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Abstract. In this study we present a novel monitoring methodology to detect local CH4 concentration anomalies worldwide 

that are related to rapidly changing anthropogenic emissions that significantly contribute to the CH4 atmospheric budget. The 

method uses high resolution (7 km x 7 km) retrievals of total column CH4 from the Tropospheric Monitoring Instrument 

(TROPOMI) onboard the Sentinel 5 Precursor satellite. Observations are combined with high resolution CH4 forecasts (~9 

km) produced by the Copernicus Atmosphere Monitoring Service (CAMS) to provide departures (observations minus 15 

forecasts) close to the native satellite resolution at appropriate time. Investigating the departures is an effective way to link 

satellite measurements and emission inventory data in a quantitative manner. We perform filtering on the departures to remove 

the synoptic-scale and meso-alpha-scale biases on both forecasts and satellite observations. We then use a simple classification 

on the filtered departures to detect anomalies and plumes coming from CAMS emissions that are missing (e.g. pipeline or 

facility leaks), under-reported or over-reported (e.g. depleted drilling fields). Additionally, the classification helps to detect 20 

local satellite retrieval errors due to land surface albedo issues. 

1. Introduction 

Atmospheric methane (CH4) is the second most important anthropogenic greenhouse gas after carbon dioxide and 

contributes significantly to changes in radiative forcing and climate change. CH4 is estimated to account for at least a quarter 

of the present-day warming (Myhre et al., 2013) and has a near-term global warming potential that is 84 times larger than CO2 25 

per unit mass (IPCC 2013). There are numerous natural and anthropogenic CH4 sources, which vary in location and areal 

extent. The anthropogenic emissions related such as oil and gas production and coal mining and biomass burning tends to be 

geographically localised, e.g. over a plant facility, a pipeline or a field of extraction. Methane emissions however related to 

biological fluxes such as livestock, landfills and rice fields which can also be either geographically localised over narrow areas 
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or more widespread. For example, microbial respiration in wetlands showing more extensive patterns over the globe (Saunois 30 

et al., 2016). Atmospheric methane concentrations have more than doubled since the pre-industrial times because of the 

imbalance between methane sources and sinks (IPCC, 2013), due to an increase of oil and gas production, rice crops, livestock 

and landfills. Methane has a relatively short atmospheric lifetime (with respect to climate scales) of around 9 years, meaning 

targeted emission reductions could be an effective way to limit the rate of warming over the upcoming decades (Shoemaker et 

al., 2013). 35 

Greenhouse gases emission inventories are generated using aggregation and extrapolation of regional and national specific 

data. These data are reported individually by countries using the guidelines provided by the United Nations Framework on 

Climate Change (UNFCC) and the Intergovernmental Panel for Climate Change (IPCC). The reporting follows a bottom-up 

approach, which utilises activity data and emission factors of individual emissions sectors. Official reporting and processing 

of this data to build these bottom-up inventories can cause significant lag and information can be out of date for certain sectors 40 

once publicly released. This can become an issue in the context of rapidly changing emissions from large point sources, for 

example in the oil and gas sectors (Alvarez et al., 2018). In the case of atmospheric composition modelling, emission 

inventories are used for input surface fluxes to simulate atmospheric concentrations. Within the Copernicus Atmosphere 

Monitoring Service (CAMS) these simulations are used to provide routine real-time forecasts of greenhouse gases 

concentrations. The CAMS greenhouse gas forecasting system integrates satellite observations (Massart et al., 2014, 2016) to 45 

generate initial conditions for high-resolution forecasts at about 10 km (Agustí-Panareda et al., 2019). The lack of up-to-date 

emission inventories will impact and likely degrade simulated CH4 concentrations in areas where the local contribution of 

anthropogenic emissions is significant.  

Many studies have shown the rapidly changing and event-based nature of CH4 anthropogenic emissions, especially in the 

case of identifying the location of 'super-emitter' point source locations. Conley et al. (2016) used aircraft measurements to 50 

characterise a blowout of a well connected to the Aliso Canyon gas storage facility in California from October 2015 to February 

2016. Pandey et al. (2019) showcased detection of large methane emission from a gas well blowout in Ohio during February 

to March 2018 using satellite measurements. More recently, Varon et al. (2019) detected an anomalously large CH4 source 

using a combination of satellite instruments over Central Asia (western Turkmenistan) associated with a gas compression 

station. Those types of suddenly occurring CH4 emissions cannot be or are not reported/detected in time to be included in the 55 

bottom-up inventories but are seen from space. Other studies showed the capability of satellite measurements to detect CH4 

emissions related to extensive drilling and fracking areas. Kort et al. (2014) identified a large methane anomaly over the Four 

Corners region of the USA and more recently de Gouw et al. (2020), Zhang et al. (2020) and Schneising et al. (2020) showed 

satellite detection of large and extended enhancements in the San Juan, Uintah and Permian basin in the USA. While 

these satellite-based studies focused on specific events and locations, none of them systematically detected such anomalies at 60 

global scale, nor did they provide a method to do so. 

