The impact threshold of the aerosol radiative forcing on the boundary layer structure in the pollution region

Dandan Zhao^{†1,2}, Jinyuan Xin^{*†1,2,3}, Chongshui Gong⁴, Jiannong Quan⁵, Yuesi Wang^{1,2}, Guiqian Tang¹,

Yongxiang Ma¹, Lindong Dai¹, Xiaoyan Wu¹, Guangjing Liu¹, Yongjing Ma¹

- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
- 2. University of Chinese Academy of Sciences, Beijing 100049, China
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- 4. Institute of Arid Meteorology, China Meteorological Administration, Lanzhou 730020, China
- 5. Institute of Urban Meteorology, Chinese Meteorological Administration, Beijing, China

(†) These authors contributed equally to this study.

(*) Correspondence to: Jinyuan Xin (xjy@mail.iap.ac.cn).

1	Abstract: Recently, there has been increasing interests in the relation between
2	particulate matter (PM) pollution and atmospheric boundary layer (ABL) structure.
3	This study aimed to qualitatively assess the interaction between PM and ABL
4	structure in essence and further quantitatively estimate aerosol radiative forcing
5	(ARF) effects on the ABL structure. Multi-period comparative analysis indicated that
6	the key to determining whether the haze outbreak or dissipation occurs is whether the
7	ABL structure satisfies the relevant conditions. However, the ABL structure change was
8	in turn highly related to the PM level and ARF. SFC-ATM (SFC and ATM are the
9	ARFs at the surface and interior of the atmospheric column, respectively) is the absolute
10	difference between ground and atmosphere layer ARFs, and the SFC-ATM change is
11	linearly related to the PM concentrations. However, the influence of ARF on the
12	boundary layer structure is nonlinear. With increasing SFC-ATM , the TKE level
13	exponentially decreased, which was notable in the lower layers/ABL but disappeared
14	at high altitudes/above the ABL. Moreover, the ARF effects threshold on the ABL
15	structure was determined for the first time, namely, once $ SFC-ATM $ exceeded ~ 55
16	W m ⁻² , the ABL structure tends to quickly stabilize and thereafter change little with
17	increasing ARF. The threshold of the ARF effects on the boundary layer structure
18	could provide useful information for relevant atmospheric environment improvement
19	measures and policies, such as formulating phased air pollution control objectives.

1. Introduction

21	Most urban agglomerations in China, such as the North China Plain (NCP), have
22	suffered from poor air quality due to rapid increase in anthropogenic emissions.
23	Beijing, as the capital city of China and the principal city in the NCP area, has
24	frequently experienced severe and persistent haze events (Li et al., 2020; Wang et al.,
25	2018; Xu et al., 2019; Zhong et al., 2018). Previous studies have found that the
26	occurrence of PM pollution events in Beijing is not only inseparable from the serious
27	primary emissions and fast formation of secondary aerosols (An et al., 2019; Guo et
28	al., 2014; Li et al., 2017; Wang et al., 2014; Zheng et al., 2015; Wang et al., 2012), but
29	also largely affected by the ABL structure, which controls the diffusion, transmission,
30	and accumulation of pollutants (Han et al., 2009; Kotthaus and Grimmond, 2018;
31	Zheng et al., 2017). For instance, the PM concentration has a strong relationship with
32	the ABL height (ABLH) that determines the volume available for pollutant dispersion
33	(Haman et al., 2014; Schaefer et al., 2009; Su et al., 2018; Tang et al., 2016). In most
34	instances, heavy air pollution episodes occurred with persistent temperature
35	inversions (Xu et al., 2019; Zhong et al., 2017). Weak/calm winds are essential in the
36	long-term increase in air pollutants (Niu et al., 2010; Yang et al., 2016). Additionally,
37	severe air pollution is ever reported positively related to high atmospheric humidity,
38	one of the manifestations of stagnant ABL conditions (Tie et al., 2017; Petäjä et al.,
39	2016). Moreover, the feedback mechanism between the boundary layer structure and
40	aerosol loading during severe pollution events contributing to the outbreak of haze
41	pollution has been presented in previous studies (Huang et al., 2018; Liu et al., 2018;

42	Petäjä et al., 2016; Zhong et al., 2018b; Zhong et al., 2019; Zhao et al., 2019).
43	However, this topic has yet to be fully understood. More work is needed to
44	systematically study the interaction between ABL structure and PM pollution. Since
45	the surface directly influences the ABL, it is the only atmosphere layer characterized
46	by turbulent activities, while higher atmosphere layers are weakly turbulent because
47	of the strongly stable stratification (Munro, 2005). The ABL acts as a notable
48	turbulence buffer coupling the surface with the free atmosphere, and PM and gas
49	pollutants mainly suspended in the ABL are convectively spread throughout it. The
50	change of boundary layer structure determining the accumulation and diffusion of
51	pollutants in it could be largely linked to the difference of turbulent activity (Garratt et
52	al., 1992). Moreover, the change in solar radiation reaching the ground drives the
53	diurnal ABL evolution (Andrews, 2000). While the diurnal evolution of the
54	atmospheric thermodynamic status could be greatly affected considering a strong
55	aerosol direct radiation effect, namely strongly scattering radiation and absorbing
56	radiation (Dickerson et al., 1997; Liu et al., 2018; Huang et al., 2018; Stone et al.,
57	2008; Zhong et al., 2018a). As previous studies have reported that aerosol absorption
58	and scattering effects during severe air pollution notably enhance atmospheric
59	stability and suppress the boundary layer development (Barbaro et al., 2014; Ding et
60	al., 2016; Wilcox et al., 2016; Yu et al., 2002). Considering the aerosol radiative
61	forcing (ARF) is a critical parameter to quantify the aerosol direct radiation effect
62	(Gong et al., 2014; Li et al., 2018). The influence degree of ARF on the boundary
63	layer structure is still unclear, and thus quantitatively determining the effects of ARF

64 on the ABL structure is urgently needed.

65	In this study, we systematically analyzed the way the ABL interacts with PM
66	pollution via contrastive analysis of multiple haze episodes, based on not only specific
67	meteorological factors but also turbulent activity profiles and atmospheric stability
68	indicators. Meanwhile, taking the turbulent kinetic energy (TKE) and ARF as
69	important parameters, we further investigated the influence degree of the aerosol
70	direct radiation effect on the boundary layer structure. Besides, this paper analyzed
71	the interaction between the ABL structure and air pollution using high-resolution and
72	real-observation datasets, such as temperature and humidity profiles of microwave
73	radiometers, horizontal and vertical wind vector profiles of Doppler wind lidar,
74	ABLH, and aerosol backscattering coefficient profiles of ceilometers. Wind profile
75	lidar and microwave radiometers have the advantage of providing direct and
76	continuous observations of the boundary layer over long periods and can characterize
77	the ABL structure up to 2-3 km (Pichugina et al., 2019; Zhao et al., 2019),
78	compensating for the deficiencies of previous research.
79	2. Data and methods
80	Figure S1 shows the observation site of the Tower Branch of the Institute of
81	Atmospheric Physics (IAP), Chinese Academy of Sciences (39°58'N, 116°22'E;
82	altitude: 58 m) in Beijing and the sampling instruments in this study. The IAP site is a
83	typical urban Beijing site, and all the sampling instruments are placed at the same
84	location, and simultaneous monitoring is conducted. We conducted a two-month
85	measurement campaign of the PM concentration and aerosol optical depth (AOD) and

86	obtained vertical profiles of atmospheric parameters such as temperature, humidity,
87	wind vectors, atmospheric stability, and turbulent activity to better understand how
88	the boundary layer structure responds to the aerosol direct radiation effect.
89	The algorithm of SBDART (Santa Barbara DISORT Atmospheric Radiative
90	Transfer) (Levy et al., 2007) is the core model to calculate the aerosol radiative
91	forcing parameters. More information on the input parameters of SBDART were
92	presented in Table S2. A standard mid-latitude atmosphere is used in SBDART in
93	Beijing. AOD and Ångström Exponent (AE) at 550 nm were obtained from a sun-
94	photometer. Multiple sets of Single Scattering Albedo (SSA) and backscattering
95	coefficient were calculated based on MIE theory, and surface albedo & path radiation
96	were read from MODIS (MOD04), which is used to calculate radiative forcing at the
97	top of atmosphere (TOA). The TOA results were combined with MODIS
98	observations, and the result which has the lowest deviation are defined as the actual
99	parameters of aerosols, and this set of parameters would be used to calculate the
100	radiative forcing at the surface, top, and interior of the atmospheric column (Gong et
101	al., 2014; Lee et al, 2018; Xin et al., 2016). Hourly radiative forcing parameters,
102	including the ARF at the top, surface (SFC), and interior of the atmospheric column
103	(ATM) at an observation site in Beijing can be calculated based on this algorithm.
104	More detailed descriptions are provided in our previous work (Gong et al., 2014; Lee
105	et al, 2018; Xin et al., 2016).
106	Air temperature and relative and absolute humidity profiles were retrieved with a
107	microwaya radiamatan (after this referred to as MWD) (DDC HATDDO C5 0020100

