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Abstract. The top-down atmospheric inversion method that couples atmospheric CO2 observations with an atmospheric transport 

model has been used extensively to quantify CO2 emissions from cities. However, the potential of the method is limited by several 

sources of misfits between the measured and modeled CO2 that are of different origins than the targeted CO2 emissions. This study 

investigates the critical sources of errors that can compromise the estimates of the city-scale emissions and identifies the signal of 10 

emissions that has to be filtered when doing inversions. A set of one-year forward simulations is carried out using the WRF-Chem 

model at a horizontal resolution of 1 km focusing on the Paris area with different anthropogenic emission inventories, physical 

parameterizations and CO2 boundary conditions. The simulated CO2 concentrations are compared with in situ observations from 

six continuous monitoring stations located within Paris and its vicinity. Results highlight large nighttime observation-model misfits, 

especially in winter within the city, which are attributed to large uncertainties in the diurnal profile of anthropogenic emissions as 15 

well as to errors in the vertical mixing near the surface in the WRF-Chem model. The nighttime biogenic respiration to the CO2 

concentration is a significant source of modeling errors during the growing season outside the city. When winds are from 

continental Europe and the CO2 concentration of incoming air masses is influenced by remote emissions and large-scale biogenic 

fluxes, differences in the simulated CO2 induced by the two different boundary conditions (CAMS and CarbonTracker) can be of 

up to 5 ppm. Our results suggest three selection criteria for the CO2 data to be assimilated for the inversion of CO2 emissions from 20 

Paris (i) discard data that appear as statistical outliers in the model-data misfits which are interpreted as model’s deficiencies under 

complex meteorological conditions; (ii) use only afternoon urban measurements in winter and suburban ones in summer; (iii) test 

the influence of different boundary conditions in inversions. If possible, using additional observations to constrain the boundary 

inflow, or using CO2 gradients of upwind-downwind stations, rather than absolute CO2 concentration, as atmospheric inversion 

inputs. 25 

1 Introduction 

Worldwide, almost two-thirds of global final energy consumption takes place in urban agglomeration areas that have a high 

population density and corresponding infrastructure, and cities are responsible for more than 70% of the global anthropogenic CO2 

emissions (IEA, 2016; Seto et al., 2014). Due to progressing urbanization processes, the number of people living in cities is 

expected to increase from the current 7.7 billion in 2019 to more than 9.7 billion by 2050 (United Nations, 2019). More than ever, 30 

cities are at the front line of climate change mitigation and take the lead in energy transition and emission reduction of greenhouse 

gases.  

Currently, a variety of efforts are underway to quantify cities’ total CO2 emissions and establish a high spatially and temporally 

resolved emission inventory for supporting urban emission mitigation strategies. An independent monitoring of city emission is 

highly desirable, which could be delivered by the top-down atmospheric inversion method using regional high-resolution transport 35 

models together with ground-based urban CO2 concentration networks and/or satellites with imagery capabilities. The so-called 
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atmospheric inversion provides an optimized estimate of CO2 emissions aiming at the best agreement between atmospheric CO2 

measurements and their simulated equivalents. It relies on the filtering of the CO2 signal associated with the urban emissions at the 

targeted spatial and temporal scales from other sources of misfits between measured and modeled CO2 concentrations. These other 

sources of misfits include uncertainties in the atmospheric transport, in atmospheric CO2 conditions that are used at the boundaries 

of the regional model, in the natural CO2 fluxes within the modeling domain, but also in the spatial and temporal distribution of 5 

the urban emissions at scales finer than the targeted ones. Even when controlling the emissions at a relatively high temporal and 

spatial resolution, city-scale inversion frameworks have generally targeted monthly to annual budgets of the emissions at the city 

scale, or for large areas of these cities (strong temporal and spatial correlations are assumed). The uncertainties in the assumed 

temporal and spatial emission variations induce a critical source of error poorly constrained by the inversions due to the lack of 

data (Bréon et al. 2015; Lauvaux et al. 2016). The spatial and temporal allocation of the emissions is generally derived from high-10 

resolution gridded inventory based on uncertain activity data in the transportation, residential, and power sectors (Gately et al., 

2017). Moreover, local sources of CO2 emission in the vicinity of an urban station can cause variations of atmospheric CO2 that 

are not captured by the inventories and transport models of kilometric scale that have been used for city inversions so far (Boon et 

al., 2016; Lian et al., 2019). Further, cities have green areas and are surrounded by rural areas that actively take up CO2 in the 

daytime during the growing season. Uncertainties and variability in those biogenic fluxes also significantly affect the results of 15 

atmospheric inversions (Hardiman et al., 2017). 

Uncertainties in modeling the atmospheric transport of CO2 are exacerbated in urban areas due to building obstacles that generate 

specific mixing processes and modify the wind speed and direction. In addition, sensible heat emissions at the surface of urban 

areas enhance vertical mixing, increase the depth of the boundary layer (Dupont et al., 1999) and can drive regional mesoscale 

circulations under certain conditions. To reduce transport uncertainties in inversions over urban areas, one can use dedicated urban 20 

surface schemes (e.g. Nehrkorn et al., 2013; Feng et al., 2016). More general approaches to reduce transport errors rely on the 

assimilation of upper-air weather data or on the optimization of the model configuration, e.g. based on comparisons against 

independent wind measurements (e.g. Deng et al., 2017). But some errors remain difficult to quantify, such as those from local 

circulations and complex meteorological conditions (Martin et al., 2019). As a consequence, an empirical selection of the data to 

be assimilated is usually performed, which is more or less stringent depending on each urban station and transport model. Typical 25 

selection criteria of continuous urban CO2 data consist of (i) using only measurements acquired during the afternoon when a well-

developed convective mixing layer is expected; (ii) using only observations when the wind speed is above a given threshold; (iii) 

removing statistical outliers. 

Uncertainties in CO2 boundary conditions arise from the fact that city-scale inversions are performed over a limited spatial domain 

that receives CO2 signals from outside. These boundary conditions usually cannot be measured explicitly and they can be complex 30 

for continental cities that receive CO2 advected by long-range and middle-range transport from other urban areas and biogenic 

fluxes. Göckede et al. (2010) found that small biases in CO2 boundary condition could lead to large errors (~47%) in the posterior 

annual state-level CO2 fluxes of Oregon. Lauvaux et al. (2012) found that a 0.55 ppm bias of CO2 boundary condition induced a 

10% bias in the posterior annual CO2 flux of Iowa and surrounding states. In order to try to eliminate the bias from boundary 

conditions, Bréon et al. (2015) and Staufer et al. (2016) proposed to assimilate CO2 gradients between upwind-downwind stations 35 

in inversions of CO2 fluxes of the Paris area, which reduces the number of data that can be assimilated. 