Systematic detection of large point sources of anthropogenic CH4 emissions using a combination of satellite observations 

and modelling could enable rapid action to reduce emissions from the oil and gas sectors. Two recent developments allow for 
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systematic detection of unreported CH4 atmospheric anomalies linked to small scale and point sources emissions. Firstly, 

newly available high resolution (7 km x 7 km) satellite observations from the TROPOspheric Monitoring Instrument 65 

(TROPOMI, Veefkind et al., 2012) on board the Sentinel-5p platform. Secondly, improved real-time forecasting at high-

resolution (~9 km) provided by CAMS (Agustí-Panareda et al., 2019). In this paper we present a novel methodology to 

routinely compare the satellite observations with the model forecasts in order to perform a systematic detection of atmospheric 

CH4 anomalies related to emission changes from small scale and point sources emissions that are not reported or lack timely 

update. The paper is organised as follows: Section 2 describes the setup that includes the TROPOMI observations, the 70 

forecasting and monitoring configurations, Section 3 presents the detection method, Section 4 discusses several case studies 

followed by conclusions where we discuss briefly the benefit of our approach with coarse resolution inverse modelling. 

2. Setup  

2.1. TROPOMI CH4 observations 

The TROPOMI (Veefkind et al., 2012) instrument was launched 13 October 2017 onboard the Sentinel-5 Precursor 75 

satellite, a low Earth orbiter with a Sun-synchronous orbit that overpasses at 13:30 local solar time. Currently operational since 

the end of April 2018, the instrument is an imaging spectrometer with a wide spectral range: ultraviolet, visible, near-infrared 

and shortwave infrared. This allows TROPOMI to measure a variety of atmospheric chemical species such as: ozone, nitrogen 

dioxide, carbon monoxide, sulphur dioxide, formaldehyde, aerosol and methane (Hu et al., 2018). Current CH4 observations, 

which are available for the inner two thirds of the swath and only over land, are vertically integrated columns sensitive to the 80 

troposphere (surface to 200 hPa). With a swath of around 1,750 km (normally 2,600 km) wide from the along track position 

and a ground pixel size of 7 km x 7 km, TROPOMI CH4 data can provide near global daily coverage at high horizontal 

resolution over land but is limited by cloud cover and retrieval quality. In this study, we use the bias corrected version of the 

product and we apply the most stringent quality flagging possible, selecting only pixels that have the qa_value = 1.0 (see 

Product Readme Methane V01.03.02, https://sentinel.esa.int/documents/247904/3541451/Sentinel-5P-Methane-Product-85 

Readme-File). In the later document it is stated that the overall the instrument precision is less than or equal to 2.5% of the 

total column which is within the mission requirements for both random error and bias (1.0% and 1.5% respectively). Figure 1 

illustrates the CH4 satellite observation coverage that TROPOMI provides over a year, a month and a day. 

The measurements show clear geographical variation of the CH4 column-averaged dry-air mixing ratios (XCH4) that 

are driven by the atmospheric transport but most importantly by the spatial and temporal variability of the surface fluxes and 90 

emissions variations. Figure 2 shows the 2019 annual average zoomed over the Middle East region and the western USA 

regions. Over these regions, spatial variability results in XCH4 enhancements of up to 50 ppb over emission 

hotspots. Differences in the average concentrations from region to region are also significant, from approximately 1825 ppb 

over the USA to 1875 ppb over the Middle East. The strong local enhancements are an indication of strong local surface fluxes 

and emissions of CH4 from oil and gas activities, mining, agriculture or wetlands. XCH4 retrievals can also be prone to some 95 
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systematic residual errors especially related to surface albedo (Hasekamp et al., 2019). De Gouw et al. (2020) for instance 

mentioned the possibility of retrieval biases due to low surface albedo in the short wave infrared spectral bands in the 

winter. Such retrieval biases, even though mostly reduced by the bias corrected product, need further investigation and are 

outside the scope of this paper. Nevertheless, the TROPOMI data are sufficiently accurate to show local enhancements linked 

(but not limited) to oil and gas production. We show in section 3 how to isolate these small-scale signals of interest and how 100 

to remove the contribution of synoptic-scale (more than 2000 km) and meso-alpha-scale (between 2000 km and 200 km) 

biases. In the rest of the paper we define large-scale as the combination of synoptic-scale and meso-alpha-scale. 

