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Abstract. The top-down atmospheric inversion method that couples atmospheric CO2 observations with an atmospheric transport 

model has been used extensively to quantify CO2 emissions from cities. However, the potential of the method is limited by several 

sources of misfits between the measured and modeled CO2 that are of different origins than the targeted CO2 emissions. This study 

investigates the critical sources of errors that can compromise the estimates of the city-scale emissions and identifies the signal of 20 

emissions that has to be filtered when doing inversions. A set of one-year forward simulations is carried out using the WRF-Chem 

model at a horizontal resolution of 1 km focusing on the Paris area with different anthropogenic emission inventories, physical 

parameterizations and CO2 boundary conditions. The simulated CO2 concentrations are compared with in situ observations from 

six continuous monitoring stations located within Paris and its vicinity. Results highlight large nighttime observation-model misfits, 

especially in winter within the city, which are attributed to large uncertainties in the diurnal profile of anthropogenic emissions as 25 

well as to errors in the vertical mixing near the surface in the WRF-Chem model. The nighttime biogenic respiration to the CO2 

concentration is a significant source of modeling errors during the growing season outside the city. When winds are from 

continental Europe and the CO2 concentration of incoming air masses is influenced by remote emissions and large-scale biogenic 

fluxes, differences in the simulated CO2 induced by the two different boundary conditions (CAMS and CarbonTracker) can be of 

up to 5 ppm. Nevertheless, our results demonstrate the potential of our optimal CO2 atmospheric modeling system to be utilized in 30 

atmospheric inversions of CO2 emissions over the Paris metropolitan area. We evaluated the model performances in terms of wind, 

vertical mixing and CO2 model-data mismatches, and developed a filtering algorithm for outliers due to local contamination and 

unfavorable meteorological conditions. Analysis of model-observation misfit indicates that future inversions at the mesoscale 

should only use afternoon urban CO2 measurements in winter and suburban measurements in summer. Finally, we determined that 

errors related to CO2 boundary conditions can be overcome by including distant background observations to constrain the boundary 35 

inflow or by assimilating CO2 gradients of upwind-downwind stations rather than by assimilating absolute CO2 concentrations. 

1 Introduction 

Worldwide, almost two-thirds of global final energy consumption takes place in urban agglomeration areas that have a high 

population density and corresponding infrastructure, and cities directly release about 44 % of the global energy-related CO2 
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emissions (IEA, 2016; Seto et al., 2014). Due to progressing urbanization processes, the number of people living in cities is 

expected to increase from the current 7.7 billion in 2019 to more than 9.7 billion by 2050 (United Nations, 2019). More than ever, 

cities are at the front line of climate change mitigation and take the lead in energy transition and emission reduction of greenhouse 

gases.  

Currently, a variety of efforts are underway to quantify cities’ total CO2 emissions and establish a high spatially and temporally 5 

resolved emission inventory for supporting urban emission mitigation strategies. An independent monitoring of city emissions is 

highly desirable, which could be delivered by the top-down atmospheric inversion method using regional high-resolution transport 

models together with ground-based urban CO2 concentration networks and/or satellites with imagery capabilities. The so-called 

atmospheric inversion provides an optimized estimate of CO2 emissions aiming at the best agreement between atmospheric CO2 

measurements and their simulated equivalents. It relies on the filtering of the CO2 signal associated with the urban emissions at the 10 

targeted spatial and temporal scales from other sources of misfits between measured and modeled CO2 concentrations. These other 

sources of misfits include uncertainties in the atmospheric transport, in atmospheric CO2 conditions that are used at the boundaries 

of the regional model, in the natural CO2 fluxes within the modeling domain, but also in the spatial and temporal distribution of 

the urban emissions at scales finer than the targeted ones. Even when controlling the emissions at a relatively high temporal and 

spatial resolution, city-scale inversion frameworks have generally targeted monthly to annual budgets of the emissions at the city 15 

scale, or for large areas of these cities (strong temporal and spatial correlations are assumed). The uncertainties in the assumed 

temporal and spatial emission variations induce a critical source of error poorly constrained by the inversions due to the lack of 

data (Bréon et al. 2015; Lauvaux et al. 2016). The spatial and temporal allocation of the emissions is generally derived from high-

resolution gridded inventory based on uncertain activity data in the transportation, residential, and power sectors (Gately et al., 

2017). Moreover, local sources of CO2 in the vicinity of an urban station can cause variations of atmospheric CO2 that are not 20 

captured by the inventories and transport models of kilometric scale that have been used for city inversions so far (Boon et al., 

2016; Lian et al., 2019). Further, cities have green areas and are surrounded by rural areas that actively take up CO2 in the daytime 

during the growing season. Uncertainties and variability in those biogenic fluxes also significantly affect the results of atmospheric 

inversions (Hardiman et al., 2017). 

Uncertainties in modeling the atmospheric transport of CO2 are exacerbated in urban areas due to building obstacles that generate 25 

specific mixing processes and modify the wind speed and direction. In addition, sensible heat emissions at the surface of urban 

areas enhance vertical mixing, increase the depth of the boundary layer (Dupont et al., 1999) and can drive regional mesoscale 

circulations under certain conditions. To reduce transport uncertainties in inversions over urban areas, one can use dedicated urban 

surface schemes (e.g. Nehrkorn et al., 2013; Feng et al., 2016). More general approaches to reduce transport errors rely on the 

assimilation of upper-air weather data or on the optimization of the model configuration, e.g. based on comparisons against 30 

independent wind measurements (e.g. Deng et al., 2017). But some errors remain difficult to quantify, such as those from local 

circulations and complex meteorological conditions (Martin et al., 2019). As a consequence, an empirical selection of the data to 

be assimilated is usually performed, which is more or less stringent depending on each urban station and transport model. Typical 

selection criteria of continuous urban CO2 data consist of (i) using only measurements acquired during the afternoon when a well-

developed convective mixing layer is expected; (ii) using only observations when the wind speed is above a given threshold; (iii) 35 

removing statistical outliers. 

