian monsoon. Statistical model emissions show a peak during the same 

period, and therefore statistical model concentrations are still high. Population model emissions, on the other hand, are much 30 

weaker. The concentrations resulting from both models are similar, which is caused by the stronger wet deposition flux for the 

statistical model spores.  

Over South America, the statistical model predicts a stronger seasonal cycle in emissions than the population and the HS09 

model, and also the timing differs, with the emissions from the statistical model showing a minimum in July and the other 
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models in June. As a results of these different seasonal cycles in emissions, all models show different seasonal cycles in the 

concentrations. The statistical model shows peak concentrations from April through August, the population model peaks in 

July and August and the HS09 model in April. The statistical and population model yield minima during the transition period 

from the dry to the wet season and the wet season (October-February), while the HS09 model shows minimum concentrations 

in June. Since wet deposition in GEOS-Chem is size-dependent, it has a stronger influence on the spore concentrations from 5 

the HS09 scheme, due to the presence of a fine and a coarse mode (see Section 3.2). For the other two emission models, the 

modeled concentrations clearly result from the interplay between emissions and wet deposition during the seasons.  

As a verification of our implementation of the statistical and population emission schemes, we compare the results of both 

schemes within the GEOS-Chem simulation to the AAAAI data from which they were developed. In addition, we also compare 

the results from the HS09 scheme as implemented in GEOS-Chem to the AAAAI data. Theoretically, one would expect near-10 

perfect agreement here, but there are several factors, largely related to comparing a single observation with gridbox average 

values, which can degrade this comparison. First, in GEOS-Chem, each 2x2.5⁰ grid box can contain multiple land cover types, 

including land use types, like water surfaces, from which no spores are emitted. Including these land cover types would lead 

to an underestimate in grid box average spore emissions compared to emission at the AAAAI station in that grid box, which 

has been shown before to be an issue in the model-measurement comparison of deposition (Silva and Heald, 2018). To be able 15 

to make a fair comparison between grid boxes and point measurements, we run a simulation in which the grid boxes that partly 

contain water surfaces had a fully emitting land cover. Further, for the comparison of modeled and observed spore 

concentrations, several additional factors contribute to model vs. point measurement differences, including the exclusion of 

days with rain and wet deposition in the offline calculations, and in general differences in meteorology between the years of 

observations and simulation (2003-2008 vs. 2016).  20 

We find that GEOS-Chem is able to reproduce the broad pattern in annual average fungal spore emissions over the US, with 

high emissions in the east and low emissions in the west, for both the emissions from the statistical and the population model 

(Figure 8). In the control simulation, both models show a negative bias compared to the emissions derived from the AAAAI 

observational (Figure S4),  The HS09 scheme also reproduces this pattern, but with a strong overestimation of number 

emissions over the whole US (NMB=10.1), even when looking at fine mode spores only. This overestimate of number 25 

emissions is expected given the order of magnitude difference in emitted mass. We note that while the overestimate of emitted 

mass is largely driven by the inclusion of the coarse mode emissions in HS09, which make up 75% of the emissions based on 

the mannitol observations used to constrain that model, the overestimate in emitted spore numbers is mainly due to emissions 

in the fine mode. However, the observed size distribution data (see Section 3.2) seems inconsistent with this preponderance of 

fungal spores in the coarse mode; more work is needed to understand the size distribution of fungal spores and the efficiency 30 

with which spores are sampled by various measurement techniques. For the statistical and the population model, we find that 

the GEOS-Chem emissions have a small negative bias (NMB=-0.01 and -0.08, respectively), but that the skill in reproducing 

seasonal variations at the AAAAI stations is low (r2=0.28 and 0.26, respectively). The latter can be explained by the fact that, 

although the combined seasonal cycle over all stations is reproduced well in the model fit (Fig. 4), the emission models do not 
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capture the variations between stations that may result from, for instance, different land use (and vegetation) types surrounding 

the stations.  

