
1 
 

 

Identification of atmospheric and oceanic teleconnection patterns in 

a 20-year global data set of the atmospheric water vapor column 

measured from satellites in the red spectral range 
 5 
Thomas Wagner1 and Steffen Beirle1, Steffen Dörner1, Christian Borger1, Roeland Van Malderen2 
1Satellite Remote Sensing Group, Max Planck Institute for Chemistry, Mainz, Germany 
2KMI – IRM, Royal Meteorological Institute of Belgium, Brussels, Belgium 

Correspondence to: Thomas Wagner (thomas.wagner@mpic.de) 

Abstract. We used a global long-term (1995-2015) data set of total column water vapor (TCVW) derived from satellite 10 

observations to quantify the influence of teleconnections. To our knowledge, such a comprehensive global TCWV data set 

was rarely used for teleconnection studies. One important property of the TCWV data set is that it is purely based on 

observational data. We developed a new empirical method to decide whether a teleconnection index is significantly detected 

in the global data set. Based on this method more than 40 teleconnection indices were significantly detected in the global 

TCWV data set derived from satellite observations. In addition to the satellite data we also investigated the influence of 15 

teleconnection indices on other global data sets derived from ECMWF reanalysis (ERA). One important finding is that the 

results obtained for the ERA TCWV data are very similar to the observational TCWV data set indicating a high consistency 

between the satellite and ERA data. Moreover, similar results are also found for two selections of ERA data (either all data 

or mainly clear sky data). This finding indicates that the clear-sky bias of the satellite data set is negligible for the results of 

this study. For most ‘traditional’ teleconnection data sets (surface temperature, surface pressure, geopotential heights and 20 

meridional winds at different altitudes) a smaller number of significant teleconnection indices was found than for the TCWV 

data sets, while for zonal winds at different altitudes, the number of significant teleconnection indices (up to >50) was 

higher. In all global data sets, no ‘other indices’ (solar variability, stratospheric AOD or hurricane frequency) were 

significantly detected. Since many teleconnection indices are strongly correlated, we also applied our method to a set of 

orthogonalised indices. The number of significantly detected orthogonalised indices (20) was found to be much smaller than 25 

for the original indices (42). Based on the orthogonalised indices we derived the global distribution of the cumulative 

influence of teleconnection indices. The strongest influence on the TCWV is found in the tropics and high latitudes. 

 
1 Introduction 

 30 

It has been known for a long time that weather at one location can be linked to weather at a far distant location (Walker and 

Bliss, 1932; Bjerknes, 1966, 1969; Wallace and Gutzler, 1981; Nigam and Baxter, 2015; Feldstein and Frantzke, 2017 and 

references therein). The distances between such locations can be very large, up to opposite locations on the globe. The 

strength of the correlation varies with location exhibiting regions of maximum (anti-) correlations and regions without any 

significant correlation. The resulting correlation patterns are referred to as teleconnection patterns. The strongest 35 

teleconnection is the El-Nino / Southern oscillation (ENSO) phenomenon (Walker and Bliss, 1932; Bjerknes, 1966, 1969), 

but many more teleconnection are known, which are located in many regions on both hemispheres (e.g. Feldstein and 

Frantzke, 2017 and references therein).  

The temporal variability of teleconnections is usually described by teleconnection indices (e.g. the ratio of surface pressures 

at selected stations) and covers a wide range of frequencies from a few days to inter-annual and inter-decadal time scales 40 

(Hurrel, 1995; Feldstein, 2000; Nigam and Baxter, 2015; Woolings et al., 2015; Feldstein et al., 2017). Atmospheric 

teleconnections (like e.g. the North Atlantic Oscillation, NAO) have typically higher intrinsic frequencies than oceanic 

teleconnection indices (like e.g. the Atlantic Meridional Mode, AMM).  
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Teleconnections can be identified in different data sets like sea level pressure, surface air temperature, sea level pressure as 

well as geopotential heights and wind fields at different altitudes (Wallace and Gutzler, 1981; Thompson and Wallace, 1998; 45 

Nigam and Baxter, 2015; Feldstein and Frantzke, 2017). In recent studies, the geopotential height is the most used quantity 

for the quantification of teleconnections. Teleconnections are mainly found in the troposphere with the strongest amplitudes 

in the upper troposphere (Feldstein, 2000). But several teleconnections have also connections to the stratosphere (Feldstein, 

2000 and references therein; Nigam and Baxter, 2015; Feldstein and Frantzke, 2017; Domeisen et al., 2019). 

Teleconnections can be identified and defined in different ways: historically, teleconnection indices were empirically and 50 

intuitively determined based e.g. on the locations of meteorological stations (e.g. Walker and Bliss, 1932). In later studies 

more objective methods were developed based on correlation matrices, principle component analyses (PCA) (also referred to 

as empirical orthogonal function (EOF) methods) or rotated PCA (also referred to as varimax rotation). More details about 

these and further methods can be found in Horel (1981), Wallace and Gutzler (1981), Barnston and Livezey (1987), 

Thompson and Wallace (1998), Feldstein and Frantzke (2017) and references therein. If these methods are applied, the 55 

derived teleconnections time series and spatial patterns particularly depend on the selected region of the globe (e.g. northern 

hemisphere) and the selected season (e.g. winter months). Usually, these methods are not applied for the full globe. 

Besides the fact that teleconnections are interesting in themselves, their study is also important for other applications. For 

example, taking teleconnections into account can improve weather forecasts (Feldstein and Frantzke, 2017 and references 

therein). They have impact on extreme events, e.g. heat waves, droughts, and floods (King et al., 2016; Yeh et al., 2018 and 60 

references therein) and can affect storm tracks. In addition to atmospheric quantities (e.g. humidity, precipitation, 

stratospheric ozone), teleconnections also affect oceanic variables (e.g. Arctic and Antarctic sea ice, the Atlantic 

thermohaline circulation) and the marine and terrestrial ecosystems (Feldstein and Frantzke, 2017 and references therein). 