107 microwave radiometer (after this referred to as MWR) (RPG-HATPRO-G5 0030109,

108	Germany). The MWR produces profiles with a resolution ranging from 10-30 m up to
109	0.5 km, profiles with a resolution ranging from 40-70 m between 0.5 and 2.5 km, and
110	profiles with a resolution ranging from 100-200 m from 2 to 10 km at a temporal
111	resolution of 1 s. More detailed information on the RPG-HATPRO-type instrument
112	can be found at http://www.radiometer-physics.de (last access: 4 June 2020).
113	Vertical wind speed and horizontal wind vector profiles were obtained by a 3D
114	Doppler wind lidar (Windcube 100s, Leosphere, France). The wind measurement
115	results have a spatial resolution ranging from 1-20 m up to 0.3 km and a spatial
116	resolution of 25 m from 0.3 to 3 km, at a temporal resolution of 5 s. More instrument
117	details can be found at www.leosphere.com (last access: 4 June 2020).
118	A ceilometer (CL51, Vaisala, Finland) was adopted to acquire atmospheric
119	backscattering coefficient (BSC) profiles. The CL51 ceilometer digitally receives the
120	return backscattering signal from 0 to 100 μ s and provides BSC profiles with a spatial
121	resolution of 10 m from the ground to a height of 15 km. The ABLH was further
122	identified by the sharp change in the BSC profile's negative gradient (Münkel et al.,
123	2007), and detailed information is reported in previous studies (Tang et al., 2015,
124	2016; Zhu et al., 2018).
125	A CIMEL sun-photometer (CE318, France), a multichannel, automatic sun-and-
126	sky scanning radiometer (Gregory, 2011), was used to observe the AOD, and the AOD
127	at 500 nm is adopted in this paper. The real-time hourly mean ground levels of $PM_{2.5}$
128	(particulate matter with aerodynamic diameter less than or equal to 2.5 $\mu m)$ and PM_{10}
129	(particulate matter with aerodynamic diameter less than or equal to 10 μ m) were

- 130 downloaded from the China National Environmental Monitoring Center (CNEMC)
- 131 (available at http://106.37.208.233:20035/, last access: 4 June 2020).
- 132 More atmospheric parameters regarding the boundary layer structure used in this
- 133 study are introduced in S1.
- 134 **3. Results and discussion**
- 135 **3.1. General haze episodes over Beijing in winter**

136 It is well known that severe air pollution episodes frequently occur in Beijing

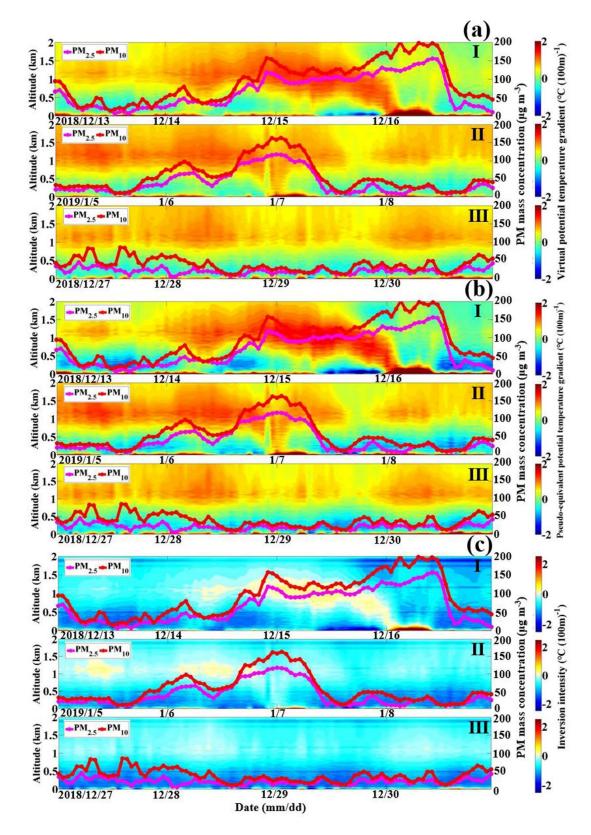
- 137 during winter (Jin-Xiang, 2007; Zhang et al., 2017). Two-month PM concentration
- data from Beijing in the winter of 2018 were collected. As expected, during this time,
- 139 Beijing experienced severe and frequent haze pollution episodes with two heavy
- 140 episodes in which the maximum hourly $PM_{2.5}$ concentration reached ~200 µg m⁻³ and
- 141 six moderate episodes in which the $PM_{2.5}$ mass concentration ranged from ~100-150
- 142 $\mu g m^{-3}$ (Figure S2a).

Although the air pollution process is variable and complicated, it is worth stating


that Beijing's haze pollution in winter can be generally classified as two kinds of

145 patterns, as shown in Figure S2b. For all haze episodes (1-7), the PM_{2.5} mass

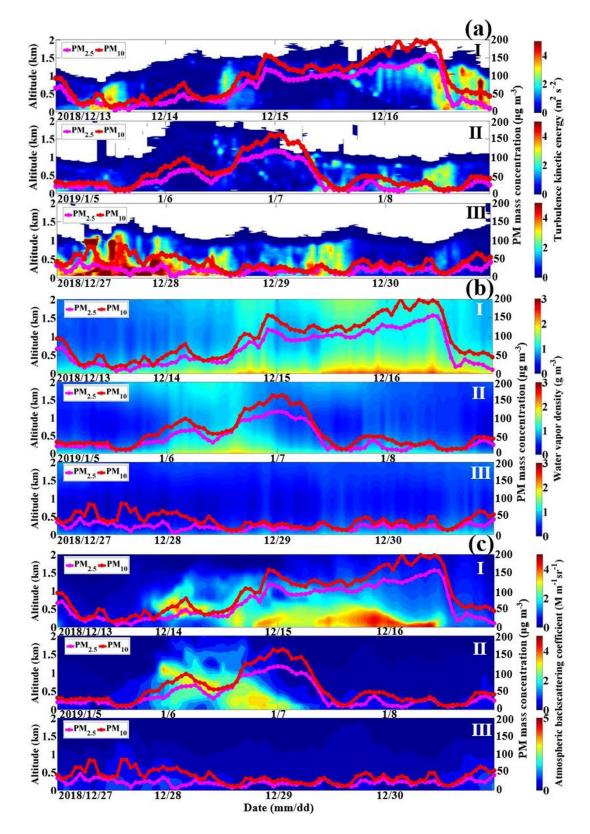
- 146 concentration slowly increased in the afternoon of the 1st day, followed by a
- secondary maximum in the early morning and a maximum at midnight of the 2nd day.
- 148 In comparison to the processes of (4)-(7), where the PM_{2.5} mass concentration sharply
- 149 decreased to $<25 \ \mu g \ m^{-3}$ in the early morning of the 3rd day, during periods (1)-(3),
- however, the highest PM_{2.5} mass concentration (\sim 100-200 µg m⁻³) was observed on
- 151 the whole 3rd day, which disappeared on the 4th day. As previously reported,


152	transport, chemical transformation and boundary layer structure (local meteorological
153	conditions) are central to determining the amount and type of pollutant loading.
154	Considering the equivalent emission and transport effects, the suspended particles in
155	(4)- (7) subjected to diffuse would be controlled by the atmospheric motion (wind and
156	turbulence) on the 3rd day. The particles during periods (1) - (3) continuing to
157	accumulate were therefore highly related to the specific ABL status. To investigate the
158	possible reasons for the different variation trends of haze episodes $(1-3)$ and $(4-7)$,
159	in the next section, we will mainly focus on the ABL structure (local meteorological
160	conditions) influences.
161	3.2. Qualitative analysis of the interaction between particulate matter and

boundary layer structure

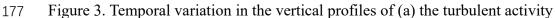
163 Figure 1. Temporal evolution of (a) the PM mass concentration and atmospheric

164	boundary layer height (PM _{2.5} : solid pink lines; PM ₁₀ : solid red lines; ABLH: solid
165	blue lines), (b) aerosol radiative forcing at the top (TOA; green bars), surface (SFC;
166	blue bars) and interior of the atmospheric column (ATM; red bars), and (c) horizontal
167	wind vector profiles (shaded colors: wind speeds; white arrows: wind vectors) during
168	the typical haze pollution episodes of I (2018/12/13-16) and II (2019/1/5-8) as well as
169	the typical clean period of III (2018/12/27-30).



