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Abstract. Recent studies have highlighted the importance of brown carbon (BrC) in various fields,1

particularly relating to climate change. The incomplete combustion of biomass in open and contained2

burning conditions is believed to be a significant contributor to primary BrC emissions. So far, few3

studies have reported the emission factors of BrC from biomass burning, and few studies have4

specifically addressed which form of light absorbing carbon, such as black carbon (BC) or BrC, plays a5

leading role in the total solar light absorption by biomass burning. In this study, the optical integrating6

sphere (IS) approach was used, with carbon black and humic acid sodium salt as reference materials for7

BC and BrC, respectively, to distinguish BrC from BC on the filter samples. Eleven widely used8

biomass types in China were burned in a typical stove to simulate the real household combustion9

process. (i) Large differences existed in the emission factors of BrC (EFBrC) among the tested biomass10

fuels, with a geometric mean EFBrC of 0.71 g/kg (0.24-2.09). Both the plant type (herbaceous or11

ligneous) and burning style (raw or briquetted biomass) might influence the value of EFBrC. The12

observed reduction in the emissions of light absorbing carbon (LAC) confirmed an additional benefit of13

biomass briquetting in climate change mitigation. (ii) The calculated annual BrC emissions from14

China’s household biomass burning amounted to 712 Gg, higher than the contribution from China’s15

household coal combustion (592 Gg). (iii) The average absorption Ångström exponent (AAE) was16

(2.46 ± 0.53), much higher than that of coal-chunks combustion smoke (AAE = 1.30 ± 0.32). (iv) For17

biomass smoke, the contribution of absorption by BrC to the total absorption by BC + BrC across the18

strongest solar spectral range of 350–850 nm (FBrC) was 50.8%. This was nearly twice that for BrC in19

smoke from household coal combustion (26.5%). (v) Based on this study, a novel algorithm was20

developed for estimating the FBrC for perhaps any combustion sources (FBrC = 0.5519lnAAE + 0.0067,21

R2 = 0.999); the FBrC value for global entire biomass burning (open + contained) (FBrC-entire) was 64.5%22

(58.5–69.9%). This corroborates the dominant role of BrC in total biomass burning absorption.23

Therefore, an inclusion of BrC is not optional but indispensable when considering the climate energy24

budget, particularly for biomass burning emissions (contained and open).25
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1 Introduction26

Brown carbon (BrC) refers to the fraction of organic carbon (OC) that is light-absorbing, with a27

pronounced wavelength dependence of absorption (Kirchstetter et al., 2004; Bosch et al., 2014;28

Chakrabarty et al., 2014; Mo et al., 2017; Jiang et al., 2018; Sun et al., 2018). Recent studies have29

highlighted the importance of BrC in not only atmospheric chemistry, air quality and human health, but30

also for climate change (Chakrabarty et al., 2010; Huang et al., 2018; Yan et al., 2018; Han et al., 2020).31

The light absorption by BrC is more emphasised towards short wavelengths (IPCC, 2014; Pokhrel et al.,32

2017; Li et al., 2018; Xie et al., 2018; Ferrero et al., 2020). By calculating the radiative forcing (RF) of33

BrC at the surface and at the top of the atmosphere, Park et al. (2010) found that more than 15% of the34

total RF caused by light absorbing carbon (LAC, including BrC and BC) could be attributed to BrC.35

Yao et al. (2017) demonstrated that a positive direct radiative effect (DRE) of absorption (+0.21 W·m-2)36

was caused by BrC-containing organic aerosols from the burning of crop residues in East China during37

the summer harvest season. This is indicative of the negative effects on not only air quality, but also on38

climate. Pokhrel et al. (2017) found that the absorption by BrC at shorter visible wavelengths was equal39

to or greater than that by BC.40

The incomplete smouldering combustion of biomass in open environments or contained stoves is a41

major contributor to primary BrC emissions (Lukács et al., 2007; Chakrabarty et al., 2010; Hecobian et42

al., 2010; Chakrabarty et al., 2013). High gas and particle emissions have often been observed during43

these combustion processes (Kirchstetter et al., 2004; Chen and Bond, 2010; Bosch et al., 2014;44

Budisulistiorini et al., 2017). Ground-based observations and model simulations have revealed that in45

some regions with high biomass consumption intensities, such as South America, South Asia, Africa,46

Russia, China, and India, high column concentrations of BrC (10–35 mg·m-2) are found in the47

atmosphere (Arola et al., 2011; Feng et al., 2013; Huang et al., 2018). In these regions, the climatic48

effects of BrC are expected to be stronger than in other regions.49

In China, biomass burning contributes a substantial quantity of carbonaceous particles, along with50

many other air pollutants. The available emission inventories show that approximately 20% of primary51

fine particulate matter (PM2.5) originates from biomass burning (open and contained) (Yao, 2016). Zong52

et al. (2017) used the Positive Matrix Factorisation (PMF) method, linked with radiocarbon analysis, to53
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conduct a source apportionment study of PM2.5 at a regional background site in northern China. They54

found that biomass combustion comprised a significant contribution (19.3%) to atmospheric PM2.5.55