Finally it is worth noting that teleconnections are expected to change in a changing climate (e.g. King et al., 2016; Feldstein 

and Frantzke, 2017; Yeh et al., 2018).  65 

In this study we investigate the influence of various teleconnections on the global distribution of the total column water 

vapor (TCWV). For that purpose we use a consistent long term data set (1995 – 2015) derived from satellite observations in 

the red spectral range obtained from GOME on ERS-2, SCIAMACHY on ENVISAT and GOME-2 on METOP (Beirle et 

al., 2018). The data sets consists of monthly mean values on a 1° x 1° latitude/longitude grid, which were carefully merged 

making use of the long overlap time between the different satellite data sets (for details see Beirle et al., 2018). Validation by 70 

independent data sets showed a smooth temporal variation with a stability within 1% over the whole period (1995-2016) 

(Danielczok and Schröder, 2017). To our knowledge, teleconnection studies using water vapor data sets are rare (e.g. van 

Malderen et al., 2018). One particular speciality / advantage of our study is that we use for the first time a global data which 

is entirely based on measurements. Here it is important to note that the TCWV is dominated by the atmospheric layers close 

to the surface. Another important aspect of our study is the development of a new empirical method to decide whether a 75 

teleconnection (index) can be significantly identified in an atmospheric data set or not.  

Our study addresses the following main questions: 

a) Which teleconnection index (and other time series like indices of solar activity) can be significantly identified in the 

satellite TCWV data set (or other data sets)?  

b) Are the same results obtained for TCWV data from observations and models? Here also the question is addressed how 80 

representative the satellite observations (for mainly clear sky) are for all sky data sets. 

c) How does the number of significant teleconnections in the global TCWV data sets compare to similar results obtained for 

“traditional” teleconnection data sets like surface temperature, sea level pressure or wind fields and geopotential heights at 

different altitudes? 

d) What is the spatial distribution of the influence of teleconnection patterns on the global TCWV distribution? 85 
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The paper is organised as follows: In section 2 the global data sets used in this study, and in section 3 the considered (mostly 

teleconnection) indices are introduced. Section 4 presents the fit function of the indices to the global data sets and the 

obtained global patterns. In section 5 a new method for the determination of the significance is introduced, which is applied 

to the different global data sets in section 6. In section 7 a reduced set of orthogonalised teleconnection indices is extracted 

and. Section 8 presents the global distribution of the cumulative influence of the teleconnection indices. 90 

 

2 Data sets 

 

2.1 Total water vapor column 

 95 

Our study focuses on global long term data sets of the total column water vapor (TCWV). Here we use three data sets: 

a) Satellite observations from July 1995 to October 2015 (Beirle et al., 2018) derived from the satellite instruments GOME 

on ERS-2 (1995 to 2003), SCIAMACHY on ENVISAT (2002 to 2012) and GOME-2 on MetOp (2006 to present), which 

have similar overpass times (between 9:30 and 10:30 LT). The start date of the time series was predetermined by the start of 

the first satellite mission; the end date of the time series was set to October 2015, because some of the used time series were 100 

only available until that date. The data set is available on a 1° x 1° latitude/longitude grid with monthly resolution. The data 

set does not cover polar winter, since the satellite observations use scattered and reflected sun light. 

In Fig. 1 the variation of the TCWV with latitude and time is shown (the latitude bins represent zonally averaged values). 

The top panel shows the original TCWV data set, whereas both lower panels present the absolute and relative anomalies with 

the mean seasonal cycle removed. Several anomaly patterns are clearly obvious, which are mainly related to strong ENSO 105 

events. Especially for the relative anomalies, many high frequency variations are found. While part of these high frequency 

variations represent measurement noise and atmospheric noise, the results of this study showed that they also represent 

atmospheric teleconnections. 

In addition to the satellite observations of the TCWV we also use global time series of the TCWV derived from ECMWF 

reanalysis (ERA Interim, Dee et al., 2011). Here we use two data sets:  110 

a) All ERA data including clear and cloudy conditions 

b) Only ERA data for clear sky observations. Here, a cloud cover below 0.3 between 1km and 6km is regarded as cloud free. 

This criterion reflects the observational conditions of the satellite data set.  

For both ERA data sets, the TCWV was temporally interpolated to the time of the satellite overpass (10:00 LT). From the 

comparison of the results for the measurements and model data sets, the effect of the specific sampling of the satellite 115 

observations (which represent only clear sky observations) can be investigated. In Fig. 2 the global mean distributions of the 

TCWV data sets from satellite observations and ERA data are shown. 

 

2.2 Other global data sets 

 120 

Teleconnections patterns are usually derived from meteorological quantities like surface pressure and temperature or 

geopotential heights and wind fields at different altitudes. In this study we also consider such quantities, which we also 

obtained from ERA data (see Table 1). We analyse these data sets similarly to the TCWV data sets (details are described 

below). In this way we will assess in how far the impact of teleconnections on TCWV is comparable to traditional 

teleconnection data sets. In Figs. A1 and A2 in the appendix, the global mean distributions of all data sets are shown.  125 
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3 Teleconnection indices 

 

We performed an extensive search for teleconnection indices in the scientific literature and web sites of national weather 130 

services. We found in total 54 teleconnection indices, which cover the time span of our TCWV data set. An overview on 

these teleconnection indices as well as additional time series (e.g. of the solar activity) is given in Table 2. Although we not 

only focus on teleconnection indices in this study, in the following we use the term ‘index’ to describe the whole set of 

teleconnection indices and other time series. 

It should be noted that for several teleconnection indices (in particular for the Madden-Julian oscillation) different definitions 135 

exist. Thus the number of teleconnection indices in Table 2 is much larger than the corresponding atmospheric phenomena. 

A more detailed overview on the selected indices and their data sources is provided in Fig. A3 in the appendix. 

Before the indices are fitted to the different global data sets, the mean seasonal cycle (1995 – 2015) is subtracted (like for the 

data sets themselves, see Fig. 1). Some teleconnection indices are characterised by a strong seasonal cycle, whereas others 

are not. In addition, also a linear trend is fitted and subtracted. Finally the obtained anomalies are normalised by the 140 

corresponding standard deviations. This ensures that the obtained fit coefficients for the different indices can be directly 

compared. The different steps of these preparations are illustrated in Fig. 3. It is interesting to note that many of the 

considered teleconnection indices are highly correlated. Fig. 4 presents a matrix with correlation coefficients between the 

different indices (after the seasonal cycles were removed).  

 145 

4 Analysis of global data sets 

 

To determine the strength with which individual indices are detected in the temporal variations of the different global data 

sets, they are fitted to the global data sets.  

 150 

4.1 Fit function 

 

For each 1° x 1° latitude / longitude pixel of the global data sets the time series of the monthly mean anomalies of the global 

data sets (the example below is for the TCWV) are fitted by the following function: 

)()( tindexftbctTCWV ii ⋅+⋅+=          (1) 155 
 

Here c and b describe constant and linear terms. indexi represents the selected normalised index of monthly mean anomalies. 