171 Figure 2. Temporal variation in the vertical profiles of (a) the virtual potential

temperature gradient ($\partial \theta v / \partial z$), (b) pseudoequivalent potential temperature gradient


173 $(\partial \theta se/\partial z)$ and (c) temperature inversion phenomenon (shaded colors: inversion

175 (2019/1/5-8) as well as the typical clean period of III (2018/12/27-30).

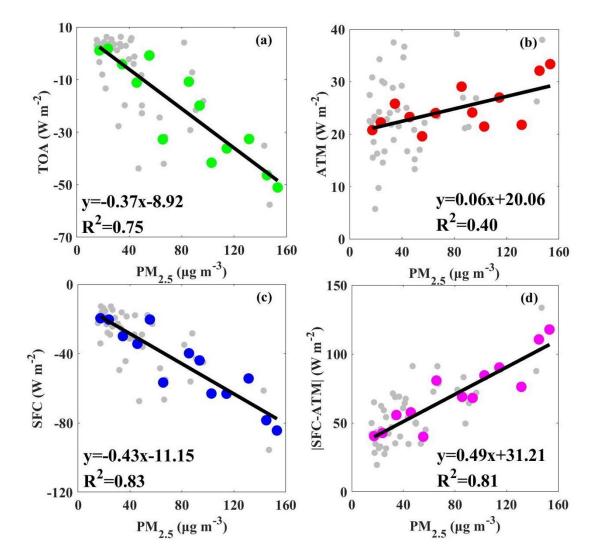
176

intensity) during the typical haze pollution episodes of I (2018/12/13-16) and II

178	(shaded colors: TKE), (b) atmospheric humidity (shaded colors: vapor density), and
179	(c) vertical distribution of suspended particles (shaded colors: BSC) during the typical
180	haze pollution episodes of I ($2018/12/13-16$) and II ($2019/1/5-8$) as well as the typical
181	clean period of III (2018/12/27-30).
182	The haze episodes in winter in Beijing basically followed two different kinds of
183	variation patterns as described in the previous section. The specific reason for this
184	finding will be systematically analyzed in this section. To better illustrate the two
185	different haze patterns, a typical clean period will be considered a control. The typical
186	air pollution episodes I (E-I) (13-16 December 2018) and II (E-II) (5-8 January 2019),
187	as well as the typical clean episode III (E-III) (27-30 December 2018), are chosen as
188	examples for analysis.
189	a. Similar change trends in the first two days
190	Numerous studies have reported that PM's original explosive growth is caused
191	by pollution transport under southerly winds (Ma et al., 2017; Zhao et al., 2019;
192	Zhong et al., 2018). In this study, the action of southerly winds on the air pollution in
193	Beijing was presented more clearly as the Windcube 100s lidar obtained the
194	distribution of the horizontal wind vectors extending to heights of 1-1.5 km
195	(equivalent to the entire ABL) (Figure 1c). On the 1st day of E-I and E-II, the
196	atmosphere layer up to \sim 1 km in height was controlled by strong and clean north
197	winds, exactly like clean E-III. No pollution transport occurred, and the PM and ARF
198	levels were equivalent to those on a clean day (Figures 1a-b). The atmospheric
199	backscattering coefficients throughout the ABL during the three episodes only ranged

200	from ~0-1.5 M m ⁻¹ sr ⁻¹ (Figure 3c). From the evening of the 1st day to the forenoon of
201	the 2nd day, strong southerly winds blew across Beijing during both E-I and E-II, with
202	the wind speed reaching ~5-15 m s ⁻¹ at an atmosphere of about 0.5-1.5 km, while
203	north winds still dominated the ABL during clean E-III. Sensitive to the change in
204	wind direction from north to south, the PM concentration progressively increased
205	from a fairly low level to ~50 μg m $^{-3}.$ Moreover, the BSCs sharply increased to ~3
206	Mm^{-1} rd ⁻¹ and were concentrated at altitudes from ~0.5-1 km, which further stressed
207	the effects of southerly transport on the PM concentration's original growth over
208	Beijing. With prevailing winds originating from the wetter south, compared to the low
209	humidity during clean E-III, the air humidity in Beijing during this time also
210	increased, with the vapor density ranging from \sim 1.5-2 g m ⁻³ for both E-I and E-II
211	(Figure 3b).
211 212	(Figure 3b). At midnight of the 2nd day, the PM concentration reached its highest level with a
212	At midnight of the 2nd day, the PM concentration reached its highest level with a
212 213	At midnight of the 2nd day, the PM concentration reached its highest level with a $PM_{2.5}$ (PM ₁₀) concentration of ~110 (150) µg m ⁻³ during both E-I and E-II.
212 213 214	At midnight of the 2nd day, the PM concentration reached its highest level with a $PM_{2.5}$ (PM ₁₀) concentration of ~110 (150) µg m ⁻³ during both E-I and E-II. Meanwhile, the highest BSC values mainly occurred from the ground to a height of 1
212 213 214 215	At midnight of the 2nd day, the PM concentration reached its highest level with a $PM_{2.5}$ (PM ₁₀) concentration of ~110 (150) µg m ⁻³ during both E-I and E-II. Meanwhile, the highest BSC values mainly occurred from the ground to a height of 1 km at this time, implying that a portion of the suspended particles was pushed down
212213214215216	At midnight of the 2nd day, the PM concentration reached its highest level with a $PM_{2.5}$ (PM ₁₀) concentration of ~110 (150) µg m ⁻³ during both E-I and E-II. Meanwhile, the highest BSC values mainly occurred from the ground to a height of 1 km at this time, implying that a portion of the suspended particles was pushed down to the near-surface. Before southerly wind transport occurred, the evolution of the
 212 213 214 215 216 217 	At midnight of the 2nd day, the PM concentration reached its highest level with a PM _{2.5} (PM ₁₀) concentration of ~110 (150) μ g m ⁻³ during both E-I and E-II. Meanwhile, the highest BSC values mainly occurred from the ground to a height of 1 km at this time, implying that a portion of the suspended particles was pushed down to the near-surface. Before southerly wind transport occurred, the evolution of the stability indicator ($\partial \theta_v / \partial z$; $\partial \theta_{se} / \partial z$) profiles during E-I and E-II was analogous to that
 212 213 214 215 216 217 218 	At midnight of the 2nd day, the PM concentration reached its highest level with a PM _{2.5} (PM ₁₀) concentration of ~110 (150) μ g m ⁻³ during both E-I and E-II. Meanwhile, the highest BSC values mainly occurred from the ground to a height of 1 km at this time, implying that a portion of the suspended particles was pushed down to the near-surface. Before southerly wind transport occurred, the evolution of the stability indicator ($\partial \theta_v / \partial z$; $\partial \theta_{se} / \partial z$) profiles during E-I and E-II was analogous to that during clean E-III (Figures 2a-b). The stratification states at the different heights (0-1)

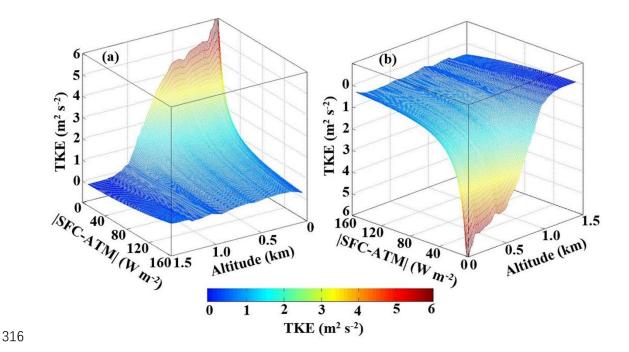
222	However, the atmospheric stratification from \sim 0.5-1 km during E-I and from 0-1 km
223	during E-II became quite stable at night of the 2nd day, with positive values of $\partial \theta_{se}/\partial z$
224	and weak turbulent activity (TKE: $\sim 0 \text{ m}^2 \text{ s}^{-2}$) (Figure 3a). In contrast to an increased
225	ABLH during clean E-III, the ABLHs during E-I and E-II sharply decreased.
226	Considering strong aerosol scattering and absorbing radiation could affect the
227	temperature stratification (Li et al., 2010; Zhong et al., 2018a). With the elevated PM
228	level due to southerly transport during E-I and E-II, ARF increased as expected with
229	SFC (ATM) reaching ~-40 (~20) W m ⁻² and ~-75 (~30) W m ⁻² , respectively. Besides,
230	TOA has an analogous variation trend with SFC, increasing from relatively low
231	values to ~-20 W m ⁻² and ~-45 W m ⁻² , respectively. Therefore, less radiation reached
232	the ground and more heated the atmosphere above the ground during E-I and E-II, and
233	in comparisons with clean E-III, the atmospheric stratification was altered and the
234	stability was thus increased at night. The suspended particles brought by southerly
235	transport originally occurring at high altitudes were restrained from vertically
236	spreading and gradually sank due to gravity and accumulated near the surface.
237	b. Different change trends in the next two days
238	It is salient to note that the haze evolution trends during E-I and E-II were
239	consistent so far, corresponding to a similar ABL structure. Nevertheless, the north
240	winds (~10-15 m s ⁻¹) during E-II, which only blew above the ABL (>1 km) at
241	midnight of the 2nd day, gradually spread downward and controlled the whole
242	boundary layer on the 3rd day. The wind field is critical concerning horizontal
243	dispersion in the boundary layer; thus, the strong, clean and dry north winds during E-