Cheng et al. (2013) confirmed the significance of biomass burning in air pollution, finding that56

approximately 50% of OC and elemental carbon (EC) in Beijing were associated with biomass burning57

processes. It is also suggested that more biomass is burned in stoves than in open fields, due to China’s58

continued efforts to prevent and control forest fires and the burning of field stalks (Tian et al., 2011;59

Zhi et al., 2015a; Cheng et al., 2016). Hence, more attention should be paid to the household sector60

than to open burning, as far as biomass-related emissions are concerned in China. In addition, unlike61

other regions where firewood often plays a major role as a biomass fuel, China has more access to62

agricultural waste (e.g. maize straw, wheat straw, and rice straw) for household heating/cooking63

purposes (Huang et al., 2012; Shen et al., 2013; Chen et al., 2015a). This suggests that studies of BrC64

originating from China’s household biomass fuel combustion should consider as many biomass fuel65

varieties as possible, so that the actual characteristics of BrC emissions can be comprehensively66

investigated and represented.67

The available literature dealing with BrC from biomass burning in China to date has generally68

focussed on ambient observation (Arola et al., 2011; Chakrabarty et al., 2014; He et al., 2017; Zhao et69

al., 2018) and modelling (Gustafsson et al., 2009; Feng et al., 2013) of the basic characteristics of70

atmospheric BrC, such as the concentrations and temporal and spatial distributions. Even though a few71

studies have collected emission samples at some sources, the objectives of these studies was to further72

understand the general properties of water soluble organic carbon (WSOC) or methanol soluble organic73

carbon (MSOC) (Cheng et al., 2013, 2016; Fan et al., 2016; Lin et al., 2017; Phillips et al., 2017; Huo74

et al., 2018; Wu et al., 2019; Yan et al., 2020). Consequently, there is a lack of knowledge regarding75

source emission strengths (emission factors; EFs) and regarding how BrC’s role of absorption differs76

from that of BC (Lack et al., 2012; Healy et al., 2015; Washenfelder et al., 2015; Srinivas, et al., 2016;77

Zhang et al., 2016) because there is still no standard quantitative method to determine BrC. An78

intensive study on BrC from China’s household biomass emission sources is therefore necessary to79

provide insight into both the EFs and light absorption properties of particulate emissions.80

In the present study, eleven biomass fuels that are widely used in China were burned in an ordinary81
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stove, to simulate domestic burning practices. Particulate emissions were collected on quartz filters to82

measure the EFs of BrC (EFBrC) and BC (EFBC) for China’s household biomass burning, for83

investigating the spectral characteristics of absorption by BrC and estimating the contribution of BrC to84

total light absorption by BC + BrC across a broad solar spectral range (350–850 nm). The integrating85

sphere (IS) method, which had been refined in a previous study of residential coal combustion (Sun et86

al., 2017), was used here to simultaneously quantify BrC and BC. Furthermore, based on this intensive87

study of contained biomass burning (in stoves), we extrapolated the results to develop a novel88

algorithm for estimating the contribution of solar light absorption by BrC to the sum of BC + BrC for89

perhaps any combustion source. This will help to gain a clearer idea of whether BC or BrC dominates90

the light absorption properties of biomass burning (contained plus open) on a global scale.91

2 Experimental Section92

2.1 Biomass fuels and stove93

Eleven biomass fuels tested in this work were classified into three groups: crop residue (CR, nine94

types), firewood (FW, one type), and pellet (PF, one type) fuels. The details of these fuels are given in95

Table S1-I. The stove that we used in this study was a natural draft stove developed specifically for96

biomass fuels (see Figure S1 in the Supplement). It is simple and traditional, accounting for97

approximately a half of biomass stoves in China (World Bank, China, 2013; Ran et al., 2014).98

2.2 Combustion experiment and sample collection99

The burning and sampling procedures used in this study were in general similar to those described in100

a previous coal combustion experiment (Sun et al., 2017). Briefly, each biomass fuel was burned in the101

most commonly used biomass-burning stove with cold start. The size of a fuel was the same as that102

used in rural households. The fuels were burned in natural combustion processes and rural operation103

mode. For each biomass fuel, the first batch (30–300 g) was put into the stove and then ignited with104

solid alcohol. Sampling and monitoring were immediately initiated. When the combustion began to105

fade (the first burning cycle, 3–5 min), a second batch of the fuel was added into the stove until it had106

been burned out (the second burning cycle, 3–5 min). Some biomass fuels (e.g. rice and wheat straws)107

burned so fast that a third or fourth addition was needed to sustain the combustion for an adequate108

sampling period. Each of the 11 biomass fuels was burned for 2-3 individual times and the emissions109
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were collected on individual filters. The 2-3 duplicate samples helped check the reproducibility and110