Uncertainties in CO2 boundary conditions arise from the fact that city-scale inversions are performed over a limited spatial domain 

that receives CO2 signals from outside. These boundary conditions usually cannot be measured explicitly and they can be complex 

for continental cities that receive CO2 advected by long-range and middle-range transport from other urban areas and biogenic 

fluxes. Göckede et al. (2010) found that small biases in CO2 boundary conditions could lead to large errors (~47%) in the posterior 40 
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annual state-level CO2 fluxes of Oregon. Lauvaux et al. (2012) found that a 0.55 ppm bias of CO2 boundary condition induced a 

10% bias in the posterior annual CO2 flux of Iowa and surrounding states. In order to try to eliminate the bias from boundary 

conditions, Bréon et al. (2015) and Staufer et al. (2016) proposed to assimilate CO2 gradients between upwind-downwind stations 

in inversions of CO2 fluxes of the Paris area, which reduces the number of data that can be assimilated. 

Series of CO2 transport and inverse modeling studies have been conducted for Paris (Bréon et al., 2015; Staufer et al., 2016; Wu 5 

et al., 2016; Broquet et al., 2018; Xueref-Remy et al., 2018). Since the year 2014, the Paris CO2 monitoring network has been 

relocated and expanded with seven in-situ CO2 stations combined with meteorological measurements. The present network, in 

particular the two newly built urban sites, is expected to provide new insights into the urban CO2 characteristics. Lian et al. (2018) 

and Lian et al. (2019) attempted at setting up a high-resolution atmospheric transport modeling framework that is more robust or 

at least more flexible in terms of parameterization than those used in the previous Paris studies to account for the impacts of the 10 

urban effects, the biogenic flux and the model physics, which makes it promising to enlarge the set of data that can be assimilated 

for the inversions of the Paris CO2 emissions, and in a more general way, to strengthen the inversions. Therefore, a full re-

assessment of the modeling skills and of the main sources of misfits between the observations and the model is needed on these 

new bases. More specifically, we analyze in detail the model-measurement mismatches so as to identify critical sources of errors 

that would compromise a high-resolution atmospheric inversion of urban CO2 emissions in the Paris area. A set of forward 15 

simulations of atmospheric CO2 concentration are performed at 1-km horizontal resolution using the WRF-Chem model (Grell et 

al., 2005) with different anthropogenic emission inventories, physical parameterizations and CO2 boundary conditions over the 

Paris for the 1-year period spanning December 2015 to November 2016. The main objectives of this paper are to provide a rigorous 

and detailed error characterization of our atmospheric modeling system and to determine the data selection method (i.e. filtering 

of short-term model errors and local contamination) and CO2 boundary condition specifications at city scale during both daytime 20 

and nighttime over the full year period. We also address the question to what extent these model-measurement mismatches might 

be reduced and how our proposed diagnostics could be used to provide additional constraints for the inversion of CO2 emissions 

at the city scale. 

2 Methods 

2.1 Experimental design 25 

The WRF-Chem V3.9.1 model was used to simulate hourly atmospheric CO2 concentrations over the Paris region. Details 

regarding the model setup and the reference data used in the simulations are outlined briefly below and described in Lian et al. 

(2019). The model was configured with one-way nesting of three modeling domains (D01, D02, and D03 in Figure 1a) at horizontal 

grid resolutions of 25, 5 and 1 km respectively, in which the innermost one (D03) covers the Île-de-France region (IdF, which is 

the administrative area that includes the Paris urban area) and its surrounding. The meteorological initial and lateral boundary 30 

conditions were retrieved from the global European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis 

data (ERA-Interim) with 0.75°×0.75° horizontal resolution at 6-hourly update intervals (Berrisford et al., 2011). The grid nudging 

option in WRF to relax the model to ERA-Interim on large scales was applied to temperature and wind fields at model levels above 

the planetary boundary layer (PBL) of the outer two domains. We also used the surface analysis nudging and observation nudging 

options to assimilate the National Centers for Environmental Prediction (NCEP) operational global upper-air (ds351.0) and surface 35 

(ds461.0) observation weather station data (https://rda.ucar.edu/datasets/ds351.0/; https://rda.ucar.edu/datasets/ds461.0/), which 

are described in more detail in Lian et al. (2018). The biogenic CO2 fluxes were calculated online in WRF-Chem by the diagnostic 

biosphere Vegetation Photosynthesis and Respiration Model (VPRM) (Mahadevan et al., 2008; Ahmadov et al., 2007, 2009). The 
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values of the four parameters (α, β, λ, and PAR0) for each vegetation category used by VPRM have been optimized against eddy 

covariance flux measurements over Europe collected during the Integrated Project CarboEurope-IP (http://www.carboeurope.org/). 

2.1.1 Atmospheric physics options 

An accurate physical parameterization of atmospheric transport model is critical to numerical simulations of the meteorology and 

CO2 concentrations within and around urban areas. A set of numerical experiments was performed to assess the sensitivity of the 5 

simulations with the WRF-Chem model to the choice of different PBL and urban canopy schemes. These two physics schemes 

were selected as they have a more significant impact on the simulated meteorological variables than the other schemes based on 

our previous sensitivity study (Lian et al., 2018; Lian et al., 2019), and thus the differences between simulations with these two 

physical options could provide an estimate of the atmospheric transport uncertainty over the Paris region. The characteristics of 

CO2 distributions are highly related to the PBL structure and its temporal evolution. We carried out sensitivity experiments with 10 

three different PBL parameterization schemes (Table 1a), including the Yonsei University scheme (YSU) (Hong et al., 2006), the 

Mellor-Yamada-Janjic scheme (MYJ) (Janjić, 1990, 1994), and the Bougeault-Lacarrère scheme (BouLac) (Bougeault and 

Lacarrere, 1989). In addition, two different urban surface parameterizations were investigated, the single-layer urban canopy model 

(UCM) (Chen et al., 2011) and the multilayer urban canopy model BEP (Building Effect Parameterization) (Martilli et al., 2002) 