244	II greatly diffused the already accumulated particles first, where the $PM_{2.5}$ mass
245	concentration decreased from ~100 to ~50 μ g m ⁻³ . The ARF obtained at 9:00 sharply
246	decreased compared to yesterday, and with solar radiation heating the ground in the
247	morning on the 3rd day, the development of daytime mixing layer eliminated the
248	previous night's temperature structure. The temperature stratification became similar
249	to that on clean E-III with a similar increase in ABLH. An unstable/neutral
250	atmospheric state with a TKE of $\sim 2 \text{ m}^2 \text{ s}^{-2}$ was also conducive to the vertical spread of
251	substances. In response, the PM concentration (BSC) and air humidity during E-II
252	gradually decreased with the convective boundary layer development and reached the
253	same level as those during clean E-III.

Different from E-II, in which clean and strong north winds in the 3rd daytime 254 255 contributed to the diffusion of previous night's stable stratification, there were still south winds in E-I, which once filled the boundary layer on the 2nd day, gradually 256 decelerated over time from the ground to high altitudes. The atmosphere layer with 257 calm/light winds extended from the ground to the height of ~1.0 km in the 3rd 258 daytime and gradually down to the height of ~0.2 km at midnight and the forenoon of 259 the 4th day. Due to the maintaining high PM levels, SFC and TOA further increased, 260 up to \sim -40 W m⁻² and \sim -75 W m⁻², respectively, with ATM remaining high (\sim 25 W m⁻² 261 ²), which facilitated the temperature inversion that lasted from the whole 3rd day to 262 the noon of the 4th day. As shown in Figure 2(a-c)-I, there was continue temperature 263 inversion structure from \sim 0.5-1.0 km altitude and the atmospheric stratification was 264 quite stable on the 3rd daytime and at midnight. Since the temperature inversion layer 265

266	acted as a lid at altitudes of \sim 0.5-1.0 km, downward momentum transport would be
267	blocked. Original south winds near the ground were constantly consumed by friction,
268	further explaining the lower atmosphere layer's calm/light winds. With quite strong
269	north winds started blowing at high altitude at the 3rd night and surface cooling
270	strengthening, the temperature inversion at \sim 0.5-1.0 km was gradually broke and
271	turned to ground-touching temperature inversion at 0-0.2 km altitude at midnight.
272	This abnormal temperature structure lasted till noon of the 4th day, mainly due to the
273	strong aerosol direct radiation effect of the pre-existing high PM level. As expected,
274	we can see the strong north winds above ~ 1.0 km at the 3rd night gradually extended
275	downward and eventually occurred above the ground-touching inversion in the
276	forenoon of the 4th day. Therefore, with calm/light winds and weak turbulent activity
277	below the temperature inversion in the 3rd day, the PM concentrated exactly below
278	the inversion lid (below ~ 0.5 km) and maintained high concentrations, as the BSC
279	distribution shows in Figure 3c-I. With strong ground-touching inversion of 0-0.2 km
280	altitude forming at midnight and the forenoon of the 4th day, the accumulated
281	particles near the surface were further inhibited right in the stable atmosphere layer
282	(below ~ 0.2 km). The same effect was exerted on the water vapor so as to the high air
283	humidity below the inversion lid at this time. Therefore, the pollutant layer was
284	compressed downward accompanied by intense heterogeneous hydrolysis reactions at
285	the moist particle surface (Zhang et al., 2008), thus resulting in the continue increase
286	of near-surface $PM_{2.5}$ concentrations. At noon of the 4th day, the north winds further
287	accelerated with wind speed higher than ~ 15 m s ⁻¹ and spread down to the whole

288	ABL, which promoted the horizontal and convective dispersion of pollutants and
289	water vapor, and the PM mass concentration, therefore, dropped to the same level as
290	that on clean E-III. With $PM_{2.5}$ sharply dropped from ${\sim}150~\mu g~m^{\text{-}3}$ to ${\sim}20~\mu g~m^{\text{-}3}$ in
291	four hours, the aerosol direct radiation effect was sensitive to PM changes and
292	gradually decreased from 10:00 to 14:00, reaching the same level as those on clean E-
293	III finally.
294	In this section, through a detailed contrastive analysis, we examined the potential
295	reasons for the occurrence of the two different patterns of haze pollution in winter in
296	Beijing. We found that the crucial point in determining whether the PM mass
297	concentration remained high or sharply decreased was related to whether the
298	boundary layer remained stable. The boundary layer stability was, in turn notably
299	linked to the PM mass concentration and aerosol direct radiation effect.
300	3.3. Quantitative analysis of the effect of particulate matter on the boundary layer


301 structure

302

Figure 4. Scatter plots of the PM_{2.5} mass concentration (x) versus aerosol radiative 303 forcing at the top of the atmospheric column (TOA; y; a), the interior of the 304 atmospheric column (ATM; y; b), and the surface (SFC; y; c) as well as the absolute 305 difference of SFC and ATM (|SFC-ATM|; y; d), respectively (gray dots: daily data; 306 307 other dots: mean data). (The daily data means daily mean values of TOA, ATM, SFC, and corresponding daily averaged PM2.5 mass concentration from 27 November 2018 308 to 25 January 2019 in Beijing. The mean PM_{2.5} concentrations were obtained by 309 averaging daily PM_{2.5} concentrations at intervals of 10 µg m⁻³. The mean TOA, ATM, 310 and SFC were obtained after the corresponding daily TOA, ATM, and SFC average, 311

respectively. For example, all daily $PM_{2.5}$ concentrations greater than 40 µg m⁻³ and less than 50 µg m⁻³ were averaged as a mean $PM_{2.5}$ concentration, and TOA values (ATM; SFC) corresponding to this daily $PM_{2.5}$ concentration range were also averaged

315 as a mean TOA (ATM; SFC)).

317 Figure 5. 3-D plot of the fitting relationship of the absolute difference in aerosol

318 radiative forcing between the surface and interior of the atmospheric column (|SFC-

- ATM; x) and turbulence kinetic energy (TKE; z) at the different altitudes (y) ((a) and
- 320 (b) present different perspectives).

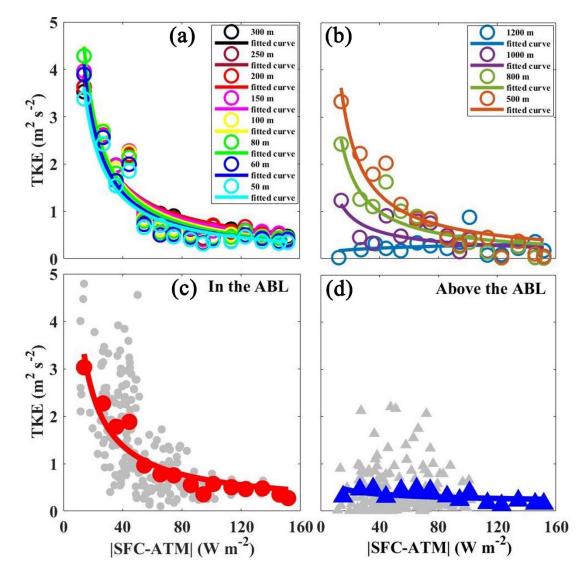


Figure 6. Scatter plots of the mean absolute difference of the aerosol radiative forcing 322 323 at the surface and interior of the atmospheric column (|SFC-ATM|; x) versus the mean turbulence kinetic energy (TKE; y) at the different altitudes (a; b). Scatter plots of 324 |SFC-ATM| (x) versus TKE (y) in the ABL (c) and above the ABL (d) (gray dots: 325 hourly data; other dots: mean data). The hourly data were collected over a two-month 326 period in Beijing from 27 November 2018 to 25 January 2019. (The hourly data 327 means hourly mean values of |SFC-ATM| and corresponding hourly TKE. The mean 328 [SFC-ATM] was obtained by averaging hourly [SFC-ATM] at intervals of 10 W m⁻², 329 then the mean TKE was obtained after the average of the corresponding hourly TKE.). 330