Series of CO2 transport and inverse modeling studies have been conducted for Paris (Bréon et al., 2015; Staufer et al., 2016; Wu 

et al., 2016; Broquet et al., 2018; Xueref-Remy et al., 2018). A network of seven stations, including two stations at the center of 

the city and five stations in its vicinity, has been maintained since 2014. This study resumes this activity and aims at supporting 

the revisit of some of the options previously used for the inversion based on a more advanced transport modeling framework 40 
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developed by Lian et al. 2018 and 2019. More specifically, we analyze in detail the model-measurement mismatches so as to 

identify critical sources of errors that would compromise a high-resolution atmospheric inversion of urban CO2 emissions in the 

Paris area. A set of forward simulations of atmospheric CO2 concentration are performed at 1-km horizontal resolution using the 

WRF-Chem model (Grell et al., 2005) with different anthropogenic emission inventories, physical parameterizations and CO2 

boundary conditions over the Paris region from December 2015 to November 2016. The main objective of this paper is to describe 5 

and quantify the uncertainties induced by anthropogenic emissions, biogenic fluxes, atmospheric transport and CO2 boundary 

conditions. We also address the question to what extent these model-measurement mismatches might be reduced and how our 

proposed diagnostics could be used to provide additional constraints for the inversion of CO2 emissions at the city scale. 

2 Methods 

2.1 Experimental design 10 

The WRF-Chem V3.9.1 model was used to simulate hourly atmospheric CO2 concentrations over the Paris region. Details 

regarding the model setup and the reference data used in the simulations are outlined briefly below and described in Lian et al. 

(2019). The model was configured with one-way nesting of three modeling domains (D01, D02, and D03 in Figure 1a) at horizontal 

grid resolutions of 25, 5 and 1 km respectively, in which the innermost one (D03) covers the Île-de-France region (IdF, which is 

the administrative area that includes the Paris urban area) and its surrounding. The meteorological initial and lateral boundary 15 

conditions were retrieved from the global European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis 

data (ERA-Interim) with 0.75°×0.75° horizontal resolution at 6-hourly update intervals (Berrisford et al., 2011). The grid nudging 

option in WRF to relax the model to ERA-Interim on large scales was applied to temperature and wind fields at model levels above 

the planetary boundary layer (PBL) of the outer two domains. We also used the surface analysis nudging and observation nudging 

options to assimilate the National Centers for Environmental Prediction (NCEP) operational global upper-air (ds351.0) and surface 20 

(ds461.0) observation weather station data (https://rda.ucar.edu/datasets/ds351.0/; https://rda.ucar.edu/datasets/ds461.0/), which 

are described in more detail in Lian et al. (2018). The biogenic CO2 fluxes were calculated online in WRF-Chem by the diagnostic 

biosphere Vegetation Photosynthesis and Respiration Model (VPRM) (Mahadevan et al., 2008; Ahmadov et al., 2007, 2009). 

2.1.1 Atmospheric physics options 

An accurate physical parameterization of atmospheric transport model is critical to numerical simulations of the meteorology and 25 

CO2 concentrations within and around urban areas. A set of numerical experiments was performed to assess the sensitivity of the 

simulations with the WRF-Chem model to the choice of different physics schemes. The characteristics of CO2 distributions are 

highly related to the PBL structure and its temporal evolution. We thus carried out sensitivity experiments with three different PBL 

parameterization schemes (Table 1a), including the Yonsei University scheme (YSU) (Hong et al., 2006), the Mellor-Yamada-

Janjic scheme (MYJ) (Janjić, 1990, 1994), and the Bougeault-Lacarrère scheme (BouLac) (Bougeault and Lacarrere, 1989). In 30 

addition, two different urban surface parameterizations were investigated, the single-layer urban canopy model (UCM) (Chen et 

al., 2011) and the multilayer urban canopy model BEP (Building Effect Parameterization) (Martilli et al., 2002) (Table 1a). The 

non-local YSU scheme was used with the Revised MM5 Monin-Obukhov surface layer scheme (Jiménez et al., 2012), whereas 

the two local MYJ and BouLac schemes were used with the Monin-Obukhov Eta Similarity surface layer scheme (Janjić, 1996). 

All other physics options were identical for all sensitivity runs: WSM6 microphysics scheme (Hong and Lim, 2006), RRTM 35 

longwave radiation scheme (Mlawer et al., 1997), Dudhia shortwave radiation scheme (Dudhia, 1989), Unified Noah land-surface 

scheme for non-urban land cover surface energy fluxes (Chen and Dudhia, 2001). The Grell 3D ensemble cumulus convection 
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scheme (Grell and Dévényi, 2002) was only employed for the outer domain (D01). These options correspond to those selected by 

Lian et al. (2018) which showed good performances for simulating near-surface winds and temperatures over the Paris region. The 

simulations were performed for a period of 15 months from September 2015 to November 2016 including a spin-up of three months.  

2.1.2 Anthropogenic emission inventories 

Numerical experiments were carried out to assess the modeled CO2 sensitivity to the use of different anthropogenic emission maps 5 

and to get insights on the signature of typical uncertainties in such maps (Table 1b). The two spatially and temporally explicit 

emission fields derived from inventories used in this study were the 2010 AirParif inventory at a spatial resolution of 1 km 

(AIRPARIF, 2013) and the European greenhouse gas emission inventory (5 km × 5 km resolution) for the base year 2005 developed 

by the Institute of Economics and the Rational Use of Energy (IER), University of Stuttgart (http://carboeurope.ier.uni-

stuttgart.de/). Both inventories simulated monthly, weekly and diurnal profiles and were rescaled on the basis of the ratios of the 10 

national annual budgets of CO2 emissions for the countries within the domain, between the base year and the year of simulation 

(2015/2016), taken from Le Quéré et al. (2018).  

