Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF 5-year value: 5.958
IF 5-year
CiteScore value: 9.7
SNIP value: 1.517
IPP value: 5.61
SJR value: 2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
h5-index value: 89
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  03 Jul 2020

03 Jul 2020

Review status
This preprint is currently under review for the journal ACP.

Future changes in isoprene-epoxydiol-derived secondary organic aerosol (IEPOX-SOA) under the shared socioeconomic pathways: the importance of explicit chemistry

Duseong S. Jo1,2,3, Alma Hodzic3, Louisa K. Emmons3, Simone Tilmes3, Rebecca H. Schwantes3,a,b, Michael J. Mills3, Pedro Campuzano-Jost1,2, Weiwei Hu1,2,c, Rahul A. Zaveri4, Richard C. Easter4, Balwinder Singh4, Zheng Lu5, Christiane Schulz6,7, Johannes Schneider6, John E. Shilling4, Armin Wisthaler8,9, and Jose L. Jimenez1,2 Duseong S. Jo et al.
  • 1Cooperative Institute for Research in Environmental Sciences (CIRES), University of Colorado, Boulder, CO, USA
  • 2Department of Chemistry, University of Colorado, Boulder, CO, USA
  • 3National Center for Atmospheric Research, Boulder, CO, USA
  • 4Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA
  • 5Department of Atmospheric Sciences, Texas A&M University, College Station, Texas
  • 6Particle Chemistry Department, Max Planck Institute for Chemistry, Mainz, Germany
  • 7Leibniz Institute for Tropospheric Research, Leipzig, Germany
  • 8Department of Chemistry, University of Oslo, Oslo, Norway
  • 9Institute for Ion Physics and Applied Physics, University of Innsbruck, Innsbruck, Austria
  • anow at: Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
  • bnow at: Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
  • cnow at: State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China

Abstract. Secondary organic aerosol (SOA) is a dominant contributor of fine particulate matter in the atmosphere, but the complexity of SOA formation chemistry hinders the accurate representation of SOA in models. Volatility-based SOA parameterizations have been adopted in many recent chemistry modeling studies and have shown a reasonable performance compared to observations. However, assumptions made in these empirical parameterizations can lead to substantial errors when applied to future climatic conditions as they do not include the mechanistic understanding of processes but are rather fitted to laboratory studies of SOA formation. This is particularly the case for SOA derived from isoprene epoxydiols (IEPOX-SOA), for which we have a higher level of understanding of the fundamental processes than is currently parameterized in most models. We predict future SOA concentrations using an explicit mechanism, and compare the predictions with the empirical parameterization based on the volatility basis set (VBS) approach. We then use the Community Earth System Model 2 (CESM2.1.0) with detailed isoprene chemistry and reactive uptake processes for the middle and end of the 21st century under four Shared Socioeconomic Pathways (SSPs): SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5. With the explicit chemical mechanism, we find that IEPOX-SOA is predicted to increase on average under all future SSP scenarios, however with some variability in the results depending on regions and the scenario chosen. Isoprene emission is the main driver of IEPOX-SOA changes in the future climate, but IEPOX-SOA yield from isoprene emission also changes by up to 50 % depending on the SSP scenario, in particular due to different sulfur emissions. We conduct sensitivity simulations with and without CO2 inhibition of isoprene emissions that is highly uncertain, which results in a factor of two differences in the predicted IEPOX-SOA global burden, especially for the high-CO2 scenarios (SSP3-7.0 and SSP5-8.5). Aerosol pH also plays a critical role in the IEPOX-SOA formation rate, requiring accurate calculation of aerosol pH in chemistry models. On the other hand, isoprene SOA calculated with the VBS scheme predicts nearly constant SOA yield from isoprene emission across all SSP scenarios, as a result, it mostly follows isoprene emissions regardless of region and scenario. This is because the VBS scheme does not consider heterogeneous chemistry, in other words, there is no dependency on aerosol properties. The discrepancy between the explicit mechanism and VBS parameterization in this study is likely to occur for other SOA components as well, which may also have dependencies that cannot be captured by VBS parameterizations. This study highlights the need for more explicit chemistry, or for parameterizations that capture the dependence on key physico-chemical drivers when predicting SOA concentrations for climate studies.

Duseong S. Jo et al.

Interactive discussion

Status: final response (author comments only)
Status: final response (author comments only)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Login for Authors/Editors] [Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Duseong S. Jo et al.

Duseong S. Jo et al.


Total article views: 336 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
231 95 10 336 45 12 15
  • HTML: 231
  • PDF: 95
  • XML: 10
  • Total: 336
  • Supplement: 45
  • BibTeX: 12
  • EndNote: 15
Views and downloads (calculated since 03 Jul 2020)
Cumulative views and downloads (calculated since 03 Jul 2020)

Viewed (geographical distribution)

Total article views: 373 (including HTML, PDF, and XML) Thereof 372 with geography defined and 1 with unknown origin.
Country # Views %
  • 1



No saved metrics found.


No discussed metrics found.
Latest update: 21 Oct 2020
Publications Copernicus
Short summary
Secondary organic aerosol (SOA) is a major component of submicron particulate matter but there are a lot of uncertainties in the future prediction of SOA. We used CESM 2.1 to investigate future IEPOX-SOA concentration changes. The explicit chemistry predicted substantial changes of IEPOX-SOA depending on the future scenario, but the parameterization predicted weak changes due to simplified chemistry, which shows the importance of correct physico-chemical dependencies in future SOA prediction.
Secondary organic aerosol (SOA) is a major component of submicron particulate matter but there...