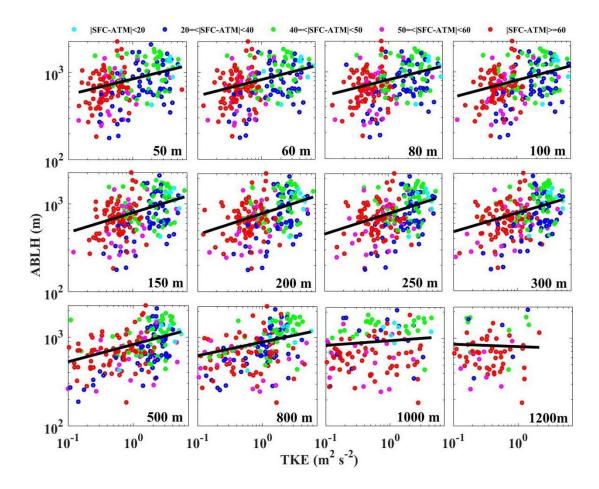


Figure 7. The atmospheric boundary layer height (ABLH; y) as a function of the turbulence kinetic energy (TKE; x) at the different altitudes and the aerosol direct radiation effect defined as |SFC-ATM| (color code). The calculated hourly data used above are collected over two months in Beijing from 27 November 2018 to 25 January 2019.

Based on the contrastive analysis in the previous section, it was clear that the ABL structure played a critical role in the maintenance and dissipation of air pollution. It appeared that the increase in atmospheric stability suppressed pollution

- 340 diffusion under a weak turbulence activity and low ABLH. Water vapor also
- 341 significantly accumulated to a relatively high level near the surface, further
- 342 facilitating secondary aerosols' formation. The evolution of ABL stability essentially

343	occurred in response to the atmospheric temperature structure, as analyzed above,
344	which was influenced by the strong aerosol direct radiation effect (Andrews, 2000; Li
345	et al., 2010). The Archimedes buoyancy generated by the pulsating temperature field
346	in the gravity field exerted negative work on the turbulent pulsating field with a stable
347	ABL occurring. The turbulence served as a carrier for substance transport in the
348	boundary layer, such as water vapor, heat, and PM (Garratt et al., 1992). Thus, in the
349	following section, the ARF and TKE were chosen as the key parameters to examine
350	how PM affects and modifies the boundary layer structure.
351	Figure 4 shows the relationship between the PM concentration and ARF. As
352	shown in Figures 4a and 4c, TOA and SFC were proportional to the $PM_{2.5}$
353	concentration, respectively. With the increase in PM _{2.5} concentration, elevated aerosol
354	loading near the surface would scatter more solar radiation back into outer space and
355	cause less solar radiation reaching the ground, corresponding to a cooling of the
356	surface and making negative SFC. TOA means the aerosol radiative forcing at the top
357	of the atmosphere column and is the sum of ATM and SFC. Considering that
358	anthropogenic aerosols are mostly scattering aerosols, the SFC forcing is generally
359	stronger than ATM, corresponding to a cooling of the earth-atmosphere system. The
360	TOA forcing was thus usually negative and had a similar trend with SFC. ATM,
361	driven by aerosol absorption effect and representing a warming effect of aerosols on
362	the atmosphere layer, exhibited a positive correlation with the $PM_{2.5}$ concentration
363	(see Figure 4b). These results demonstrated that a higher $PM_{2.5}$ concentration would
364	arouse a stronger ARF, further inhibiting solar radiation from reaching the ground and

365	heating the atmosphere layer more. SFC-ATM , defined as the absolute value of the
366	difference between SFC and ATM, represents aerosols' combined action on the solar
367	radiation reaching the aerosol layer and the ground. Larger values of SFC-ATM
368	indicate stronger aerosol scattering and/or absorption effects, further implying a more
369	significant temperature difference between the ground and the above atmosphere
370	layer. As expected, a positive linear correlation between $ SFC-ATM $ and $PM_{2.5}$
371	concentration was found, as shown in Figure 4d.
372	As described in the above paragraph, there was a strong ARF under a high PM
373	loading, which markedly altered the atmospheric temperature structure, further
374	changing the ABL structure. It is necessary to determine the effect degree of ARF on
375	the boundary layer structure. Figure 5 shows the 3-D plots of the fitting relationship
376	between the hourly values of SFC-ATM and TKE at the different altitudes. What
377	stood out in Figure 5a was the general decline in TKE concerning the growth of SFC-
378	ATM . With increasing SFC-ATM value, the TKE value at the different altitudes
379	always decreased exponentially and approached zero below ~ 0.8 km. The notable
380	exponential function between TKE and SFC-ATM explained that a strong ARF
381	would drastically change the boundary layer into highly stable conditions
382	characterized by a rather low TKE. The results above highlight the aerosol direct
383	radiation effect's nonnegligible impact on the boundary layer structure, especially
384	during the haze episode under a high aerosol loading with a strong ARF. It is well
385	known that a larger net negative/positive SFC/ATM arises a cooler/warmer
386	ground/atmosphere. An increase in SFC-ATM implies the gradual intensification of

the ground cooling and/or atmosphere heating processes. Therefore, it changed the
atmospheric stratification into a gradually enhanced stable state, which was
characterized by increasingly weaker turbulence activities. Additionally, as shown in
Figure 5b, we can identify a critical point of the |SFC-ATM| effects on TKE in the low
layers. In particular, TKE decreased with increasing |SFC-ATM| and hardly changed
when |SFC-ATM| exceeded the critical point.

To define the critical point, we generated scatter plots of the average |SFC-ATM| 393 and TKE at different altitudes, as shown in Figures 6a-b. The scatter plots of the 394 395 unaveraged hourly data are shown in Figure S3, and the fitting functions are listed in Table S1. Depending on the exponential curve's maximum curvature (Silvanus and 396 Gardner, 1998), a critical point should exist. With the mean TKE and |SFC-ATM| 397 398 values on the exponential curve, we found that once the aerosol direct radiation effect defined by |SFC-ATM| exceeded 50-60 W m⁻² (average of ~55 W m⁻²), the TKE 399 sharply decreased from $\sim 2 \text{ m}^2 \text{ s}^{-2}$ to lower than $1 \text{ m}^2 \text{ s}^{-2}$. This means that a high aerosol 400 loading with a |SFC-ATM| value higher than ~55 W m⁻² tends to change the boundary 401 layer from the unstable state to the extremely stable state in a short time, and further 402 increasing |SFC-ATM| would barely modify the ABL structure. The average |SFC-403 ATM value of \sim 55 W m⁻² can be defined as the threshold of the ARF effects on the 404 ABL structure, which could provide useful information for relevant model 405 simulations, atmospheric environment improvement measures, and relevant policies. 406 Besides, as shown in Figures 5-6, the exponential relationship between TKE and 407 SFC-ATM was notable in the low layers and gradually deteriorated with increasing 408

409	altitude. On average, the exponential relationship was notable in the ABL and almost
410	disappeared above the ABL (Figures 6c-d). Considering that aerosols are mainly
411	concentrated below the lower atmosphere, contributing the most to the SFC and ATM
412	forcing, which further confirmed that the considerable change in atmospheric
413	stratification caused by aerosols existed and mainly occurred in the lower layers.
414	The previous discussion shows that a strong aerosol direct radiation effect
415	markedly affected the turbulent activity and modified the boundary layer structure. As
416	many studies have reported, the ABLH is an important meteorological factor that
417	influences the vertical diffusion of atmospheric pollutants and water vapor (Stull,
418	1988; Robert and Aron, 1983). The following examines the relationship among the
419	turbulent activity, ARF, and ABLH to illustrate the change in ABLH in response to
420	ARF. Figure 7 shows the ABLH as a function of the TKE and SFC-ATM at the
421	different altitudes. It was apparent that a positive correlation exists between TKE and
422	ABLH. As the turbulent activity became increasingly weaker, the corresponding
423	boundary layer height gradually decreased, responding to the gradual increase in
424	SFC-ATM. Similar to the relationship between the turbulent activity and aerosol
425	radiative effect, as shown in Figure 6, the relationship among these aspects was much
426	stronger below 300 m and almost disappeared above 800 m. This further addressed
427	the fact that the change in boundary layer height was attributed to the turbulence
428	activity variation stemming from the aerosol direct radiation effect.
429	Thus far, this section has demonstrated that the aerosol loading with aerosol
430	radiative effects impacted the turbulent activity, changed the boundary layer height,

