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Abstract:   33 

The major air pollutant emissions have decreased and the overall air quality has substantially 34 

improved across China in recent years as a consequence of active clean air policies for mitigating 35 

severe air pollution problems. As key precursors of formaldehyde (HCHO) and ozone (O3), the 36 

volatile organic compounds (VOCs) in China are still increasing due to the lack of mitigation 37 

measures for VOCs. In this study, we investigated the drivers of HCHO variability from 2015 to 38 

2019 over Hefei, eastern China by using ground-based high-resolution Fourier transform infrared 39 

(FTIR) spectroscopy and GEOS-Chem model simulations. Seasonal and interannual variabilities of 40 

HCHO over Hefei were analysed and hydroxyl (OH) radical production rates from HCHO 41 

photolysis were evaluated. The relative contributions of emitted and photochemical sources to the 42 
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observed HCHO were analysed by using ground level carbon monoxide (CO) and Ox (O3 + nitrogen 1 

oxide (NO2)) as tracers for emitted and photochemical HCHO, respectively. Contributions of 2 

emission sources from various categories and geographical regions to the observed HCHO 3 

summertime enhancements were determined by using a series of GEOS-Chem sensitivity 4 

simulations. The column-averaged dry air mole fractions of HCHO (XHCHO) reached a maximum 5 

monthly mean value of 1.1 ± 0.27 ppbv in July and a minimum monthly mean value of 0.4 ± 0.11 6 

ppbv in January. The XHCHO time series from 2015 to 2019 over Hefei showed a positive change 7 

rate of 2.38 ± 0.71 % per year. The photochemical HCHO is the dominant source of atmospheric 8 

HCHO over Hefei for most of the year (68.1%). In the studied years, the HCHO photolysis was an 9 

important source of OH radical over Hefei during all sunlight hours of both summer and winter days. 10 

The oxidations of both methane (CH4) and nonmethane VOCs (NMVOCs) dominate the HCHO 11 

production over Hefei and constitute the main driver of its summertime enhancements. The 12 

NMVOCs related HCHO summertime enhancements were dominated by the emissions within 13 

eastern China. The observed increasing change rate of HCHO from 2015 to 2019 over Hefei was 14 

attributed to the increase in photochemical HCHO resulting from increasing change rates of both 15 

CH4 and NMVOCs oxidations, which overwhelmed the decrease in emitted HCHO. This study 16 

provides a valuable evaluation of recent VOCs emissions and regional photochemical capacity in 17 

China. In addition, understanding the sources of HCHO is a necessary step for tackling air pollution 18 

in eastern China and mitigating the emissions of pollutants.  19 

1 Introduction  20 

Formaldehyde (HCHO) is one of the most critical tropospheric pollutants, which not only 21 

directly threatens human health but also plays a significant role in atmospheric photochemical 22 

reactions (Franco et al., 2015; Jones et al., 2009; Notholt et al., 1992; Notholt et al., 2000; Vigouroux 23 

et al., 2009). Indeed, the chemistry of HCHO is common to virtually all mechanisms of tropospheric 24 

chemistry (Chapter 6, Seinfeld and Pandis, 2016). Furthermore, the observation of HCHO 25 

variability allows us to constrain volatile organic compounds (VOCs) emissions and improve 26 

current understanding of the complex degradation mechanisms of VOCs (e.g. Palmer et al., 2003; 27 

Millet et al., 2008; Boersma et al., 2009; Stavrakou et al., 2009; Fortems-Cheiney et al., 2012; 28 

Barkley et al., 2013; Marais et al., 2014; Streets et al., 2013; Gao et al., 2018). 29 

Natural source such as biomass burning emission and anthropogenic sources such as vehicle 30 

exhausts, industrial emissions, and coal combustions can emit HCHO directly into the atmosphere 31 

(Albrecht et al., 2002; Holzinger et al., 1999). The emitted HCHO is mainly attributed to incomplete 32 

combustion and is closely associated with the emissions of benzene (C9H12O), toluene (C7H8), or 33 

carbon monoxide (CO) (Friedfeld et al., 2002; Garcia et al. 2006; Ma et al., 2016). In addition, 34 

photochemical formation of HCHO has been identified from the atmospheric oxidation of methane 35 

(CH4) and numerous nonmethane VOCs (NMVOCs), which are closely associated with the 36 

formation of ozone (O3) or Ox (O3 + nitrogen dioxide (NO2)) or glyoxal (CHOCHO) (Chapter 6, 37 

Seinfeld and Pandis, 2016; Friedfeld et al., 2002; Garcia et al. 2006; Zhang et al., 2020). As a result, 38 

the relative contribution of emitted and photochemical sources to atmospheric HCHO can be 39 

estimated via a linear multiple regression analysis method that aims at reproducing the time series 40 

of observed HCHO from a linear combination of the time series of CO (or C9H12O or C7H8 ) and 41 

O3 (or Ox or CHOCHO) as tracers for emitted and photochemical HCHO, respectively (Friedfeld et 42 

al., 2002; Garcia et al., 2006; Hong et al., 2018; Li et al., 2010; Lui et al., 2017; Ma et al., 2016; Su 43 
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et al., 2019). The separation between emitted and photochemical sources of HCHO is important for 1 

improving the air quality in megacities (Garcia et al., 2006). 2 

The relative contribution of emitted and photochemical sources to atmospheric HCHO has 3 

been analysed by using the COïO3 (Friedfeld et al., 2002; Li et al., 2010; Lui et al., 2017; Su et al., 4 

2019), COïOx (Hong et al., 2018), COïCHOCHO (Garcia et al., 2006) and CO/C9H12O/C7H8ïO3 5 

(Ma et al., 2016) tracer pairs in various polluted environments. In these studies, HCHO column 6 

measurements were sometimes used as representative of near-surface conditions because the HCHO 7 

has a vertical distribution that is heavily weighted toward the lower troposphere over polluted areas. 8 

Improved knowledge of the contributions of different emission categories and geographical regions 9 

to HCHO enhancements is significant for improving the understanding of the HCHO production 10 

regime, and further for regulatory and control purposes (Molina and Molina, 2002; Surl et al., 2018). 11 

However, previous studies have often concentrated on the separation between emitted and 12 

photochemical sources of HCHO, while contributions of different emission categories and 13 

geographical regions were rarely mentioned or only analysed qualitatively by using the back-14 

trajectories analysis technique (Friedfeld et al., 2002; Franco et al., 2016; Garcia et al., 2006; Hong 15 

et al., 2018; Li et al., 2010; Lui et al., 2017; Ma et al., 2016; Su et al., 2019). In this study, the drivers 16 

of HCHO variability over Hefei, eastern China were mapped using ground-based high-resolution 17 

Fourier transform infrared (FTIR) spectroscopy and GEOS-Chem model simulation. Seasonal and 18 

interannual variabilities of HCHO were investigated and hydroxyl (OH) radical production rates 19 

from HCHO were evaluated. In addition to separation between emitted and photochemical sources, 20 

contributions of different emission categories and geographical regions to the observed HCHO 21 

summertime enhancement were also investigated.  22 

China has implemented a series of active clean air policies in recent years to mitigate severe 23 

air pollution problems. Therefore, the emissions of major air pollutants have decreased, and the 24 

overall air quality has substantially improved (Sun et al., 2019; Zhang et al., 2019; Zheng et al., 25 

2018). However, current clean air policies lack mitigation measures for VOCs, which are key 26 

precursors of HCHO and O3 (Lu et al., 2018; Zheng et al., 2018). The recent increasing trend in O3 27 

in China was largely attributed to the increase in VOCs in recent years (Lu et al., 2019). Multi-year 28 

time series of ground-based FTIR measurements of HCHO in this study provide an evaluation of 29 

recent regional VOCs emissions over eastern China. The degradation of HCHO provides a large 30 

source of OH radicals, which play a significant role in atmospheric photochemical reactions 31 

(Chapter 6, Seinfeld and Pandis, 2016). The OH radical production rates from HCHO photolysis 32 

estimated in this study provide an evaluation of regional photochemical capacity related to the 33 

degradation of HCHO over eastern China. In addition, understanding the sources of HCHO is a 34 

necessary step for tackling the problems of poor air quality in eastern China and mitigating the 35 

emissions of pollutants. 36 

The next section describes the methodology which includes site description and 37 

instrumentation, the ground-based FTIR HCHO dataset, the 3rd regression model used to determine 38 

seasonal and interannual variabilities of HCHO, the linear regression model used for source 39 

separation, and the GEOS-Chem sensitivity simulations used for source attribution. Section 3 40 

reports the results for comparison with ground level in situ measurements, HCHO variability on 41 

different time scales, source separation, and OH radical production rates from HCHO photolysis. 42 

Section 4 reports the results for source attribution using GEOS-Chem sensitivity simulations. 43 

Conclusions are presented in section 5. 44 
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2 Methodology 1 

2.1 Site description and instrumentation 2 

As shown in Fig.1, the FTIR observation site (117Á10ǋE, 31Á54ǋN, 30 m a.s.l. (above sea level)) 3 

is located on an island in the western suburbs of the megacity Hefei (the capital of Anhui Province) 4 

in eastern China (Tian et al., 2017). The Anhui Institute of Optics and Fine Mechanics, Chinese 5 

Academy of Sciences (AIOFM-CAS) directly operates this site on campus, adjacent to the Shu Shan 6 

Lake that covers an area of 207.5 km2. This area prevails southeast winds in summer and northwest 7 

winds in winter. The regional landscape is mostly flat with a few hills. The downtown Hefei is 8 

located to the southeast of this site and is densely populated with seven million people. The site is 9 

surrounded by wetlands or cultivated lands in other directions. Local anthropogenic emissions 10 

mainly come from the city and natural emissions are originated from cultivated lands or wetlands.  11 