Figures 1b and 1c show a map of daily CO2 emission within the IdF region for a weekday in November 2015 from the 1-km 

AirParif inventory and the 5-km IER inventory respectively. The figures show that the emissions are the largest within and in the 

near vicinity of the Paris administrative city (the core of the urban area). The suburban area extends approximately 15 km outside 15 

of the city limits. The AirParif inventory is expected to offer a more robust description of the emissions for the year of simulation 

than the IER inventory does because it uses more local and more recent data (AIRPARIF, 2013).  

The temporal variations of emissions also show some differences, in particular when differentiated per sector (Figure 2). The 

emissions, split up by five sectors (namely building, surface traffic, energy, industry, and all other sectors), are different both in 

terms of magnitude and diurnal cycle between the two inventories. This is true both for the very center of Paris where the CDS 20 

CO2 measurement station is located (Figure 2a) and on a relatively large (5-km) spatial scale (Figure 2b). The relative difference 

between the two inventories is smaller in terms of total emissions. Figures 2c and 2d show the total emission for both IER and 

AirParif inventories as a function of time in the day. At the larger scale (Figure 2d), a substantial difference is found during the 

early morning when AirParif shows emissions that are much smaller than those of IER, and with a clear temporal trend. 

We made a one-month simulation using these two anthropogenic inventories together with their respective temporal profiles in 25 

order to analyze the impact on the simulated CO2 concentrations (Table 1b). Within the same group of simulations, we also used 

(i) a constant temporal profile (each pixel has a different emission, but constant in time based on the temporal average of the 

AirParif inventory) and (ii) a constant and spatially homogeneous emission where the emissions are distributed uniformly over the 

IdF whole territory. Distinct CO2 tracers are used for each of the four experiments to quantify their respective impacts on the 

atmospheric CO2 concentration, for a given configuration of the WRF-Chem model. The simulation was carried out for the one-30 

month period of January 2016 when the influence of regional biogenic flux on CO2 signals is relatively small compared to that of 

anthropogenic flux. 

2.1.3 Boundary conditions for CO2 

A set of sensitivity experiments was designed to investigate the impact of different CO2 boundary conditions on the Paris CO2 

concentrations (Table 1c). The initial and lateral boundary conditions for CO2 concentration fields used in the sensitivity 35 

experiments were taken from two global CO2 atmospheric inversion products at 3-hourly update intervals: CAMS and 

CarbonTracker. CAMS has a horizontal resolution of 3.75°×1.90° (longitude × latitude), with 39 hybrid layers in the vertical 

(version v16r1, https://apps.ecmwf.int/datasets/data/cams-ghg-inversions/; Chevallier, 2017a, 2017b). CarbonTracker has a 
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horizontal resolution of 3° in longitude and 2° in latitude, with 25 vertical layers (version CT2017, http://carbontracker.noaa.gov; 

Peters et al. 2007). Both global datasets were interpolated onto the outermost domain of WRF-Chem (D01) (bilinearly in longitude, 

longitude and linearly in pressure) so as to provide the lateral boundary conditions for CO2 simulations. Given that CarbonTracker 

has an averaged value over each 3-hourly interval (the times on the date axis are the centers of each averaging period), it was also 

linearly interpolated in time to ensure consistency with both CAMS and the interval of input data for WRF-Chem (e.g. the value 5 

at 00 UTC was generated by interpolating the one at 22.5 UTC of the previous day with the one at 1.5 UTC of the same day). 

Figure 3 shows time series of average differences in CO2 concentration between CAMS and CarbonTracker at each of the four 

lateral boundaries, averaged over the lowest 0.7 km above ground level (AGL), of D01 for both 00 UTC and 12 UTC. These time 

series are the spatial mean and standard deviation (± 1σ) over each boundary (a latitudinal transect for western and eastern 

boundaries / a longitudinal transect for southern and northern boundaries). In general, winds blow mostly from the west in all 10 

seasons over the domain of interest. Small differences at the western boundary are observed under the influence of prevailing 

westerlies with annual means of the spatial mean and standard deviation of 0.01 ± 2.8 ppm for 00 UTC and 0.4 ± 1.8 ppm for 12 

UTC, which is expected as the air masses are advected from clean air (oceanic) areas. In contrast, the differences are significantly 

larger at the eastern boundary (-4.8 ± 7.4 ppm for 00 UTC and -1.7 ± 3.3 ppm for 12 UTC), but can vary from day to day depending 

on the synoptic weather condition. This feature indicates that CAMS and CarbonTracker may provide substantially different 15 

continental CO2 background signals to the inner domain when the wind blows from the east. Moreover, the magnitude and 

variability of the differences are overall smaller at noon compared to those at midnight. The variability of nighttime differences 

appears relatively larger in summer than those in winter. Note that the CO2 differences between CAMS and CarbonTracker are 

much smaller for the upper layers above 0.7 km AGL, with annual means of the spatial mean and standard deviation of -0.4 ± 0.4 

ppm for both 00 UTC and 12 UTC at the eastern boundary (Figure S1). 20 

The WRF-Chem simulation with boundary conditions from CarbonTracker used the same physics schemes and prior fluxes as the 

one with boundary conditions from CAMS (also defined as the control run), whereas it was only carried out for the parent domain 

(D01) without nesting over a full-year period (2015.09-2016.11). Given the fact that lateral boundary conditions are fed to the 

nested domain from the parent (the nest is driven along its lateral boundaries by the parent domain), results from D01 should 

therefore be representative enough to access the modeled CO2 sensitivity over the IdF region to the use of different CO2 boundary 25 

conditions. 

2.2 CO2 in situ observations 

For the model evaluation, we use observations from six in situ continuous CO2 monitoring stations established in the IdF region. 