The fit coefficient fi describes the sign and strength of the contribution of the chosen index to the variability of the TCWV 

anomaly of the chosen 1° x 1° pixel. The fit function is separately applied to the individual indices listed in Table 2. Here it 

should be noted that the fit function could in principle be applied to several or even all indices simultaneously. However, 160 

since many indices are highly correlated, the interpretation of the results would then not be straight forward. Thus, we chose 

to include the individual indices one by one in the fit function. Besides the parameters c, b, and the fit coefficient fi, also the 

difference between the temporal variation of the global data sets and the fit function is quantified by the root mean square 

(RMS). In addition to the fit function described in equation 1, a second fit is performed with only the constant and linear 

terms:  165 
 

tbctTCWV ⋅+=)(            (2) 

 

The comparison of the RMS with and without including the index term allows to quantify the importance of the chosen 

index to describe the temporal variation of the data set. This RMS differences is then divided by the zonal mean value of the 170 

considered quantity, because (like for water vapor) many of the analysed quantities depend strongly on latitude (see equation 

3). In the following this quantity is referred to as delta RMS.  
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In Fig. 5 fit results for the ENSO index are shown derived for the TCWV from satellite observations (left), ERA data 175 

(center), and ERA data for clear sky conditions (right). The results for the other data sets will be discussed in section 6. The 

top panel in Fig. 5 shows the fit coefficients for the ENSO index. High fit coefficients mean that part of the measured TCWV 

time series can be explained by the ENSO index pattern. High negative fit coefficients mean the same for the negative ENSO 

index. Fit coefficients of zero indicate no connection to ENSO. Very similar spatial patterns are found for the three TCWV 

data sets indicating that the ENSO phenomenon is well captured in the satellite and model data sets. From the similarity 180 

between the model data including all sky conditions (center) or only clear sky conditions (right) it can be concluded that the 

satellite observations (representing mainly clear sky conditions) are representative for all sky conditions (no obvious clear 

sky bias). 

The second row in Fig. 5 presents the normalised RMS of the differences between the measurements and the fit functions. 

Note that in order to account for the strong latitudinal dependence of the TCWV, the RMS are normalised for each latitude 185 

bin by the mean values for all longitudes of the considered data sets. In all three data sets, the smallest RMS are found close 

to the equator. This is an interesting finding, but can probably be explained by a) the rather high TCWV and b) its rather 

small variability in these regions. In mid-latitudes, systematically higher RMS are found for the satellite observations 

compared to the model results. This is probably related to the rather large effects of clouds on the satellite observations, 

which becomes especially important in these regions (clouds lead to less valid observations and larger measurement 190 

uncertainties). Another interesting finding is that in polar regions the RMS for the satellite observations is smaller than for 

the model results. This finding is probably related to the sparseness of water vapor measurements in these regions 

assimilated in the ECMWF model. Thus the spatio-temporal variability of the satellite observations is probably more 

realistic than that of the model data. The RMS for the model results for clear sky conditions is slightly higher than for the 

model results for all conditions, which is to be expected because of the reduced number of data available for the cloud-195 

filtered data set. 

The lower panel of Fig. 5 shows the delta RMS for the ENSO index indicating the reduction of the RMS if the ENSO index 

is included in the fit. As expected, the largest delta RMS is found over the tropical Pacific, where the ENSO phenomenon is 

most pronounced. The global distribution of the delta RMS is very similar for the three data sets. The fit coefficients and 

delta RMS for three other selected indices are shown in Fig. 6 for the TCWV data set from satellite observations. For all 200 

indices, specific activity centers can be found in different parts of the globe. The fit coefficients and delta RMS for all 

indices are presented in the appendix (Fig. A4). Note that very similar spatial patterns are found for the three TCWV data 

sets. 

It should be noted that in many teleconnection studies (e.g. Horel, 1981), the strength of a teleconnection index is quantified 

by calculating the ratio of the difference of the RMS (with and without an index included) and the total RMS. In this study 205 

we applied a different procedure as described above, because the total RMS depends on many factors, in particular also on 

the uncertainties of the considered data set. Since we want to compare the delta RMS values derived for different data sets 

(in particular the TCWV data sets derived from satellite observations and model results, but also other datasets) in a 

quantitative way, we decided to divide the RMS (with and without an index included) by the zonal mean of the considered 

data set. Thus the delta RMS shows the relative impact of the respective index. While the RMS of the different TCWV data 210 

sets are rather different (see Fig. 5, middle panel), the zonal means are very similar (Fig. 2). The zonal mean was chosen 

(instead of the long term average of each considered 1° x 1° pixel), because for some data sets used in this study (especially 

the wind data sets) large variations and even zero-crossings exist, which would lead to meaningless delta-RMS values. We 

compared the delta RMS values calculated by our new definition with those of the more traditional definition for the TCWV 

data sets (Fig. A5 in the appendix). The obtained global patterns of both delta RMS definitions are almost identical. 215 
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4.2 Quantification of the strength of a (teleconnection) index 

 

For a quantitative assessment of the strength and significance of a (teleconnection) index, we calculated the 99th percentile 

of fit indices fi for all 1° x 1° pixel values. We chose the 99th percentile because it is close to the maximum, but still not 220 

affected by individual outliers. Fig. 7 presents the 99th percentiles (p99) for all considered indices for the three TCWV data 

sets. For all three TCWV data sets the highest p99 values are found for the ENSO-like teleconnection indices.  