The FTIR observatory consists of a high resolution FTIR spectrometer (IFS125HR, Bruker 12 

GmbH, Germany) and a solar tracker (Tracker-A Solar 547, Bruker GmbH, Germany). The near 13 

infrared (NIR) and middle infrared (MIR) solar spectra are alternately recorded in routine 14 

observations (Wang et al., 2017). The MIR spectra are recorded with a spectral resolution of 15 

0.005cm-1 which follows the requirements of Network for Detection of Atmospheric Composition 16 

Change (NDACC, http://www.ndacc.org/, last accessed on 3 June 2019). In this study, the 17 

instrument is equipped with a KBr beam splitter, an InSb detector, and a filter centered at 2800 cm-18 

1 for HCHO measurements. The entrance field stop size ranging from 0.80 to 1.5 mm was employed 19 

to maximise the signal to noise ratio (SNR) consistent with the maximum frequency possible for 20 

the selected wavenumber range. The number of HCHO measurements on each measurement day 21 

varied from 1 to 17 with an average of 6. In total, there were 523 days of qualified measurements 22 

between 2015 and 2019. 23 

Ground level hourly mean concentrations of CO, O3, and NO2 from 2015 to 2019 were 24 

provided by the China National Environmental Monitoring Center (CNEMC) network operated by 25 

the Chinese Ministry of Ecology and Environment (http://www.cnemc.cn/en/, last access: 22 March 26 

2020). The CNEMC network has monitored six ground level air pollutants (including CO, O3, NO2, 27 

SO2, PM10, and PM2.5) in nationwide sites in mainland China since 2013, and by 2019, it was 28 

extended to more than 2000 sites in 454 cities. The datasets have been used in many studies to 29 

evaluate local air quality over China (Gao et al., 2018; Hong et al., 2018; Hu et al., 2017; Li et al., 30 

2018; Lu et al., 2018; Shen et al., 2019; Su et al., 2019). The measurements taken at the nearest 31 

CNEMC site were used in this study, which is approximately 700 m away from the FTIR site (Fig. 32 

1(b)). The O3 and NO2 measurements are based on a differential optical absorption spectroscopy 33 

(DOAS) analyser and the CO measurements are based on a gas correlation filter infrared analyser. 34 

All analysers are regularly calibrated by the CNEMC staffs to ensure the measurement errors for all 35 

gases are within 2% (http://www.cnemc.cn/en/, last access: 22 March 2020). 36 

Ground level 10-minute mean concentrations of HCHO from 2017 to 2019 were provided by 37 

a long-path DOAS instrument (LP-DOAS) located over approximately 900 m away from the FTIR 38 

site (Fig. 1(b)). The LP-DOAS instrument consists of a 150 W xenon short-arc lamp as the light 39 

source, a telescope with diameter of 220 mm and focal length of 650 mm acting as the transmitting 40 

and receiving component, a retro-reflector and a grating spectrograph. The telescope and the retro-41 

reflector were placed about 30 m above ground at two buildings which are separated by a distance 42 

of 350 m, resulting in a total measurement optical path of 700 m. Light from xenon lamp is directed 43 

to the telescope and transmitted towards to the retro-reflector. Reflected light from the retro-reflector 44 
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is received by the same telescope and redirected to the spectrograph for spectral analysis. A fan is 1 

installed in the emitter/receiver unit to avoid the influence of O3 generated by the xenon lamp. A 2 

similar experimental setup with LEDs as the light source have been demonstrated by Chan et al. 3 

(2012) and Zheng et al. (2018). The measurement error for HCHO by the LP-DOAS is estimated to 4 

be 3% (Chan et al., 2012; Ling et al., 2014). 5 

Ground level minutely mean concentrations of H2O from 2015 to 2019 were available from a 6 

cavity ring-down spectroscopy (CRDS) analyser (G2401m, Picarro, Inc., USA) which is located 7 

side by side with the FTIR spectrometer (Fig. 1(b)). The CRDS analyzer samples ambient air on the 8 

building roof near the solar tracker dome and outputs H2O concentration with a measurement error 9 

of 1%. 10 

2.2 Ground-based FTIR HCHO dataset 11 

2.2.1 Retrieval strategy 12 

The SFIT4 version 0.9.4.4 algorithm was used in the HCHO retrieval, and the retrieval settings 13 

were prescribed from a harmonisation project described in Vigouroux et al. (2018). We refer to 14 

Pougatchev et al. (1995) for more details on the retrieval principles. Total columns and volume 15 

mixing ratio (VMR) vertical profiles of HCHO are obtained from its pressure and temperature 16 

dependent absorption lines. Four micro-windows (MWs) were used: two strong lines within 2778ï17 

2782 cmī1 and two weak lines within 2763 ï 2766 cmī1 (Vigouroux et al., 2018). The profiles of 18 

CH4 and O3 and total columns of HDO and N2O were simultaneously retrieved in addition to the 19 

HCHO profile for minimising the cross interference. 20 

All spectroscopic absorption parameters were based on the atm16 line list from the compilation 21 

of Geoffrey Toon (Vigouroux et al., 2018). In this atm16 line list, the HCHO and N2O lines 22 

correspond to the HITRAN 2012 database (Rothman et al., 2013). This HITRAN 2012 database 23 

includes the latest improved HCHO parameters (broadening coefficients, Jacquemart et al., 2010), 24 

which complement the release in HITRAN 2008 (Rothman et al., 2009) of new HCHO line 25 

intensities from the same group (Perrin et al., 2009). The spectroscopic parameters for the lines of 26 

H2O and its isotopologues in atm16 are from Toth 2003 (http://mark4sun.jpl.nasa.gov/data/spec/ 27 

H2O/RAToth_H2O.tar; last access: 5 September 2019); some lines from O3 and CH4 in the vicinity 28 

of HCHO have been empirically adjusted or replaced with older HITRAN versions in atm16 when 29 

obvious problems were found in the HITRAN 2012 database (Vigouroux et al., 2018).  30 

The a priori profiles of temperature, pressure, and H2O were interpolated from the National 31 

Centers for Environmental Protection (NCEP) 6-hourly reanalysis data and the a priori profiles of 32 

other gases were from the averages of the Whole-Atmosphere Community Climate Model version 33 

6 (WACCM) simulations from 1980 to 2020. The diagonal elements of the a priori profile 34 

covariance matrix Sa and the measurement noise covariance matrix SŮ were set to standard deviation 35 

(SD) of the WACCM simulations and the inverse square of the signal-to-noise ratio (SNR) of each 36 

spectrum, respectively. The non-diagonal elements of both Sa and SŮ were set to zero. We regularly 37 

used a low-pressure HBr cell to diagnose the instrument line shape (ILS) of the high resolution FTIR 38 

spectrometer at Hefei and included the measured ILS in the retrieval (Hase et al., 2012; Sun et al., 39 

2018). 40 

2.2.2 Averaging kernels and error budget 41 

The vertical information contained in the FTIR retrievals can be characterized by the averaging 42 

http://mark4sun.jpl.nasa.gov/data/spec/
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kernel matrix A (Rodgers, 2000). The rows of A are the so called averaging kernels and they 1 

represent the sensitivity of the retrieved profile to the real profile. Their full width at half maximum 2 

(FWHM) is a measure of the vertical resolution of the retrieval at a given altitude. The area of 3 

averaging kernels represents sensitivity of the retrievals to the measurement. This sensitivity at a 4 

specific altitude is calculated as the sum of the elements of the corresponding averaging kernels 5 

(Vigouroux et al., 2018). It indicates, at each altitude, the fraction of the retrieval at each altitude 6 

that comes from the measurement rather than from the a priori information (Rodgers, 2000). A 7 

value close to zero at a certain altitude indicates that the retrieved profile at that altitude is nearly 8 

independent of measurement and is therefore approaching the a priori profile. The trace of the 9 

averaging kernel matrix A is the so called degrees of freedom for signal (DOFS) and it quantifies 10 

the number of independent information in the retrieved vertical profile. 11 

Fig. 2 shows the averaging kernels, cumulative sum of DOFS, and VMR profile of randomly 12 

selected HCHO retrieval at Hefei. The ground-based FTIR measurements of HCHO at Hefei have 13 

a sensitivity larger than 0.5 from the ground to about 15 km altitude, indicating that the retrievals 14 

are mainly sensitive to the troposphere. This also means that the retrieved profile information above 15 

15 km comes for less than 50% from the measurement, or in other words, that the a priori 16 

information influences the retrieval by more than 50%. The typical DOFS over the total atmosphere 17 

obtained at Hefei for HCHO is 1.2 ± 0.2 (1ů), meaning that we cannot provide more than one piece 18 

of information on the vertical profile. This is the reason that only total columns of HCHO or column-19 

averaged dry air mole fractions of HCHO (XHCHO) are discussed in this paper and not vertical 20 

profiles. As expected by the low DOFS, the shape of the retrieved profile which is heavily weighted 21 

toward the lower troposphere is very similar to the shape of the a priori profile (not shown here). 22 

We calculated the error budget following the formalism of Rodgers (2000), and separated all 23 

error items into systematic or random errors depending on whether they are constant over 24 

consecutive measurements, or vary randomly. Table 1 summarizes the random, systematic, and the 25 

combined error budget for total column of HCHO demonstrated in Fig. 2. The input covariance 26 

matrix of temperature has been estimated using the differences between an ensemble of NCEP and 27 