Four stations (AND, COU, OVS, SAC) are located within peri-urban areas and two (JUS and CDS) are located within the Paris 

city. The SAC station has two air inlets placed at 15 m and 100 m AGL respectively. Each of the other stations is equipped with a 30 

continuous CO2 gas analyzer and inlets located on rooftops or on towers with heights varying from 20 m to 60 m AGL. The CO2 

analyzers are high-precision cavity ring-down spectroscopy instruments with a calibration system using three reference gases tied 

to the WMO CO2 X2007 scale every 2 to 6 months (Tans et al., 2011). The six stations within IdF are complemented by two ICOS 

atmospheric background CO2 tall tower monitoring stations (TRN and OPE) located respectively 101 km and 235 km away from 

the center of Paris. In this study, these two stations are only used as potential background sites and to provide additional support 35 

and validations for the results of diagnostics made at the SAC site. The locations of all the observing stations together with their 

sampling heights are shown in Figure 1. 
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3 Results 

3.1 Overall model performance 

In this section, we start with an evaluation of the overall performance of the control run (BEP_MYJ) in simulating atmospheric 

CO2 over the full-year period. The accuracy of model estimates at the six in situ measurement stations is assessed using three 

statistical indicators corresponding to the hourly values: the correlation coefficient (R), the root mean square error (RMSE) and 5 

the mean bias error (MBE). We also use the K-nearest neighbors (KNN) algorithm with an outlier fraction of 0.1 (10%) to detect 

the largest model-observation mismatches so as to minimize their influences on the statistical results (Ramaswamy et al., 2000; 

Zhao et al., 2019). These large model-observation discrepancies may be due e.g. to the occasional contaminations from local 

sources of CO2 emissions near the measurement station that cannot be resolved by the 1-km resolution model, or to the failure of 

the model in the description of CO2 concentrations under some meteorological conditions such as heavy rains and storms, thick 10 

clouds with a thermodynamically stable inversion (diagnosed hereafter from Bulletin Climatique Météo-France, 2016). 

Figure 4 shows, for the six monitoring sites, the scatter plots of the BEP_MYJ simulated vs. observed all hourly CO2 concentrations 

from December 2015 to November 2016. The typical CO2 concentrations vary between 390 and 430 ppm, and up to 440 ppm 

within the city (JUS and CDS stations). For short periods, the concentrations can be much higher (both for the observations and 

the model), in particular within the city where values of more than 500 ppm are sometimes observed. However, these data are 15 

considered as “outliers” by the KNN. When considering all data-points, the correlations vary between 0.5 for the JUS station at 

the very center of Paris to 0.76 at AND. The correlations get larger (0.55-0.83) when KNN outliers are removed. This correlation 

is partly driven by the seasonal cycle of CO2 and does not provide specific information on the model’s ability to reproduce the 

short-term variations. The MBEs are of a few ppm, and at the OVS station can go up to -6 ppm. The KNN removal of outliers 

tends to reduce these biases, but not so within the Paris city. Finally, the RMSEs are larger than 10 ppm in most stations. RMSE 20 

values are significantly reduced through the KNN data selection but nevertheless range between approximately 5 and 10 ppm.  

Figure 5 shows the average diurnal cycles split up by season for the measurements and the model results. It also shows the 

corresponding differences between the model and the data. These figures clearly show the seasonal variability with summer 

concentrations smaller than those during the rest of the year (due to photosynthetic absorption), larger concentrations within the 

city (JUS and CDS) (in the largest cluster of anthropogenic emissions), and the strong diurnal cycle that is mostly driven by 25 

atmospheric mixing. Both observations and the model show a double-peak pattern in the diurnal cycle of CO2 concentrations at 

the two urban stations in winter. In addition to the mean seasonal cycle that is generated by large-scale (continental, hemispheric) 

vegetation photosynthetic uptake and respiration coupled to long-range transport, the variability of the synoptic-scale atmospheric 

flow also impacts the seasonal concentrations. It is worth noting that the CO2 concentrations in autumn 2016 (SON) are on average 

higher than the other seasons, even slightly larger than those of the winter period (DJF) in 2015. This is interpreted as the 30 

consequence of persistent anticyclonic conditions leading to dry and calm weather over the north of France, and thus CO2 

accumulation near the surface throughout that period (Bulletin Climatique Météo-France, 2016). 

The model reproduces the main features of the average diurnal cycle of CO2 during the different seasons but the measurement-

model discrepancies can be significant. At noon and during the afternoon, the mean differences are on the order of a ppm (with the 

exception of JUS). The model underestimates CO2 with a time-varying bias roughly ranging from 0 to 12 ppm across stations for 35 

all seasons during the night until around 05 UTC. The two stations within the city have different behaviors, with larger differences, 

in particular the JUS station located at the city center. For this station, significant measurement-model discrepancies varying from 

0 to 7 ppm over time are found, even during the afternoon when a good agreement is found at the other stations. Moreover, the 

model reproduces much smaller amplitudes of CO2 diurnal cycle than the observations, in particular at the suburban stations. 
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The measurements themselves have an accuracy that is on the order of a fraction of a ppm (Xueref-Remy et al., 2018) and 

measurement errors are therefore negligible when analyzing such model-data differences. In the following, we analyze in further 

detail the measurement-model discrepancies and attempt to identify cases when they appear to be mainly driven by uncertainties 

in the anthropogenic emissions, in the biogenic fluxes, in the physical parameterizations of the atmospheric transport model, or in 

the CO2 boundary conditions at the limit of the atmospheric transport model.  5 

3.2 Contribution of main sources of errors in the simulated CO2 related to different factors 

3.2.1 Emission inventory 

The main objective when measuring CO2 concentrations within or in proximity to the city is to estimate the anthropogenic 

emissions by means of an atmospheric inversion. It is then natural to seek, in the time series, unambiguous signatures of erroneous 

assumptions on the anthropogenic emissions. This is a difficult task as significant uncertainties in the atmospheric transport also 10 

impact the modeling results, while there is no knowledge of both “true” emissions and “true” transport. 

Figure 6 shows the results of the sensitivity experiments that used different temporal profiles and spatial distributions of 

anthropogenic CO2 emissions (see Table 1b and Figure 2). The decomposition of the CO2 concentration per tracer makes it very 

clear that the diurnal cycle of CO2 at the six measurement sites is almost entirely associated with the signature of the anthropogenic 

emissions in January when the biogenic flux is small. This may not hold during the growing season. None of the simulations shows 15 

a diurnal cycle that is close to the observed one. The most striking error is the variation of the concentrations during the night with 

the observation showing an increase of CO2 and the model showing a clear decrease. This simulated decrease is in part related to 

the emission that has a decreasing trend during the night (Figure 2). Indeed, when assuming an emission constant in time, the 

decreasing trend is reduced and the modeled value (green line in Figure 6) gets somewhat closer to the observation. Further analysis 

shows that the nighttime trend of the anthropogenic emission in January is mostly linked to residential heating in the inventory. 20 

The diurnal profile used for heating emissions in the AirParif inventory (with a significant decrease along the night) can thus be 

questioned.  