431	and modified the boundary layer structure. On the other hand, it is now necessary to
432	explain how the renewed boundary layer structure modifies the PM _{2.5} concentration.
433	As shown in Figures S4a-b, the ABLH as an independent variable impact the ambient
434	water vapor in the ABL to some degree. There was a steady increase in the ambient
435	humidity with decreasing ABLH, where absolute humidity (AH) and relative
436	humidity (RH) were projected to decrease to \sim 3 g m ⁻³ and \sim 60%, respectively, with
437	the ABLH decreasing below ~500 m. With the increase in ambient humidity, a marked
438	rise in PM _{2.5} concentration occurred, as shown in Figures S4c-d. Once AH and RH
439	exceeded ~3 g m $^{-3}$ and ~60%, respectively, the $PM_{2.5}$ concentration reached ~100 μg
440	m ⁻³ . The results above indicate that with a fairly low boundary layer height, water
441	vapor accumulated near the surface, and particles tended to hygroscopic grow,
442	resulting in secondary aerosol formation in a high-humidity environment, further
443	increasing the $PM_{2.5}$ concentration. As shown in Figure S4e, with the level off of the
444	ABLH, the $PM_{2.5}$ mass concentration increased exponentially and reached a high
445	value. The exponential relationship was similar to that between the ambient humidity
446	and ABLH, which revealed that the explosive growth of the PM _{2.5} concentration
447	under a low ABLH was largely driven by intense secondary aerosol formation and
448	hygroscopic growth at high ambient humidity.

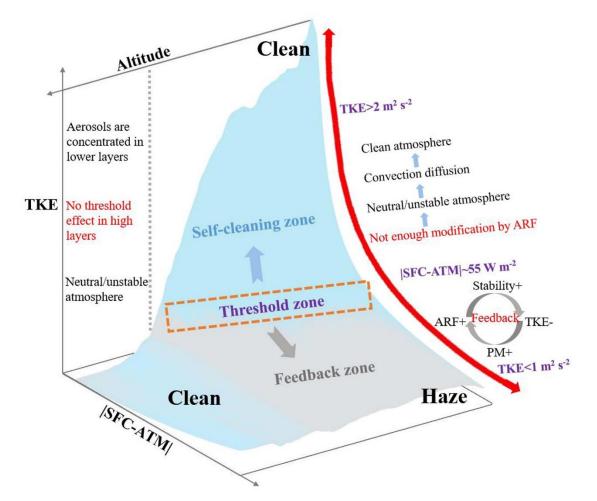


Figure 8. Schematic diagram of the interaction between the aerosol radiative forcing (ARF)
and boundary layer structure (|SFC-ATM|: the mean absolute difference of the aerosol
radiative forcing at the surface and interior of the atmospheric column; TKE: the mean
turbulence kinetic energy).

454 **4. Conclusion**

455 By analyzing the two-month haze conditions in winter in Beijing, we found that

456 haze pollution basically underwent two different variation patterns, namely, the same

- 457 trends on the first two days, and on the next days, one haze pattern went through a
- 458 continuing outbreak, while the other haze pattern exhibited notable diffusion.
- 459 Considering equivalent emissions, this has raised important questions about whether
- 460 and how the local boundary layer structure impacted/caused this difference. The

461	results of a contrastive analysis qualitatively showed that the crucial point in
462	determining whether the PM concentration remained very high or sharply decreased
463	was largely related to whether the boundary layer structure (i.e., stability and TKE)
464	satisfied relevant conditions. As previous studies reported (Liu et al., 2018; Zhong et
465	al., 2018b; Zhong et al., 2019) and was confirmed in this paper, the extremely stable
466	stratification with positive $\partial \theta_{se}/\partial z$ values and a low TKE was the premise of the
467	outbreak of haze pollution. However, the change/state of the boundary layer structure
468	was, in turn, strongly linked to the PM mass concentration and ARF, and we further
469	quantitatively evaluated the effect of ARF on the boundary layer structure. Figure 8,
470	emerging from the previous observation analysis, is where ARF modifies the
471	boundary layer structure and aggravates haze pollution. The ARF effects on the
472	atmospheric stratification depend on the reduced radiation reaching the ground due to
473	aerosol scattering and absorbing radiation in the atmosphere (Dickerson et al., 1997;
474	Stone et al., 2008). Firstly, we found that a positive linear relationship between SFC-
475	ATM and PM _{2.5} concentration existed, which means the strong aerosol scattering
476	and/or absorption effect occurs during the heavy haze episodes and could arouse
477	significant temperature differences between the surface and the above atmosphere
478	layer. Secondly, previous studies revealed that black carbon solar absorption
479	suppresses turbulence near the surface (Wilcox et al., 2016); while we found that the
480	TKE value at the different altitudes always decreased exponentially with increasing
481	SFC-ATM , which was significant in the lower atmosphere layer. Moreover, the ARF
482	effects on turbulent activity were found significant in the boundary layer and

483	disappeared above the boundary layer, which also confirmed that the stronger ARF
484	from the aerosol layer would indeed change the boundary layer into the considerably
485	stable state characterized by a relatively low TKE. Thirdly, the ARF change is linear
486	due to the PM concentration; however, the influence of ARF on the boundary layer
487	structure is nonlinear. Based on the exponential relationship, the threshold of the ARF
488	effects on the boundary layer structure has been determined for the first time,
489	highlighting that once the ARF exceeded a specific value, the boundary layer structure
490	tends to quickly stabilize after that changed little with increasing ARF. This threshold
491	could provide useful information for relevant atmospheric environment improvement
492	measures and policies in Beijing. When the $PM_{2.5}$ concentration is controlled with the
493	ARF below the threshold, the unstable atmosphere's self-purification capacity could
494	effectively dilute and diffuse pollutants. In contrast, when the PM _{2.5} concentration
495	increases with an ARF exceeding the threshold value, the boundary layer would
496	stabilize sharply, especially in the lower layers, aggravating haze pollution.

Data availability

The surface $PM_{2.5}$ & PM_{10} and other trace gases observation data used in this study can be accessed from http://106.37.208.233:20035/ (last access: 4 June 2020). Other datasets can be accessed upon request to the corresponding author.

Author contribution

XJ designed the experiments and the research. ZD, GC, QJ, WY, TG, MY, DL, WX, LG, MY provided experimental assistance and analytical method. ZD and XJ analyzed the data and performed research. All authors commented on the manuscript.

Competing interests

The authors declare that they have no conflict of interest.

Acknowledgments

This study was supported by the Ministry of Science and Technology of China (grant number 2016YFC0202001), the CAS Strategic Priority Research Program (XDA23020301), and the National Natural Science Foundation of China (grant number 42061130215). The authors are thankful for the data support from the Ministry of Ecology and Environment of the People's Republic of China, the National Earth System Science Data Sharing Infrastructure, National Science and Technology Infrastructure of China (available at http://www.geodata.cn, last access: 4 June 2020).

References

- An, Z., Huang, R.-J., Zhang, R., Tie, X., Li, G., Cao, J., Zhou, W., Shi, Z., Han, Y., Gu, Z., and Ji, Y.: Severe haze in northern China: A synergy of anthropogenic emissions and atmospheric processes, Proc. Natl. Acad. Sci. U. S. A., 116, 8657-8666, https://doi.org/10.1073/pnas.1900125116, 2019.
- Andrews, D. G.: An Introduction to Atmospheric Physics, Cambridge University Press, 2000.
- Barbaro, E., Arellano, J., Ouwersloot, H., Schröter, J., Donovan, D., and Krol, M.: Aerosols in the convective boundary layer: Shortwave radiation effects on the coupled land-atmosphere system, J. Geophys. Res.: Atmos., 119, 5845–5863, https://doi.org/10.1002/2013JD021237, 2014.
- Dickerson, R. R., Kondragunta, S., Stenchikov, G., Civerolo, K. L., Doddridge, B. G., and Holben, B. N.: The impact of aerosols on solar ultraviolet radiation and photochemical smog, Science (New York, N.Y.), 278, 827-830, https://doi.org/10.1126/science.278.5339.827, 1997.
- Garratt, J. R., Dessler, A. J., Houghton, J. T., and Rycroft, M. J.: The atmospheric boundary layer, 1992.
- Ding, A., Huang, X., Nie, W., Sun, J., Kerminen, V.-M., Petäjä, T., Su, H., Cheng, Y.,
 Yang, X., Wang, M., Chi, X., Wang, J., Virkkula, A., Guo, W., Yuan, J., Wang, S.,
 Zhang, R., Wu, Y., Song, Y., Zhu, T., Zilitinkevich, S., and Kulmala, M.:
 Enhanced haze pollution by black carbon in megacities in China, Geophys. Res.
 Lett., 43, 2873–2879, https://doi.org/10.1002/2016GL067745, 2016.
- Gong, C., Xin, J., Wang, S., Wang, Y., Wang, P., Wang, L., and Li, P.: The aerosol direct radiative forcing over the Beijing metropolitan area from 2004 to 2011, J. Aerosol Sci., 69, 62-70, https://doi.org/10.1016/j.jaerosci.2013.12.007, 2014.
- Gregory, L.: Cimel Sun-photometer (CSPHOT) Handbook, 2011.
- Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao, M., Zeng, L., Molina, M. J., and Zhang, R.: Elucidating severe urban haze formation in China, Proc. Natl. Acad. Sci. U. S. A., 111, 17373-17378,

https://doi.org/10.1073/pnas.1419604111, 2014.