2.2. CAMS high-resolution CH4 forecasting suite 

In this study we use the ECMWF Integrated Forecasting System (IFS), which is used in different configurations for the 

operational Numerical Weather Prediction (NWP) system as well as for the Copernicus Atmosphere Monitoring Service 105 

(CAMS) atmospheric composition analyses and forecasts (e.g. Flemming et al, 2015). As part of the CAMS greenhouse gases 

services, the IFS is used to provide 5 days CO2 and CH4 forecasts (Agustí-Panareda et al., 2019) jointly with other species 

relevant for air-quality (Flemming et al., 2015). 

The IFS model cycle used in this paper is CY45R1 and is run routinely with a TCo1279 horizontal resolution which is a 

cubic octahedral reduced Gaussian grid at approximately 9 km (Holm et al., 2016) with 137 vertical levels from the surface to 110 

0.01hPa. Details about the transport and meteorological configuration can be found in Agustí-Panareda et al. (2019). The 

CAMS greenhouse gases (GHG) operational suite is composed of an analysis and forecasts at medium and high resolution 

(see Fig. 3). The analysis is based on the IFS 4D-Var assimilation system which was adapted to assimilate retrieved columns-

averaged mole fractions of CO2 and CH4 together with all the operational meteorological observations (Engelen et al., 2009, 

Massart et al., 2014, 2016). The analyses are produced every 12hours (00:00UTC and 12:00UTC). A 4-day forecast is then 115 

issued daily after the 00:00UTC analysis on a TCo399, a cubic octahedral grid corresponding to approximately 25 km x 25 

km with the same 137 model level configuration. Two satellite observation streams are currently assimilated, the Infrared 

Atmospheric Sounding Interferometer (IASI) for CH4 on the MetOp satellites and the Thermal And Near-infrared Sensor for 

carbon Observations (TANSO) on the GOSAT satellite for both CO2 and CH4 (see Massart et al. (2014) for further details). In 

this configuration only the concentrations are corrected by the assimilation, the emissions and surface fluxes remain 120 

unchanged. The processing and acquisition of the level 2 data in 2019 provided the satellite XCH4 data 4 days behind real 

time. The high-resolution forecast is then coupled to the analysis experiment by merging the 4-day lower resolution forecast 

from the CO2 and CH4 analysis with the previous 1-day high resolution forecast (Fig. 3) in order to preserve the fine-scale 

features of the high-resolution forecast. Additionally, the high-resolution forecast coming from the operational NWP runs is 

used to reset the initial meteorological conditions in order to ensure the best possible accuracy of the transport. In this paper 125 

we will focus on using the CH4 forecasts at high-resolution coming from the setup described above. The high-resolution 
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forecasts are run on a TCo1279 L137 grid of approximately 9 km x 9 km for a 5-day period and are initialized approximately 

4 hours behind real-time every day from 00:00UTC. 

Both high resolution forecasts and analysis use prescribed CH4 surface fluxes. The anthropogenic emissions including 

fossil fuel emissions, agriculture and landfill/waste emissions are from the annual EDGARv4.2FT2010 data set (Olivier and 130 

G. Janssens-Maenhout, 2012) for 2010 with 0.1°x0.1° resolution and monthly resolution for the rice emissions (Matthews et 

al., 1991). Monthly mean wetland emissions come from a climatology (1990-2008) based on the LPJ-WHyMe model 

constrained by SCIAMACHY observations during the HYMN project (Spahni et al., 2011) with a resolution of 1° x 1° degree. 