Although there is a strong indication that the nighttime profile of the AirParif CO2 emissions is erroneous and that heating emissions 

do not reduce strongly during the night, this error does not entirely explain the model-data misfit at CDS shown in Figure 6. This 

is proven by the fact that even the “constant emission” simulation does not reproduce the increasing concentration during the night. 25 

This implies that errors in atmospheric transport are also contributing to the model-data misfit, in particular concerning the vertical 

mixing near the surface. Further evidence for the transport deficiency is that the underestimations of nighttime CO2 concentration 

are not only large at the two urban sites but also obvious at all rural stations (Figure 5). 

To gain insights on vertical transport differences, we show in Figure 7 the vertical distribution of the BEP_MYJ modeled CO2 

concentrations at CDS in January together with time series of observed and simulated CO2 concentrations at a sampling height of 30 

34 m AGL. The PBL heights shown in Figure 7 are diagnosed using the 1.5-theta-increase method which defines the height of 

PBL as the level at which the potential temperature first exceeds the minimum potential temperature within the boundary layer by 

1.5 K (Nielsen-Gammon et al., 2008). Results show that the model reproduces large vertical gradients in CO2 concentrations in the 

low atmosphere levels, i.e. up to approximately 300 m AGL but mostly in the first 100 m. The largest concentrations are observed 

in low-wind conditions and when the PBL is shallow. It is worth noting that the modeled CO2 concentrations within the PBL are 35 

not vertically homogeneous but exhibit a strong gradient. This indicates that when the measurements are under a strong influence 

of upwind emissions or close to the large sources of emissions, the mixing is far from complete, even during the afternoon.  

Moreover, both the BEP_MYJ and BEP_MYJ_IER model slightly overestimate CO2 concentrations at CDS in the late afternoon 

and early evening (from 18 pm to 22 pm) not only in January (Figure 6) but also over the full year (Figure 5). This is interpreted 
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as the consequence of a shift from a situation with convective mixing to stable nocturnal conditions around sunset occurring too 

early in the model. It may also be linked to an increase in traffic emissions during the evening rush hour, which could also lead to 

the overestimated modeled concentrations in the late afternoon.  

3.2.2 Biogenic fluxes 

To analyze the influence of biogenic fluxes on the CO2 concentrations, we computed CO2 horizontal differences between two sites 5 

(i) CDS, that is within the limits of the Paris city where the diurnal cycle in winter is dominated by anthropogenic emissions (see 

Figure 6) and (ii) SAC that is over a more rural area with a mix of crops and forest, so that the variations of CO2 concentrations at 

that site are driven by biogenic fluxes in the domain and CO2 background conditions. Figures 8a and 8b show the time series of 

the observed and BEP_MYJ simulated horizontal differences in near-surface daily CO2 concentration between CDS and SAC for 

two different periods of the day, the afternoon mean (11-16 UTC) and the nighttime mean (21-05 UTC) from December 2015 to 10 

November 2016.  

The separate tracers from the WRF-Chem model make it possible to quantify the respective contribution of anthropogenic, biogenic 

and background sources to the CO2 difference between CDS and SAC (Figure 8c and 8d). During the afternoon, the CO2 differences 

are mostly positive and result primarily from the larger contribution of the anthropogenic emissions at CDS, both during the 

growing and non-growing season. This result indicates that the magnitude of daytime net carbon uptake by plants does not fully 15 

offset that of the anthropogenic emissions, and thus the CO2 concentration gradients between the upwind and downwind stations 

that are used in previous inversion studies (Bréon et al., 2015; Staufer et al., 2016) can also be used even during the growing season. 

During the night, there is a large measurement-model discrepancy from June to September (the SAC station had unfortunately 

measurement gaps). During this growing season period, the observed difference between CDS and SAC is negative at night (higher 

concentrations at SAC than at CDS), while the simulated difference is positive resulting from a large positive anthropogenic 20 

contribution and a smaller negative biogenic contribution. Figure S2 shows that this nighttime misfit between the modeled and 

observed CO2 differences has a seasonal trend that follows closely the one of the modeled gross primary production (GPP). A large 

fraction of GPP realized each day is respired at night by plant maintenance respiration. The seasonal trend of the nighttime misfit 

between CDS and SAC thus indicates that the model underestimates plant respiration at night, and thus possibly GPP in the day. 

Although it is impossible to negate other hypotheses related to the atmospheric transport and vertical mixing, this result suggests 25 

that modeling nighttime CO2 at rural stations is affected by systematic errors of respiration during the growing season, so that 

nighttime rural CO2 data can hardly be used in atmospheric inversions for inferring anthropogenic emissions.  

Further insight on the CO2 concentration dynamics at SAC is provided by the vertical differences that are derived from the 

measurements at two levels, 15 m and 100 m AGL, on a tall tower at that location (Figure 9). During the afternoon, the differences 

are small and there is little agreement between the observations and the simulated values (Figure 9a). This systematic bias between 30 

the observed and simulated CO2 vertical gradients could be explained by an underestimation of the photosynthetic uptake. The 

vertical CO2 differences are much larger at night with a fair agreement between the measurements and the simulated values in 

wintertime (Figure 9b). Although the nighttime time series show strong similitudes, there is a significant bias between the 

observations and the model during the growing season, but not so during the non-growing season. The seasonal phase of the vertical 

misfit is well correlated with the one obtained from the horizontal diagnostics, which tends to indicate the same bias in the estimated 35 

nighttime respiration. 

The analyses of both Figure 8 and 9, together with similar results observed at other stations (Figure S3: e.g. the horizontal difference 

between CDS and COU, and the vertical difference at TRN), are consistent with the hypothesis that the respiration emission at 

night is underestimated by the VPRM model. Since nighttime respiration is usually well correlated with daytime respiration 
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(Reichstein et al., 2005), this result implies that the modeled positive gradients of CO2 between urban and rural stations are probably 

overestimated during the growing season, so that without any optimization of respiration, an inversion would tend to generate a 

positive bias in the anthropogenic emissions estimates, to compensate for the negative bias in the respiration from VPRM. 

3.2.3 Atmospheric transport 

Uncertainty in simulated CO2 due to transport errors can be evaluated empirically through the spread of simulated CO2 by 5 

sensitivity experiments with different physical configurations of WRF-Chem. We have made five sensitivity simulations using the 

same surface fluxes and boundary conditions, but with three PBL schemes and two urban canopy schemes (see Table 1a).  