analysis procedure. Background concentrations in ambient air were obtained separately. The modified111

combustion efficiency (MCE) ranged from 84.0% (peanut stalk) to almost 100% (Sorghum stalk), with112

an average of 93.9 ± 5.9% (see Table S4 in the Supplement), generally comparable to the results for113

residential coal combustion (average MCE values were 88.0 ± 4.0% and 82.5 ± 17.4% for bituminous114

chunk and anthracite chunk, respectively, and were 90.1 ± 1.3% and 92.8 ± 1.7% for all briquettes115

tested) (Zhang et al., 2020).116

Although usually biomass fuels are ignited by gas lighters by ordinary stove users, there are some117

difficult-to-ignite biomass fuels (e.g., wood) that need to be kindled by some flammable soft materials118

(e.g., wheat straw, rice straw, or even leaves). Additional emissions from the flammable soft materials119

are inevitable. In such situations, using solid alcohol to ignite experimental biomass fuels in this study120

was important because no pollutants other than CO2 and H2O were released from alcohol combustion,121

though the MCE value of each sample might be a little higher than it would have been without the solid122

alcohol.123

A diversion-dilution-sampling system (the Supplement, Figure S2) was set up to sample and/or124

monitor the combustion emissions. The dilution factors were set between 3 to 140 to confine the125

measured BrC of collected samples in the range of linearity (See Table S1- II). It should be pointed out126

that the sampling concentration is an important factor in the partitioning of semi-volatile species, which,127

if collected on the filter, may contribute to BrC absorption. The quartz fibre filters used for sampling128

were pre-baked in a muffle furnace at 450 °C for 6 h to remove carbonaceous substances from the129

filters. Each combustion experiment was repeated 2–3 times to determine the reproducibility. After130

sampling, the particle-loaded filters were kept in a freezer at -20 °C until needed for further analysis.131

2.3 Measurement of BrC with the integrating sphere method132

The differentiation of BrC from BC is a key step toward determining BrC. The mechanism and133

procedure of the IS method were detailed in a previous study (Sun et al., 2017). Briefly, a 150 mm IS134

(manufactured by Labsphere, Inc, see Figure S3) was built into a UV-Vis-NIR spectrophotometer135

(Perkin Elmer Lambda 950). The sphere was internally coated with Polytetrafluoroethylene (PTFE),136

which can reflect more than 99% of the incident light in the range of 0.2–2.5 μm (Wonaschütz et al.,137
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2009). A specially customized transparent quartz cuvette was placed in the center of the sphere using a138

specially customized cuvette holder. Inside the cuvette was 3 mL of a 1:1 mixture of acetone and an 80 :139

20 mixture of water and isopropanol in which a filter punch (rectangle punch, 30 × 8 mm) could be140

immersed. With this assembly, we scanned through the wavelength range of 350–850 nm to measure141

the light absorption by the collected samples. As the samples are immersed in a liquid, the absorption142

enhancement by possible non-absorbing coatings is negligible (Hitzenberger and Tohno, 2001;143

Wonaschütz et al., 2009; Sun et al., 2017).144

Two reference materials were used as proxies for BC and BrC. They were carbon black (CarB) (e.g.145

Elftex 570, Cabot Corporation) for BC (Fisher, 1970; Andre et al., 1981; Heintzenberg, 1982;146

Hitzenberger et al., 1996; Wonaschütz et al., 2009) and humic acid sodium salt (HASS) (Acros147

Organics, no. 68131-04-4) for BrC (Wonaschütz et al., 2009). CarB had been used as proxy for BC in148

diesel exhaust by Medalia et al. (1983) and HASS had been used as proxy for BrC from wood149

combustion by Wonaschütz et al. (2009). In a previous study, CarB and HASS were used as proxies for150

BC and BrC, respectively, to characterise household coal burning samples, by assuming that BC and151

BrC in household coal emissions had the same light-absorbing properties as CarB and HASS,152

respectively (Sun et al., 2017). In the present study, we continued this logic, and assumed that BC and153

BrC in household biomass smoke have the same light-absorbing properties as CarB and HASS,154

respectively. In other words, the reported BC and BrC masses here are essentially CarB-C-equivalent155

and HASS-C-equivalent, respectively, from the perspective of light absorption and are different from156

those measured by other measurement techniques (e.g., thermal–optical method or aethalometer) (Chen157

et al., 2006; Zhi et al., 2008, 2009; Shen et al., 2013, 2014; Aurell and Gullett, 2013) or reference158

materials (e.g., fulvic acid, humic acid, or humic-like substances) (Duarte et al., 2007; Lukács, et al.,159

2007; Baduel et al., 2009, 2010). Although such an assumption is not perfect, researchers can take160

advantage of these two reference materials to relatively quantify and assess the features (chemical or161

optical) of BrC and BC derived from different combustion sources or regions. It should be noted that162

the IS method does not depend on an actual chemical separation, but on a virtual optical allocation of a163

mixed absorption signal to BrC and BC, with HASS and CarB used as references, respectively.164