The biomass burning emissions are from GFASv1.2 (Kaiser et al., 2012). Other sources and sinks include a monthly soil sink 

(Ridgwell et al., 1999), annual mean oceanic fluxes (Houweling et al., 1999, Lambert and Schmidt,1993), and monthly mean 135 

fluxes from termites (Sanderson, 1996) and wild animals (Houweling et al., 1999). The chemical sink in the troposphere and 

the stratosphere is represented by a climatological monthly mean chemical loss rate (Bergamaschi et al.2009). This is based 

on OH fields optimised with methyl chloroform using the TM5 model (Krol et al.,2005) with prescribed concentrations of the 

stratospheric radicals using the 2-D photochemical Max Planck Institute model. Figure 4 shows the geographical and seasonal 

structure of the surface fluxes. Large-scale and smoother structures are representative of the wetland, soil and agriculture 140 

fluxes, whereas the finer-scale and shaper structures are representative of the anthropogenic and fire emissions. Figure 5 shows 

the capability of the high-resolution forecasts at global and regional scales. Global seasonal cycles and synoptic scale 

concentrations are represented as well as concentrations at smaller scales such as plumes from point source emissions and 

orographic effects. Large point sources and associated plumes can be seen over Europe, for example over Madrid, Paris and 

Tours (western France). Inventory estimates suggest the modelled hotspot region near Tours is probably the result of solid 145 

waste landfill emissions. Other possibilities include emissions from both the enteric fermentation and wastewater treatment 

sectors, all of which may be linked to a landfill site. Over the Middle East region zoom, sharp point sources are seen in 

Teheran and Southern Iran as well as over Pakistan (Karachi) and also closer to the Himalayan region.  

2.3. Monitoring suite 

To monitor and compare the TROPOMI XCH4 retrievals with the IFS CH4 9 km forecasts we re-use a part of the IFS 150 

assimilation system in a so-called monitoring mode. The system recomputes a high-resolution trajectory at 9 km initialised 

from the forecasts over a 12-hour monitoring window to calculate so-called first guess departures (difference between the 

observation and the model forecast) with the observations at the appropriate time. At each observation location the departure 

can be written as follows, 

𝑑 = 𝑦 −𝑯𝑴(𝑥!)  (1)	155 
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where 𝑑 is the departure, 𝑦 the observation, 𝑯 the observation operator, 𝑴 the model integration or trajectory and 𝑥! the initial 

CH4 condition at the beginning of the monitoring window. If we inject the retrieval equation (Rodgers, 2000) the departure 

becomes, 

𝑑 = 𝑨𝑥" + (𝑰 − 𝑨)𝑥# + 𝜖 − 𝑨𝑴(𝑥!) − (𝑰 − 𝑨)𝑥#       (2)  160 

where 𝑥" is the true CH4 concentration state (which is never exactly known), 𝑨 is the averaging kernel matrix which represents 

the sensitivity of the retrieval on the vertical profile with respect to the true state, 𝑰  the identity matrix, 𝑥#  the apriori 

information used in the retrieval and 𝜖 the retrieval error term. The equation then simplifies to, 

𝑑 = 𝑨/𝑥" −𝑴(𝑥!)0 + 𝜖          (3) 

which is the difference between the true state and the forecast smoothed by the averaging kernel function plus the retrieval 165 

error term. Those departure values are thus strongly dependent on the averaging kernel function shape. For the TROPOMI 

XCH4 retrievals the mean averaging kernel function shows a homogenous sensitivity to the entire troposphere up to 200hPa 

where the sensitivity decreases in the stratosphere (Schneising et al., 2020). The averaging kernel function is not very variable 

between pixels or between different regions of the globe (not shown). Figure 6 shows the departures over various time scales 

(yearly, monthly and daily) for the global domain. Overall the departures (observation minus forecast) show a global positive 170 

bias of around 25 ppb (meaning observation values are above the model values) which could be attributed to model biases 

(Ramonet et al., 2019) and/or observation biases (Langerock et al., 2019). Ramonet et al. (2019) compared the CAMS CH4 

forecasts with independent total column data. Results showed that the forecasts continuously underestimate the CH4 total 

columns by 5-20 ppb. Langerock et al. (2019) showed that the averaged total column bias for the TROPOMI CH4 retrievals 

bias is -0.32% (i.e. around -5ppb) but with respect to ground-based measurements. 175 

Regional-scale error structures are evident from the observation-model comparison. For example, boreal regions are 

showing a band of negatives values, potentially attributed to systematic errors caused by surface albedo values during winter 

(see section 2.1) in the TROPOMI retrieval algorithm. Alternatively, they could be caused by CH4 biases at tropopause and 

lower stratosphere levels in the IFS model. Also, a possible time lag in the wetland emissions, which are calculated offline and 

provide boundary conditions in the IFS forecasting chain (see section 2.2) could cause such bias. The attribution of this type 180 

of large-scale error seen in the departures in not fully understood yet and is beyond the scope of this paper, although an 

understanding of these biases is crucial to further improve the quality of the CAMS CH4 forecasts and TROPOMI retrievals. 