Figure 10a shows the horizontal distribution of the monthly median standard deviation of simulated hourly CO2 concentrations at 

approximately 20 m AGL using different physics schemes for two periods of the day (afternoon 11-16 UTC, nighttime 00-05 

UTC), and for two months (January, July 2016). During January, the simulated CO2 concentrations within the city, both in 10 

afternoon and nighttime, are highly sensitive to the choice of the physics scheme, with median standard deviations larger than 6 

ppm. In contrast, the choice of the physics scheme has less influence on simulated CO2 concentrations over suburban and rural 

areas in winter, with the median standard deviations of 1.2 ppm in the afternoon and 2 ppm at night. During the summer period, 

the smallest uncertainty of simulated CO2 concentration resulting from different physics schemes is found in the afternoon with 

median standard deviations that are less than 1 ppm, which indicates that the various schemes provide very similar values. However, 15 

it is necessary to compare these standard deviations to the amplitudes of the anthropogenic emission signature. We thus calculated 

the median ratios of the simulated anthropogenic CO2 concentration (average over the five sensitivity runs) to its respective 

standard deviation of the total CO2 signals among the five sensitivity runs, which we define as the “signal-to-noise ratio” (Figure 

10b). Indeed, the anthropogenic signal may be understood as the “signal” for the estimate of the emission, while the spread of the 

five sensitivity simulations provides an indicator of the atmospheric transport uncertainty. The largest signal-to-noise ratio is found 20 

in the afternoon of summer within the urban area, indicating that the link between the anthropogenic emission and the CO2 

concentration can be derived from the model with the highest confidence for these conditions. However, during the summer, the 

nighttime CO2 measurements over the entire suburbs are poorly suited for the inversion since the simulated CO2 are highly sensitive 

to the choice of physics scheme and the signal-to-noise ratios are then relatively small (< 1). 

Figure 10c shows the vertical distribution along a south-north transect through the JUS station in a similar way as Figure 10a. In 25 

general, the simulations with various physics options show very large variations in the modeled CO2 concentrations (up to 7.5 ppm 

standard deviation) close to the surface, a few tens of meters above the emissions. The differences become much smaller (less than 

1 ppm) with increasing altitude. This may be due to the fact that different physics schemes lead to different vertical mixing 

efficiencies, which has a strong impact on the vertical structure of CO2 concentrations. Given that the measurements are acquired 

at a level where the vertical gradient is large and variable, it may also indicate that the measurement-model discrepancy is highly 30 

dependent on the physics parameterization in the representation of the vertical mixing process in near-surface layers. During the 

winter period, there is a considerable difference in the vertical concentration profiles reproduced by different physics schemes 

within the city, with the uncertainty extending to a higher altitude in the afternoon than those in the nighttime. Further away from 

the urban area, anthropogenic emissions are substantially lower, and the vertical gradient of CO2 generated by the strong city 

emission is smoothed out by the convection and diffusion processes. As a consequence, much less uncertainty is associated with 35 

the choice of the physics scheme in the suburbs at altitudes above ~200 m AGL. As for the signal-to-noise ratio shown in Figure 

10d, the large values within the city tend to indicate that the urban CO2 data are well suited for an estimate of the emissions using 

the atmospheric inversion method.  
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We also accessed the respective contributions of anthropogenic and biogenic fluxes to the simulated spread of CO2 concentrations 

using different physics schemes. This allows us to provide a characterization of the impact of uncertainties in the atmospheric 

transport modeling along with that of the impact of the individual fluxes. Figure 11 shows the simulated monthly mean plus/minus 

one standard deviation of both the anthropogenic and biogenic CO2 differences at approximately 20 m AGL between the control 

run (BEP_MYJ) and each of the other four sensitivity runs. The results in this figure are presented with the consideration of (i) 5 

two periods of the day (afternoon 11-16 UTC, nighttime 00-05 UTC); (ii) two months (January, July 2016); and (iii) three land use 

types (urban, crop and the others). Urban (7.4%) and crop (84.6%) are the two dominant land use types of the innermost model 

domain (D03) from the MODIS land cover database used in the WRF-Chem model, where the percentages in parenthesis indicate 

the proportion of each land use category to the total area. The other land use types (8.0%) mainly include grass, shrub, mixed forest, 

deciduous forest and evergreen forest. During the winter, the simulated anthropogenic CO2 concentrations over the urban area are 10 

sensitive to the choice of the urban canopy scheme used in WRF-Chem, which is characterized by a substantial decrease in standard 

deviation from UCM to BEP (Figure 11a). The three simulations using the UCM scheme tend to produce higher anthropogenic 

CO2 concentrations together with larger standard deviations with respect to the control run using the BEP scheme. On the other 

hand, these two urban canopy schemes (UCM, BEP) show small spreads in the simulation of anthropogenic CO2 concentrations 

over the rural vegetated area for both seasons. This indicates that the choice of an urban canopy scheme is critical for simulating 15 

atmospheric transport at urban stations, but that the transport errors, without such scheme, remain mainly ‘local’ and have little 

remote influence at rural sites. That is, the choice of an urban scheme impacts CO2 concentrations over the urban areas but its 

impact on the larger scale transport is not significant enough to affect the simulated concentrations over rural areas. During the 

summer period, our results show that the modeled nighttime CO2 concentrations are strongly sensitive to both the urban canopy 

and PBL schemes. This conclusion applies to both the urban and the rural areas. Interestingly, the control run simulates higher 20 

nighttime CO2 concentrations than the other four experiments. 

Here, we quantify the uncertainty in the modeling results that is linked to the three PBL schemes and two urban canopy schemes. 

Clearly, there are other potential sources of atmospheric transport uncertainties that are not accounted for in this study. The 

simulated CO2 differences among the ensemble of physics schemes tested here are therefore only a fraction of the full magnitude 

of model uncertainty. Nevertheless, this uncertainty is, in some cases, of similar magnitude as the measurement-model differences 25 

that have been shown in section 3.1. 

3.2.4 Boundary condition 

To investigate the uncertainty in CO2 boundary conditions, we examined the modeled CO2 sensitivity over the Paris region to the 

use of two different global CO2 atmospheric inversion products as initial and boundary conditions for WRF-Chem (see Table 1c). 