Sonde temperature profiles near Hefei, leading to 2 to 5 K in the troposphere and 3 to 7 K in the 28 

stratosphere. For each interfering species, the associated covariance matrix were obtained with the 29 

WACCM v6 climatology. The input covariance matrix of measurement error are based on the 30 

inverse square of the SNR of each spectrum (see section 2.2.1). The FTIR spectrometer at Hefei is 31 

assumed to be not far from the ideal condition, and the input uncertainties for background curvature, 32 

optical path difference, field of view, interferogram phase, and ILS are estimated to be 1%. For the 33 

HCHO spectroscopic parameters, the line list in atm16 follows HITRAN 2012 (Rothman et al., 34 

2013), which used the work of Jacquemart et al. (2010), and we use 10% for line intensity, pressure-, 35 

and temperature-broadening coefficients. For each individual retrieval parameter and the smoothing 36 

error, the input covariance matrix are prescribed from the optimal estimation retrieval output. 37 

We see from Table 1 that the major random errors for HCHO retrieval at Hefei are measurement 38 

noise (1.59%), smoothing error (0.83%), and temperature uncertainty (0.61%), and the major 39 

systematic errors are line intensity uncertainty (9.04%) and line pressure broadening uncertainty 40 

(6.60%). Total random and systematic errors are estimated to be 1.71% and 11.24%, respectively. 41 

Total retrieval error calculated as square root sum of the squares of total random and systematic 42 

errors is estimated to be 12.29%. 43 
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2.3 Regression model for seasonal and interannual variabilities  1 

The seasonality and interannual variability of HCHO from 2015 to 2019 were evaluated using 2 

a bootstrap resampling method following that of Gardiner et al. (2008). Gardiner et al. (2008)ôs 3 

method has been used by many studies to estimate the variability of atmospheric compounds on 4 

different time scales (including Gardiner et al., 2008; Jones et al., 2009; Sun et al., 2018; Sun et al., 5 

2020; Tian et al., 2017; Viatte et al., 2014; Vigouroux et al., 2015; Vigouroux et al., 2018; Zeng et 6 

al., 2012; Franco et al., 2016). The following nonlinear regression model ὣ ὸ was applied to 7 

fit the FTIR time series of HCHO ὣ ὸ: 8 

ὣ ὸ ὣ ὸ ‐ὸ                                                                 ρ 9 

ὣ ὸ ὃ ὃὸ ὃÃÏÓ
ςʌÔ

σφυ
ὃÓÉÎ

ςʌÔ

σφυ
ὃÃÏÓ

τʌÔ

σφυ
ὃÓÉÎ

τʌÔ

σφυ
     ς 10 

ὨϷ
ὣ ὸ ὣ ὸ

ὣ ὸ
ρππ                                                        σ 11 

where A0 is the intercept, A1 is the annual growth rate, and A1/A0 is the interannual change rate 12 

discussed below. The A2 ï A5 parameters describe the seasonal cycle, t is the measurement time 13 

elapsed since 2015, and Ů(t) represents the residuals between the measurements and the fitting model. 14 

Generally, the bootstrap resampling model canôt capture the diurnal cycle of an atmospheric 15 

compound with a large diurnal variability. In order to minimize this influence, we performed the 16 

regression fi t on daily mean dataset and incorporated the error arising from the autocorrelation in 17 

the residual into the uncertainty in the change rate following the procedure of (Santer et al., 2008). 18 

Fractional differences of FTIR HCHO time series relative to their seasonal mean values represented 19 

by ὣ ὸ were calculated in equation (3) to analyse seasonal enhancements. 20 

2.4 Regression model for source separation 21 

The emitted and photochemical HCHO were separated by using ground level CO and Ox (O3 22 

+ NO2) as tracers, respectively. The methodology in this study follows that of Friedfeld et al. (2002), 23 

which has been used extensively in source separation for atmospheric HCHO (including Friedfeld 24 

et al., 2002; Garcia et al., 2006; Hong et al., 2018; Li et al., 1994; Li et al., 2010, Lui et al., 2017; 25 

Ma et al., 2016, Su et al., 2019; Wang et al., 2015). Over polluted atmosphere, O3 reacts with nitric 26 

oxide (NO) emitted from vehicle exhaust to form NO2. In this case, Ox (O3 + NO2) is in principle a 27 

better surrogate of photochemical processes as it also accounts for titrated O3 (Garcia et al., 2006; 28 

Li et al., 1994). Therefore, this study uses Ox as a tracer for photochemical HCHO. A linear 29 

regression model was used to establish a link among the time series of HCHO, CO, and Ox (Garcia 30 

et al., 2006). The observed HCHO ὣ ὸ can be reproduced by the following linear regression 31 

model ὣ ὸ: 32 

ὣ ὸ ὣ ὸ ‐ὸ                                                                   τ  33 

ὣ ὸ ‌ ‌ ὣ ὸ ‌ ὣ ὸ                            υ  34 

where Ŭ0, Ŭ1, and Ŭ2 are coefficients obtained from the multiple linear regression fit. Ŭ0 which is 35 

neither classified as emitted or photochemical contributions represent the regional HCHO condition 36 

in the background atmosphere, Ŭ1 is the emission ratio of HCHO with respect to CO, and Ŭ2 denotes 37 

the portion of HCHO from photochemical production. Ů(t) is the fitting residual, which is assumed 38 

to be independent with a constant variance and a mean of zero (Garcia et al., 2006). ὣ ὸ and 39 

ὣ ὸ are ground level VMR time series of CO and Ox, respectively. The relative contributions 40 

of emitted (Re), photochemical (Rp), and background (Rb) sources to the observed HCHO can be 41 
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calculated by (Friedfeld et al., 2002; Garcia et al., 2006; Hong et al., 2018; Li et al. 2010, Lui et al. 1 

2017; Ma et al., 2016; Su et al., 2019; Wang et al., 2015): 2 

Ὑ  
‌ ὣ ὸ

‌ ‌ ὣ ὸ ‌ ὣ ὸ
                                             φ 3 

Ὑ
‌ ὣ ὸ

‌ ‌ ὣ ὸ ‌ ὣ ὸ
                                                χ 4 

Ὑ
‌

‌ ‌ ὣ ὸ ‌ ὣ ὸ
                                                ψ 5 

To compare the results, the regression analysis in Garcia et al. (2006) was run using subsets of 6 

data, which comprise a comparable number of data points for each considered time period. By 7 

dividing the data into several periods of interest, it is possible to lower the residual and improve the 8 

fitting correlation (Garcia et al., 2006). Garcia et al. (2006) also concluded that the fitting results 9 

were more robust by using a real background value to initialize the regression analysis. Generally, 10 

this initial background level can be approximated by the measurement in the ñcleanò atmosphere at 11 

a rural site or derived from statistics of previous studies in the studied region (Garcia et al., 2006; 12 

Hong et al., 2018; Ma et al., 2016; Su et al., 2019; Wang et al., 2015). The findings of Garcia et al. 13 

(2006) has been used by many studies in source separation for atmospheric HCHO (including Hong 14 

et al., 2018; Li et al., 2010, Lui et al., 2017; Ma et al., 2016, Su et al., 2019; Wang et al., 2015). For 15 

multi-year time series of HCHO in this study, we grouped all measurements by month and 16 

performed the regression analysis for source separation on a monthly basis. The empirical 17 

background level of previous studies in the Yangtze River Delta (YRD) region was used to initialize 18 

the regression analysis. 19 

2.5 GEOS-Chem sensitivity simulations  20 

2.5.1 GEOS-Chem model description 21 

The drivers of the observed HCHO variability were determined by using the GEOS-Chem 22 

chemical transport model version 12.2.1 (Bey et al., 2001; http://geos-chem.org, last access on 14 23 

February 2020). GEOS-Chem is a global 3D chemical transport model capable of simulating global 24 

trace gas (more than 100 tracers) and aerosol distributions. The GEOS-Chem model implements a 25 

universal tropospheric-stratospheric Chemistry (UCX) mechanism (Eastham et al., 2014). All 26 

simulations were performed in a standard GEOS-Chem full -chemistry mode with a horizontal 27 

resolution of 2° × 2.5° and were initiali sed for one year (July 2014 to July 2015) to remove the 28 

influence of the initial conditions. The model is driven by the Goddard Earth Observing System-29 

Forward Processing (GEOS-FP) meteorological fields at a horizontal resolution of 2×ʐ 2.5ʐ  30 

degraded from their native resolution of 0.25° × 0.3125°. The temporal resolutions are 1 hour (hr) 31 

for surface variables and boundary layer height, and 3 hr for other variables. The photolysis rates 32 

were obtained from the FAST-JX v7.0 photolysis scheme (Bian and Prather, 2002). Dry deposition 33 

was calculated by the resistance-in-series algorithm (Wesely, 1989; Zhang et al., 2001), and wet 34 

deposition followed that of Liu et al. (2001). The GEOS-Chem model outputs 72 vertical layers of 35 

HCHO VMR concentration ranging from the surface to 0.01 hPa at a temporal resolution of 1 hr. 36 

This study only considered the HCHO simulations from 2015 to 2019 in the grid box containing 37 

Hefei (31.52°ï32.11°N by 116.53°ï118.02°E).  38 

Emissions in GEOS-Chem are processed through the HarvardïNASA Emission Component 39 

(HEMCO) (Keller et al., 2014). The anthropogenic emissions were from the Community Emissions 40 
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Data System (CEDS; the latest 2015 condition is used for the model simulation) inventory (Hoesly 1 

et al., 2018), which overwrites regional emissions over Asia with the MIX inventory (Li et al., 2017; 2 

Lu et al., 2019; Zheng et al., 2018). In particular, the latest Chinese anthropogenic emissions for 3 