We can conclude that the statistical model reproduces the magnitude and seasonal cycle of fungal spore emissions slightly 

better than the population model. We explore comparisons against independent measurements in Section 3.4 to identify 

whether one scheme has additional model skill over the other.  5 

 

3.4 Validation with independent datasets: seasonal cycle and vertical profile 

Since our models are based on observed spore counts from the United States, a validation with independent data sets is vital, 

particularly for other regions. Unfortunately, there are limited direct observations of fungal spore concentrations. 

Measurements of fluorescent biological aerosol particles (FBAP) are available that can, in principle, be used for this purpose. 10 

However, caution is needed in the comparison with spore concentrations, because the fluorescence data cannot directly provide 

well-constrained spore counts (Huffman et al., 2020). Other biological particles (bacteria and pollen) as well as certain types 

of non-biological particles can contribute to these measurements as well, although with varying fluorescence efficiency and as 

a function of particle size and especially instrument operation and analysis procedures (Crawford et al., 2015; Perring et al., 

2015; Savage et al., 2017; Toprak and Schnaiter, 2013). Further, weakly fluorescing spores can escape detection (Huffman et 15 

al., 2012). Therefore, we do not compare number concentrations directly, but focus on seasonal cycles and vertical profiles 

instead, for which we show normalized time series and profiles. We applied min-max normalization, which scales all values 

to a range between 0 and 1. 

Few observational studies exist that cover a full seasonal cycle or longer. Two of the available datasets were collected in 

Europe, and thus provide particularly valuable validation of our models beyond the domain for which they have been 20 

developed. The first dataset used in this comparison is from a semi-rural site in Karlsruhe, Germany, where a WIBS-4 

instrument was employed (Toprak and Schnaiter, 2013) from 1 April 2010 to 1 April 2011. In a boreal forest in Hyytiälä, 

Finland, a UV-APS was employed from 27 August 2009  to 17 April 2011 and the same instrument was used in a pine forest 

in Colorado, USA (Schumacher et al., 2013) from 20 July 2011 to 31 May 2012. Based on one distinct mode in their FBAP 

observations, Toprak and Schnaiter (2013) attributed their observations to a site-specific spore type. For the Hyytiälä site, 25 

Manninen et al. (2014) suggest that fungal spores strongly contribute to PBAP numbers, based on spore counts. No dominant 

contributor to the FBAP concentrations has been identified at the Colorado site.  

Our focus is on the normalized seasonal cycle, but we note that when comparing the absolute concentrations, we find a 

systematic low bias for the population and the statistical model and a high bias for the HS09 model. There a several reasons 

why a low bias in the model simulations is reasonable. First, as previously noted, the FBAP concentrations from the WIBS 30 

and UV-APS instruments do not only consist of spores, but may contain bacteria and pollen (fragments) too, as well as 

interferences from non-biological particles. Second, at the Hyytiälä and Colorado sites, the instrument inlets were situated 

inside the canopy, where concentrations of bioaerosols are usually higher than above the canopy due to proximity to sources 
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(Crawford et al., 2014; Gabey et al., 2010). GEOS-Chem, on the other hand, does not include a canopy model, so its results 

are representative of the lowest atmospheric layer above the canopy. Finally, as noted in Section 2.1, the spore count 

measurements at AAAAI sites, which are used here to constrain the emissions used in GEOS-Chem, are a lower limit given 

the size limits of the sampling. Unfortunately, there are no co-located fluorescence and spore count measurements that can be 

compared directly to explore these differences.  5 

For the normalized seasonal cycle, we find similar results for all three sites (plotted as 20-day rolling means in Fig. 9). Table 

S2 shows that for the ground-based observations, the normalization factors are within a narrow range. 

Note that we correct for the fact that the emitting land fraction of the GEOS-Chem grid box over the Hyytiälä site is smaller 

than one, and that we exclude the period during which the ground surface was covered with snow at this site from the statistics, 

since this inhibits spore emission (Schumacher et al., 2013). For the Karlsruhe site, all model simulations capture the broad 10 

features of the seasonal cycles well, with low concentrations in winter (January to March), rising concentrations in spring and 

peak concentrations in summer and fall (until October). The HS09 model, however, predicts peak concentrations in June, while 

the observations peak from August to October. The population model does not capture the rapid concentration increase in May 

and June. At Hyytiälä, the HS09 model shows a peak in July, which is not present in the observations or the other models, and 

the population model also misses the peak in early summer here. For both sites, all models show similar skill in capturing the 15 

seasonal variability. Only for the site in Germany, the population model captures the seasonal variability somewhat better than 

the other models.  