Calibration curves (see Figure S4) were plotted for CarB masses from 1.5–90 μg and HASS masses165
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from 3–240 μg, according to their respective absorption signals as measured by the IS device, at both166

650 nm and 365 nm (Sun et al., 2017). The BrC and BC masses of the samples were calculated through167

an iterative procedure based on the different spectral dependences of absorption by BrC and BC (See168

methods for the calculation using iteration procedure and Figure S4 in the Supplement). In most cases,169

20 iterative calculations will achieve a convergent value for either BrC or BC. Note that carbon170

accounts only for 47% of the mass of HASS, and therefore all measured HASS equivalent values based171

on the calibration curves in Figure S4 were multiplied by 0.47 to obtain the mass of pure brown172

‘carbon’ (rather than that of the BrC-containing compounds).173

The CarB used in this study was Elftex 570, Cabot Corporation. It had an AAE of 0.91 and mass174

absorption efficiencies (MAEs) of 27.96 m2/g and 20.64 m2/g, respectively, for 365 nm and 650 nm.175

The HASS used in this study was from Acros Organics. It had an AAE of 1.86 and MAEs of 6.78 m2/g176

and 0.57 m2/g, respectively, for 365 nm and 650 nm. Both of materials are similar to actual BC and177

BrC in source emissions or ambient particles (Hitzenberger et al., 1996, 2001, 2006; Reisinger et al.,178

2008; Wonaschütz et al., 2009; Sun et al., 2017).179

2.4 Calculation methods180

Details of the methods for calculating EFBrC, EFBC, absorption Ångström exponent (AAE), the181

wavelength-dependent BrC contribution to total light absorption (fBrC(λ)), and average BrC contribution182

to total solar light absorption (FBrC) in the range of 350–850 nm are provided in the Supplement.183

3 Results and Discussion184

3.1 Emission factors of BrC from biomass fuels185

The calculated EFs of the 11 biomass fuels are presented in Table 1. EFBrC varied significantly186

among biomass fuels. Rape straw had the highest EFBrC (7.26 ± 0.01 g/kg), whereas pellet fuel had the187

lowest (0.13 ± 0.06 g/kg). The observed differences may be related to the type of plant (see Figure 1).188

We notice that the EFs of BrC for herbaceous plants (HP, the former nine samples in Figure 1) were189

higher than those for ligneous plants (LP, the latter two samples in Figure 1). This possibly implies that190

herbaceous plants have a higher potential for forming BrC than ligneous plants. Although the reason191

underlying this difference is currently unknown, in view of the lower contents of C and H in HPs than192

in LPs, it seems reasonable to speculate that burning herbaceous plants in household stoves releases193
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less heat than burning ligneous ones, which leads to a lower burning temperature for the former than194

for the latter, and therefore favours the generation of BrC for the former (Chen et al., 2015b; Wei et al.,195

2017). In this study, the temperature measured in the stovepipe (50 cm above the stove’s upper surface)196

during HP combustion was 62.9 °C while during LP combustion, increased to 77.1 °C. Another197

possible explanation is the distinction in the modified combustion efficiency (MCE) values between198

LPs and HPs. Our measurements show that HPs tended to have lower MCEs (93.4 ± 6.49%﹤95.9 ±199

2.05%), resulting in a greater chance for the formation of BrC (Shen et al., 2013). In this perspective,200

greater importance ought to be attached to herbaceous biomass fuels than to ligneous ones as far as BrC201

emissions are concerned.202

The EFBC values for PFs were the lowest among all the tested biomass fuels; the briquetting effect203

helped to lower the occurrence of incomplete combustion and thus likely decreased the formation of204

primary carbonaceous particles (including BC and BrC) (Zhi et al., 2008, 2009). This agrees with the205

findings of Lei et al. (2018a), as the sum of LAC (BrC + BC) was observed to decrease after the maize206

straw was transformed to a maize briquette. In view of the virtues of biomass briquetting, regarding207

both air quality (less pollutant emissions) and climate change mitigation (carbon-neutral), the present208

study identified an additional benefit of biomass briquetting in climate change mitigation, because of209

the reduction of the emission of LAC (Sun and Xu, 2012; Arshanitsa et al., 2016; Chen et al., 2016).210

Geometrically averaging the EFBrC values over all tested biomass fuels yielded a value of 0.71 g/kg.211

This value was comparable to the obtained EFBrC for forest fires in the south-eastern United States,212

measured with an aethalometer AE52 (1.0–1.4 g/kg, BC-equivalent) (Aurell and Gullett, 2013). In213

another study by Schmidl et al. (2008), the IS method was used to measure the BrC and BC emission214

characteristics of the open fires of three kinds of leaves. As BrC accounted for 18.5% (w/w) of the215

PM10 of leaf smoke (Schmidl et al., 2008) and as the PM10 EF for biomass fuel combustion (given by216