2016 and 2017 from the Multi-resolution Emission Inventory for China (MEIC; 4 

http://www.meicmodel.org, last access: 14 April 2020) were implemented (Lu et al., 2019; Zheng 5 

et al., 2018). The MEIC is a bottom-up emission inventory with particular improvements in the 6 

accuracy of unit-based power plant emission estimates (Liu et al., 2015), vehicle emission modelling 7 

(Zheng et al., 2014), and the NMVOCs speciation method (Li et al., 2014). Global biomass burning 8 

emissions were from the Global Fire Emissions Database version 4 (GFED4) inventory (Giglio et 9 

al., 2013). Biogenic emissions were from the Model of Emissions of Gases and Aerosols from 10 

Nature (MEGAN version 2.1) inventory (Guenther et al., 2012), and soil NOx emissions were 11 

calculated following the method of Hudman et al. (2010, 2012). Mixing ratios of CH4 are prescribed 12 

in the model based on spatially interpolated monthly mean surface CH4 observations from the 13 

NOAA Global Monitoring Division for 1983ï2016 and are extended to 2020 using the linear 14 

extrapolation of local 2011ï2016 trends (Murray, 2016).  15 

Total emissions of all atmospheric compounds in 2016 and 2017 over China by category are 16 

summarized in Table 2. In this study, we separated the anthropogenic emissions into fossil fuel and 17 

biofuel emissions. The global biofuel inventory is only available for the year 2015. The number of 18 

atmospheric compounds and the emission amounts in the biofuel emission inventory are much 19 

smaller than those in fossil fuel emission inventory. In addition, the combination of biogenic and 20 

biomass burning emissions is referred to as natural emission. Total annual Chinese anthropogenic 21 

emissions of NOx and NMVOCs are, respectively, 22.5 and 28.4 Tg in 2016 and 22.0 and 28.6 Tg 22 

in 2017. Total annual Chinese natural emissions of NOx and NMVOCs are, respectively, 1.74 and 23 

27.16 Tg in 2016 and 1.56 and 28.02 Tg in 2017. The anthropogenic emissions of all atmospheric 24 

compounds are dominated by fossil fuel emissions and the natural NMVOCs emissions are 25 

dominated by biogenic emissions. We cannot separate the CH4 emissions into anthropogenic and 26 

natural emissions since the CH4 concentrations are prescribed based on NOAA measurements, and 27 

hence cannot be shut off the same way as for other emission inventories. We find 1% increases in 28 

CH4 concentration over eastern China in 2017 relative to 2016 (Lu et al., 2019). 29 

2.5.2 GEOS-Chem model configurations 30 

First, we conducted a standard full chemistry simulation (hereafter BASE) including all 31 

emission inventories as described in Table 2 and took it as the reference. Then, we conducted a 32 

series of sensitivity simulations to assess the change of each sensitivity simulation relative to the 33 

BASE simulation. We followed the method of Franco et al. (2016) and did not shut off the CH4 34 

inventory in all sensitivity simulations, i.e., CH4 concentrations were still derived from the NOAA 35 

measurements as for the BASE simulation. The model configurations used in this study are 36 

summarised in Table 3 and were designed as follows. 37 

(i) To analyse the contributions of different emission categories, each individual emission 38 

inventory was shut off to evaluate the change of the simulation in the presence of all other emission 39 

inventories. Thus, the relative contribution of each emission category was estimated as the relative 40 

difference between the GEOS-Chem simulation in the presence and absence of that emission 41 

inventory. We have conducted four such sensitivity simulations by shutting off (1) fossil fuel 42 

emission inventory (including emissions from agriculture, industry, power plant, residential, and 43 
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transport), (2) biogenic emission inventory, (3) biomass burning emission inventory, and (4) biofuel 1 

emission inventory (Table 2). When an emission inventory was shut off, global emissions of all 2 

atmospheric compounds in this inventory were set to be zero. 3 

(ii) To analyse the contributions of different geographical regions, the emission inventory 4 

clusters within each geographical region were shut off to assess the change of the simulation in the 5 

presence of emissions outside that geographical region. Thus, the relative contribution of each 6 

geographical region was estimated as the relative difference between the GEOS-Chem simulation 7 

in the presence and absence of the emission inventory clusters within that geographical region. We 8 

have conducted five such sensitivity simulations by shutting off the emission inventory clusters 9 

within five geographical regions. Here the emission inventory clusters are defined as all emission 10 

inventories except CH4 inventory in Table 2. When the emission inventory clusters in a specific 11 

region were shut off, emissions of all relevant atmospheric compounds within that region were set 12 

to be zero. The geographical regions are shown in Fig. 1(a) and the resulting delimitations are 13 

summarised in Table 3. The delimitations of these geographical regions are based on the levels of 14 

urbanization and industrialization in China. Region ǹ1  in Fig. 1(a) only covers a few sparsely city 15 

clusters representing the region with least population and industrialization in China (Lu et al. 2019). 16 

Regions ǹ2 , ǹ4 , and ǹ5  cover the North China Plain (NCP), YRD, and Pearl River Delta (PRD) 17 

city clusters, respectively, which are the three most developed city clusters facing severe air 18 

pollution in China. Region ǹ3  covers the Sichuan Basin (SCB) and central Yangtze River (CYR) 19 

city clusters with newly emerging severe air pollution in China.  20 

Regional air quality is not only influenced by local emission but also by long range transport. 21 

In addition, a reduction in one pollutant may affect the conditions of many atmospheric compounds 22 

via a chain of complex atmospheric chemical reactions. Sensitivity simulations in this study were 23 

performed by shutting off all atmospheric compounds simultaneously rather than the HCHO 24 

precursors only. This approach provides an evaluation for the consequence of the recent clean air 25 

policies which affect not only HCHO precursors but also many other atmospheric pollutants (Zheng 26 

et al., 2018). 27 

3 FTIR HCHO dataset over Hefei 28 

The FTIR measurements taken with a solar intensity variation (SIV) of larger than 10% or 29 

retrievals with DOFS of less than 0.7 or root-mean-square (RMS) of fitting residuals of larger than 30 

2% were excluded in this study. This filter criterion excluded the measurements seriously affected 31 

by instable weather conditions or by the a priori profile due to low measurement information content 32 

in less favourable observational conditions, e.g., around noontime when the probed atmosphere is 33 

thinner, or in winter when HCHO is less abundant. With this criterion, 12.4% of FTIR measurements 34 

were excluded in subsequent study. For the ground level in situ datasets provided by the CNEMC 35 

site, LP-DOAS and CRDS analysers, the measurements collected during maintenance, adjustments, 36 

and calibrations were excluded, as well as measurements collected during electricity failures.  37 

3.1 Comparison with LP-DOAS dataset 38 

The LP-DOAS ground level HCHO measurements nearest to each individual FTIR XHCHO 39 

measurement were included for comparison. The temporal difference between FTIR and LP-DOAS 40 

dataset is within ± 5  minutes. Correlation plots of FTIR XHCHO measurements against LP-DOAS 41 

ground level HCHO measurements are shown in Fig.3. The results show that the HCHO variability 42 
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observed by FTIR and LP-DOAS are in good agreement with a correlation coefficient (r2) of 0.88. 1 

The amplitude of the LP-DOAS ground level measurements is on average 7.89 times that of the 2 

FTIR column-averaged measurements. This means HCHO column measurements at Hefei can be 3 

used as representative of near-surface conditions. As a result, this study used a constant factor of 4 

7.89 to scale the column-averaged HCHO concentration to ground level HCHO concentration, or 5 

vice versa. 6 

Over polluted atmosphere, the HCHO column measurements can be used as representative of 7 

near-surface conditions because HCHO is a tropospheric gas and has a vertical distribution that is 8 

heavily weighted toward the lower troposphere (Martin et al., 2004). As shown in Fig.2(c), the 9 

HCHO concentration decreased by 72.7% with an increase in the height from surface to 3 km and 10 

continued to decrease slowly in the troposphere above 3 km. The HCHO partial column below 3 11 

km accounted for 67.1% of HCHO total column. This percentage is expected to show less seasonal 12 

variation since the shape of the retrieved profile is very similar to the shape of the a priori profile 13 

due to the low DOFS (Fig. 2 (c)). Many studies have taken advantage of this favorable vertical 14 

distribution of HCHO to derive surface emissions of VOCs from space (e.g. Palmer et al., 2003; 15 

Millet et al., 2008; Boersma et al., 2009; Stavrakou et al., 2009; Fortems-Cheiney et al., 2012; 16 

Barkley et al., 2013; Marais et al., 2014; Streets et al., 2013; Gao et al., 2018). Meanwhile, the use 17 

of HCHO column measurements to explore tropospheric O3 sensitivities has been the subject of 18 

several past studies, which disclosed that this diagnosis of O3 production rate (PO3) is consistent 19 

with the findings of surface photochemistry (eg., Martin et al., 2004; Duncan et al., 2010; Choi et 20 

al., 2012; Witte et al., 2011; Jin and Holloway, 2015; Mahajan et al., 2015; Jin et al., 2017; 21 

Schroeder et al. 2017). Source separation of atmospheric HCHO in Hong et al. (2018) and Su et al. 22 

(2019) also taken the advantage that column measurements of HCHO are fairly representative of 23 

near-surface conditions. 24 

3.2 Seasonal and interannual variabilities 25 

We have used the bootstrap resampling method of Gardiner et al. (2008) with a 3rd Fourier 26 

series plus a linear function to fit FTIR daily mean time series of XHCHO (Fig.4(a)). Generally, the 27 

measured features in terms of seasonality and interannual variability from 2015 to 2019 can be 28 

reproduced by the bootstrap resampling model with a correlation coefficient (r2) of 0.81. The FTIR 29 