At the site in Colorado, all models have difficulty capturing the average behavior shown in Figure 9. The seasonal cycle at this 

site is composed of observations that span two calendar years, July 2011 to June 2012, which explains the sudden shift from 

high to low normalized concentrations in summer. For the period from January to July, all three models capture the 20 

concentration increase, with low concentrations from January to April, and an increase from May onwards. Especially the 

statistical model reproduces the timing and relative magnitude of this growth well. During the period from September through 

November, however, the statistical and population models fail to capture the relatively low spore concentrations. Only in 

December, all models capture the minimum in the concentrations that is present in the observations as well. 

In addition, the agreement between model and measurement strongly depends on the choice of the temperature threshold below 25 

which emissions are shut off for the statistical and the population model. In Section 3.1, we set this threshold to 0⁰C, and here 

we evaluate the effect of setting no temperature threshold and a threshold of 5⁰C, respectively. Figure S5 shows that setting 

no temperature threshold strongly degrades the model-measurement agreement, especially at the Karlsruhe site in December 

when modeled concentrations peak while FBAP concentrations actually have a minimum. For Hyytiälä, the model-

measurement agreement decreases as well, but less than at the Karlsruhe site, because the period with snow cover was already 30 

excluded. On the other hand, when we set the threshold to 5⁰C, both the statistical and the population model reproduce the 

seasonal cycles at both sites well, with r2 between 0.62 and 0.71. The fact that this relatively arbitrary choice makes such a big 

difference for the ability of the models to reproduce the observed seasonal cycle suggests that the low availability of AAAAI 

observations during winter severely limits the derivation of emission schemes from those data.  
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In conclusion, calculated spore concentrations from the population and the statistical model capture the seasonal variations in 

FBAP concentrations with comparable skill as the HS09 model, although assumptions on the temperature threshold below 

which no emissions occur have a large influence on the performance of the former two models. 

 

Vertical profiles of FBAP are available for several campaigns over the continental United States, including SEAC4RS (August-5 

September 2013; Ziemba et al., 2016) and IDEAS (September-October 2013; Twohy et al., 2016), and over the North Atlantic 

from the NAAMES 2015, 2016 and 2017 campaigns (Behrenfeld et al., 2019). The SEAC4RS and IDEAS campaigns enable 

us to evaluate how well the model captures the vertical transport of fungal spore-like fluorescent particles close to source and 

the NAAMES campaigns characterize the transport of spores through continental outflow toward the North Atlantic. The North 

Atlantic Aerosol and Marine Ecosystems Study (NAAMES) included aerosol measurements from the NASA Wallops Flight 10 

Facility (WFF) C-130 based in St. John’s, Newfoundland, Canada. Flight campaigns occurred in the fall of 2015 (9-Nov 

through 23-Nov), late-spring of 2016 (18-May through 1-June), and late-summer of 2017 (28-Aug through 19-Sept). The 

WIBS sampled iso-kinetically through a shrouded solid-diffuser inlet that efficiently samples particles up to 5µm aerodynamic 

diameter (McNaughton et al., 2007).  WIBS was operated at a constant sample flowrate and concentrations were corrected to 

standard temperature and pressure (Ziemba et al., 2016). To exclude the possible influence of biomass burning, which can 15 

produce fluorescent aerosol (Savage et al., 2017), only the observations for which simultaneous acetonitrile concentrations are 

below 200 ppt were used.  Cloud contaminated samples have been removed using coincident measurements from a set of wing-

mounted optical probes.  

Because of the same issues with the interpretation of FBAP measurements as mentioned above, we compare mean observed 

and simulated normalized vertical profiles for each campaign. For the flight campaigns, all normalization factors are within a 20 

factor 3 from each other, with the exception of SEAC4RS, for which the factor is an order of magnitude lower (Table S2). 

When we compare the simulated concentrations with the observed profiles, we see that simulated normalized concentrations 

from GEOS-Chem generally agree well with the observed concentrations from the SEAC4RS and IDEAS flights (Fig. 10). 