 

5 Determination of significance 

 225 

For most teleconnection indices clear spatial patterns of fit coefficients and delta RMS values are found in the global maps 

(see Fig. A4) indicating that these indices are significantly detected in the global water vapor data sets. However, from the fit 

results themselves it is not easily possible to judge about the significance of the detection of an index, mainly because the 

effects of atmospheric noise and other uncertainties of the data sets cannot easily be quantified (see also Wallace and 

Gutzler, 1981).  230 

To address these difficulties, we developed an empirical approach to determine threshold values for the p99 values. If the 

p99 values for a given teleconnection index is above the threshold, the index is considered as significantly detected in the 

considered data set. It is clear that also with this approach, for indices with p99 values close to the threshold value no clear 

decision about the significance can be made. The advantage of the new approach is, however, that it provides a clear 

procedure and in particular a metric which allows a quantitative comparison between different data sets (see section 6). 235 

 

5.1 Use of reversed indices 

 

Our approach for the estimation of the significance level is based on the use of reversed indices. The basic idea is that the 

reversed indices should not contribute to the temporal variation in the global data sets, because they have no geophysical 240 

basis. Thus the derived delta RMS and p99 values can be used as an estimate of the detection limit for the significance of a 

fitted index for the given measurement errors of input data. If the p99 values are above the threshold, it is likely that the 

considered index significantly contributes to the variability of the considered data set. For the determination of the detection 

limit we take into account the reversed indices of all original indices used in this study (see Table 2 and Fig. A3). This 

approach has the advantage that all relevant frequencies of real indices and teleconnection indices are considered. 245 

In Fig. 7 besides the p99 values for the original indices (blue), also those for the reversed indices are shown (red). The p99 

values for the reversed indices are much smaller than most of the original indices. Interestingly, the variability of the p99 

values for the reversed indices is rather high (Fig. 8). In Appendix 1 the reasons for this variability will be further 

investigated. 

 250 

5.2 Effect of shifts of the (teleconnection) indices 

 

In addition to the p99 values themselves, also the effect of time shifts ∆t = ± 1 month of the indices on the p99 values was 

considered to decide whether an index was significantly identified in a global data set, because for indices with a geophysical 

relationship to a considered data set, the exact temporal synchronisation should be important (but might depend on region). 255 

In contrast, for indices without a geophysical relationship to the considered data set, the p99 values should not depend on the 

exact temporal synchronisation. In Fig. A8 the p99 values for the original and shifted (by ± 1 month) indices are shown for 

the TCWV data set from satellite observations. For most data sets (especially for those with high p99 values) indeed smaller 
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p99 values are found for the shifted indices. Here it is interesting to note that in general a stronger effect is found for 

atmospheric indices than for oceanic indices, which can be understood by the higher frequencies of the atmospheric indices. 260 

For several oceanic indices, even higher values are found for the shifted indices indicating a time shift (mostly a time lag) 

between the TCWV and these indices. For one index (AMM) higher p99 values are even found for shifts in both directions 

indicating an ambiguity in the synchronisation between the TCWV and the AMM index.  

Another interesting finding is that for some atmospheric indices with p99 values below the significance threshold (PE, MJ2, 

OOMI2, FMO1) still rather small ratios of the shifted and original indices are found indicating that these indices are also 265 

probably significantly detected in the TCWV data set. Thus in the following we consider also indices with p99 values below 

the significance threshold but with p99 ratios below 0.8 for both shifts as significantly detected. Here it should be noted that 

the choice of the threshold value of 0.8 is somehow arbitrary. It was chosen because a deviation of 20% from unity is larger 

than the ‘noise level’ of the ratio. The exact choice of the threshold has only a small effect on the obtained results. For the 

TCWV data set from satellite observations, this additional criterion increases the number of significantly detected indices 270 

from 40 to 42. For the ERA TCWV data sets the number of significantly detected indices increases from 43 to 44 (and from 

39 to 42 for ERA data for clear sky conditions). 

 

6 Comparison of the number ‚significant indices’ for the different global data sets 

 275 

A rather high number of significant indices was identified in the global TCWV data sets. To put this finding into a broader 

perspective, we applied the same procedure also to other global data sets, which are usually considered in teleconnection 

studies (see Table 1). The corresponding p99 values of the different indices (including also the reversed indices) are 

presented in Fig. A9. In general similar results as for the TCWV data sets are found. In particular, for all data sets a large 

number of teleconnection indices is significantly detected. However, also differences are found: in particular, the 280 

teleconnection index with the maximum p99 value is found to be different for the different data sets. A summary of the 

number of significant indices and the teleconnection index with the highest p99 is given in Table 3. Most significant indices 

are found for the zonal winds with the highest number in the upper troposphere. For these data sets the number of significant 

indices is larger than for the TCWV data sets. For geopotential heights and meridional winds, less significant indices are 

found (and even less than for the TCWV data sets). For geopotential heights most significant indices are found in the upper 285 

troposphere, while for the meridional winds no clear altitude dependence is observed. Also for the surface temperature and 

surface pressure rather low numbers (less than for the TCWV data sets) of significant indices are found. From these results 

we conclude that the global TCWV data sets are well suited for teleconnection studies. 

It is also interesting to note that for different groups of data sets specific indices with maximum p99 values were found: 

ENSO-like indices were found for the water vapor data sets, surface temperature and for zonal winds at most altitudes 290 

(except for 950 hPa, for which AO has the highest p99 value); AAO was found for surface pressure, geopotential heights and 

meridional winds at 500, 200, and 50 hPa, and SCA for meridional winds at 850 and 950 hPa.   

 

7 Derivatives and orthogonalised indices 

 295 

It was shown in Fig. 4 that many indices are strongly correlated. Thus the numbers of ‚significant indices’ obtained in the 

previous chapters are not useful to represent the number of independent significant indices. This effect can be addressed by 

orthogonalisation of the indices before they are used for the analysis of the global data sets. Since it was found in section 5 

(see Fig. A8) that for some indices time shifts led to higher p99 values, we also added the temporal derivatives of index 

patterns to the list of indices to be orthogonalised. The p99 values for the temporal derivatives are shown in Fig. 9 (top). In 300 

general they are much smaller than the p99 values for the corresponding original indices, but still many p99 values were 
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found to be above the significance threshold. For the orthogonalisation, all ‚significant’ original indices and temporal 

derivatives were considered (in total 57 indices). The orthogonalisation order was from highest p99 values to lowest p99 

values. In Fig. 9 (bottom) the p99 values for the orthogonalised indices are shown. Compared to the results for the original 

indices, two findings are of special importance: 305 

-the number of significant indices (20) is much smaller than for the original indices (40) confirming that many 

teleconnection indices are indeed highly correlated and related to the same phenomena. 

-the difference between the highest p99 value (for the ONI index) and subsequent p99 values is much larger than for the 

original indices. This finding indicates that the temporal pattern of the ENSO phenomenon is contained in many 

teleconnection indices. 310 

The delta RMS maps for the significant orthogonalised indices (together with the delta RMS maps for corresponding original 

indices) are presented in Fig. A10. Only one temporal derivative (of ONI) was found to be significant. 