XHCHO roughly increases over time for the first half of the year and decreases over time for the 30 

second half of the year (Fig. 4(b)). The XHCHO reached a maximum monthly mean value of (1.1 ± 31 

0.27) ppbv in July and a minimum monthly mean value of (0.4 ± 0.11) ppbv in January. The FTIR 32 

XHCHO values in July were on average 1.75 times higher than those in January. In term of HCHO 33 

total column, the maximum and minimum monthly mean values are (1.68 ± 0.39) and (0.66 ± 0.16) 34 

× 1016 molec cm-2, respectively. The annual mean values of XHCHO and HCHO total column over 35 

Hefei are (0.55 ± 0.14) ppbv and (1.04 ± 0.27) × 1016 molec cm-2, respectively. As commonly 36 

observed, the seasonal HCHO enhancements spanned a wide range of -50.0% to 60.0% depending 37 

on the season and measurement time (Fig. 4 (b)). The observed HCHO time series from 2015 to 38 

2019 showed a positive change rate of (2.38 ± 0.71) % per year (Fig. 4 (a)). This positive change 39 

rate in HCHO concentration over China was in agreement with the positive trends observed by the 40 

spaceborne Ozone Monitoring Instrument (OMI) from 2004 to 2014 by De Smedt et al. (2015) and 41 

from 2005 to 2017 by Zhang et al. (2019). 42 

Recently, Vigouroux et al. (2018) presented an unprecedented harmonized HCHO total column 43 
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dataset from 21 ground-based FTIR stations around the globe. These FTIR stations sample a wide 1 

range of HCHO total columns from 0.1 to 2.2 × 1016 molec cm-2
 and are classified as clean, 2 

intermediate, and high-level HCHO stations. Vigouroux et al. (2018) found that high levels of 3 

HCHO are typically observed at the places which are affected by large anthropogenic emissions 4 

such as Toronto and Mexico City (means of 0.95 and 2.21×1016 molec cm-2), or affected by large 5 

biogenic emissions such as Wollongong (mean of 0.79×1016 molec cm-2) and Porto Velho, located 6 

at the edge of the Amazon rainforest (mean of 1.9×1016 molec cm-2). In comparison, the Hefei site 7 

is affected by both anthropogenic and biogenic emissions due to the surrounding megacity, wetlands 8 

and cultivated lands (see section 2.1). The HCHO total columns at Hefei are comparable with those 9 

at Toronto and are lower than those at Mexico City and Porto Velho. With the classification criteria 10 

in Vigouroux et al. (2018), the Hefei site can be classified as a high-level HCHO station and has the 11 

third highest levels of HCHO concentration around the globe. 12 

3.3 Separation between emitted and photochemical sources 13 

The CNEMC ground level CO and Ox measurements nearest to each individual FTIR XHCHO 14 

measurement were included for source separation. The temporal difference between FTIR and 15 

CNEMC dataset is within ± 30 minutes. For the polluted atmosphere over Hefei, it is impossible to 16 

directly measure the background HCHO concentration and thus an empirical value derived previous 17 

studies in the YRD region was used. According to the ground level measurements of HCHO at a 18 

rural site in the YRD region by Ma et al. (2016) and Wang et al. (2015), the background level of 19 

HCHO near the surface was approximately 1.0 ppbv in springtime. We scaled this background level 20 

(1.0 ppbv) into column-averaged concentration with the scale factor deduced in section 3.1, and 21 

coupled the resulting value with a 3rd Fourier series to reconcile the seasonal difference in HCHO 22 

background. As a result, the fitting process in this study was initiated by assigning the background 23 

with a 3rd Fourier series with an amplitude of 0.22 ppbv. Garcia et al. (2006) carried out a series of 24 

sensitivity tests by using a series of empirical background concentrations to initialize the regression 25 

analysis. Garcia et al. (2006) found that the percent fraction of emitted HCHO is almost constant in 26 

all sensitivity tests, but the percent fractions of background and photochemical HCHO contributions 27 

are anti-correlated, and scale linearly with the background value. The fact that photochemical 28 

HCHO decreases as the background HCHO increases, suggests a relation of the background with 29 

photochemistry rather than emission sources (Garcia et al., 2006). It is worth noting that 30 

imperfections in source separation with this regression model are likely to become significant in 31 

certain cases. In this study, photochemical HCHO production from CH4 oxidation in the free 32 

troposphere which can hardly be accounted for by the in situ tracers is in fact erroneously (or at least 33 

partly) interpreted background HCHO. In addition, the measurements with large temporal variations 34 

of HCHO/CO or HCHO/Ox ratios generally canôt be reproduced by this regression model. A more 35 

sophisticated multi-regression model might be able to reduce the uncertainties, but this is beyond 36 

the scope of present work. 37 

Seasonal variabilities of absolute and relative contributions of emitted, photochemical, and 38 

background sources to the observed XHCHO are shown in Fig. 5. The correlation coefficient value (r2) 39 

from the regression analysis indicates the proportion of HCHO measurements that can be 40 

reproduced by the regression model (Green, 1998). The results indicate that this proportion is for 41 

all subsets of dataset well above 80%, and up to 92%, reflecting that the CO-Ox tracer pair ï while 42 

not perfect ï generally replicates well the observations. Statistical modelling results for relative 43 
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contributions of different sources to the observed XHCHO from 2015 to 2019 are listed in Table 4. 1 

The relative contributions of emitted and photochemical sources spanned a wide range of values 2 

throughout the year; however, the relative contributions of the background source were roughly a 3 

constant value. Depending on measurement time and season, the relative contributions of emitted 4 

sources varied from 14.0% to 58.0%, and relative contributions of photochemical sources varied 5 

from 20% to 82%. On average, the relative contributions of emitted, photochemical, and background 6 

sources to the observed XHCHO from 2015 to 2019 were 29.0 ± 19.2%, 49.2 ± 18.5%, and 21.8 ± 7 

6.1%, respectively. As evidenced in Table 2, the emitted HCHO are mainly from fossil fuel and 8 

biomass burning emissions. In addition to oxidation of CH4, oxidations of both fossil fuel and 9 

biogenic NMVOCs could have large contributions to photochemical HCHO, which will be 10 

discussed in detail in section 4.2.  11 

All  measurements were further separated into emitted-dominated or photochemical-dominated 12 

measurements according to a larger contribution to the observed XHCHO (Table 4). Generally, 13 

photochemical HCHO is the dominant source of atmospheric HCHO over Hefei for most of the year 14 

(68.1%). The largest contrast between photochemical and emitted in terms of domination percent 15 

fraction occurs in the afternoon (after 12:00 a.m. local time (LT)) in summer and autumn (JJA/SON) 16 

season when the photochemistry for HCHO formation is enhanced. Indeed, the LP-DOAS 17 

measurements in this study and many previous studies with either in situ dataset (Li et al., 2010, Lui 18 

et al., 2017; Ma et al., 2016, Wang et al., 2015) or remote sensing dataset (De Smedt et al., 2015; 19 

Vigouroux et al., 2018; Franco et al., 2016; Peters et al., 2012) disclosed that the typical diurnal 20 

modulation of HCHO at mid-latitudes shows a pronounced peak in the early afternoon. 21 

3.4 Hydroxyl (OH) radical production from HCHO  22 

Photolysis plays a significant role in the degradation of HCHO and one of its two photo 23 

dissociative paths provides a large source of OH radicals. The photolysis pathways of HCHO to 24 

form the OH radical are summarised as follows (Chapter 6, Seinfeld and Pandis, 2016): 25 

ὌὅὌὕὬὺ O  Ὄ Ὄὅὕ  ʇ  σχπ ÎÍ O  Ὄ ὅὕ         ω 26 

Ὄ ὕ O Ὄὕ                                                                                    ρπ 27 

Ὄὅὕ  ὕ  O Ὄὕ ὅὕ                                                               ρρ 28 

Ὄὕ ὔὕ  O ὕὌ ὔὕ                                                               ρς 29 

In air, the photolysis of HCHO first generates a hydroperoxyl (HO2) radical at wavelengths 30 

below 370 nm. Then, HO2 rapidly reacts with NO to generate the OH radical, and subsequently 31 

affects the oxidative capacity of the atmosphere (Possanzini et al., 2002; Volkamer et al., 2010). 32 

Under steady-state conditions, the total OH radical production rate from the photolysis of HCHO 33 

through the above chain of reactions is:  34 

ὴὕὌ

Ὠὸ
 ςὐὌὅὌὕ                                                              ρσ 35 

where [HCHO] is the concentration of HCHO and Ja is the photolysis constant of reaction (9). In 36 

comparison, applying steady state to reactions (14) ï (16),  37 

ὕ Ὤὺ O  ὕ ὕρὈ                                                               ρτ 38 

ὕρὈ  ὓ  O    ὕσὖ   ὓ                                             ρυ 39 

ὕρὈ  Ὄὕ O    ςὕὌ                                                                 ρφ 40 

the total OH radical production rate from O3 is given by (Chapter 6, Seinfeld and Pandis, 2016), 41 
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where [O3], [H2O], and [Mair] are the concentrations of O3, H2O, and air, respectively; Jc is the 2 

photolysis constant of reaction (14); and kd and ke are the reaction rate coefficients for (15) and (16), 3 

respectively.  4 

In this study, photolysis rate constants for HCHO and O3 were available from the GEOS-Chem 5 

simulation, and the reaction rate coefficients were calculated according to a well-known procedure 6 

(Table B1; Seinfeld and Pandis, 2016). Surface H2O concentrations were available from an in situ 7 