At finer scales, structures are seen on the yearly average comparison and become more evident on the monthly timescales. 

Local differences are even stronger on a daily basis but recognising fine scale structures is challenging due to the lack of daily 

coverage. For those reasons a spatial filtering and temporal averaging of the departures is performed to extract and use the 185 

small-scale features seen in the departures. 
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3. Detection method 

3.1. Filtering the signal 

To remove the large-scale features seen in the departures we have implemented a high pass Gaussian filtering. The filter 

uses a convolution of a 2D Gaussian kernel on a given averaged and binned departure field. In this study we use a 0.1° latitude-190 

longitude binning. Due to ocean, cloud cover and quality control flagging a number of bins of the departure will show missing 

values that will jeopardize the convolution. This problem is solved technically by creating two auxiliary matrices that have 

missing values replaced by 0. The two auxiliary matrices are then defined as 

 

𝑫 = 2𝑑$, 𝑖𝑓	𝑛 > 𝑁	
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           (4) 195 

𝑪 = 2 1, 𝑖𝑓	𝑛 > 𝑁	
	0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒	            (5) 

 

where 𝑑$ (with the subscript m standing for mean) is the average departure in the given bin, 𝑁 the threshold of minimum 

number of observations in a given bin. In this study, we have chosen 𝑁 = 2 in order to avoid smoothing with very isolated 

pixels that can be faulty but also keep as much data as possible. Replacing the missing values by zeros in 𝑫 introduces an error 200 

after convolving (inducing low values due to smoothing out with zeros) in the filtered departures 𝑑%& (with the subscript hp 

standing for high pass). This can be compensated by applying the same Gaussian filter on a matrix 𝑪 representing the selected 

bins for filtering (where number of counts are above 𝑁) and using the ratio of the two filtered matrices to compensate for the 

missing value errors. Then a high pass filtering on a given observation space field (here departures) can be formulated as 

follows, 205 

𝑑DE = 𝑑F − G(H)∗𝑫
G(H)∗𝑪

          (6) 

where 𝐺(𝜎) is a 2D Gaussian kernel function with a 𝜎 length scale. The same filtering is also applied on the observation 

values 𝑦 and the first guess values 𝑯𝑴(𝑥') as this will be used for classification in section 3.2. Figure 7 shows the effect of 

the filtering on the observation-space data using a 30-day window and a length-scale of 2°. Firstly, we can see that the large-

scale features in the departures such as the overall bias and regional variations are removed. Secondly, the departures, 210 

observations and first guess distributions are put towards gaussianity, centred around zero and displaying more a symmetrical 

shape and tails. This then makes the processing and the classification of the data much easier (see section 3.2). 

To decide on the appropriate window length and Gaussian kernel length scale we have conducted sensitivity tests 

with different length scales (s= [0.5,1.0,2.0,5.0] degrees) and a window length of 10, 30 and 90 days. Figure 8 shows the 

resulting filtered departures normalized by the instrument precision for the 12 possible sensitivity tests. For tests with Gaussian 215 

kernel sizes of 0.5 and 1.0 degree the filtered signal is mostly weaker than the measurement precision and very few to no 
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detections of local anomalies will be made. Conversely, if the kernel is large the relative signal over the instrument precision 

is stronger but to the risk of picking up larger patterns than the targeted features, i.e. features that are directly related to local 

emissions in the CH4 atmospheric distribution. For these reasons we found that a kernel of 2.0 degrees performs best. If the 

time window is short, e.g. 10 days, lower coverage could limit a correct detection of outliers especially in the case of isolated 220 

data points. Isolated data points that are spotting possible outliers could be filtered out towards 0 as the convolution do not 

have neighbouring points to use within the kernel range. The shorter the window, the narrower the kernel, the more likely this 

can occur. Conversely, if the time window is long, i.e. 90 days, will maximise the chances to have a good observation coverage 

for the convolution filter to run best but the this would reduce the ability to provide information on temporal variability. Also, 

the sharp spatial structures that correspond to more recent or sporadic emission events are smoothed in the time averaging 225 

effect decreasing the filtered departure over instrument precision ratio. For those reasons, we found that a time window of 30 

days provides the most reasonable results. 