 

8 Global distributions 

 315 

The delta RMS maps derived for the individual indices show characteristic patterns which indicate in which regions of the 

globe the selected index is important or not (see Fig. A4). In order to assess the global distribution of the general importance 

of teleconnections, we added the delta RMS maps of all significant indices to the figure. Maps of the derived cumulative 

delta RMS distributions are presented in Fig. 10 for different selections of teleconnection indices and TCWV data sets. In the 

upper panel the patterns of all significant teleconnection indices found for the TCWV data set from satellite observations are 320 

added. In the middle panel the same is shown for the significant orthogonalised indices. The comparison again clearly 

indicates that many indices are highly correlated to the ENSO index. Thus, if only the orthogonalised indices are considered, 

the ENSO pattern, especially in the tropical Pacific, becomes relatively weaker compared to the cumulative delta RMS 

values in other regions. In the lower panel the cumulative delta RMS map for all significant orthogonalised indices for the 

ERA TCWV data set is shown. The derived spatial patterns are very similar to those for the satellite data set. It should, 325 

however, be noted that also for regions in high latitudes, which are not covered by the satellite observations high values are 

found. 

Fig. 11 shows the latitudinal (top) and longitudinal (bottom) distribution of the p99 values for all significant original indices 

(red) and all significant orthogonalised indices (blue). As expected, the highest values (related to ENSO) are found over the 

equatorial east Pacific, but most indices have the strongest effects in mid and high latitudes. Interestingly, in the latitude 330 

range between –30° and +30° only for one significant orthogonalised index (besides ENSO) the maximum delta RMS is 

found.  

 

9 Conclusions 

 335 

We investigated the influence of a large set of teleconnection indices on the spatio-temporal variability of a global data set of 

the total column water vapor (TCWV) from 1995 – 2015 derived from satellite observations. To our knowledge, it is the first 

time that a global TCWV data set was used in such a detailed way in teleconnection studies (note that part of this data set 

was already used by van Malderen et al., 2018). Here it is important to note that the TCWV data set is purely based on 

observational data. Another important achievement of this study is the development of a new empirical method to decide 340 

whether a teleconnection index is significantly detected in the global data set. The method is based on temporally reversed 

teleconnection indices, which ensures that all relevant time scales are considered. The new method can be applied in a 

universal way to different data sets. 
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Based on this method more than 40 teleconnection indices were significantly detected in the global TCWV data set derived 

from satellite observations. Very similar results were obtained for two TCWV data sets from the ECMWF reanalysis (one 345 

data set uses all data, the other only clear sky data points). From these findings we conclude 1) that the spatio-temporal 

variability is well captured by both the satellite observations and the ERA Interim data, and 2) that a possible clear sky bias 

is negligible.   

We also applied the method to other data sets derived from the ECMWF reanalysis and compared the results to those for the 

TCWV data sets. For most ‘traditional’ teleconnection data sets (surface temperature, surface pressure, geopotential heights 350 

and meridional winds at different altitudes) less teleconnection indices were significantly detected than for the TCWV data 

sets, while for zonal winds at different altitudes, more significant teleconnection indices (up to >50) were significantly 

detected. For most data sets the strongest teleconnection signals were found for ENSO or AAO. For some data sets the 

strongest teleconnection signals were found for SCA and AO. It should be noted that in none of the global data sets, other 

indices (like the solar variability, the stratospheric AOD or the hurricane frequency) were significantly detected.  355 

Since many teleconnection indices are strongly correlated, we also applied our method to the orthogonalised indices. 

Compared to the original indices, much less orthogonalised indices (20 compared to 42) were significantly detected in the 

TCWV data set from satellite observations. We investigated the spatial patterns of these orthogonalised indices and found 

the strongest influence on the TCWV in the tropics and high latitudes. 
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Tables 

 

Table 1: Meteorological data sets used in this study  

Quantity Source Altitude 

Water vapor VCD Satellite observations Total colum 

Water vapor VCD ECMWF reanalysis (all sky conditions) Total colum 

Water vapor VCD ECMWF reanalysis (clear sky 
conditions) 

Total colum 

Surface temperature ECMWF reanalysis (all sky conditions) Surface 

Surface pressure ECMWF reanalysis (all sky conditions) Surface pressure extrapolated to 
sea level 

Geopotential heights ECMWF reanalysis (all sky conditions) 50hPa, 200hPa, 500hPa, 850hPa, 
950hPa 

Zonal winds ECMWF reanalysis (all sky conditions) 50hPa, 200hPa, 500hPa, 850hPa, 
950hPa 

Meridional winds ECMWF reanalysis (all sky conditions) 50hPa, 200hPa, 500hPa, 850hPa, 
950hPa 

*the zonal winds at 50hPa are not further analysed, because they are – by definition - dominated by the QBO teleconnection 
signal. 440 
 
 
 
 
 445 
 

Table 2: Teleconnection indices and other time series used in this study.. More details about these indices as well as 

their sources are given in Fig. A3 in the appendix. 

Oceanic indices (23) Atmospheric indices (31) Others indices (7) 

BEST 
N34 
TPI 
ONI 
ENSO 
N4 
HAW 
PDO 
PMM 
IND 
N1 
TNI 
NTA 
TNA 
WHWP 
IPO 

CAR 
AMO 
DMI 
AMM 
STA 
TSA 
EA_ersst 

SCA 
AAO 
EAWR 
NAO 
EA 
PNA 
EPNP 
SOI 
AO 
PE 
WP 
NOI 
VPM2 
RMM2 
Q70 
Q50 

RMM1 
VPM1 
MJ1 
MJ2 
OOMI2 
OOMI1 
FMO1 
FMO2 
Q30 
QBO 
VPMN 
FMON 
OOMIN 
MJN 
RMMN 

Solar indices: 
RI 
MGII 
SWO 
S107 
AP 
 
HUR 
(hurricane 
frequency) 
 
SAOD 
(stratospheric 
AOD) 
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 455 
 
 
 
 
 460 
 
 
 
 
 465 
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 470 
Table 3: Numbers of significant indices and most significant indices for all data sets (the number of indices with p99 

values below threshold but shift ratios <0.8 are indicated in brackets). The complete list of significant indices for the 

different data sets is provided in Table A1 in the appendix. 