CRDS analyser. For the atmosphere N2/O2 mixture at 298 K, the values of kd and ke are 2.9 × 10-11 8 

and 2.2 × 10-10 cm3 molecule-1s-1, respectively. The air concentration [Mair] is 0.99 molecules cm-3 9 

(Chapter 6, Seinfeld and Pandis, 2016). The concentrations of HCHO and O3 were based on FTIR 10 

observations and the CNEMC network, respectively. To reconcile the difference between the 11 

ground level concentration and column-averaged concentration, all individual FTIR XHCHO 12 

concentrations were converted to ground level VMRs with the scale factor deduced in section 3.1. 13 

For the ground level H2O and O3 datasets, only measurements nearest to each individual FTIR 14 

measurement were considered. The temporal difference between FTIR and CNEMC (CRDS) is 15 

within ± 30 minute (± 30 second).  16 

The total OH radical production rates from the photolysis of HCHO and O3 from 2015 to 2019 17 

over Hefei calculated via equations (13) and (17) are shown in Fig. 6. For both gases, the OH radical 18 

production rates in summertime are higher than those in wintertime. Generally, OH radical 19 

production rates from the photolysis of HCHO are comparable with those from the photolysis of O3 20 

in all seasons. In wintertime when the concentrations in O3 and H2O are low, or when emitted 21 

sources dominate the HCHO measurements, OH radical production rates from HCHO photolysis 22 

are higher than those from O3 photolysis. In other seasons, when the concentrations in O3 and H2O 23 

are high, or when photochemical sources dominate the HCHO measurements, OH radical 24 

production rates from HCHO photolysis are lower than those from O3 photolysis. On average, the 25 

OH production rate from O3 photolysis is 6.1% higher than that from HCHO photolysis. The results 26 

clearly indicate that HCHO photolysis was by far an important source of OH radical over eastern 27 

China during all sunlight hours of both summer and winter days. 28 

4 Source attribution by GEOS-Chem sensitivity simulations 29 

4.1 Model evaluation  30 

The GEOS-Chem model was used to evaluate relative contributions of various emission 31 

categories and geographical regions to the observed HCHO summertime enhancements. For model 32 

evaluation, the observed XHCHO seasonal cycle was compared to the GEOS-Chem BASE simulations 33 

to investigate the chemical model performance for the specifics of polluted regions over eastern 34 

China. As the vertical resolution of GEOS-Chem is different from the FTIR measurement, a 35 

smoothing correction was applied to the GEOS-Chem profiles. First, the GEOS-Chem daily mean 36 

profiles of HCHO were interpolated to the FTIR altitude grid to ensure a common altitude grid. 37 

Since the FTIR instrument only operates during daytime, the average for GEOS-Chem simulations 38 

is only performed during daytime from 9:00 to 17:00 LT. The interpolated profiles were then 39 

smoothed by the seasonal mean FTIR averaging kernels and a priori profiles (Rodgers, 2000; 40 

Rodgers and Connor, 2003). The GEOS-Chem XHCHO concentrations were calculated subsequently 41 

from the smoothed profiles by using the corresponding regridded air density profiles from the model. 42 
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Finally, the GEOS-Chem XHCHO time series only for the days with available FTIR observations were 1 

averaged by month and compared with the FTIR monthly mean data.  2 

Fig. 4 (a) shows the comparison of daily mean time series of XHCHO between the FTIR 3 

observation and the smoothed GEOS-Chem model simulation from 2015 to 2019. Fig. 4 (b) 4 

compares the seasonal cycles derived from Fig. 4 (a) for the days with available FTIR observations 5 

only. The observed day-to-day variability cannot be always reproduced by the GEOS-Chem 6 

simulation, especially in the trough and peak of the measurements (Fig. 4(a)). This can be partially 7 

explained by the fact that many oxidation pathways of VOCs precursors leading the HCHO 8 

production, which are numerous, might not be optimally implemented (especially very short-lived 9 

VOCs) or merely not considered in the model (Franco et al., 2016). In addition, large uncertainties 10 

remain concerning the various sources of precursor emissions, their geographical distributions and 11 

how these sources can influence the air masses over polluted sites such as Hefei. Finally, GEOS-12 

Chem averages HCHO concentration over a large coverage area due to its relatively coarse spatial 13 

resolution (here 2Ӎ× 2.5Ӎ). The Hefei site is located in a densely populated and industrialised area 14 

in eastern China. The regional differences in HCHO concentration could aggravate the 15 

inhomogeneity within the selected GEOS-Chem coverage grid cell, which also affects the 16 

comparison with observations. Nevertheless, the measured feature in term of seasonal cycle of 17 

HCHO loadings over Hefei can be reproduced by GEOS-Chem simulations with a correlation 18 

coefficient (r2) of 0.78 (Fig. 4(b)). The averaged difference between GEOS-Chem and FTIR dataset 19 

(GEOS-Chem minus FTIR) is -0.05 ± 0.2 ppbv (-2.6 ± 10.4%), which is within the FTIR uncertainty 20 

budget. As a result, GEOS-Chem can simulate the concentration and seasonal variation of HCHO 21 

for the heavily polluted regions over eastern China. Previous studies have also found that global 22 

chemistry transport models were able to reproduce the absolute values as well as seasonal cycles of 23 

the ground-based FTIR HCHO observations in the other parts of the world (Franco et al., 2016; 24 

Vigouroux et al., 2018).  25 

4.2 Emission category contribution to HCHO enhancement 26 

In this part of the study, the summertime HCHO model simulations are analysed to assess the 27 

contribution of each emission category to the maximum seasonal enhancements throughout the year,. 28 

Fig. 7 (a) shows daily mean XHCHO time series averaged in the summers of 2015 to 2019 over Hefei 29 

simulated by GEOS-Chem, according to the BASE and sensitivity (i.e., noFF, noBVOC, noBB, and 30 

noBIOF) simulations. Fig. 7 (b) presents relative contribution of each emission category calculated 31 

as the relative difference between the BASE simulation and the corresponding sensitivity simulation 32 

(in %). 33 

As can be seen in Fig. 7 (a) and (b), shutting off emission sources of fossil fuel and biogenic 34 

significantly impacts the simulated HCHO summertime loadings over Hefei, with the XHCHO derived 35 

from either the noFF or noBOVC simulations reduced by 10 ï 65% relative to the BASE simulation. 36 

However, shutting off biomass burning and biofuel emissions have almost no effect on the simulated 37 

HCHO summertime loadings over Hefei, with the XHCHO derived from either the noBB or noBIOF 38 

simulations reduced by less than 3% relative to the BASE simulation. In addition, the variations of 39 

the influences of noFF and noBOVC are also much larger than those of noBB and noBIOF. 40 

Modelled XHCHO summertime simulations from 2015 to 2019 were on average reduced by 0.18, 0.23, 41 

0.01, and 0.01 ppbv in the absence of fossil fuel, biogenic, biomass burning, and biofuel emission 42 

inventories, respectively, which contribute 24.98, 29.81, 1.0, and 0.95% to the HCHO summertime 43 
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enhancements (Fig.A1). The anthropogenic emissions accounted for 25.93% and the natural 1 

emissions accounted for 30.81% of the HCHO summertime enhancements. Contributions of fossil 2 

fuel and biogenic emissions are much larger than those of biomass burning and biofuel emissions 3 

because of larger NMVOCs emissions from fossil fuel and biogenic sources (Table 2).  4 

The remaining contribution was calculated as the difference between the BASE simulation and 5 

the sum of all emission contributions as estimated from the sensitivity simulations, and was 0.29 6 

ppbv (43.27%). This remaining contribution can be largely attributed to the global CH4 emissions 7 

and the nonlinear interactional effects among different sources which were not captured by the 8 

sensitivity simulations. Indeed, shutting off some emission sources in the GEOS-Chem sensitivity 9 

simulations eventually resulted in slightly enhanced HCHO amounts (by 1ï1.5 %) compared to the 10 

BASE simulation, as shown in Fig. 7(b) for the noBIOF simulation and, to a lesser extent, for the 11 

noBB simulation during later summer. In these particular cases, shutting off an emission inventory 12 

may induce significantly lower concentrations in many atmospheric compounds globally, some of 13 

which mainly react with OH. This would lead to higher OH concentrations available for the 14 

oxidation of HCHO precursors, and eventually enhances the HCHO production from other emission 15 

categories (Franco et al., 2016). However, it is difficult to quantify the nonlinear impact of each 16 

individual emission category, since the types of atmospheric compounds and their concentrations in 17 

each emission category are different. Especially when the emissions of NO are suppressed, the 18 

impacts become hard to assess, since this compound plays a key role in both HCHO formation 19 

(through the degradation of peroxy radicals) and destruction (by contributing to the regeneration of 20 

OH) (Franco et al., 2016). Investigating the nonlinear impact of each individual emission category 21 

would require additional work that is beyond the scope of the present work.  22 

These above sensitivity tests suggest that the oxidations of both NMVOCs and CH4 (not 23 

included in the emission perturbations here) dominate the HCHO production and are the main 24 

drivers of its summertime enhancements over Hefei. This is different from Franco et al. (2016), 25 

which found that HCHO summertime loadings over Jungfraujoch, Swiss land were dominated by 26 

the oxidation of CH4, and the contribution of NMVOCs was rather limited. For the HCHO loadings 27 

over Jungfraujoch, it is most likely that a large part of the short-lived NMVOCs are already oxidized 28 

before being transported to this high altitude site (3580 m a.s.l.). Hence these NMVOCs compounds 29 

do not contribute directly to the HCHO loadings over Jungfraujoch, although their biogenic 30 

secondary products can be transported to the upper troposphere and contribute to the HCHO 31 

abundance there (Franco et al., 2016). However, the low altitude Hefei site (30 m a.s.l.) is 32 

surrounded by megacity, wetlands or cultivated lands (see section 2.1). A large amount of NMVOCs 33 

compounds originating from both anthropogenic and natural emissions contributed directly to the 34 