Cao et al. (2011)) is 5.77 g/kg (field burning), the EFBrC can be inferred for the open fires of the three217

kinds of leaves, i.e. 1.07 g/kg. This value is also comparable to the averaged EFBrC obtained in this218

study. In addition, the current EFBrC average value, 0.71 g/kg, was closer to the values obtained for the219

combustion of anthracite-chunks (1.08 ± 0.80 g/kg) and anthracite-briquettes (1.52 ± 0.16 g/kg) than to220

those obtained for the combustion of bituminous-chunks (8.59 ± 2.70 g/kg) and bituminous-briquettes221
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(4.01 ± 2.19 g/kg) (Sun et al., 2017). This suggests the specific importance of the residential222

combustion of bituminous coals in BrC emissions.223

Figure 1 compares EFBrC and EFBC. The ratios of EFBrC to EFBC (RBrC/BC) varied greatly among224

various biomass fuels and corncobs and sorghum stalks gave the highest (10.0) and lowest (1.5) RBrC/BC225

values, respectively. Generally, the large rang of RBrC/BC values among different biomass fuels is226

attributable to the individual biomass fuels themselves, or more concretely their chemical composition227

and physical structure. Here both BrC and BC were products of incomplete combustion of biomass228

fuels (Andreae and Gelencsér, 2006. Yan et al., 2015). Different biomass fuels were composed of229

different organics that had different combustion performances (Reid et al., 2005; Saleh et al., 2014);230

meanwhile, different biomass fuels were also different in densities and moistures (Shen et al., 2014;231

Jacobson et al., 2015), which also have a potential influence on combustion performance. The232

combustion performance relates to something like the combustion speed and temperature, both of233

which are important to the formation of BrC and BC. Usually a low combustion temperature is more234

favorable for BrC formation and a relatively high combustion temperature is more favorable for BC235

formation (Chen and Bond, 2010; Bond et al., 2013; Shen et al., 2014). This makes the generation236

processes of BC and BrC often not synchronous but in opposite trend, which may account for wide237

variations of RBrC/BC for different fuels of combustion conditions.238

More importantly, each of the 11 biomass fuels tested in this study had a higher EFBrC than EFBC;239

that is, the ratios of EFBrC to EFBC (RBrC/BC) were all >1.The average RBrC/BC over all biomass fuels was240

6.7 ± 2.7. Kirchstetter et al. (2004) measured the light absorption by filter-based aerosol samples from241

biomass burning before and after acetone treatment (which removed OC). They found that 50% of total242

light absorption was attributable to OC. In view of the much smaller average absorption efficiency of243

BrC relative to that of BC (for example, Yang et al. (2009) reported that the MAEs at 550 nm were 9.5,244

0.5, and 0.03 m2/g, respectively, for BC, BrC, and dust), the contribution of BrC to the mass of total245

LAC is undoubtedly far higher than that of BC, an inference which is consistent with the present study.246

3.2 Spectral dependence of absorption247

AAE represents the spectral dependence of the light absorption efficiency (Martinsson et al., 2015;248

Washenfelder et al., 2015; Yan et al., 2015). Usually, the AAE is close to 1.0 (Lack and Langridge,249
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2013; Laskin et al., 2015) for BC that is pronounced by a graphitic structure. This has been250

demonstrated by several studies of diesel exhaust or urban particulate matter (Rosen et al., 1978;251

Horvath, 1997). However, the existence of BrC in aerosols makes the mass absorption efficiency252

(MAE) increase more strongly towards shorter wavelengths, due to a larger AAE for BrC than for BC,253

which makes the AAEs of BrC-containing carbonaceous aerosols larger than 1 (Chakrabarty et al.,254

2013; Yan et al., 2015).255

In this study, the measured AAE values for smoke from the combustion of the 11 biomass fuels (see256

Table S2-I ) ranged from 1.38 (sorghum stalk) to 2.98 (rice straw), with an average of 2.46 ± 0.53. This257

suggests the existence of BrC in the particulate emissions. As a comparison, in a previous study that258

used the IS method for household coal combustion (Sun et al., 2017), average AAE values of 2.55 ±259

0.44 for coal-briquettes and 1.30 ± 0.32 for coal-chunks were obtained (Sun et al., 2017). Cai et al.260

(2014) observed an AAE value of 3.02 ± 0.18 for the open burning of wheat straw, and of 1.43 ± 0.26261

for household coal burning, using an aethalometer (AE31). Other studies have reported a wide range of262

AAE values, dependent on fuels, combustion conditions, aging effects after emission, the wavelengths263

covered and the pre-treatment experienced. (see Table S3 in the Supplement).264

However, as AAE >1 for aerosol samples theoretically results from BrC instead of BC (Martinsson265

et al., 2015; Washenfelder et al., 2015; Zhi et al., 2015b; Yuan et al., 2016), the wide range of AAE266

literature values is believed to be linked to variation in the ratio of BrC to BC (RBrC/BC). That is, the267

increase in RBrC/BC theoretically leads to an increase in AAE (Lack and Langridge, 2013). Indirect268

support for this interpretation can be inferred from the existing literature. For example, Saleh et al.269