Data set Number of significant 
indices 

Most significant index 

TCWV sat 42 (2) ONI 

TCWV ERA 44 (1) ONI 

TCWV ERA clear 42 (3) ONI 

Tsurf 37 (1) ONI 

Spred 35 (1) AAO 

Geopot 50 hPa 17 (5) AAO 

Geopot 200 hPa 40 (0) AAO 

Geopot 500 hPa 32 (1) AAO 

Geopot 850 hPa 33 (1) AAO 

Geopot 950 hPa 30 (1) AAO 

Zonal winds 200 hPa 51 (0) BEST 

Zonal winds 500 hPa 49 (0) BEST 

Zonal winds 850 hPa 46 (1) BEST 

Zonal winds 950 hPa 42 (4) AO 

Meridional winds 50 hPa 24 (3) AAO 

Meridional winds 200 hPa 32 (1) AAO 

Meridional winds 500 hPa 34 (0) AAO 

Meridional winds 850 hPa 33 (0) SCA 

Meridional winds 950 hPa 32 (0) SCA 
 
 475 
 
 
 
 
 480 
 
 
 
 
 485 
 
 
 
 
 490 
 
 
 
 
 495 
 
 
 
 
 500 
 
 
 
 
 505 
 
 
 
 
 510 
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Figures  

 

 515 
Fig. 1: A) TCWV measured from satellite as a function of time and latitude (zonally averaged values) on a 1° x 1° 

latitude/longitude grid with monthly resolution. B) (absolute anomalies) after the mean seasonal cycle and a linear 

trend was subtracted. C) relative anomalies (absolute anomalies divided by the corresponding monthly mean 

TCWV). 
 520 
 
 
 
 
 525 
 
 
 
 
 530 
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Fig. 2: Global mean distribution of the TCWV from satellite observations (A) and ERA data: B) all data; C) only 

clear sky observations during day. 535 
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Fig. 3: Illustration of the preparations for the indices before they are used in the fit to the global data sets: First, the 

mean seasonal cycles and linear trends are subtracted. Then the differences are normalised by their standard 

deviations. 
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 600 
Fig. 4: Correlation coefficients between the different teleconnection indices (after seasonal cycle was removed). Note 

that only one set of MJO indices is included here to minimise the total number of indices. 
 
 
 605 
 
 
 
 
 610 
 
 
 
 
 615 
 
 
 
 
 620 

https://doi.org/10.5194/acp-2020-565
Preprint. Discussion started: 15 September 2020
c© Author(s) 2020. CC BY 4.0 License.



17 
 

 
 

 
Fig. 5: Global maps with the ENSO fit results for the three TCWV data sets. A) Fit coefficients; B) RMS of the 

differences between original data sets and fit functions; C) delta RMS values which describe the relative difference of 625 
the RMS if the ENSO index is included of excluded in the fit function (for details see text).  
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 660 
 

 
 

Fig. 6: Global maps with the fit results (right) and delta RMS (left) for selected teleconnection indices with activity 

centers in northern high latitudes (A), Subtropics (B) and southern high latitudes (C). Results for the TCWV data set 665 
from satellite observations. 
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 690 
Fig. 7: Blue markers: 99th percentiles (p99) of the delta RMS of the original indices for the three TCWV data sets. 

Red markers: similar results for the temporally reversed indices. Black lines: significance threshold. The indices are 

sorted from highest to lowest p99 values for the original indices. 
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Fig. 8: The 99th percentiles (p99) of the delta RMS of the temporally reversed indices for the TCWV from satellite 710 
observations (same as in Fig. 7, top). The blue markers indicate indices which are excluded from the calculation of the 

significance threshold (for details see text).  
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 755 

 
Fig. 9. The 99th percentiles (p99) of the delta RMS of the derivatives of the indices (A) and the orthogonalised indices 

(B). The black lines represent the significance threshold. The indices are sorted from highest to lowest p99 values. 
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A) Significant original indices satellite

B) Significant orthogonalised indices satellite

C) Significant orthogonalised indices ECMWF
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 775 
Fig. 10: Cumulative delta RMS for different selections of indices and data sets (note the different colour scales). 
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 795 
 

Fig. 11: Location of the 99th percentile of the delta RMS values as function of latitude (A) or longitude (B). Red 

points indicate results for the original indices, blue points for the orthogonalised indices. 
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Appendix 1  
 

Effect of the temporal correlation of the reversed indices with the original indices 820 
 
The 99th percentiles in Fig. 7 are substantially higher for several reversed indices than for others. Since all reversed indices 

represent non-geophysical variations, such enhanced 99th percentiles are not expected. Thus this finding was further 

investigated. It turned out that the enhanced values are caused by accidental correlations of these reversed indices with 

original indices (see Fig. A6), for which high 99th percentile values are found. This reasoning is confirmed by the results 825 

shown in Fig. A7. There, high p99 values for reversed indices are always found if they are correlated with original indices 

with high p99 values. To avoid the effects of such accidental enhanced p99 values, only the reversed indices with no obvious 

correlations with original indices with high p99 values were kept for further processing (red boxes in Fig. A6). Here it should 

be noted that two somehow arbitrary choices were made: 

a) the selection of the selected reversed indices (red boxes in Fig. A6) was made by visual inspection. 830 

b) the influence of the correlation of the reversed indices with the original indices was only investigated for the 8 original 

indices with the highest p99 values. 

Fortunately, both choices had only a minor influence on the derived threshold value. With respect to the first point, it should 

be noted that while the selection was made rather conservatively, still many reversed indices were kept after the filtering 

process. It was also found that most of the skipped reversed indices were skipped because of enhanced correlations with 835 

several original indices. With respect to the second point it should be noted that it makes sense to consider only the original 

indices with the highest p99 values, because the correlations of the reversed indices with the original indices are in general 

rather low (see Fig. A6). The p99 values of the selected 8 original indices with the highest p99 values are in general 

substantially higher than the p99 values of the remaining indices. In sensitivity studies we found that taking account more 

than 8 original indices had a negligible effect on the derived threshold values.  840 

The red markers in Fig. 7 represent the p99 values for the indices which were kept after applying the selection criteria 

explained above. In the final step, from these p99 values the average and standard deviation are calculated. The p99 

threshold for the significance of a indices is then calculated as the sum of the average plus three times the standard deviation 

(for the TCWV data set from satellite observations the threshold is: 0.00200 + 3*0.00036 = 0.00309). This procedure was 

chosen, because the threshold values calculated in this way are very close to the maximum p99 values of the remaining 845 

indices (red dots in Fig. 7) but are hardly affected by possible remaining outliers. The derived threshold value is indicated by 

the dashed black line in Fig. 7.  
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Appendix 2  

 

Additional Figures 870 
 

 
Fig. A1: Long-term mean distribution of the surface temperature (left) and extrapolated surface pressure (right) 

from ECMWF reanalysis. 
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Fig. A2: Long-term mean distribution of the meridional (left) and zonal (middle) winds as well as geopotential heights 910 
(right) at different pressure levels from ECMWF reanalysis. 
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Fig. A3: List of original indices used in this study. Besides the short names also the data sources and figures with their 

variation from 1995 to 2016 are shown.  