For the SEAC4RS flights, all models capture the observed vertical profile. Potential temperature profiles agree well between 

model and observations, which gives confidence in the correct representation of convective transport by the model. For the 25 

IDEAS flights, the model slightly overestimates normalized concentrations around 650hPa and underestimates them between 

600 and 500 hPa, but these difference fall within the variability in the observations. Overall, the model appears to generally 

capture the vertical transport of spores over their source regions. The dilution factor between BL and FT from these modeled 

profiles is about 0.3 for the SEAC4RS and about 0.6 for the IDEAS campaign (in Section 4 we explore how use of these 

dilution factors would impact our emissions derivation). 30 

For the campaigns over the North Atlantic, the model simulations underestimate the absolute concentrations (which are small; 

<10 L-1) for all years and emissions schemes, with the exception of the HS09 scheme for the 2017 campaign. All years show 

concentration maxima between the 800 and 600 hPa levels (Fig. 10), which are the result of continental outflow of fluorescent 

particles. The simulations generally do not capture these relative profiles, and show decreasing concentrations with height, 
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with the exception of 2015, when all simulations reproduce the lower-tropospheric peak between 650 and 850 hPa, and 2017, 

when model simulations for the HS09 scheme peak at that same level. Given that the model captures the potential temperature 

profile for the 2016 campaign, it seems unlikely that local convective transport is the reason for the mismatch. Rather, it 

suggests that long-range transport of fungal spores and processing through continental outflow may not be well represented 

by the model. This points to the need for further investigation of the transport and solubility of fungal spores.  5 

4. Discussion and conclusions 

We have developed new emission schemes for fungal spores for inclusion in regional and global models, based on a previously 

unexplored dataset of fungal spore counts at 66 locations across the United States. First, we calculated fungal spore emissions 

from observed concentrations by applying the boundary layer equilibrium assumption, yielding annual average fungal spore 

emissions over all stations of 62±31 m-2 s-1. Then, we developed two schemes to simulate the emissions of fungal spores at 10 

seasonal timescales over a wide range of land use types: a population model that simulates the growth of fungi and the 

production of spores and their emissions as a function of temperature, LAI and friction velocity, and a statistical model that 

relates spore emissions to meteorological and land surface drivers. The population model shows better skill at reproducing the 

seasonal cycle in the emissions than the statistical model, whereas both outperform the HS09 scheme. 

After implementation in GEOS-Chem, we used the new schemes to calculate global emissions and burden of fungal spores. 15 

The results suggests that fungal spores contribute less to the organic aerosol budget of the atmosphere and are likely less 

important for cloud and precipitation formation than previously estimated in models. For the population and the statistical 

model, we estimate emissions of 3.4 and 3.7 Tg year-1, respectively, both of which are substantially lower than the estimate of 

31 Tg year-1, generated by the HS09 scheme. These differences are largely the result of different assumptions about size, and 

the use of different observational constraints (fungal spore counts in this work, versus mannitol concentrations in HS09). 20 

Additionally, the data on which the HS09 scheme was developed contained a large number of data points from tropical forest, 

which are absent in the AAAAI dataset. This means that the simulated emissions over tropical forests from the statistical and 

population model are in fact extrapolations based on data from temperate ecosystems.  

However, these numbers are sensitive to our assumptions on 1) the derivation of fluxes from concentrations, 2) emission model 

formulation and 3) transport and removal processes in the GEOS-Chem chemical transport model. Regarding the former, we 25 

assumed a dilution factor of 0.1 between the BL and FT that was derived from a few observations only. Lower assumed values 

do not have a significant impact on the calculated fluxes, as such a low dilution already yields upper limit estimates for the 

calculated emissions. We can also estimate the dilution factor inherent to our GEOS-Chem simulations, by comparing BL and 

FT fungal spore concentrations over land, and find that this value is typically ~0.3. Using this value in our derivation of 

emissions would decrease the average calculated flux to 49±25 m-2 s-1, which translates to 21 and 21% lower global emissions 30 

for the population and statistical model, respectively (Table S1). This analysis shows that uncertainties in the dilution factor 

directly impact the modeled emission fluxes, but do not change our finding that these fluxes are an order of magnitude or more 
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lower than those estimated in previous studies. Large uncertainties also remain on the efficiency of wet removal, since both 

the representation of precipitation and the formulation of wet deposition schemes are complex issues for global models. 