(2014) noticed that the effective absorptivity of organic aerosol in biomass burning emissions could be270

parameterised as a function of the ratio of BC to OC (an umbrella term that also includes BrC).271

Costabile et al. (2017) found that the AAE (467–660 nm) in the atmosphere of the urban Po-Valley was272

positively correlated with the ratio of organic aerosol (OA) to BC (R2 = 0.78), rather than to OA273

concentrations alone. The more persuasive scenario concerns WSOC, which is free of BC (RBrC/BC = +274

∞), for this scenario the AAE reaches its maximum (also see Table S3).275

The EFs and AAEs of 11 biomass fuels used in this study and the EFs and AAEs of seven coals used276

in a previous study (Sun et al., 2017) are collated and arranged in a scatter plot in Figure 2. Obviously277
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the AAE values are positively correlated with RBrC/BC values. Considering that the AAE for pure BC278

(i.e., RBrC/BC = 0) is conventionally accepted as 1.0, we set the intercept to 1.0 to comply with the279

theoretical constraint. The relation between AAE and RBrC/BC can be expressed in Equation (1).280

AAE = 0.199RBrC/BC + 1.00 (R2= 0.7527) (1)281

Equation (1) supports the AAE-RBrC/BC relation in a quantitative way.282

3.3 Light absorption by BrC from household biomass combustion in household stoves283

With the EFBrC and EFBC obtained in the present study, as well as publicly available consumption284

data of household biomass fuels, China’s BrC and BC emissions from biomass fuels burned in285

household stoves can be calculated, following the method described in the Supplement. In 2013, the286

biomass fuels consumed in China comprised 695 Tg (1 Tg = 1012 g) for household cooking/heating287

purposes (Lu et al., 2011; Tian et al., 2011; NBSC, 2014). The calculated BrC emissions were as high288

as 712 Gg. We acknowledge that the calculated emissions contained large uncertainties resulting from289

the amounts and forms of different types of biomass fuels and the representativity of BrC EFs290

measured in this study. Improved fuel consumption data and EFs will lead to better future emission291

estimates. South Asia funeral pyres release 92 Gg of BrC in 2011 (calculated with the double IS system292

method) (Chakrabarty et al., 2014), which is much less than that from China’s household biomass293

combustion. This implies a clear need to control BrC emissions from household biomass burning in294

China.295

Figure 3 compares the emissions of BrC and BC from biomass fuels in this study, and from coals as296

reported in a previous study (Sun et al., 2017). It is obvious that BrC emissions were always higher297

than BC emissions for both household biomass fuels and coals, which is attributable to the higher EFBrC298

than EFBC for both biomass fuels and coals. It is also interesting to note that, for BrC, biomass fuel299

dominated, whereas for BC, coal was more important. This suggests the relative importance of biomass300

fuels in controlling BrC.301

The calculated huge emissions of BrC for China’s household biomass-fuel combustion represent a302

strong argument for including BrC in estimating the total light absorption by emissions from burning303

biomass. Here, we used fBrC(λ) to represent the fraction of BrC absorption in the sum of light absorption304

by BrC + BC at individual wavelengths of the scanned spectral ranges (350–850 nm), measured with305
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the IS. A detailed description of the theory and method for calculating fBrC(λ) is given in the306

Supplement. The detailed values of fBrC for biomass fuel and coal (Sun et al., 2017) from 350-850 nm307

were given in Table S2-II in the Supplement. The results of fBrC(λ) for biomass fuels in this study are308

plotted in Figure 4 (blue line).309

Evidently, the fBrC(λ) increased towards shorter wavelengths: the fBrC(λ) at 850 nm was 0.25, whereas310

the fBrC(λ) at 350 nm increased to 0.8. In addition to the spectrally-dependent fBrC(λ) for biomass fuels,311

Figure 4 also presents the spectrally dependent fBrC(λ) values for coal (red line) as obtained in a312

previous study (Sun et al., 2017). The lowest value of fBrC(λ) for coal occurred at 0.061 (850 nm), and313

the highest value occurred at 0.47 (355 nm). The average fBrC(λ) for coal was 0.26, which is distinctly314

lower than that for biomass fuels. This difference in fBrC between coal and biomass smoke can be315

explained by the difference in RBrC/BC between coal and biomass smoke. It is necessary to exercise316

caution when attributing the absorption to BrC vs BC based on wavelength dependence (expressed as317