*All MJO indices are convoluted with a Gaussian kernel fo 30 days FWHM; **Original index according to Wheeler and 945 
Hendon, 2004;   
***Khaykin et al., 2017 
 
 
 950 
 
 
 
 
 955 
 
 
 
 
 960 
 
 
 
 
 965 
 
 
 

https://doi.org/10.5194/acp-2020-565
Preprint. Discussion started: 15 September 2020
c© Author(s) 2020. CC BY 4.0 License.



33 
 

  

 

 

  

  

  

https://doi.org/10.5194/acp-2020-565
Preprint. Discussion started: 15 September 2020
c© Author(s) 2020. CC BY 4.0 License.



34 
 

 

 

 

  

  

  

 

 

 

  

https://doi.org/10.5194/acp-2020-565
Preprint. Discussion started: 15 September 2020
c© Author(s) 2020. CC BY 4.0 License.



35 
 

  

  

 

 

  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

https://doi.org/10.5194/acp-2020-565
Preprint. Discussion started: 15 September 2020
c© Author(s) 2020. CC BY 4.0 License.



36 
 

  

 

 

  
Fig. A4: Fit coefficients (top) and delta RMS values (bottom) for all indices used in this study. Shown are the results 

for the three water vapor data sets: satellite observations (left), model results (center), and model results for clear sky 970 
conditions (right). 
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Fig. A5: Comparison of delta RMS values for the ENSO index calculated in two different ways. A) The difference of 

the RMS with and without the ENSO index included in the fit is divided by the respective RMS of each 1°x1° pixel; 1010 
B) The difference of the RMS with and without the ENSO index included in the fit is divided by the zonal mean of the 

TCWV at the same latitude. Note the different colour scales. 
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Fig. A6: Correlation coefficients between the temporally reversed and original indices. For several combinations 

enhanced coincidental correlations are found. 1055 
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Fig. A7: Correlation plots for the 8 original indices with the highest p99 values. The blue dots represent the 61 

reversed indices. The x-axis describes the correlation coefficients of the reversed indices with the selected original 

indices. The y-axis describes the p99 value or the reversed indices. High p99 values are found for the reversed indices 

which show high correlation to the original indices.  1090 
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 1100 
Fig. A8: Top: 99th percentiles (p99) of the delta RMS values for the original (blue) and shifted indices (green: plus 1 

month; red: minus 1 month). The indices are sorted from highest to lowest p99 values for the unshifted original 

indices. Bottom: ratios of the p99 values of the shifted and original indices. Results are for the TCWV data set from 

satellite observations. The blue circles indicate teleconnection indices with p99 values below the threshold, but ratios 

of the shifted indices < 0.8. 1105 
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Fig. A9: 99th percentiles of the delta RMS values (p99) found for the different indices in different global data sets. 

Blue markers: p99 for the original indices; red markers: p99 for the temporally reversed indices; black lines: 1130 
significance thresholds. The indices are sorted from highest to lowest p99 values for the original indices. 
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 Original indices Orthogonalised 
indices 

  Original indices Orthogonalised 
indices 

1 ONI 

 

  11 PNA 

 

PNA ortho 

 
2 SCA 

 

SCA ortho 

 

 12 EA 

 

EA ortho 

 
3 HAW 

 

HAW ortho 

 

 13 PMM 

 

PMM ortho 

 
4 AAO 

 

AAO ortho 

 

 14 N34 

 

N34 ortho 

 
5 N4 

 

N4 ortho 

 

 15 NOI 

 

NOI ortho 

 
6 NAO 

 

NAO ortho 

 

 16 TSA 

 

TSA ortho 

 
7 EAWR 

 

EAWR ortho 

 

 17 IND 

 

IND ortho 

 
8 WP 

 

WP ortho 

 

 18 ONI derivative 

 

ONI derivative ortho 

 
9 EPNP 

 

EPNP ortho 

 

 19 SOI 

 

SOI ortho 

 
10 BEST 

 

BEST ortho 

 

 20 TPI 

 

TPI ortho 

 
Fig. A10: Delta RMS maps for the significant orthogonalised indices together with the delta RMS maps for the 

original indices. The numbers at the left sides indicate the order (descending) of the p99 values (see also Fig. 8). 
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Table A1 Significant indices for all data sets (indices with p99 values below threshold but shift ratios <0.8 are 1155 
indicated in brackets). 

Data set Number of 
significant 
indices 

Significant indices 
(from highest to lowest p99 values) 

TCWV sat 42 (2) ONI, N34, TPI, ENSO, BEST, N4, N1, SOI, IND, HAW, PDO, 
PMM, AAO, SCA, WHWP, NOI, NAO, TNI, WP, EAWR, DMI, 
EPNP, CAR, PNA, VPM1, AO, VPM2, TSA, STA, TNA, EA, 
EA_ersst, AMO, RMM2, NTA, AMM, RMM1, IPO, Q50, Q70 
(PE, MJ2) 

TCWV ERA 44 (1) ONI, N34, ENSO, TPI, BEST, N1, N4, SOI, IND, AAO, 
WHWP, NOI, PDO, SCA, NAO, HAW, PMM, EPNP, TNI, 
DMI, VPM1, AO, WP, EAWR, CAR, TNA, NTA, PNA, RMM1, 
VPM2, AMO, IPO, STA, RMM2, TSA, EA, AMM, EA_ersst, 
MJ2, Q70, FMO2, OOMI2, VPMN, Q50 (PE) 

TCWV ERA clear 42 (3) ONI, N34, ENSO, TPI, N1, BEST, N4, SOI, IND, AAO, 
WHWP, PDO, NOI, SCA, HAW, NAO, TNI, DMI, PMM, 
EPNP, WP, VPM1, EAWR, CAR, AO, PNA, TNA, VPM2, 
NTA, IPO, AMO, TSA, EA_ersst, STA, RMM2, RMM1, AMM, 
EA (PE, FMO2, OOMI2) 

Tsurf 37 (1) ONI, AAO, N34, AO, TPI, N1, ENSO, SCA, BEST, N4, PDO, 
NAO, EPNP, HAW, SOI, WHWP, PMM, TNA, IPO, NTA, 
IND, PE, WP, NOI, AMM, TSA, EA, STA, EAWR, AMO, TNI, 
PNA, EA_ersst, DMI, Q70, CAR (RMM2) 