(Table 1a). The non-local YSU scheme was used with the Revised MM5 Monin-Obukhov surface layer scheme (Jiménez et al., 15 

2012), whereas the two local MYJ and BouLac schemes were used with the Monin-Obukhov Eta Similarity surface layer scheme 

(Janjić, 1996). All other physics options were identical for all sensitivity runs: WSM6 microphysics scheme (Hong and Lim, 2006), 

RRTM longwave radiation scheme (Mlawer et al., 1997), Dudhia shortwave radiation scheme (Dudhia, 1989), Unified Noah land-

surface scheme for non-urban land cover surface energy fluxes (Chen and Dudhia, 2001). The Grell 3D ensemble cumulus 

convection scheme (Grell and Dévényi, 2002) was only employed for the outer domain (D01). These options correspond to those 20 

selected by Lian et al. (2018) which showed good performances for simulating near-surface winds and temperatures over the Paris 

region. The simulations were performed for a period of 15 months from September 2015 to November 2016 including a spin-up 

of three months.  

2.1.2 Anthropogenic emission inventories 

Numerical experiments were carried out to assess the modeled CO2 sensitivity to the use of different anthropogenic emission maps 25 

and to get insights on the signature of typical uncertainties in such maps (Table 1b). The two spatially and temporally explicit 

emission fields derived from inventories used in this study were the 2010 AirParif inventory at a spatial resolution of 1 km 

(AIRPARIF, 2013) and the European greenhouse gas emission inventory (5 km × 5 km resolution) for the base year 2005 developed 

by the Institute of Economics and the Rational Use of Energy (IER), University of Stuttgart (http://carboeurope.ier.uni-

stuttgart.de/). Both inventories simulated monthly, weekly and diurnal profiles and were rescaled on the basis of the ratios of the 30 

national annual budgets of CO2 emissions for the countries within the domain, between the base year and the year of simulation 

(2015/2016), taken from Le Quéré et al. (2018).  

Figures 1b and 1c show a map of daily CO2 emission within the IdF region for a weekday in November 2015 from the 1-km 

AirParif inventory and the 5-km IER inventory respectively. The figures show that the emissions are the largest within and in the 

near vicinity of the Paris administrative city (the core of the urban area). The suburban area extends approximately 15 km outside 35 

of the city limits. The AirParif inventory is expected to offer a more robust description of the emissions for the year of simulation 

than the IER inventory does because it uses more local and more recent data (AIRPARIF, 2013).  
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The temporal variations of emissions also show some differences, in particular when differentiated per sector (Figure 2). The 

emissions, split up by five sectors (namely building, surface traffic, energy, industry, and all other sectors), are different both in 

terms of magnitude and diurnal cycle between the two inventories. This is true both for the very center of Paris where the CDS 

CO2 measurement station is located (Figure 2a) and on a relatively large (5-km) spatial scale (Figure 2b). The relative difference 

between the two inventories is smaller in terms of total emissions. Figure 2 also shows the total emission for both IER and AirParif 5 

inventories as a function of time in the day. At the larger scale (Figure 2b), a substantial difference is found during the early 

morning when AirParif shows emissions that are much smaller than those of IER, and with a clear temporal trend. 

In order to investigate the impact of the spatio-temporal distribution (especially the prescribed diurnal profile) of emissions on the 

modeled CO2 concentrations, we made a one-month simulation using these two anthropogenic inventories together with their 

respective temporal profiles (Table 1b). Within the same group of simulations, two more sensitivity tests of the diurnal profile 10 

were also carried out by using: (i) a constant temporal profile (each pixel has a different emission, but constant in time based on 

the temporal average of the AirParif inventory) and (ii) a constant and spatially homogeneous emission where the emissions are 

distributed uniformly over the IdF whole territory. Distinct CO2 tracers are used for each of the four experiments to quantify their 

respective impacts on the atmospheric CO2 concentration, for a given configuration of the WRF-Chem model. The simulation was 

carried out for the one-month period of January 2016 when the influence of regional biogenic flux on CO2 signals is relatively 15 

small compared to that of anthropogenic flux. 

2.1.3 Boundary conditions for CO2 

A set of sensitivity experiments was designed to investigate the impact of different CO2 boundary conditions on the Paris CO2 

concentrations (Table 1c). The initial and lateral boundary conditions for CO2 concentration fields used in the sensitivity 

experiments were respectively taken from two global CO2 atmospheric inversion products at 3-hourly update intervals: CAMS and 20 

CarbonTracker. CAMS has a horizontal resolution of 3.75°×1.90° (longitude × latitude), with 39 hybrid layers in the vertical 

(version v16r1, https://apps.ecmwf.int/datasets/data/cams-ghg-inversions/; Chevallier, 2017a, 2017b). CarbonTracker has a 

horizontal resolution of 3° in longitude and 2° in latitude, with 25 vertical layers (version CT2017, http://carbontracker.noaa.gov; 

Peters et al. 2007). Both global datasets were interpolated onto the outermost domain of WRF-Chem (D01) (bilinearly in longitude, 

longitude and linearly in pressure) so as to provide the lateral boundary conditions for CO2 simulations. Given that CarbonTracker 25 

has an averaged value over each 3-hourly interval (the times on the date axis are the centers of each averaging period), it was also 

linearly interpolated in time to ensure consistency with both CAMS and the interval of input data for WRF-Chem (e.g. the value 

at 00 UTC was generated by interpolating the one at 22.5 UTC of the previous day with the one at 1.5 UTC of the same day).  