AAE). For example, Lack and Langridge (2013) found that the uncertainties in attributed BrC318

absorption might be ±33 % when BrC contributed 23% to 41% to total absorption (assuming an319

absorption measurement uncertainty of ±5 %).320

Integrating fBrC(λ) over the solar spectrum results in FBrC, which represents the fraction of solar321

radiance absorbed by BrC relative to the total absorption by BC + BrC (refer to the Supplement for the322

method for the calculation of FBrC). The standard solar spectrum is also plotted in Figure 4 (yellow line)323

as a contrast and reference. A value of 0.508 (0.471–0.542) was obtained for the FBrC of household324

biomass fuels across the wavelength range of 350–850 nm, which was nearly twice that of household325

coal combustion (0.265) in China (Sun et al., 2017).326

3.4 Extrapolation towards a novel algorithm for estimating the relative contribution of BrC327

As FBrC is defined as the ratio of the solar light absorption by BrC to that by (BrC + BC) across328

350–850 nm, it is physically dependent on RBrC/BC. There is a scarcity of reported RBrC/BC values,329

whereas conversely AAE is frequently reported in the existing literature. Therefore, the logarithmical330

function that can be fitted to the relationship between RBrC/BC and AAE (Figure 2) can be used for the331

practical application of expressing FBrC as a function of AAE.332

To construct the function for FBrC, with AAE as the independent variable, we managed to gather four333
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pairs of FBrC vs AAE values. Two of these pairs were based on theory. For pure BC (free of BrC), AAE334

and FBrC were 1.0 (Lack and Langridge, 2013; Laskin et al., 2015; Yan et al., 2015; Zhang et al., 2020)335

and 0.0, respectively; whereas for samples of pure BrC (free of BC), we averaged over the AAE values336

in the literature for WSOC or MSOC (free of BC), thus obtaining an AAE value of 6.09 ± 1.45 (Hoffer337

et al., 2006; Hecobian et al., 2010; Voisin et al., 2012; Srinivas and Sarin, 2013, 2014; Srinivas et al.,338

2016; Lei et al., 2018b) (Table S3 Part I). The other two pairs of the FBrC vs AAE values were obtained339

from our previous and current studies. The previous study (Sun et al., 2017) demonstrated that, when340

AAE was 1.58, FBrC was 0.265. In the present study, as mentioned in Section 3.3, an AAE of 2.46 led341

to an FBrC of 0.508. These four FBrC vs AAE pairs were used to construct the relationship between FBrC342

and AAE (Figure 5). It should be noted that we used the average value for each of the latter three points343

so that all the four points in Figure 5 were given equal weight (25%). A logarithmical equation was344

established between FBrC and AAE, with a very high correlation coefficient.345

FBrC= 0.5519lnAAE + 0.0067 (R2= 0.999, 1 ≤ AAE ≤ 6.09) (2)346

Equation (2) provides a novel algorithm for deriving FBrC from AAE, without consideration of the347

process details for perhaps any kinds of combustion sources. Uncertainties are unavoidable due to the348

uncertainties of each of the points (Lack and Langridge, 2013; Sun et al., 2017; references in Part I of349

Table S3). For example, Lack and Langridge (2013) estimated that the uncertainty in short wavelength350

absorption by BC determined by extrapolation using an AAE=1, ranged from +7% to −22%. Equation351

(2) helps to broaden insight into biomass burning issues from contained conditions to open conditions.352

The results of FBrC for open fresh emissions from open biomass burning (FBrC-open) vary in the literature,353

and most have values below 0.50 (or 50%) (Lack et al., 2012; Healy et al., 2015; Washenfelder et al.,354

2015; Srinivas, et al., 2016). We collected AAE-open data from available journal articles and included355

them in Table S3 (Part II). The calculated average AAE-open value was 3.44 ± 1.75, which was larger356

than the AAE-contained value obtained in this study (2.46 ± 0.53). Substitution of the AAE-open value (3.44357

± 1.75) into Equation (2) leads to a value of 0.685 for FBrC-open, which is higher than the FBrC for358

contained combustion (FBrC -contained) (0.508), indicating that BrC’s light absorption was more dominant359

in open biomass burning emissions than in contained biomass burning emissions.360

Assuming that the AAE-contained and AAE-open identified above apply to global biomass burning, we361
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can now assess BrC’s role in the biomass burning globally (contained + open) (FBrC-entire), in362

combination with the respective shares of open and contained burning. Previous studies show that the363

annual open and contained biomass burning amounts are 5953 Tg (Wiedinmyer et al., 2011) and 2457364

Tg (Fernandes et al., 2007), respectively. This implies that open biomass burning represents 71% of365

total biomass burning and contained biomass burning represents 29%. Subsequently, the FBrC-entire can366

be calculated according to the following equation:367

FBrC-entire= 0.29 × (0.5519lnAAE-contained + 0.0067) + 0.71 × (0.5519lnAAE-open + 0.0067) (3)368

With Equation (3), the distribution of FBrC-entire was simulated through the Monte Carlo approach, as369

shown in Figure 6. The FBrC-entire was 0.644 on average, and with an 80% probability range it lay370

between 0.585–0.699. Particularly, the probability of FBrC-entire being larger than 0.500 was higher than371