- Haman, C. L., Couzo, E., Flynn, J. H., Vizuete, W., Heffron, B., and Lefer, B. L.: Relationship between boundary layer heights and growth rates with ground-level ozone in Houston, Texas, J. Geophys. Res.: Atmos., 119, 6230-6245, https://doi.org/10.1002/2013jd020473, 2014.
- Han, S., Bian, H., Tie, X., Xie, Y., Sun, M., and Liu, A.: Impact of nocturnal planetary boundary layer on urban air pollutants: Measurements from a 250-m tower over Tianjin, China, J. Hazard. Mater., 162, 264-269, https://doi.org/10.1016/j.jhazmat.2008.05.056, 2009.
- Hua, Y., Wang, S., Wang, J., Jiang, J., Zhang, T., Song, Y., Kang, L., Zhou, W., Cai, R., Wu, D., Fan, S., Wang, T., Tang, X., Wei, Q., Sun, F., and Xiao, Z.: Investigating the impact of regional transport on PM2.5 formation using vertical observation during APEC 2014 Summit in Beijing, Atmos. Chem. Phys., 16, 15451-15460, https://doi.org/10.5194/acp-16-15451-2016, 2016.
- Huang, X., Wang, Z., and Ding, A.: Impact of Aerosol-PBL Interaction on Haze Pollution: Multiyear Observational Evidences in North China, Geophys. Res. Lett., 45, 8596-8603, https://doi.org/10.1029/2018gl079239, 2018.
- Jin-Xiang, L. I.: The Characteristics and Cause Analysis of Heavy-Air-Pollution in Autumn and Winter in Beijing, Environ. Monit. China, 2007.
- Kotthaus, S., and Grimmond, C. S. B.: Atmospheric boundary-layer characteristics from ceilometer measurements. Part 1: A new method to track mixed layer height and classify clouds, Q. J. R. Meteorol. Soc., 144, 1525-1538, https://doi.org/10.1002/qj.3299, 2018.
- Lee K., Li Z., Wong M., Xin J., Wang Y., Hao W., and Zhao F.: Aerosol single scattering albedo estimated across China from a combination of ground and satellite measurements, J. Geophys. Res.: Atmos., 112(D22), https://doi.org/10.1029/2007JD009077, 2007.
- Levy, R. C., Remer, L. A., and Dubovik, O.: Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval

over land, J. Geophys. Res.: Atmos., 112, https://doi.org/10.1029/2006jd007815, 2007.

- Li, G., Bei, N., Cao, J., Huang, R., Wu, J., Feng, T., Wang, Y., Liu, S., Zhang, Q., Tie, X., and Molina, L. T.: A possible pathway for rapid growth of sulfate during haze days in China, Atmos. Chem. Phys., 17, 3301-3316, https://doi.org/10.5194/acp-17-3301-2017, 2017.
- Li, M., Wang, L., Liu, J., Gao, W., Song, T., Sun, Y., Li, L., Li, X., Wang, Y., Liu, L., Daellenbach, K. R., Paasonen, P. J., Kerminen, V.-M., Kulmala, M., and Wang, Y.: Exploring the regional pollution characteristics and meteorological formation mechanism of PM_{2.5} in North China during 2013-2017, Environ. Int., 134, https://doi.org/10.1016/j.envint.2019.105283, 2020.
- Li, Z., Lee, K.-H., Wang, Y., Xin, J., and Hao, W.-M.: First observation-based estimates of cloud-free aerosol radiative forcing across China, J. Geophys. Res.: Atmos., 115, https://doi.org/10.1029/2009jd013306, 2010.
- Liu, Q., Jia, X., Quan, J., Li, J., Li, X., Wu, Y., Chen, D., Wang, Z., and Liu, Y.: New positive feedback mechanism between boundary layer meteorology and secondary aerosol formation during severe haze events, Sci. Rep., 8, https://doi.org/10.1038/s41598-018-24366-3, 2018.
- Liu, T. T., Gong, S., Meng, Y., Qi, C. Z., and Hong, L. L.: Contributions of meteorology and emission to the 2015 winter severe haze pollution episodes in Northern China, Atmos. Chem. Phys., 17, 1-17, https://doi.org/10.5194/acp-2016-204, 2016.
- Münkel, C., Eresmaa, N., Rasanen, J., and Karppinen, A.: Retrieval of mixing height and dust concentration with lidar ceilometer, Bound.-Layer Meteorol., 124, 117-128, https://doi.org/ 10.1007/s10546-006-9103-3, 2007.
- Ma, Q., Wu, Y., Zhang, D., Wang, X., and Zhang, R.: Roles of regional transport and heterogeneous reactions in the PM_{2.5} increase during winter haze episodes in Beijing, Sci. Total Environ., 599-600, 246-253, https://doi.org/10.1016/j.scitotenv.2017.04.193, 2017.

Miao, Y., Guo, J., Liu, S., Zhao, C., Li, X., Zhang, G., Wei, W., and Ma, Y.: Impacts of

synoptic condition and planetary boundary layer structure on the trans-boundary aerosol transport from Beijing-Tianjin-Hebei region to northeast China, Atmos. Environ., 181, 1-11, https://doi.org/10.1016/j.atmosenv.2018.03.005, 2018.

Munro, D. S.: Boundary Layer Climatology, 2005.

- Niu, F., Li, Z., Li, C., Lee, K.-H., and Wang, M.: Increase of wintertime fog in China: Potential impacts of weakening of the Eastern Asian monsoon circulation and increasing aerosol loading, J. Geophys. Res.: Atmos., 115, https://doi.org/10.1029/2009jd013484, 2010.
- Petaja, T., Jarvi, L., Kerminen, V. M., Ding, A. J., Sun, J. N., Nie, W., Kujansuu, J., Virkkula, A., Yang, X. Q., Fu, C. B., Zilitinkevich, S., and Kulmala, M.: Enhanced air pollution via aerosol-boundary layer feedback in China, Sci. Rep., 6, https://doi.org/10.1038/srep18998, 2016.
- Pichugina, Y. L., Banta, R. M., Bonin, T., Brewer, W. A., Choukulkar, A., McCarty, B. J., Baidar, S., Draxl, C., Fernando, H. J. S., Kenyon, J., Krishnamurthy, R., Marquis, M., Olson, J., Sharp, J., and Stoelinga, M.: Spatial Variability of Winds and HRRR-NCEP Model Error Statistics at Three Doppler-Lidar Sites in the Wind-Energy Generation Region of the Columbia River Basin, J. Appl. Meteorol. Climatol., 58, 1633-1656, https://doi.org/10.1175/jamc-d-18-0244.1, 2019.
- Quan, J., Gao, Y., Zhang, Q., Tie, X., Cao, J., Han, S., Meng, J., Chen, P., and Zhao, D.: Evolution of planetary boundary layer under different weather conditions, and its impact on aerosol concentrations, Particuology, 11, 34-40, https://doi.org/10.1016/j.partic.2012.04.005, 2013.
- Robert, and Aron: Mixing height—an inconsistent indicator of potential air pollution concentrations, Atmos. Environ., 17, 2193-2197, https://doi.org/10.1016/0004-6981(83)90215-9, 1983.
- Schaefer, K., Wang, Y., Muenkel, C., Emeis, S., Xin, J., Tang, G., Norra, S., Schleicher, N., Vogt, J., and Suppan, P.: Evaluation of continuous ceilometer-based mixing layer heights and correlations with PM_{2.5} concentrations in Beijing, in: Remote Sensing of Clouds and the Atmosphere Xiv, edited by: Picard, R. H., Schafer, K.,

Comeron, A., Kassianov, E., and Mertens, C. J., Proceedings of SPIE, 2009.