3.2. Outlier classification 

The final step is an outlier detection of the filtered departures. We choose to retain the values which have a filtered departure 

absolute value superior to the TROPOMI CH4 measurement precision. If the filtered departures absolute values are lower than 230 

the measurement precision they are then considered as noise and ruled out. Further refinements to the current methodology 

could be done to find more optimal method for outlier detection using more advanced statistical methodologies. In the present 

study we found that the provided measurement precision with the satellite product provides suitable results. In addition to the 

outlier detection we perform a classification given the relative values and sign of the filtered observations and first guess 

values. This allows, us to define the following four categories: 235 

• high observations (red in Fig. 9): where positive filtered observations are higher than filtered first-guess. This class is 

representative of high XCH4 values detected by TROPOMI that are not seen as high or at all in the forecasts. These are 

likely originating from emissions that are not reported or under-estimated in the inventories. However, high observation 

categorisation may also be caused by poor quality observations category (see section 4.3). 

• high forecasts (green in Fig. 9): where negative filtered first-guess are higher than filtered observations. This class is 240 

representative of high CH4 values in the forecasts but not seen as strong or at all in the TROPOMI XCH4 retrievals. High 

forecasts categorized data points are likely originating from emissions that are over-estimated or no longer being produced 

or even mis-located in the emission inventory. 

• low observations (blue in Fig. 9): where negative filtered observations are lower than filtered first-guess. This class is 

representative of locally low XCH4 values detected by TROPOMI but are not seen to be as low or at all in the forecasts. 245 

Poor-quality observations influenced by low surface albedo likely fall in that category (see section 4.3). 
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• low forecasts (gold in Fig. 9): where positive filtered first guess are lower than filtered observations. This class is 

representative of low XCH4 values in the forecasts but not seen as low or at all in the TROPOMI XCH4 retrievals. This 

category has generally much fewer data points. Orography could be a reason for data points to fall in that category, i.e. 

model surface height value that are higher than the observation value. Further developments of the method will likely use 250 

orography to improve the filtering.  

In the maps of Fig 9., shades of the colours indicate the intensity of the offset, i.e. how far from perfectly matching 

observation versus forecasts the filtered departure is. The size of the points indicates the number of samples. A larger dot 

indicates more data points within the 30-day window to compute the statistics hence is more robust. Fig 9. gives an overview 

of such detections globally and cases are many and various. In the next section we will focus on specific cases studies using 255 

the under-reported or missed plumes (red) category and the over-reported or under-reported plumes (green) category to 

showcase the usefulness of the method.  

4. Case studies 

4.1. Under-estimation of local sources in the forecasts 

South Western USA and Mexico: In figure 10, the method detects under-predicted local CH4 concentrations (in red) in 260 

the forecast system in three areas. This occurs in the Permian Basin region, located around the Texas-New Mexico border, 

where multiple oil drilling sites are currently operating. Those enhancements have been documented by de Gouw et al. (2020) 

and Zhang et al, (2020) showing the reliability of the presented method. Two other regions with a smaller bias and extent can 

be identified around the southern tip of Nevada by lake Meade and northern Baja California close to the US-Mexican border. 

To our knowledge those two cases have not been investigated or documented yet. Those two cases could be due to local albedo 265 

properties that could create local biases in the retrievals (see section 4.3), as we did not identify a facility responsible for those 

enhancements. This needs further investigation. 

Western Turkmenistan: To confirm the ability of this methodology for the detection of large point-source emitters we 

also showcase very strong detection of anomalous concentrations over the western Turkmenistan. Our system detects strong 

enhancement during most of 2019 (Fig.11) that change in intensity and shape. The filtered departures can be very large (above 270 

50 ppb) with a high number count in the bins (large size of the dots). As mentioned earlier in this paper, anomalously large 

CH4 sources from oil and gas production in this location have been documented and detected using TROPOMI combined with 

private sector satellite data by Varon et al. (2019). 

4.2. Over estimation of local sources in the forecasts 

Western Russia: Our detection system shows two local point sources, that show large first-guess values that are not seen 275 

by TROPOMI XCH4 (green dots in Fig. 12). The features do not show large sampling (small dots) in time but do exhibit the 
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shape of plumes, with strong departures near the point sources. One is very close to Moscow and corresponds to the 

Domodedovo airport surroundings. The other source detection is near the Volga river with a location matching small drilling 

fields seen in visible satellite images. In these two locations the detection method suggests that emission inventories are over-

estimating local sources, which in reality are now producing reduced emissions or are no longer active emitters (at least during 280 

the period of monitoring).  