Spred 35 (1) AAO, AO, NAO, SCA, PE, NOI, PNA, WP, SOI, BEST, 
EPNP, N34, ONI, EA, TPI, ENSO, N4, PDO, HAW, Q70, 
EAWR, TNA, PMM, NTA, N1, Q50, AMM, TNI, IND, WHWP, 
VPM2, RMM2, DMI, VPM1 (RMM1) 

Geopot 50 hPa 17 (5) AAO, AO, NAO, Q50, TNI, PE, N4, N34, TPI, ONI, EPNP 
(VPM2, PNA, EA, RMM2, RMMN) 

Geopot 200 hPa 40 (0) AAO, AO, NAO, N34, ENSO, N4, TPI, ONI, BEST, SCA, WP, 
IND, SOI, EPNP, PNA, PE, EA, NOI, WHWP, PDO, EAWR, 
N1, CAR, VPM1, NTA, Q70, TNA, TNI, HAW, AMO, RMM1, 
RMM2, PMM, VPM2, EA_ersst, MJ2, FMO2, OOMI2, TSA 

Geopot 500 hPa 32 (1) AAO, NAO, AO, SCA, WP, PNA, PE, EPNP, BEST, EA, 
EAWR, NOI, ENSO, TPI, N4, SOI, N34, ONI, PDO, HAW, 
IND, Q70, TNA, PMM, NTA, WHWP, TNI, AMO, N1, Q50 
(RMM2) 

Geopot 850 hPa 33 (1) AAO, AO, NAO, PE, SCA, PNA, WP, NOI, BEST, SOI, 
EPNP, EA, TPI, N4, N34, ENSO, ONI, PDO, EAWR, HAW, 
Q70, TNA, NTA, PMM, Q50, N1, TNI, IND, WHWP, DMI, 
VPM2 (RMM1) 

Geopot 950 hPa 30 (1) AAO, AO, NAO, PE, SCA, NOI, PNA, WP, SOI, BEST, EA, 
ENSO, N34, ONI, TPI, N4, PDO, EPNP, EAWR, HAW, Q70, 
TNA, NTA, N1, PMM, TNI, IND, Q50 (RMM2) 

Zonal winds 200 
hPa 

51 (0) BEST, N34, TPI, SOI, ONI, ENSO, N4, IND, PDO, NOI, N1, 
VPM2, WHWP, RMM2, HAW, AO, NAO, PE, VPM1, AAO, 
WP, CAR, SCA, EA_ersst, OOMI1, PMM, EPNP, TNI, 
RMM1, EA, IPO, PNA, NTA, TNA, STA, MJ2, MJ1, TSA, 
DMI, OOMI2, FMON, AMO, FMO2, AMM, VPMN, RMMN, 
MJN, FMO1, OOMIN, Q50 

Zonal winds 500 
hPa 

49 (0) BEST, SOI, ENSO, N34, ONI, NOI, TPI, N4, AO, NAO, PE, 
WP, EA, PNA, VPM2, RMM2, AAO, SCA, IND, PDO, N1, 
EPNP, TNA, OOMI1, MJ1, HAW, WHWP, NTA, VPM1, 
FMO1, EAWR, PMM, TNI, RMM1, MJ2, DMI, EA_ersst, 
OOMI2, IPO, FMO2, FMON, VPMN, MJN, STA, TSA, Q50, 
RMMN, CAR, OOMIN 

Zonal winds 850 
hPa 

46 (1) BEST, AO, ONI, N34, ENSO, SOI, NAO, TPI, N4, PE, WP, 
NOI, PDO, AAO, N1, PNA, SCA, HAW, IND, EPNP, EA, 
WHWP, VPM2, VPM1, RMM2, TNI, PMM, EAWR, IPO, TNA, 
EA_ersst, RMM1, NTA, DMI, MJ1, OOMI1, AMO, FMO1, 
CAR, STA, Q70, TSA, MJ2, AMM, OOMI2 (FMO2) 

Zonal winds 950 
hPa 

42 (4) AO, NAO, ONI, BEST, N34, PE, TPI, ENSO, SOI, N4, WP, 
AAO, PNA, SCA, NOI, PDO, N1, HAW, EA, EPNP, IND, 
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WHWP, EAWR, TNI, PMM, TNA, VPM1, NTA, IPO, VPM2, 
AMO, EA_ersst, RMM2, DMI, RMM1, Q70, CAR, AMM 
(OOMI2, MJ1, MJ2, OOMI1) 

Meridional winds 
50 hPa 

24 (3) AAO, EAWR, EPNP, SCA, EA, PNA, Q50, N34, ONI, BEST, 
TPI, SOI, IND, ENSO, NOI, N4, Q70, QBO, WP, AO (VPM2, 
RMM2, PE) 

Meridional winds 
200 hPa 

32 (1) AAO, N4, BEST, SOI, N34, TPI, ONI, EAWR, ENSO, EPNP, 
SCA, NAO, NOI, WP, IND, PDO, EA, PNA, RMM2, AO, 
VPM2, N1, HAW, PMM, WHWP, CAR, TNI, TNA, NTA, Q70 
(FMO1) 

Meridional winds 
500 hPa 

34 (0) AAO, EAWR, SCA, NOI, EPNP, NAO, N4, SOI, BEST, N34, 
TPI, ONI, ENSO, WP, EA, AO, PNA, TNI, PDO, PMM, 
VPM2, HAW, RMM2, N1, IND, IPO, PE, TNA, RMM1, NTA, 
VPM1, CAR, STA 

Meridional winds 
850 hPa 

33 (0) SCA, AAO, EAWR, NAO, EA, PNA, EPNP, BEST, N34, SOI, 
TPI, AO, ONI, ENSO, N4, PE, WP, NOI, HAW, PDO, PMM, 
IND, VPM2, RMM2, N1, TNI, NTA, TNA, WHWP, Q70, IPO, 
CAR 

Meridional winds 
950 hPa 

32 (0) SCA, EAWR, AAO, EA, N34, PNA, ONI, NAO, BEST, PE, 
ENSO, TPI, SOI, N1, AO, N4, EPNP, WP, NOI, PMM, IND, 
PDO, HAW, TNI, WHWP, DMI, VPM2, RMM2, CAR, AMM, 
TNA 
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