Figure 3 shows time series of average differences in CO2 concentration between CAMS and CarbonTracker at each of the four 

lateral boundaries, averaged over the lowest 0.7 km above ground level (AGL), of D01 for both 00 UTC and 12 UTC. These time 30 

series are the spatial mean and standard deviation (± 1σ) over each boundary (a latitudinal transect for western and eastern 

boundaries / a longitudinal transect for southern and northern boundaries). In general, winds blow mostly from the west in all 

seasons over the domain of interest. Small differences at the western boundary are observed under the influence of prevailing 

westerlies with annual means of the spatial mean and standard deviation of 0.01 ± 2.8 ppm for 00 UTC and 0.4 ± 1.8 ppm for 12 

UTC, which is expected as the air masses are advected from clean air (oceanic) areas. In contrast, the differences are significantly 35 

larger at the eastern boundary (-4.8 ± 7.4 ppm for 00 UTC and -1.7 ± 3.3 ppm for 12 UTC), but can vary from day to day depending 

on the synoptic weather condition. A possible explanation could be that both fossil fuel and biogenic CO2 fluxes and associated 

uncertainties are larger over the European continent than over the oceans. It may also be caused by the sensitivity of the modeled 

CO2 concentrations to the transport fields over the Alps mountain region at the eastern boundary. This feature indicates that CAMS 
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and CarbonTracker may provide substantially different continental CO2 background signals to the inner domain when the wind 

blows from the east. Moreover, the magnitude and variability of the differences are overall smaller at noon compared to those at 

midnight. The variability of nighttime differences appears relatively larger in summer than those in winter. Note that the CO2 

differences between CAMS and CarbonTracker are much smaller for the upper layers above 0.7 km AGL, with annual means of 

the spatial mean and standard deviation of -0.4 ± 0.4 ppm for both 00 UTC and 12 UTC at the eastern boundary (Figure S1). 5 

The WRF-Chem simulation with boundary conditions from CarbonTracker used the same physics schemes and prior fluxes as the 

one with boundary conditions from CAMS (also defined as the control run), whereas it was only carried out for the parent domain 

(D01) without nesting over a full-year period (2015.09-2016.11). The simulation was restarted every 5 days with the CO2 initial 

values from the previous run. Given the fact that lateral boundary conditions are fed to the nested domain from the parent (the nest 

is driven along its lateral boundaries by the parent domain), results from D01 should therefore be representative enough to access 10 

the modeled CO2 sensitivity over the IdF region to the use of different CO2 boundary conditions. 

2.2 CO2 in situ and meteorological observations 

For the model evaluation, we use observations from six in situ continuous CO2 monitoring stations established in the IdF region. 

Four stations (AND, COU, OVS, SAC) are located within peri-urban areas and two (JUS and CDS) are located within the Paris 

city. The SAC station has two air inlets placed at 15 m and 100 m AGL respectively. Each of the other stations is equipped with a 15 

continuous CO2 gas analyzer and inlets located on rooftops or on towers with heights varying from 20 m to 60 m AGL. The CO2 

analyzers are high-precision cavity ring-down spectroscopy instruments with a calibration system using three reference gases tied 

to the WMO CO2 X2007 scale every 1 to 6 months (Tans et al., 2011). The six stations within IdF are complemented by two ICOS 

atmospheric background CO2 tall tower monitoring stations (TRN and OPE) located respectively 101 km and 235 km away from 

the center of Paris. In this study, observations from these two stations are only used as background sites and to provide additional 20 

support and validations for the results of diagnostics made at the SAC site. In addition to the CO2 measurements, the hourly air 

temperature, wind speed and wind direction are also measured at a height of 100 meters above ground level at the SAC station. 

The PBL heights are obtained from profile measurements of a Lufft CHM15k ceilometer operated at the SIRTA site (Haeffelin et 

al., 2005) located about 20 km southwest of Paris center. The PBL heights derived using the STRATfinder algorithm are most 

reliable in the afternoon during considerable convection while the detection of shallow layer heights below 300 m (e.g. at night or 25 

cold seasons) is associated with increased uncertainty (Kotthaus et al., 2020). The locations of all the observing stations together 

with their sampling heights are shown in Figure 1. 

3 Results 

3.1 Overall model performance 

In this section, we start with an evaluation of the overall performances of the control run (BEP_MYJ) in simulating both 30 

meteorological fields and atmospheric CO2 over the full-year period from December 2015 to November 2016.  

3.1.1 Meteorological fields 

Since the accuracy of the modeled CO2 concentrations depends on the quality of the meteorological model, the simulated 

meteorology by WRF was first evaluated against observations at SAC100 and SIRTA stations with a focus on three variables (air 

temperature, wind and PBL height). Figure 4 shows the time series of the 1-year daily afternoon mean (11-16 UTC) observed and 35 

modeled temperature, wind speed and wind direction at SAC100 station, together with their statistics summarized in the scatter 
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plots. The daily nighttime mean (21-05 UTC) data are shown in Figure S2. In general, both daytime and nighttime temperature are 

well reproduced by WRF with correlation coefficient, RMSE and MBE of 1.0, 0.44℃, 0.06℃ and 0.99, 0.67℃, 0.23℃ 

respectively. The analysis of the MBE shows that the wind speeds are slightly overestimated by WRF, with a bias of 0.96 m/s for 

afternoon and 0.68 m/s at night. As for the wind direction, the model-data misfits decrease with the increasing wind speed. Seasonal 

(and even some day-to-day) variations in the afternoon average PBL heights diagnosed from the model data are in general 5 

agreement with the observations at the suburban SIRTA site with a RMSE of 359 m and a positive bias of 82 m. Some 

disagreements between the model-data PBL height estimates can be expected given layer heights from aerosol-based methods (as 

here applied to the observations) tend to lag behind those determined from thermodynamic methods (applied to the model data) 

during the course of the day (Kotthaus et al., 2018). Relative agreement between PBL heights is reduced at night (Figure S2), as 

uncertainties are higher in both the observed layer heights (Section 2.2) and those diagnosed from the model data (Shin and Hong, 10 

2011). In general, results in Figure 4 and Figure S2 show that the simulated meteorological fields agree reasonably well with 

observations both during day and night which indicates parameter settings suitable overall. 