Los Angeles: Similar features can occur in the area of Los Angeles. Figure 10 shows significant over-prediction of CH4 

(green dots) specifically over San Bernardino and Palmdale. Both towns have industrial facilities and regional airports. The 

detection is stronger in the 2019-09-01 and 2019-10-01 windows than in the 2019-07-01 and 2019-08-01 windows. Differences 

in intensity could be attributed to the monthly emission changes but also attributed to seasonal atmospheric transport changes 285 

due to different meteorological situation between windows. For example, if the overall windspeed increases near the source 

less accumulation of CH4 would be seen leading to smaller departures and less detection.  

Such cases in very different locations show the capability of the method to detect not only missing or underreported point 

sources but also overreported cases. This can only be achieved with combining numerical models forecasts and satellite 

measurements at close-matching high horizontal resolution (9 km and 7 km respectively). It is also important to mention that 290 

the method presented here is subject to uncertainties due to both model transport errors and representation error, although the 

error associated to emission generally dominate. Further work is needed to account for atmospheric transport and more 

generally to account for the weather variability in the detection method. Techniques as described in Barré et al., 2020 show 

interesting potential to be used for this topic. 

4.3. Local retrieval issues 295 

The retrieval can be affected by albedo surface issues (see section 2). The filtering is not able to remove features with 

geographical extent smaller than the size of the Gaussian kernel (see section 3.1). Figure 13 and figure 14 presents examples 

of such issues where the same pattern is seen repeatedly in the outlier detection. In figure 13, the persistent pattern in shape 

and intensity corresponds to a land surface feature seen in visible satellites images that produces consistently higher TROPOMI 

XCH4 values than its surroundings. The inverse can be true as well displaying local areas with consistently lower local XCH4 300 

retrievals (not shown). Thus, great care should be taken when diagnosing such filtered departures. Features with a consistent 

shape and intensity are retrieval error artefacts, as atmospheric plumes would show more variability and not a consistent shape 

over months as illustrated in Fig. 13 and in Fig. 14. In Fig. 13 the pattern clearly corresponds to a change in the land surface 

type in visible satellite images (e.g. google maps) and the same shape is seen for the span of more than 10 weeks (four 30-days 

windows that are around 6 weeks apart). In Fig. 14 the shape of the anomaly is also consistent over 4 months using 30-days 305 

windows. No clear visible change in the land surface is seen in that case. More investigation is needed by the retrieval provider 

to understand this systematic local bias. Further improvements of the method could be implemented with pattern shape 

recognition to automatically discard or classify persistent shapes over time. Satellite retrieval providers could be notified about 

of such biases, in order to improve the quality of the satellite product. However, there is still potential impact of temporally 
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and spatially variable small-scale albedo features (e.g. due to snow cover). Such transient features would still go undetected 310 

by a possible detection of persistent shape features. 

5. Conclusions 

In this paper we have shown the potential of systematic detection of anthropogenic CH4 point and local source emissions 

relative to known emission inventory data using the TROPOMI satellite measurements in combination with high resolution 

CH4 forecasts. While many studies have shown detailed analysis of a few case studies using TROPOMI observations, this is 315 

the first time that a systematic way to detect strong anthropogenic local emitters of CH4 and to compare results with emission 

inventories is presented. The method presented here does not only allow for the detection of unreported or missing sources but 

also targets over-reported sources in the inventories. The method also has the potential of detecting systematic local retrieval 

errors which can help to improve the satellite product. We demonstrated the potential of the methodology by focusing on 

several case studies but further work is required to provide a global assessment using several years from this dataset. 320 

Our method is novel by combining information from multiple sources (emission inventory, modelled surface fluxes, and 

observations) in a data assimilation framework to detect and analyse observed anomalies. We have used global emission 

inventories and fluxes that were the best possible global estimates we had available at the time when running our system. Using 

different emission inventories from research specific activities that are more specific to local regions, for instance, could 

provide different answers. In that way our methodology could provide an efficient way to validate improvements in sector-325 

specific emission inventories. For example, using revised CH4 inventories such as presented by Maasakers et al. (2016) over 

the USA or more recently by Scrapelli et al., 2020 globally could lead to different detection patterns. Bottom up inventories 

will always lag in time and therefore cannot track rapid emission changes such as pipeline and gas facility blowouts. Satellite 

measurements have a clear added value for timely detection in the case of large emissions.   