Figure 12 shows all hourly CO2 concentration differences between BEP_MYJ and BEP_MYJ_CT that used CO2 fields from CAMS 30 

and CarbonTracker products respectively. The comparison is based on the simulated CO2 in the 25-km grid cell of the outermost 

domain (D01) containing the Paris city. For most time of the year (~73%), the differences in simulated CO2 concentrations over 

Paris are within the range of ±1 ppm since they are mainly affected by those differences between CAMS and CarbonTracker at the 

western boundary of D01 under the influence of west winds. Nevertheless, considerable differences (up to 5 ppm) are observed 

during several synoptic episodes, which illustrates the magnitude of uncertainties linked with the boundary condition hypothesis. 35 

These magnitudes are similar to those of the impacts of different physics schemes on simulated CO2 concentrations over suburban 

and rural areas as shown in section 3.2.3. Under such circumstances, it requires the use of additional observations to constrain the 

boundary inflow in inversions. On the other hand, as the IdF region is exposed to a relatively well-mixed background atmosphere 

after a long-range transport of CO2 from remote sources and sinks, one may expect that the resulting CO2 concentration features 
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are large scales. As a consequence, the potential modeling error induced by an erroneous boundary will be similar for monitoring 

stations located within Paris and its vicinity. This characteristic suggests that the assimilation of upwind-downwind gradient in 

CO2 concentrations in the inversion of city-scale emissions as done in previous studies could also be an effective way to minimize 

the potential biases both from the boundary conditions and from remote fluxes within the domain but outside the city (Bréon et al., 

2015; Staufer et al., 2016). 5 

4 Conclusions and discussions 

We have analyzed CO2 concentrations measured and modeled at six stations located within and in the surrounding of the Paris city. 

Our objective is to identify the main causes of the CO2 differences between the measurements and their simulated counterparts, 

with the overall goal to improve the quantification of anthropogenic emissions. To accomplish this, we have performed an 

ensemble-based sensitivity study and a full analysis of the uncertainties linked to anthropogenic inventories, biogenic fluxes, 10 

atmospheric transports and boundary conditions, either focusing on limited periods or looking at the full-year period. 

A preliminary identification of the modeling errors was first conducted with the KNN algorithm to identify the largest mismatches 

between the observations and the model results. These large discrepancies are either related to specific measurement 

contaminations from local unresolved sources of CO2 emissions, or to the model’s inability to properly simulate the atmospheric 

transport for specific meteorological conditions. It is therefore necessary to explicitly discard these outliers for any atmospheric 15 

inversion that aims at the city emissions.  

Within the city, the modeled CO2 concentrations appear highly sensitive not only to the atmospheric vertical mixing close to the 

surface, but also to the prescribed temporal profile of anthropogenic emissions. These sources of errors are large, particularly in 

winter, and show a potential for biases that is problematic when aiming at quantification of city emissions. There is little hope to 

significantly decrease these uncertainty factors in the near future, unless better constraints on transport such as vertical profiles, 20 

could be available. Such complementary measurements will be of great help to understand the characteristics of CO2 vertical 

distribution under both stable and convective boundary-layer conditions. It can also be used to verify and validate the atmospheric 

transport model, and to reduce transport errors based on the data assimilation technique. 

In the suburbs, further away from the urban sources, the anthropogenic emissions are lower and the vertical gradient of CO2 

concentration, generated by the city emissions, is smoothed out by the atmospheric convection and diffusion processes. There is 25 

then less uncertainty than within the city about the efficiency of the vertical mixing. The link between the anthropogenic emission 

and the CO2 concentration during the afternoon in winter can then be derived from the model with more confidence. However, the 

contribution of the biogenic flux to the CO2 concentration is an issue during the growing season. The difficulty is mainly related 

to the simulation of the nocturnal CO2 concentrations because of the large uncertainties in the atmospheric transport modeling as 

well as the biogenic fluxes. Additional measurements of carbon isotopes (14C, 13C) and tracers coemitted with CO2 (e.g., CO, NOx) 30 

could be used to separate the contributions from fossil fuel and biogenic components to the total CO2 concentrations, which would 

be beneficial for the optimization of sectoral CO2 fluxes. 

The influence of different CO2 boundary conditions for our model domain is dependent on synoptic weather situations. As for the 

Paris region, the simulated CO2 differences between CAMS and CarbonTracker are less than one ppm during most periods of 

westerly winds that bring in clean oceanic air masses, but they can vary by several ppm during some synoptic episodes, e.g. with 35 

north and easterly winds. This result advocates the practice of using additional observations to constrain the boundary inflow, or 

using CO2 gradients when the wind direction is properly aligned with two (upwind-downwind) stations in the inversion of CO2 

fluxes of the Paris region. 
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Our analyses confirm the difficulty of accurately modeling the atmospheric CO2 concentration within and in the close vicinity of 

urban areas. Although we have pointed out the likely causes for the measurement-model discrepancies, we have not been able to 

unambiguously demonstrate the respective contributions of anthropogenic emissions, biogenic fluxes and atmospheric transport 

errors. This is a strong cause of concern for the objective of measuring the city emissions on the basis of atmospheric concentrations.  

It has been argued that, rather than measuring the absolute emission, the atmospheric inversion approach should aim at the 5 

emissions changes, with the argument that atmospheric transport biases would not change, and thus let any emission variation 

show up in the concentrations. However, one may argue that a significant change in the total emission would be associated with a 

change in its spatial distribution and/or a change in the temporal profile. These would then also impact the relationship between 

the emission and the concentration.  
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Figure 1: (a) Three domains of WRF-Chem that are used for the simulations discussed in this study, together with the large-scale CO2 

emission for a weekday in November; Distributions of CO2 emissions for a typical weekday in November from the (b) AirParif and (c) 

IER inventories. The bottom two maps show the location of six CO2 measurement stations as well as the administrative limits of the 

Île-de-France region. 5 
 

 

 
Figure 2: Diurnal profiles (for January) of anthropogenic emissions in the grid cell of the emission map containing the CDS station. (a) 

and (c) are for the 1-km grid cell of the AirParif emission inventory that contains the station, whereas (b) and (d) are the 5-km grid cell 10 
of the IER inventory around the same station. (a) and (b) show the emission by sectors, whereas (c) and (d) are for the total emissions 

together with the constant emission profiles as discussed in the text. 
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Figure 3: Time series of average CO2 concentration differences between CAMS and CarbonTracker at four lateral boundaries (west, 

east, south, north), averaged over the lowest 0.7 km AGL, of D01 for 00 UTC in blue and 12 UTC in red. The lines indicate the spatial 

means over each boundary (a latitudinal transect for western and eastern boundaries / a longitudinal transect for southern and 

northern boundaries). The shaded areas extend over one standard deviation (± 1σ) computed over the grid cells that make the lateral 5 
boundary (spatial standard deviation). The yellow symbols indicate the days when the wind blows from outside of the domain at the 

respective domain boundary. The numbers on the right side of figure indicate annual means of (i) the spatial mean and (ii) the spatial 

standard deviation. 