3.1.2 CO2 concentration 

The accuracy of model CO2 estimates at the six in situ measurement stations is assessed using three statistical indicators 

corresponding to the hourly values: the correlation coefficient (R), the root mean square error (RMSE) and the mean bias error 15 

(MBE). We also use the K-nearest neighbors (KNN) algorithm with an outlier fraction of 0.1 (10%) to detect the largest model-

observation mismatches so as to minimize their influences on the statistical results (Ramaswamy et al., 2000; Zhao et al., 2019). 

These large model-observation discrepancies are supposed to be due e.g. to the occasional contaminations from local sources of 

CO2 emissions near the measurement station that cannot be resolved by the 1-km resolution model, or to the failure of the model 

in the description of CO2 concentrations under some meteorological conditions such as heavy rains and storms, thick clouds with 20 

a thermodynamically stable inversion (diagnosed hereafter from Bulletin Climatique Météo-France, 2016). We further analyzed 

the filtered hourly concentrations (detailed in supplement material Figure S3 and S4) and confirmed the contamination at one of 

our sites (OVS) and the relationship between meteorological conditions and excluded modeled concentrations. 

Figure 5 shows, for the six monitoring sites, the scatter plots of the BEP_MYJ simulated vs. observed all hourly CO2 concentrations 

from December 2015 to November 2016. The typical CO2 concentrations vary between 390 and 430 ppm, and up to 440 ppm 25 

within the city (JUS and CDS stations). For short periods, the concentrations can be much higher (both for the observations and 

the model), in particular within the city where values of more than 500 ppm are sometimes observed. However, these data are 

considered as “outliers” by the KNN. When considering all data-points, the correlations vary between 0.5 for the JUS station at 

the very center of Paris to 0.76 at AND. The correlations get larger (0.55-0.83) when KNN outliers are removed. This correlation 

is partly driven by the seasonal cycle of CO2 and does not provide specific information on the model’s ability to reproduce short-30 

term variations. The MBEs are of a few ppm, and at the OVS station can go up to -6 ppm. The KNN removal of outliers tends to 

reduce these biases, but not so within the Paris city. Finally, the RMSEs are larger than 10 ppm in most stations. RMSE values are 

significantly reduced through the KNN data selection but nevertheless range between approximately 5 and 10 ppm.  

Figure 6 shows the average diurnal cycles split up by season for the measurements and the model results. It also shows the 

corresponding differences between the model and the data. These figures clearly show the seasonal variability with summer 35 

concentrations smaller than those during the rest of the year (due to photosynthetic absorption), larger concentrations within the 

city (JUS and CDS) (in the largest cluster of anthropogenic emissions), and the strong diurnal cycle that is mostly driven by 

atmospheric mixing. Both observations and the model show a double-peak pattern in the diurnal cycle of CO2 concentrations at 

the two urban stations in winter, concomitant with traffic peaks. In addition to the mean seasonal cycle that is generated by large-
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scale (continental, hemispheric) vegetation photosynthetic uptake and respiration coupled to long-range transport, the variability 

of the synoptic-scale atmospheric flow also impacts the seasonal concentrations. It is worth noting that the CO2 concentrations in 

autumn 2016 (SON) are on average higher than the other seasons, even slightly larger than those of the winter period (DJF) in 

2015. This is interpreted as the consequence of persistent anticyclonic conditions leading to dry and calm weather over the north 

of France, and thus CO2 accumulation near the surface throughout that period (Bulletin Climatique Météo-France, 2016). 5 

The model reproduces the main features of the average diurnal cycle of CO2 during the different seasons but the measurement-

model discrepancies can be significant. At noon and during the afternoon, the mean differences are on the order of a ppm (with the 

exception of JUS). The model underestimates CO2 with a time-varying bias roughly ranging from 0 to 12 ppm across stations for 

all seasons during the night until around 05 UTC. The two stations within the city have different behaviors, with larger differences, 

in particular the JUS station located at the city center. For this station, significant measurement-model discrepancies varying from 10 

0 to 7 ppm over time are found, even during the afternoon when a good agreement is found at the other stations. Moreover, the 

model reproduces much smaller amplitudes of CO2 diurnal cycle than the observations, in particular at the suburban stations. 

The measurements themselves have an accuracy that is on the order of a fraction of a ppm (Xueref-Remy et al., 2018) and 

measurement errors are therefore negligible when analyzing such model-data differences. In the following, we analyze in further 

detail the measurement-model discrepancies and attempt to identify cases when they appear to be mainly driven by uncertainties 15 

in the anthropogenic emissions, in the biogenic fluxes, in the physical parameterizations of the atmospheric transport model, or in 

the CO2 boundary conditions at the limits of the atmospheric transport model.  

3.2 Contribution of main sources of errors in the simulated CO2 related to different factors 

3.2.1 Emission inventory 

The main objective when measuring CO2 concentrations within or in proximity to the city is to estimate the anthropogenic 20 

emissions by means of an atmospheric inversion. It is then natural to seek, in the time series, unambiguous signatures of erroneous 

assumptions on the anthropogenic emissions. This is a difficult task as significant uncertainties in the atmospheric transport also 

impact the modeling results, while there is no knowledge of both “true” emissions and “true” transport. 

Figure 7 shows the results of the sensitivity experiments that used different temporal profiles and spatial distributions of 

anthropogenic CO2 emissions (see Table 1b and Figure 2). The decomposition of the CO2 concentration per tracer makes it very 25 

clear that in January when the biogenic flux is small the diurnal cycle of CO2 at the six measurement sites is almost entirely 

associated with the signature of the anthropogenic emissions. This may not hold during the growing season. None of the simulations 

show a diurnal cycle that is close to the observed one. The most striking error is the evolution of the concentrations through the 

night when observation show an increase in CO2 while the model shows a clear decrease. Results in Figure 7c and 7d show that 

the impacts of biogenic flux and background condition on this simulated decrease are relatively small as they are on the order of a 30 

fraction of a ppm. Instead, the decrease of anthropogenic emissions during the night (Figure 2) explains part of the decrease in 

modelled concentrations. Assuming the AirParif inventory with a constant temporal profile, the decreasing trend at night is reduced 

and the modeled value (green line in Figure 7) is closer to the observation than the control run (BEP_MYJ). Further analysis shows 

that the nighttime trend of the anthropogenic emission in January is mostly linked to residential heating in the inventory. The 

diurnal profile used for heating emissions in the AirParif inventory (with a significant decrease through the night) can thus be 35 

questioned.  