HCHO summertime loadings over Hefei, resulting in a much larger NMVOCs contribution than 35 

that over Jungfraujoch.  36 

4.3 Geographical region contribution to HCHO enhancement 37 

We present in this section contribution of each geographical region in China to the observed 38 

HCHO summertime enhancements. Geographical delimitations of these regions are summarised in 39 

Table 3. Fig 8 (a) shows daily mean XHCHO time series averaged in the summers of 2015 to 2019 40 

over Hefei simulated by GEOS-Chem, according to the BASE and sensitivity (i.e., noER, noCR, 41 

noNR, noWR, and noSR) simulations. Fig 8 (b) shows relative contribution of each geographical 42 

region calculated as the relative difference between the BASE simulation and the corresponding 43 
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sensitivity simulation (in %). 1 

We can see from Fig. 8 (a) and (b) that shutting off emission clusters in eastern China (noER) 2 

dominantly impacts the simulated HCHO summertime loadings over Hefei, with the XHCHO derived 3 

from noER simulations reduced by a wide range of 20 ï 70% relative to the BASE simulation. 4 

Shutting off emission clusters in either central (noER), northern (noNR), or southern (noSR) China 5 

occasionally reduce the simulated HCHO summertime loadings over Hefei by an intermediate 6 

amplitude of 10 ï 30%. However, shutting off emission clusters in western China (noWR) has 7 

almost no effect on the simulated HCHO summertime loadings over Hefei, with the XHCHO derived 8 

from noWR simulations reduced by less than 2% relative to the BASE simulation. Modelled XHCHO 9 

summertime simulations from 2015 to 2019 were on average reduced by 0.33, 0.06, 0.03, 0.01, and 10 

0.03 ppbv in the absence of the emission clusters in eastern China, central China, northern China, 11 

western China, and southern China, respectively, which correspond to contributions of 44.36%, 12 

7.24%, 4.2%, 0.98%, and 4.59% to the HCHO summertime enhancements (Fig. A2). The remaining 13 

contribution was calculated as the difference between the BASE simulation and the sum of all 14 

geographical sensitivity simulations and was 0.27 ppbv (38.62%). This remaining contribution can 15 

be largely attributed to global CH4 emissions, NMVOCs emissions outside China and the nonlinear 16 

interactional effects among the geographical sensitivity simulations. Indeed, shutting off regional 17 

emission clusters in the GEOS-Chem geographical sensitivity tests investigated here eventually 18 

resulted in slightly enhanced HCHO amounts (by 0.5 ï 2 %) produced by GEOS-Chem compared 19 

to the BASE simulation, as shown in Fig. 8 (b) for the noSR simulations during later summer. It is 20 

worth noting that the remaining contribution here is 4.65% lower than that in section 4.2 (without 21 

global CH4 emissions shut off in both cases), indicating that the nonlinear effects with emission 22 

sources shut off globally are larger than those with regional emission clusters shut off. 23 

As a short-lived species (a few hours), the primarily emitted HCHO is heavily contributed from 24 

emissions at local and nearby regions. However, HCHO precursors originating from distant areas 25 

can be transported to the Hefei site under favourable weather conditions, and thus contribute to 26 

photochemical HCHO formation. In addition, atmospheric compounds, originating from sources 27 

either nearby or in distant areas and affecting the chemistry of HCHO or its precursors, could 28 

contribute to photochemical HCHO formation or background. As a result, in the vicinity of the 29 

observation site, emissions over eastern China dominated both the emitted and photochemical 30 

HCHO. Emissions outside eastern China mainly contributed to the photochemical or background 31 

HCHO at the observation site because of long-distance transport. Indeed, the sensitivity tests suggest 32 

that the NMVOCs related HCHO summertime enhancements were exclusively dominated by the 33 

emissions within eastern China. 34 

The emissions in western China are typically lower than those in other parts of China because 35 

of lower population and industries in the region (Lu et al., 2019; Zheng et al., 2018). The strong 36 

easterly and the south-westerly flows prevail in the lower troposphere during the summer Asian 37 

monsoon, including the South Asian summer monsoon and East Asian summer monsoon (Liu et al., 38 

2003; Wu et al., 2012). Therefore, the western China has the lowest contribution to the observed 39 

HCHO summertime enhancements due to the lowest HCHO precursor emissions and few air masses 40 

transported from this region during the summer Asian monsoon. 41 

4.4 Potential factors drive interannual variability of HCHO 42 

In this study, we use previous HCHO measurements at a rural site in the YRD region to 43 
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represent the background HCHO concentration in the ñcleanò atmosphere over Hefei, and assume 1 

its amplitude to be constant over years. As a result, the observed interannual variability of HCHO 2 

from 2015 to 2019 was not driven by the background portion but by either emitted or photochemical 3 

portions, or both. China has implemented a series of active clean air policies since 2013 to mitigate 4 

severe air pollution problems ( Sun et al. 2020; Zhang et al. 2019; Zheng et al. 2018). Since then 5 

the anthropogenic emissions of major air pollutants have decreased, and the overall air quality has 6 

substantially improved (Sun et al. 2020; Zhang et al. 2019; Zheng et al. 2018). The Prevention and 7 

Control of Atmospheric Pollution also included the prohibition of crop residue burning over China 8 

in 2015 because crop residue burning emissions can result in poor air quality 9 

(http://www.chinalaw.gov.cn, last access on 19 June 2020), leading to dramatical decrease in the 10 

crop residue burning events over China since then (Sun et al. 2020). Indeed, as evidenced in Table 11 

2, the anthropogenic and biomass burning emissions of many air pollutants, such as HCHO, sulphur 12 

dioxide (SO2), NOx, TSP (particulate matter with an aerodynamic diameter of 100 ɛm or less), 13 

particulate matter 2.5 (PM2.5), particulate matter 10 (PM10), CO, black carbon (BC), and organic 14 

carbon (OC), showed decreases in 2017 relative to 2016 (Lu et al., 2019; Zhang et al. 2019; Zheng 15 

et al. 2018).  16 

Anthropogenic and biomass burning HCHO emissions showed relative change rates of -2.0% 17 

and -17.0%, respectively, resulting in a total change rate of -9.5% in 2017 relative to 2016. As for 18 

photochemical HCHO, biomass burning emissions of its NMVOCs precursors showed a significant 19 

negative change rate of -17.0% in 2017 relative to 2016 as consequence of the prohibition of crop 20 

residue burning over China. However, both anthropogenic and biogenic emissions of NMVOCs 21 

showed positive change rates of 1.0% and 6.4%, respectively, in 2017 relative to 2016. When taken 22 

all emission categories into account, NMVOCs emissions were increased by 1.9% in 2017 relative 23 

to 2016. Furthermore, as an important precursor of HCHO, CH4 emissions over eastern China were 24 

increased by approximate 1% in 2017 relative to 2016 (Table 2). As a result, the observed increasing 25 

change rate of HCHO from 2015 to 2019 can be, to a large extent, attributed to the increase in 26 

photochemical HCHO resulting from increasing change rates of both NMVOCs and CH4, which 27 

overwhelmed the decrease in emitted HCHO. 28 

5 Concluding remarks 29 

China has implemented a series of active clean air policies in recent years to mitigate severe 30 

air pollution problems. Therefore, the emissions of major air pollutants have decreased and the 31 

overall air quality across China has substantially improved. However, the volatile organic 32 

compounds (VOCs) emissions, which are key precursors of formaldehyde (HCHO) and ozone (O3), 33 

are still increasing because the current clean air policies in China lack mitigation measures for VOCs.  34 

This study mapped the drivers of the observed variability in HCHO from 2015 to 2019 over 35 

Hefei, eastern China using ground-based high-resolution Fourier transform infrared (FTIR) 36 

spectroscopy and GEOS-Chem model simulations. The column-averaged dry air mole fractions of 37 

HCHO (XHCHO) reached a maximum monthly mean value of (1.1 ± 0.27) ppbv in July and a 38 

minimum monthly mean value of (0.4 ± 0.11) ppbv in January. FTIR XHCHO concentrations in July 39 

were on average 1.75 times higher than those in January. The XHCHO time series from 2015 to 2019 40 

over Hefei showed a positive change rate of (2.38 ± 0.71) % per year. The variability of XHCHO 41 

observed by FTIR at Hefei is in good agreement with that of the ground level HCHO measurements 42 

provided by a long path differential optical absorption spectroscopy (LP-DOAS) instrument and 43 
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thus the FTIR column measurements can be used as representative of near-surface conditions. The 1 

relative contributions of emitted and photochemical sources to the observed HCHO were analysed 2 

using ground level CO and Ox (O3 + NO2) as tracers for emitted and photochemical HCHO, 3 

respectively. On average, the contributions of emitted, photochemical, and background sources to 4 

the observed XHCHO from 2015 to 2019 were 29.0 ± 19.2%, 49.2 ± 18.5%, and 21.8 ± 6.1%, 5 

respectively. The photochemical HCHO was the dominant source of atmospheric HCHO over Hefei 6 

for most of the year (68.1%). In the studied years, total hydroxyl (OH) radical production rates from 7 

the photolysis of HCHO and O3 were comparable. The HCHO photolysis was by far an important 8 

source of OH radicals over Hefei during all sunlight hours of both summer and winter days. 9 