Moreover, knowledge on ageing of fungal spores, and the consequences for their behavior in the atmosphere, is limited. 

Exposure to high relative humidity for several hours may lead to the rupturing of spores, and the formation of cloud-active 

sub-spore particles (China et al., 2016; Lawler et al., 2020). Further, photo-oxidants, UV-radiation and temperature changes 5 

may also induce physical and chemical transformations in bioaerosols (Fröhlich-Nowoisky et al., 2016), potentially altering 

their solubility. We test the sensitivity of the modeled fungal spore burden to wet deposition by changing the rain out efficiency 

from 1 to 0. This change from full to no solubility has a large effect on the global burden (leading to an increase of 28 and 31 

% for the population and the statistical model, respectively, when spores are assumed non-soluble; Table S1), but it has little 

effect on the normalized vertical profiles. This suggests that current observations are insufficient to constrain the solubility of 10 

spores in the model. 

Limited validation of our model results is possible with datasets outside the US domain. For two European sites, we find that 

the population model and the statistical model reproduce the seasonal cycle in FBAP concentrations with comparable skill to 

the HS09 model, although poor constraints on emissions in winter prohibit more definitive conclusions. A comparison with 

vertical FBAP profiles shows that normalized concentration profiles are represented well over source areas, but that the 15 

continental outflow of FBAP over the North Atlantic is not captured well by our model, suggesting a need to further investigate 

the transport and removal of fungal spores. Uncertainties in the spore count data which form the basis for the emission schemes 

and in the attribution of fluorescent measurements to spore concentrations prohibit a more quantitative evaluation of the 

modeled spore concentrations. 

Although our new emission schemes are based on the largest available database of spore counts, there remain considerable 20 

uncertainties in our characterization of the fungal spore bioaerosol budget. Additional efforts are needed to improve our 

understanding of the impacts of fungal spores on atmospheric processes. First, more flux measurements of fungal spores over 

forests and other ecosystems would be very valuable to quantitatively evaluate the magnitude of the flux of spores into the 

atmosphere. Further, there is a critical need for long-term concentrations measurements for locations that are not included in 

the AAAAI dataset, particularly in areas with high simulated fluxes, such as Southeast Asia, and in ecosystems such as tropical 25 

forests, for which currently very little data is available. Further improvements in FBAP measurements to be able to more 

confidently extract fungal spore concentrations for further comparison would be useful. Finally, our analysis points out that 

there remain critical gaps in our understanding of long-range transport of spores, which calls for further research efforts in 

convective transport, cloud processing and wet removal of fungal spores. 
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Code and data availability  

The GEOS-Chem model code is available at http://acmg.seas.harvard.edu/geos/ (last access: 7 June 2020). The spore count 

data are available from the AAAAI upon request. FBAP data are available from the references as cited in the text. 
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Parameter Fitted value Unit 

b0 2.63x10-5 m2 s-1 

b1 6.10x103 m2 s-1 

b2 46.7 m2 s-1 

b3 59.0 m 

Table 1: Fitted parameters of the statistical model. 

 

Parameter Fitted value Allowed range Description Unit 

rmax 7.81x10-1 0-10 Maximum growth rate day-1 

m 1.42x10-2 >0 Mortality rate day-1 

Topt 27.5 0-35 Optimum temperature for fungal growth ⁰C 

Tmax 31.4 10-40 Maximum temperature for fungal growth ⁰C 

Tmin 0.0 0-20 Minimum temperature for fungal growth ⁰C 

l1 72.0 >0 Parameter for LAI dependence - 

l2 18.9 >0 Parameter for LAI dependence - 

s1 10.6 >0 Parameter for u* dependence s m-1 

s2 1.99x10-2 0-1 Parameter for u* dependence m s-1 

Table 2: Fitted parameters of the population model.  