Although there is a strong indication that the nighttime profile of the AirParif CO2 emissions is erroneous and that heating emissions 

do not reduce strongly during the night, this error does not entirely explain the model-data misfit at CDS shown in Figure 7. This 

is proven by the fact that even the “constant emission” simulation does not reproduce the increasing concentration during the night. 
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This implies that errors in atmospheric transport are also contributing to the model-data misfit, in particular concerning the vertical 

mixing near the surface. Further evidence for the transport deficiency is that the underestimations of nighttime CO2 concentration 

are not only large at the two urban sites but also obvious at all rural stations (Figure 6). 

To gain insights the impact of vertical transport, we show in Figure 8a the vertical distribution of the BEP_MYJ modeled CO2 

concentrations at CDS in January, together with time series of observed and simulated PBL heights at SIRTA. The modeled PBL 5 

heights are diagnosed using the 1.5-theta-increase method which defines the height of PBL as the level at which the potential 

temperature first exceeds the minimum potential temperature within the boundary layer by 1.5 K (Nielsen-Gammon et al., 2008). 

Results show that the model reproduces large vertical gradients in CO2 concentrations in the low atmosphere levels, i.e. up to 

approximately 300 m AGL but mostly in the first 100 m. The largest concentrations are observed in low-wind speed conditions 

and when the PBL is shallow (Figure 8b). It is worth noting that the modeled CO2 concentrations within the PBL are not vertically 10 

homogeneous but exhibit a strong gradient. This indicates that when the measurements are under a strong influence of upwind 

emissions or close to the large sources of emissions, the mixing is far from complete, even during the afternoon.  

Moreover, both the BEP_MYJ and BEP_MYJ_IER model slightly overestimate CO2 concentrations at CDS in the late afternoon 

and early evening (from 18 UTC to 22 UTC) not only in January (Figure 7) but also over the full year (Figure 6). This is interpreted 

as the consequence of a shift from a situation with convective mixing to stable nocturnal conditions around sunset occurring too 15 

early in the model. It may also be linked to an increase in traffic emissions during the evening rush hour, which could also lead to 

the overestimated modeled concentrations in the late afternoon.  

3.2.2 Biogenic fluxes 

To analyze the influence of biogenic fluxes on the CO2 concentrations, we computed CO2 horizontal differences between two sites 

(i) CDS, that is within the limits of the Paris city where the diurnal cycle in winter is dominated by anthropogenic emissions (see 20 

Figure 7) and (ii) SAC that is over a more rural area with a mix of crops and forest, so that the variations of CO2 concentrations at 

that site are mostly driven by biogenic fluxes in the domain and CO2 background conditions. Figures 9a and 9b show the time 

series of the observed and BEP_MYJ simulated horizontal differences in near-surface daily CO2 concentration between CDS and 

SAC for two different periods of the day, the afternoon mean (11-16 UTC) and the nighttime mean (21-05 UTC) from December 

2015 to November 2016.  25 

The separate tracers from the WRF-Chem model make it possible to quantify the respective contribution of anthropogenic, biogenic 

and background sources to the CO2 difference between CDS and SAC (Figure 9c and 9d). During the afternoon, the CO2 differences 

are mostly positive and result primarily from the larger contribution of the anthropogenic emissions at CDS, both during the 

growing and non-growing season. This result indicates that the magnitude of daytime net carbon uptake plants between the stations 

does not fully offset that of the anthropogenic emissions, and thus the CO2 concentration gradients between the upwind and 30 

downwind stations that are used in previous inversion studies can also be used even during the growing season (Bréon et al., 2015; 

Staufer et al., 2016). Nevertheless, the biogenic contribution to the gradient is not negligible with a potential impact on the estimate 

of the anthropogenic emissions from the measured gradient. During the night, there is a large measurement-model discrepancy 

from June to September (unfortunately the SAC station had measurement gaps from May 3rd to June 23rd and from July 7th to July 

12th). During this growing season period, the observed difference between CDS and SAC is negative at night (higher concentrations 35 

at SAC than at CDS), while the simulated difference is positive resulting from a large positive anthropogenic contribution and a 

smaller negative biogenic contribution. Figure S5 shows that this nighttime misfit between the modeled and observed CO2 

differences has a seasonal trend that follows closely the one of the modeled gross primary production (GPP). A large fraction of 

GPP realized each day is respired at night by plant maintenance respiration. The seasonal trend of the nighttime misfit between 
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CDS and SAC thus indicates that the model underestimates plant respiration at night, and thus possibly GPP in the day. Although 

it is impossible to negate other hypotheses related to the atmospheric transport and vertical mixing, this result suggests that 

modeling nighttime CO2 at rural stations is affected by systematic errors of respiration during the growing season, so that nighttime 

rural CO2 data over that period can hardly be used in atmospheric inversions for inferring anthropogenic emissions.  

Further insight on the CO2 concentration dynamics at SAC is provided by the vertical differences that are derived from the 5 

measurements at two levels, 15 m and 100 m AGL, on a tall tower at that location (Figure 10). During the afternoon, the differences 

are small and there is little agreement between the observations and the simulated values (Figure 10a). This systematic bias between 

the observed and simulated CO2 vertical gradients could be explained by an underestimation of the photosynthetic uptake. The 

vertical CO2 differences are much larger at night with a fair agreement between the measurements and the simulated values in 

wintertime (Figure 10b). Although the nighttime time series show strong similitudes, there is a significant bias between the 10 

observations and the model during the growing season, but not so during the non-growing season. The seasonal phase of the vertical 

misfit is well correlated with the one obtained from the horizontal diagnostics, which tends to indicate the same bias in the estimated 

nighttime respiration. 