- Silvanus, P. T. F. R. S., and Gardner, M.: A Little More about Curvature of Curves, Calculus Made Easy, 249-262, https://doi.org/10.1007/978-1-349-15058-8_25, 1998.
- Stone, R. S., Anderson, G. P., Shettle, E. P., Andrews, E., Loukachine, K., Dutton, E. G., Schaaf, C., and Roman, M. O., III: Radiative impact of boreal smoke in the Arctic: Observed and modeled, J. Geophys. Res.: Atmos., 113, https://doi.org/10.1029/2007jd009657, 2008.
- Stull, R. B.: An Introduction to Boundary Layer Meteorology, 1988.
- Su, T., Li, Z., and Kahn, R.: Relationships between the planetary boundary layer height and surface pollutants derived from lidar observations over China: regional pattern and influencing factors, Atmos. Chem. Phys., 18, 15921-15935, https://doi.org/10.5194/acp-18-15921-2018, 2018.
- Tang, G., Zhu, X., Hu, B., Xin, J., Wang, L., Münkel, C., Mao, G., and Wang, Y.: Impact of emission controls on air quality in Beijing during APEC 2014: lidar ceilometer observations, Atmos. Chem. Phys., 15, 12667–12680, https://doi.org/10.5194/acp-15-12667-2015, 2015.
- Tang, G., Zhang, J., Zhu, X., Song, T., Muenkel, C., Hu, B., Schaefer, K., Liu, Z., Zhang, J., Wang, L., Xin, J., Suppan, P., and Wang, Y.: Mixing layer height and its implications for air pollution over Beijing, China, Atmos. Chem. Phys., 16, 2459-2475, https://doi.org/10.5194/acp-16-2459-2016, 2016.
- Tie, X., Huang, R.-J., Cao, J., Zhang, Q., Cheng, Y., Su, H., Chang, D., Poeschl, U., Hoffmann, T., Dusek, U., Li, G., Worsnop, D. R., and O'Dowd, C. D.: Severe Pollution in China Amplified by Atmospheric Moisture, Sci. Rep., 7, https://doi.org/10.1038/s41598-017-15909-1, 2017.
- Wang, J. Z., Gong, S. L., Zhang, X. Y., Yang, Y. Q., Hou, Q., Zhou, C. H., and Wang, Y. Q.: A Parameterized Method for Air-Quality Diagnosis and Its Applications, Adv. Meteorol., https://doi.org/10.1155/2012/238589, 2012.

Wang, X., Wei, W., Cheng, S., Li, J., Zhang, H., and Lv, Z.: Characteristics and

classification of PM 2.5 pollution episodes in Beijing from 2013 to 2015, Sci. Total Environ., 612, 170-179, https://doi.org/10.1016/j.scitotenv.2017.08.206, 2018.

- Wang, Y., Yao, L., Wang, L., Liu, Z., Ji, D., Tang, G., Zhang, J., Sun, Y., Hu, B., and Xin, J.: Mechanism for the formation of the January 2013 heavy haze pollution episode over central and eastern China, Sci. China-Earth Sci., 57, 14-25, https://doi.org/10.1007/s11430-013-4773-4, 2014.
- Wilcox, E. M., Thomas, R. M., Praveen, P. S., Pistone, K., Bender, F. A. M., and Ramanathan, V.: Black carbon solar absorption suppresses turbulence in the atmospheric boundary layer, Proc. Natl. Acad. Sci. U. S. A., 113, 11794-11799, https://doi.org/10.1073/pnas.1525746113, 2016.
- Xin, J., Gong, C., Wang, S., and Wang, Y.: Aerosol direct radiative forcing in desert and semi-desert regions of northwestern China, Atmos. Res., 171, 56-65, https://doi.org/10.1016/j.atmosres.2015.12.004, 2016.
- Xu, T., Song, Y., Liu, M., Cai, X., Zhang, H., Guo, J., and Zhu, T.: Temperature inversions in severe polluted days derived from radiosonde data in North China from 2011 to 2016, Sci. Total Environ., 647, 1011-1020, https://doi.org/10.1016/j.scitotenv.2018.08.088, 2019.
- Yu, H., Liu, S., and Dickinson, R.: Radiative effects of aerosols on the evolution of the atmospheric boundary layer, J. Geophys. Res., 107(D12), 1, 4142–14, https://doi.org/10.1029/2001JD000754, 2002.
- Yang, Y., Liao, H., and Lou, S.: Increase in winter haze over eastern China in recent decades: Roles of variations in meteorological parameters and anthropogenic emissions, J. Geophys. Res.: Atmos., 121, 13050-13065, https://doi.org/10.1002/2016jd025136, 2016.
- Zhang, Q., Ma, Q., Zhao, B., Liu, X., Wang, Y., Jia, B., and Zhang, X.: Winter haze over North China Plain from 2009 to 2016: Influence of emission and meteorology, Environ. Pollut., 242, 1308-1318, https://doi.org/10.1016/j.envpol.2018.08.019, 2018.
- Zhang, R., Khalizov, A. F., Pagels, J., Zhang, D., Xue, H., and McMurry, P. H.:

Variability in morphology, hygroscopicity, and optical properties of soot aerosols during atmospheric processing, Proc. Natl. Acad. Sci. U. S. A., 105, 10291-10296, https://doi.org/10.1073/pnas.0804860105, 2008.

- Zhang, Z., Zhang, X., Zhang, Y., Wang, Y., Zhou, H., Shen, X., Che, H., Sun, J., and Zhang, L.: Characteristics of chemical composition and role of meteorological factors during heavy aerosol pollution episodes in northern Beijing area in autumn and winter of 2015, Tellus B, 69, https://doi.org/10.1080/16000889.2017.1347484, 2017.
- Zhao, D., Xin, J., Gong, C., Quan, J., Liu, G., Zhao, W., Wang, Y., Liu, Z., and Song, T.: The formation mechanism of air pollution episodes in Beijing city: Insights into the measured feedback between aerosol radiative forcing and the atmospheric boundary layer stability, Sci. Total Environ., 692, 371-381, https://doi.org/10.1016/j.scitotenv.2019.07.255, 2019.
- Zheng, C., Zhao, C., Zhu, Y., Wang, Y., Shi, X., Wu, X., Chen, T., Wu, F., and Qiu, Y.: Analysis of influential factors for the relationship between PM_{2.5} and AOD in Beijing, Atmos. Chem. Phys., 17, 13473-13489, https://doi.org/10.5194/acp-17-13473-2017, 2017.
- Zheng, G. J., Duan, F. K., Su, H., Ma, Y. L., Cheng, Y., Zheng, B., Zhang, Q., Huang, T., Kimoto, T., Chang, D., Poeschl, U., Cheng, Y. F., and He, K. B.: Exploring the severe winter haze in Beijing: the impact of synoptic weather, regional transport and heterogeneous reactions, Atmos. Chem. Phys., 15, 2969-2983, https://doi.org/10.5194/acp-15-2969-2015, 2015.
- Zhong, J., Zhang, X., Wang, Y., Sun, J., Zhang, Y., Wang, J., Tan, K., Shen, X., Che, H., Zhang, L., Zhang, Z., Qi, X., Zhao, H., Ren, S., and Li, Y.: Relative Contributions of Boundary-Layer Meteorological Factors to the Explosive Growth of PM_{2.5} during the Red-Alert Heavy Pollution Episodes in Beijing in December 2016, J. Meteorol. Res., 31, 809-819, https://doi.org/10.1007/s13351-017-7088-0, 2017.
- Zhong, J., Zhang, X., Wang, Y., Liu, C., and Dong, Y.: Heavy aerosol pollution episodes in winter Beijing enhanced by radiative cooling effects of aerosols, Atmos. Res.,

209, 59-64, https://doi.org/10.1016/j.atmosres.2018.03.011, 2018a.

- Zhong, J., Zhang, X., Dong, Y., Wang, Y., Liu, C., Wang, J., Zhang, Y., and Che, H.: Feedback effects of boundary-layer meteorological factors on cumulative explosive growth of PM2.5 during winter heavy pollution episodes in Beijing from 2013 to 2016, Atmos. Chem. Phys., 18, 247–258, https://doi.org/10.5194/acp-18-247-2018, 2018b.
- Zhong, J., Zhang, X., Wang, Y., Wang, J., Shen, X., Zhang, H., Wang, T., Xie, Z., Liu, C., Zhang, H., Zhao, T., Sun, J., Fan, S., Gao, Z., Li, Y., and Wang, L.: The twoway feedback mechanism between unfavorable meteorological conditions and cumulative aerosol pollution in various haze regions of China, Atmos. Chem. Phys., 19, 3287–3306, https://doi.org/10.5194/acp-19-3287-2019, 2019.

Zhu, X., Tang, G., Lv, F., Hu, B., Cheng, M., Muenkel, C., Schafer, K., Xin, J., An, X., Wang, G., Li, X., and Wang, Y.: The spatial representativeness of mixing layer height observations in the North China Plain, Atmos. Res., 209, 204-211, https://doi.org/10.1016/j.atmosres.2018.03.019, 2018.