 

 10 

 
Figure 4: Observed and BEP_MYJ (control run) simulated all hourly CO2 concentrations at six monitoring sites from December 2015 

to November 2016. The color of dots represents the density of points at a given position. The shade of blue area indicates the anomaly 

score for each point, with the minimum in light blue and the threshold value in dark blue. The dots lying outside the red contour 

(threshold value) are the large model-observation misfits (outliers) detected by the K-nearest neighbors (KNN) algorithm with an 15 
outlier fraction of 0.1. 
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Figure 5: Comparison of average diurnal variations between the (a) BEP_MYJ simulated (control run), (b) observed CO2 

concentrations, and (c) CO2 differences between the model and the observations for four seasons. DJF denotes December-January-

February, MAM denotes March-April-May, JJA denotes June-July-August and SON denotes September-October-November. The JUS 5 
instrument was not working during the summer of 2016. 

 

 

 

Figure 6: Average diurnal cycle of (a) total and (b) anthropogenic CO2 concentrations for the four experiments at CDS station. The 10 
shaded areas extend over the standard deviation of the CO2 concentration divided by the square root of the number of observations. 
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Figure 7: Vertical distribution of CO2 concentrations at CDS station for January 2016, together with time series of BEP_MYJ 

simulated PBL heights in white, simulated CO2 concentration in magenta and observed CO2 concentration in pink. The simulation 

uses the AirParif CO2 emission inventory. The arrows on the top of the figure indicate the wind speed and direction every day at noon 

and midnight. 5 
 

 

 
Figure 8: Daily (a) afternoon mean (11-16 UTC) and (b) nighttime mean (21-05 UTC) CO2 horizontal differences between CDS and 

SAC. Daily CO2 horizontal differences between CDS and SAC from each sector for (c) Non-growing season from October to April and 10 
(d) Growing season from May to September. OBS indicates the observed CO2 concentration differences. TOT, ANT, BIO and BCK 

indicates the simulated total, anthropogenic, biogenic and background CO2 concentration differences respectively. 

 

 

Figure 9: Daily (a) afternoon mean (11-16 UTC) and (b) nighttime mean (21-05 UTC) CO2 vertical differences at SAC (15m-100m). 15 
Daily CO2 vertical differences at SAC (15m-100m) from each sector for (c) Non-growing season from October to April and (d) 

Growing season from May to September. OBS indicates the observed CO2 concentration differences. TOT, ANT, BIO and BCK 

indicates the simulated total, anthropogenic, biogenic and background CO2 concentration differences respectively. 
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Figure 10: Analysis of the “signal-to-noise” as discussed in the text for two periods of the day (afternoon 11-16 UTC, nighttime 00-05 

UTC), and two months (January, July 2016). (a) is the median of the hourly standard deviation of the simulated near-surface CO2 

concentration computed among the five sensitivity runs (Table 1a); (c) is the same as (a) but for a vertical south-north slice that goes 

through the JUS station; (b) is the median ratios of the hourly anthropogenic CO2 concentration (average of the five sensitivity runs) to 5 
its respective standard deviation of the total CO2 concentrations among the five sensitivity runs; (d) is the same as (b) but for the same 

vertical slice as in (c). 
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Figure 11. The simulated monthly mean plus/minus one standard deviation of the (a) anthropogenic and (b) biogenic CO2 difference 

between the control run (BEP_MYJ) and the other four sensitivity runs for three land use types (urban, crop and the others), two 

periods of the day (afternoon 11-16 UTC, nighttime 00-05 UTC) and two months (January, July 2016). 5 

 

 

Figure 12. (a) Time series and (b) cumulative distribution of all hourly CO2 concentration differences between BEP_MYJ and 

BEP_MYJ_CT using CAMS and CarbonTracker as CO2 boundary conditions respectively. This comparison is based on the simulated 

values in the 25-km grid cell of the outermost domain (D01) containing the Paris city. 10 
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Table 1. Summary of WRF-Chem configurations used for the sensitivity experiments in this study. The bold text indicates the settings 

of the control run which is the same in all sets of sensitivity experiments. 

(a) Sensitivity experiments of physics schemes carried out for a full-year period (2015.09-2016.11) 

Configuration 
PBL 

Scheme 

Urban Canopy 

Scheme 
Vertical Resolution 

Anthropogenic 

Inventory 

Boundary 

Condition 

BEP_MYJ MYJ  

BEP 

44 levels (wherein 25 

below 1.5 km). The 

lowest layer top is 

around 3.8 m AGL IER (5 km, outside 

IdF) + AirParif (1 

km, within IdF) 

with hourly profile 

CAMS 

BEP_BouLac BouLac  

UCM_MYJ MYJ  

UCM 

34 levels (wherein 15 

below 1.5 km). The 

lowest layer top is 

around 19 m AGL 

UCM_BouLac BouLac 

UCM_YSU YSU 

(b) Sensitivity experiments of anthropogenic emissions carried out for a one-month period (2016.01) 

Configuration Anthropogenic Inventory 
PBL Scheme + Urban 

Canopy Scheme 

Boundary 

Condition 

BEP_MYJ IER (5 km, outside 

IdF) + AirParif (1 

km, within IdF) 

with hourly profile 

MYJ + BEP CAMS 

BEP_MYJ_AIP without hourly profile 

BEP_MYJ_IER IER (5 km) with hourly profile 

BEP_MYJ_CON Constant (5.28 gCO2/m2/day) 

(c) Sensitivity experiments of CO2 boundary conditions carried out for the outermost domain (D01) for a full-year period (2015.09-5 
2016.11) 

Configuration Boundary Condition 
PBL Scheme + Urban 

Canopy Scheme 

Anthropogenic 

Inventory 

BEP_MYJ CAMS 

MYJ + BEP 
IER (5 km) 

with hourly profile BEP_MYJ_CT CarbonTracker 
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