The analyses of both Figure 9 and 10, together with similar results observed at other stations (Figure S6: e.g. the horizontal 

difference between CDS and COU, and the vertical difference at TRN), are consistent with the hypothesis that the respiration 15 

emission at night is underestimated by the VPRM model. If this nighttime respiration bias would be correlated with the daytime 

respiration bias (Reichstein et al., 2005), it would imply that modeled positive gradients of CO2 between urban and rural stations 

could be overestimated during the growing season. We thus recommend for an inversion to control separately (with a priori) 

anthropogenic emissions and net ecosystem exchange, or even photosynthesis and respiration if additional data confirm a bias of 

respiration in VPRM. 20 

3.2.3 Atmospheric transport 

Uncertainty in simulated CO2 due to transport errors can be evaluated empirically through the spread of simulated CO2 by 

sensitivity experiments with different physical configurations of WRF-Chem. We have made five sensitivity simulations using the 

same surface fluxes and boundary conditions, but with three PBL schemes and two urban canopy schemes (see Table 1a).  

Figure 11a shows the horizontal distribution of the monthly median standard deviation of simulated hourly CO2 concentrations at 25 

approximately 20 m AGL using different physics schemes for two periods of the day (afternoon 11-16 UTC, nighttime 00-05 

UTC), and for two months (January, July 2016). During January, the simulated CO2 concentrations within the city, both in 

afternoon and nighttime, are highly sensitive to the choice of the physics scheme, with median standard deviations larger than 6 

ppm. In contrast, the choice of the physics scheme has less influence on simulated CO2 concentrations over suburban and rural 

areas in winter, with the median standard deviations of 1.2 ppm in the afternoon and 2 ppm at night. During the summer period, 30 

the smallest uncertainty of simulated CO2 concentration resulting from different physics schemes is found in the afternoon with 

median standard deviations that are less than 1 ppm, which indicates that the various schemes provide very similar values. However, 

it is necessary to compare these standard deviations to the amplitudes of the anthropogenic emission signature. Indeed, the 

anthropogenic signal may be understood as the “signal” for the estimate of the emission, while the spread of the five sensitivity 

simulations provides an indicator of the atmospheric transport uncertainty. We thus calculated the median ratios of the simulated 35 

anthropogenic CO2 concentration (average over the five sensitivity runs) to its respective standard deviation of the total CO2 signals 

among the five sensitivity runs, which we define as the “signal-to-noise ratio” (Figure 11b). The largest signal-to-noise ratio is 

found in the afternoon of summer within the urban area, indicating that the link between the anthropogenic emission and the CO2 

concentration can be derived from the model with the highest confidence for these conditions. However, during the summer, the 
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nighttime CO2 measurements over the suburbs are poorly suited for the inversion since the simulated CO2 are highly sensitive to 

the choice of physics scheme and the signal-to-noise ratios are then relatively small (< 1). 

Figure 11c shows the vertical distribution along a south-north transect through the JUS station in a similar way as Figure 11a. In 

general, the simulations with various physics options show very large variations in the modeled CO2 concentrations (up to 7.5 ppm 

standard deviation) close to the surface, a few tens of meters above the emissions. The differences become much smaller (less than 5 

1 ppm) with increasing altitude. This may be due to the fact that different physics schemes lead to different vertical mixing 

efficiencies, which has a strong impact on the vertical structure of CO2 concentrations. Given that the measurements are acquired 

at a level where the vertical gradient is large and variable, it may also indicate that the measurement-model discrepancy is highly 

dependent on the physics parameterization in the representation of the vertical mixing process in near-surface layers. During the 

winter period, there is a considerable difference in the vertical concentration profiles reproduced by different physics schemes 10 

within the city, with the uncertainty extending to a higher altitude in the afternoon than those in the nighttime. Further away from 

the urban area, anthropogenic emissions are substantially lower, and the vertical gradient of CO2 generated by the strong city 

emissions is smoothed out by the atmospheric convection and diffusion processes. As a consequence, much less uncertainty is 

associated with the choice of the physics scheme in the suburbs at altitudes above ~200 m AGL. As for the signal-to-noise ratio 

shown in Figure 11d, the large values within the city tend to indicate that the urban CO2 data are well suited for an estimate of the 15 

emissions using the atmospheric inversion method.  

We also accessed the respective contributions of anthropogenic and biogenic fluxes to the simulated spread of CO2 concentrations 

using different physics schemes. This allows an estimate of the impact of uncertainties in the atmospheric transport modeling along 

with that of the impact of the various flux contributions. Figure 12 shows the statistics of the differences in simulated anthropogenic 

and biogenic CO2 at approximately 20 m AGL between the control run (BEP_MYJ) and each of the other four sensitivity runs. 20 

The results in this figure are presented with the consideration of (i) two periods of the day (afternoon 11-16 UTC, nighttime 00-05 

UTC); (ii) two months (January, July 2016); and (iii) three land use types (urban, crop and the others). Urban (7.4%) and crop 

(84.6%) are the two dominant land use types of the innermost model domain (D03) from the MODIS land cover database used in 

the WRF-Chem model, where the percentages in parenthesis indicate the proportion of each land use category to the total area. 

The other land use types (8.0%) mainly include grass, shrub, mixed forest, deciduous forest and evergreen forest. During the winter, 25 

the simulated anthropogenic CO2 concentrations over the urban area are sensitive to the choice of the urban canopy scheme used 

in WRF-Chem, which is characterized by a substantial decrease in standard deviation from UCM to BEP (Figure 12a). The three 

simulations using the UCM scheme tend to produce higher anthropogenic CO2 concentrations together with larger standard 

deviations with respect to the control run using the BEP scheme. This is because the BEP scheme generates more mixing in the 

lowest atmosphere especially from 07 to 14 UTC in the day and in winter relative to summer, which reduces the vertical gradient 30 

and therefore the largest concentrations near the surface (Figure S7). The two urban canopy schemes (UCM, BEP) show small 

differences in the simulation of anthropogenic CO2 concentrations over the rural vegetated area for both seasons. This indicates 

that the choice of an urban canopy scheme is critical for simulating atmospheric transport at urban stations, but that the transport 

errors, without such scheme, remain mainly ‘local’ and have little remote influence at rural sites. That is, the choice of an urban 

scheme impacts CO2 concentrations over the urban areas but its impact on the larger scale transport is not significant enough to 35 

affect the simulated concentrations over rural areas. During the summer period, our results show that the modeled nighttime CO2 

concentrations are strongly sensitive to both the urban canopy and PBL schemes. This conclusion applies to both the urban and 

the rural areas.  