Combining satellite measurements, forecasts and emission inventories partially using a data assimilation system paves the 330 

way to estimate the emissions themselves. Inverse modelling studies to estimate CH4 emissions have been done with 

SCIAMACHY and GOSAT CH4 satellite data generally performed at rather low resolution and focus specific study sites (e.g. 

Jacob et al., 2016). To our knowledge no published studies showed global inversions using TROPOMI data updating emissions 

close to the 10 km scale globally. Inverse modelling is computationally expensive and in the case of running operations beyond 

10 km scales to close-match satellite observations is a challenge that needs to be overcome over the next decade. Efforts are 335 

underway to implement a sector-specific inverse high-resolution modelling monitoring system as part of the CAMS service 

evolution at ECMWF and the future Copernicus CO2 service at global and regional scales (e.g. Barré et al., 2019, Bousserez 

et al., 2019, Pinty et al., 2019, Janssens-Maenhout et al., 2020). Approaches combining global and regional modelling could 

be adopted to perform inversion at fine scales but at the cost of missing fine-scale detection outside the regional domains. 

Large and local CH4 emissions events could occur in very remote areas, which are typically not considered in regional 340 

modelling setups (e.g. West Turkmenistan, Varon et al.,2019). Systematic detection will then require setting up many 
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regional subdomains leading again to computational burden for a single monitoring entity. We have demonstrated that 

monitoring of satellite XCH4 departures at high resolution at global scale using already existing parts of a forecasting chain 

remains an affordable solution to develop a much needed capability: tracking rapidly changing CH4 sources across the world 

and support the urgently needed effort on developing climate policies for reducing anthropogenic CH4 emissions.  345 
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Figure 1. Global average of TROPOMI XCH4 column-averaged dry-air mixing ratios for the full year 2019, July 

2019 and July 1st, 2019 (top to bottom). 

 525 
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Fig 2. Regional zooms of TROPOMI XCH4 columns for the full year 2019. Middle East (left) and Central-Western 

North America (right). 

 530 

 

 
Figure 3. Flow chart of the CAMS greenhouse gas analysis and forecast system.  
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Figure 4. Examples of combined net fluxes (positive only shown due to the logarithmic scale) that constitute the 535 

surface boundary conditions of the IFS high resolution CH4 forecast. Global and regional scale examples for 2019-01-

15 and 2019-07-05 at 12:00 UTC.  
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Figure 5. Examples of outputs of the IFS high resolution CH4 forecasts displaying snapshots at global and regional 

scale of the total column mean molar fractions for 2019-01-15 and 2019-07-15 at 12:00 UTC. Lower panels show parts 540 

of Europe (left) and Middle East (right).  
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Figure 6. Departures values computed with the observation displayed in figure 1, for the full year 2019, July 2019 and 

July 1st, 2019. 545 
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Figure 7. Example of the high pass filtering effect over a 30-day window ending 2019-07-01 with a 2° Gaussian kernel 

length scale. a) The unfiltered departures, b) the filtered departures, c) histograms comparing unfiltered (red) versus 

the filtered (blue) departures and d) 2D distributions in the observation and first-guess space for unfiltered (red) and 550 

filtered (blue) data points. Note that the unfiltered data points have been centred around the mean for this plot to 

make it comparable to the filtered distribution. 
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Figure 8. High pass filtering sensitivity tests on the departures normalized by the instrument precision using 10, 30 555 

and 90 days on the window length (columns) and 0.5, 1.0, 2.0 and 5.0 degrees on the kernel size (rows). The outlined 

plot shows the selected filter parameter values. 
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Figure 9. Examples of the outlier classification. Top panels: global distributions in the observation-first guess space 

for two different end dates of 30-day window (July 1st 2019 and September 1st 2019). Colours illustrate the four 560 

different data classes with number indicating the amount of outliers. Bottom panels: outlier classes localisation 

example over the globe. Darker dots show larger departures. Larger dots indicate that more occurrences have been 

detected in the bin and time window. 

 

 565 



26 
 

Figure 10. Outlier detection and classification over south western US region. Dates indicate the end date of the 30-day 

time window. 

 

 
Figure 11. Outlier detection and classification over Turkmenistan. Dates indicate the end date of the 30-day time 570 

window. 
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Figure 12. Outlier detection and classification over western Russia. Dates indicate the end date of the 30-day time 

window. 

 575 
Figure 13. Outlier detection and classification over Siberia. Dates indicate the end date of the 30-day time window. 

 
Figure 14. Outlier detection and classification over Australia. Dates indicate the end date of the 30-day time window. 
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