 5 

Simulation  Emission from 

water surfaces 

Dilution factor 

between BL and FT 

Rainout efficiency 

of spores 

CTRL No 0.1 1 

WATEREMITS Yes 0.1 1 

DILFACT0.3 No 0.3 1 

RAINOUT0 No 0.1 0 

Table 3: overview of the GEOS-Chem simulations.  
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Emission scheme Emission (Tg year-1) Burden (Gg) 
Lifetime 

(days) 

Lifetime dry 

dep. (days) 

Lifetime wet 

dep. (days) 

Population model 3.4 20.0 2.1 54 1.5 

Statistical model 3.7 15.3 1.4 64 2.1 

HS09 31 130 1.1-2.6 21-48 1.1-2.7 

Table 4: global emissions, burden and lifetime for fungal spores using the three different emission schemes. The different lifetimes 

for the HS09 scheme are for the coarse and fine modes, respectively.   
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Figure 1: Average observed fungal spore concentrations over the period 2003-2008 for all AAAAI stations (circles) shown on top of 

lumped land use classes bases on the Olson World Ecosystems (Olson, 2001) 
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Figure 2: Example of how emissions flux is derived from observed concentrations at one AAAAI site located in Dayton, OH. Shown 

here are 20-day running mean time series of a) fungal spore concentration, b) subsidence velocity at atmospheric boundary layer 

(ABL) top, c) mean height of the afternoon boundary layer, d) contributions of vertical advection (vadv), storage (stor) and 5 
entrainment (entr) terms to the calculated flux, and e) calculated net flux, emission flux and dry deposition flux 
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Figure 3: results of the multivariate regression analysis: r2 and BIC after including each variable in the MLR analysis (top) and the 

logarithm of the regression coefficient for each variable (bottom). Red bars indicate a negative regression coefficient. Included 

variables are: specific humidity at 2 m (q2m), leaf area index (LAI), friction velocity (u*), time (expressed as number of days since 

start of time series), previous year annual average temperature (PYAAT), roughness length (z0), temperature at 2 m (T2m), wind 5 
speed at 10 m (U10m), and temperature at 10 m (T10m)  
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a) 

b) 

c) 

Figure 4: Model fungal spore emissions for the a) statistical scheme b) population scheme and c) HS09 scheme 

compared to the 20-day running mean derived emission flux at all 66 AAAAI stations. Left panels show time series 

comparisons over 6 years; shaded areas show the standard deviation of the derived fluxes. Right panels show 

point-by-point comparison with statistics shown inset and the 1:1 line shown as a dashed line.  
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Figure 5: Geometric mean diameter (Dp) and geometric standard deviation (σ) as a function of latitude for the number distribution 

of FBAP particles observed by WIBS over the continental US in 2016 
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Figure 6: Annual average fungal spore emissions and mass concentration from the statistical (top), the population (center), and the 

HS09 model (bottom) 
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Figure 7: Seasonal cycles of fungal spore emissions (left) and concentrations (right) for the statistical, the 

population and the HS09 model. Note the different scales on the y-axis 
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Figure 8: Comparison of GEOS-Chem simulated emission fluxes of fungal spores to emission 

fluxes derived from AAAAI observations for the statistical model (top), the population model 

(middle) and the HS09 model (bottom; emissions in the fine mode only). Note the different 

scale for the bottom figure. Statistics describing the comparisons are shown inset. 
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Figure 9: Normalized seasonal cycle in fungal spore and FBAP concentrations in Germany, Finland, 

and Colorado (see text for details). Observations (black) are compared to the simulated concentrations 

from the population model (red), the statistical model (blue) and the HS09 scheme (green). The shaded 

area indicates periods with snow cover; statistics are given for snow free period only. 
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Figure 10: Normalized vertical profiles of fluorescent biological aerosol particles (FBAP) from 5 campaigns (black) compared with 15 
normalized vertical profiles of fungal spore number concentrations from 3 model simulations: the population model (blue), the 

statistical model (red) and the HS09 model (green). Normalized profiles are obtained by applying min-max normalization, which 

scales all values to a range between 0 and 1. Standard deviation of observations in each 50 hPa pressure bin are shown in grey. The 

upper right panel shows the flight tracks for each campaign. 
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