We found the GEOS-Chem model can simulate the concentrations and seasonal variations of 10 

HCHO for the heavily polluted regions over eastern China and thus it can be used for source 11 

attribution. Contributions of different emission categories and geographical regions in China to the 12 

observed HCHO were determined by using a series of GEOS-Chem model sensitivity simulations. 13 

The oxidations of both CH4 (methane) and nonmethane VOCs (NMVOCs) dominate the HCHO 14 

production over Hefei and constitute the main driver of its summertime enhancements. The 15 

NMVOCs and CH4 emissions accounted for about 56.73% and 43.27% of the HCHO summertime 16 

enhancements over Hefei, respectively. The NMVOCs related HCHO summertime enhancements 17 

were exclusively dominated by the emissions within eastern China. The observed increasing change 18 

rate of HCHO from 2015 to 2019 over Hefei is attributed to the increase in photochemical HCHO 19 

resulting from increasing change rates of both NMVOCs and CH4, which overwhelmed the decrease 20 

in emitted HCHO. 21 

This study can provide an evaluation of recent VOCs emissions and regional photochemical 22 

capacity in China. In addition, understanding the sources of HCHO is a necessary step for tackling 23 

the problems of poor air quality in eastern China and mitigating the emissions of pollutants.  24 
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Tables 1 

Table 1. Error budget and degrees of freedom (DOFS) for signal of the HCHO retrieval at Hefei 2 

Items Input values Error 

Temperature uncertainty SD of NCEP 0.61% 

Retrieval parameters uncertainty *  0.03% 

Interfering species uncertainty  SD of WACCM 0.09% 

Measurement noise 1/SNR2 1.59% 

Smoothing uncertainty *  0.83% 

Total random error  / 1.71% 

Background curvature uncertainty 1% 0.35% 

Optical path difference uncertainty 1% 0.07% 

Field of view uncertainty 1% 0.08% 

Solar zenith angle uncertainty 1% 0.37% 

Phase uncertainty 1% 0.61% 

ILS uncertainty 1% 0.23% 

Line temperature broadening 

uncertainty 

10% 0.49% 

Line pressure broadening uncertainty 10% 6.60% 

Line intensity uncertainty 10% 9.04% 

Total systematic error / 11.24% 

Total error  / 12.29% 

DOFS (-) / 1.09 

*  These input values used for error estimation are prescribed from the retrieval output 3 

 4 

Table 2. Total emissions of all atmospheric compounds over China used in the GEOS-Chem model. 5 

Fossil fuel emissions (Tg) 

Year HCHO SO2 NOx NMVOCs NH3 CO TSP PM10 PM2.5 BC OC CO2 

2016 0.31 13.4 22.5 28.4 10.3 141.9 17.9 10.8 8.1 1.3 2.3 10290.6 

2017 0.30 10.5 22.0 28.6 10.3 136.2 16.7 10.2 7.6 1.3 2.1 10434.3 

Change -2% -22% -2% 1% 0% -4% -7% -6% -6% 0% -9% 1.4% 

Biofuel emissions (Tg) 

Year HCHO NMVOCs CO NOx 

2015 0.03 0.23 3.19 0.09 

Biomass burning emissions (Tg) 

Year HCHO SO2 NOx NMVOCs NH3 CO PM2.5 BC OC CO2 

2016 0.29 0.12 0.78 3.96 0.31 17.64 1.85 0.10 0.98 284.72 

2017 0.24 0.09 0.64 3.32 0.24 14.00 1.41 0.08 0.75 229.68 

Change -17% -25% -18% -17% -23% -21% -24% -20% -23% -19% 

Biogenic emissions (Tg) 

Year NMVOCs NOx 

2016 23.2 0.96 

2017 24.7 0.92 

Change 6.4% -4% 

CH4 emissions 

Extrapolation from the NOAA measurements. The relative change rate of CH4 over eastern China in 2017 relative to 2016 is 

approximate 1%.  

 6 

  7 



 29 

Table 3. GEOS-Chem model configurations and delimitations of all geographical regions. For all sensitivity 1 
simulations, the CH4 emission inventory is always switched on. 2 

Simulation Region Description 

BASE Global Standard full chemistry simulation implemented all emission 

inventories at the same time. The BASE simulation is taken as 

the reference and used for model evaluation 

noFF Global Same as BASE but without global fossil fuel emissions 

noBVOC Global Same as BASE but without global biogenic emissions 

noBB Global Same as BASE but without global biomass burning emissions 

noBIOF Global Same as BASE but without global biofuel emissions 

Rest1 Global  Difference between BASE and the sum of FF, BVOC, BB, and 

BIOF contributions 

noWR 78.6° E ï 103.4° E; 

27.6°N - 48.8°N  

Same as BASE but without anthropogenic and natural emissions 

within western China (WR), i.e., region ǹ1  in Fig. 1(a) 

noNR 103.4°E ï 129.8°E; 

34.6°N ï 53.5°N  

Same as BASE but without anthropogenic and natural emissions 

within northern China (NR), i.e., region ǹ2  in Fig. 1(a) 

noCR 103.4°E ï 115.6°E; 

27.6°N ï 34.6°N  

Same as BASE but without anthropogenic and natural emissions 

within central China (CR), i.e., region ǹ3  in Fig. 1(a) 

noER 115.6°E ï 123.6°E; 

21.0°N ï 34.6°N  

Same as BASE but without anthropogenic and natural emissions 

within eastern China (ER), i.e., region ǹ4  in Fig. 1(a) 

noSR 98.1°E ï 115.6°E; 

21.0°N ï 27.6°N  

Same as BASE but without anthropogenic and natural emissions 

within southern China (SR), i.e., region ǹ5  in Fig. 1(a) 

Rest2 Rest of world Difference between BASE and the sum of WR, NR, CR, ER, and 

SR contributions 

 3 

Table 4. Statistical modelling results for relative contributions of different sources to the observed XHCHO from 4 
2015 to 2019 over Hefei, eastern China 5 

Items Total 

N (%) 

Emission 

domination 

N (%) 

Photochemical 

domination 

N (%) 

Background 

domination 

N (%) 

All  1502 (100%) 480 (31.9%)À 1022 (68.1%) 0 (0) 

Before 12:00 (LT) 727 (48.4%) 322 (21.4%) 405 (27.0%) 0 (0) 

After 12:00 (LT) 775 (51.6%) 158 (10.5%) 617 (41.1%) 0 (0) 

JJA/SON 890 (59.3%) 287 (19.1%) 603 (40.1%) 0 (0) 

DJF/MAM 612 (40.7%) 193 (12.8%) 419 (27.9%) 0 (0) 

d% > 0%ÀÀ 717 (47.7%) 273 (18.2%) 444 (29.6%) 0 (0) 

d% < 0% 785 (52.3%) 207 (13.8%) 578 (38.5%) 0 (0) 

Contribution  100% 29.0 ± 19.2%ÀÀÀ 49.2 ± 18.5% 21.8 ± 6.1% 

ÀThere are 480 measurements dominated by emitted source which accounts for 31.9% of all measurements 6 
ÀÀLarger than the seasonal mean value (see equation (3) for detail). 7 

ÀÀÀThe mean contribution of emitted source is 29.0 ± 19.2%. 8 

  9 
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Figures 1 

 2 
Fig. 1. (a) Location of the FTIR site at Hefei, eastern China and geographical regions used in GEOS-Chem sensitivity 3 
simulation. See Table 3 for latitude and longitude delimitation of each region. GEOS-Chem HCHO simulations on 4 
24 July 2016 were selected for demonstration of summertime enhancement over eastern China. Region ǹ1  covers 5 
few sparsely city clusters representing the region with least population and industrialization in China. Regions ǹ2 , 6 
ǹ4 , and ǹ5  cover the North China Plain (NCP), Yangtze River Delta (YRD), and Pearl River Delta (PRD) city 7 
clusters, respectively, which are the three most developed city clusters with severe air pollution in China. Region ǹ3  8 
covers the Sichuan Basin (SCB) and central Yangtze River (CYR) city clusters with newly emerging severe air 9 
pollution in China. (b) An overview of the location of the FTIR site, the CNEMC site and the optical path of the 10 
xenon LP-DOAS instrument.  11 
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 1 
Fig. 2. Averaging kernels, cumulative sum of degrees of freedom for signal (DOFS) and volume mixing ratio 2 
(VMR) profile of randomly selected HCHO retrievals at Hefei, eastern China. 3 

 4 
Fig. 3. Correlation plots of FTIR XHCHO measurements against LP-DOAS ground level HCHO measurements. The 5 
blue lines are linear fitted curves of respective scatter points. All concurrent data pairs were grouped by season. 6 
The number of data pairs within each season was also included. 7 
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 1 

Fig. 4. Daily mean time series of XHCHO comparison between FTIR observation and GEOS-Chem model BASE 2 
simulation from 2015 to 2019 over Hefei, China (a). The seasonality and interannual change rate are represented by 3 
red dots and black line, respectively, which are fitted by using a bootstrap resampling model with a 3rd Fourier series 4 
plus a linear function. (b) Seasonal variations of XHCHO by FTIR and GEOS-Chem simulation. Bold curves and the 5 
shadows are monthly mean values and the 1-ů standard variations, respectively. Vertical error bars represent retrieval 6 
uncertainties. 7 

 8 

Fig. 5. (a) Separation between emitted and photochemical HCHO by using CO - Ox tracers to model FTIR 9 
observations. (b) Relative contributions of emitted, photochemical and background sources to the observed XHCHO 10 
from 2015 to 2019 over Hefei, eastern China. The grey vertical shaded area indicates summertime measurements. 11 