99%, corroborating the leading role of BrC in the absorption by solar light for total biomass burning372

emissions. Kirchstetter and Thatcher (2012), calculate that OC from wood smoke would account for373

14% of solar radiation absorbed by wood smoke in the atmosphere (integrated over the solar spectrum374

from 300 to 2500 nm). 14% is much smaller than our data FBrC-entire= 64.4% because Kirchstetter and375

Thatcher (2012) only focus on rural California wintertime wood combustion but we calculated the376

global contribution to absorption by BrC originating from biomass combustion.377

4 Conclusions378

The optical IS approach was used to distinguish BrC from BC in filter samples of the emissions of379

11 types of biomass after burning in a typical stove. The measured average EF of household biomass380

fuels for BrC was 0.71 g/kg, and the calculated annual BrC emissions from China’s household biomass381

burning amounted to 712 Gg. This is higher than the emissions from China’s household coal382

combustion (592 Gg). Moreover, it was observed that BrC contributed to approximately half of all light383

absorption by BC + BrC across the strongest solar spectral range (350–850 nm; FBrC = 50.8%).384

Furthermore, a novel relationship was constructed (FBrC = 0.5519ln(AAE) + 0.0067, R2 = 0.999), which385

can simplify the calculation of FBrC by using AAE. With this mathematical relationship, we calculated386

the FBrC values for open biomass burning (FBrC-open = 70.1%) and entire biomass burning (FBrC-entire =387

64.4%), thereby establishing the dominant role of BrC in biomass burning absorption. From this388

perspective, we recommend that it is necessary to include BrC in the climate discussion, particularly389
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concerning biomass burning (contained and open). The algorithm developed here omits the long390

procedures of chemical treatment, optical measurement and tedious calculations, and provides a391

scheme for estimating the contribution of BrC relative to BC in perhaps any combustion process with392

LAC emissions.393
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Table 1. Measured EFBrC and EFBC (g/kg) values for household biomass burning

Note: The last row for geometric mean is expressed as geometric mean (lower limit, upper limit). The

lower/upper limits are calculated via geometric mean divided/multiplied by the geometric standard

deviation (GSD). The GSDs for EFBrC, EFBC, and RBrC/BC are 2.95, 3.63, and 1.81, respectively.

5

Biomass fuels EFBrC EFBC RBrC/BC

Rape straw 7.26 ± 0.01 2.54 ± 0.01 2.86 ± 0.02

Rice straw 2.50 ± 3.06 0.31 ± 0.25 8.06 ± 6.67

Wheat straw 1.25 ± 0.07 0.13 ± 0.04 9.62 ± 5.17

Cotton straw 0.89 ± 0.51 0.10 ± 0.02 8.91 ± 2.99

Bean straw 0.57 ± 0.12 0.09 ± 0.04 6.41 ± 2.21

Corncob 0.56 ± 0.55 0.056 ± 0.02 10.01 ± 8.77

Peanut stalk 0.54 ± 0.15 0.13 ± 0.054 4.15 ± 1.42

Sorghum stalk 0.45 ± 0.32 0.30 ± 0.054 1.51 ± 0.39

Maize straw 0.45 ± 0.76 0.053 ± 0.014 8.49 ± 4.97

Pine 0.27 ± 0.29 0.034 ± 0.017 7.94 ± 3.41

Pellet fuels 0.13 ± 0.06 0.023 ± 0.037 5.65 ± 2.58

Geometric mean 0.71 (0.24, 2.09) 0.12 (0.033, 0.436) 5.90 (3.26, 10.68)
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Figure 1. EFs of tested biomass fuels
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Figure 2. Relationship between AAE and EFBrC/EFBC ratio (RBrC/BC) for both biomass fuel (red)

and coal (blue). The intercept is designated as 1.0 to echo the conventionally accepted notion

that the AAE for pure BC (i.e., RBrC/BC = 0) is 1.0.5
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Figure 3. Comparison of BrC and BC emissions between biomass burning and coal combustion

in China’s household sector of 2013
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Figure 4. Ratios of light absorption by BrC to total absorption by total mass with respect to

China’s household biomass and coal burning

Note: The ratio is expressed as fBrC and was calculated in accordance with the method described in

the Supplement. The yellow line is the clear sky global horizontal solar spectrum at the5

earth’s surface for one optical air mass in relative units (Levinson et al., 2010; Chakrabarty

et al., 2014).
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Figure 5. Relationship between FBrC and AAE
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Figure 6. The probability distribution of calculated FBrC-entire. Assuming the AAE-contained value of

2.46 ± 0.16 (mean ± SD of the means) and AAE-open value of 3.44 ± 0.42 (mean ± SD of the means)

apply to whole world biomass burning, the combined value for entire biomass burning (FBrC-entire) can

be calculated as: FBrC-entire= 0.71× (0.5519lnAAE-open+ 0.0067) + 0.29 × (0.5519lnAAE-contained+5

0.0067)
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