Here, we quantify the uncertainty in the modeling results that is linked to the three PBL schemes and two urban canopy schemes. 

Clearly, there are other potential sources of atmospheric transport uncertainties that are not accounted for in this study. The 40 
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simulated CO2 differences among the ensemble of physics schemes tested here are therefore only a fraction of the full magnitude 

of model uncertainty. Nevertheless, this uncertainty is, in some cases, of similar magnitude as the measurement-model differences 

that have been shown in section 3.1. 

3.2.4 Boundary condition 

To investigate the uncertainty in CO2 boundary conditions, we examined the modeled CO2 sensitivity over the Paris region to the 5 

use of two different global CO2 atmospheric inversion products as initial and boundary conditions for WRF-Chem (see Table 1c). 

Figure 13 shows all hourly CO2 concentration differences between BEP_MYJ and BEP_MYJ_CT that used CO2 fields from CAMS 

and CarbonTracker products respectively. The comparison is based on the simulated CO2 in the 25-km grid cell of the outermost 

domain (D01) containing the Paris city. For most time of the year (~73%), the differences in simulated CO2 concentrations over 

Paris are within the range of ±1 ppm since they are mainly affected by the relatively low differences between CAMS and 10 

CarbonTracker at the western boundary of D01 under the influence of west winds (cf Figure 3). Nevertheless, considerable 

differences (up to 5 ppm) are observed during several synoptic episodes, which illustrates the magnitude of uncertainties linked 

with the boundary condition hypothesis. These magnitudes are similar to those of the impacts of different physics schemes on 

simulated CO2 concentrations over suburban and rural areas as shown in section 3.2.3. Under such circumstances, it requires the 

use of additional observations to constrain the boundary inflow in inversions. On the other hand, as the IdF region is exposed to a 15 

relatively well-mixed background atmosphere after a long-range transport of CO2 from remote sources and sinks, one may expect 

that the resulting CO2 concentration features are large scales. As a consequence, the potential modeling error induced by an 

erroneous boundary will be similar for monitoring stations located within Paris and its vicinity. This characteristic suggests that 

the assimilation of upwind-downwind gradient in CO2 concentrations in the inversion of city-scale emissions as done in previous 

studies could also be an effective way to minimize the potential biases both from the boundary conditions and from remote fluxes 20 

within the domain but outside the city (Bréon et al., 2015; Staufer et al., 2016). 

4 Conclusions and discussions 

We have analyzed CO2 concentrations measured and modeled at six stations located within and in the surrounding of the Paris city. 

Our objective was to identify the main causes of the CO2 differences between the measurements and their simulated counterparts, 

with the overall goal to improve the quantification of anthropogenic emissions. To accomplish this, we have performed an 25 

ensemble-based sensitivity study and a full analysis of the uncertainties linked to anthropogenic inventories, biogenic fluxes, 

atmospheric transport and boundary conditions, either focusing on limited periods at different seasons or looking at the full-year 

period. 

A preliminary identification of the modeling errors was first conducted with the KNN algorithm to identify the largest mismatches 

between the observations and the model results. These large discrepancies are most likely either related to specific measurement 30 

contaminations from local unresolved sources of CO2 emissions, or to the model’s inability to properly simulate the atmospheric 

transport under specific meteorological conditions such as heavy rains and storms, thick clouds with a thermodynamically stable 

inversion. We should also note that removing outliers based on statistical analysis without attributing them to a real data 

contamination or model limitation has potential for data loss, which could ‘over-filter’ the solution of an inversion for emissions. 

Manual inspection combined with KNN statistical filtering was shown on two examples to be a promising way to confirm that 35 

outliers have a physically justified reason to be filtered for an atmospheric inversion that aims at quantifying the city emissions. 

However, the amount of data removed by this filtering approach is rather low and, therefore, the information from these data should 
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not be statistically significant for the city scale inversions. We note however that it can be critical to discard them since the least 

square formulation of the optimization underlying these inversions could provide much weight to these data with large 

discrepancies to the model.  

Within the city, the modeled CO2 concentrations appear highly sensitive not only to the atmospheric vertical mixing close to the 

surface, but also to the prescribed temporal profile of anthropogenic emissions. These sources of errors are large, particularly in 5 

winter, and show a potential for biases that is problematic when aiming at the quantification of city emissions. Our results indicate 

that the temporal profile of the heating sector used by the AirParif inventory tends to bear a large uncertainty. It is one of the two 

major causes that led to the large model-data misfits during the nighttime. In the IdF region, CO2 emissions from the heating sector 

are linked to the burning of gas and oil, and the electricity consumption. We could expect that a more constant diurnal profile 

should probably be a better approximation to the truth than the current one. This hypothesis has been further justified by an 10 

independent analysis of daily gas use and hourly electric consumption data within the IdF region (unpublished analysis led by a 

co-author of this study, François Marie Bréon). Furthermore, it remains difficult to interpret and use quantitatively in situ 

measurements within the city as long as there is no proper information about the turbulent airflow within and above the urban 

canopy. The near-surface mixing is not only controlled by the atmospheric stability conditions but also affected by the urban 

roughness and anthropogenic heat production. If the complex vertical mixing processes cannot be properly constrained in the 15 

transport model, it will be difficult to use the measurements acquired close to the sources in the atmospheric inversion system. 

Therefore, regular measurements of vertical CO2 profiles, combined with relevant upper-air meteorological data (e.g., potential 

temperature and wind) and the mixing layer heights in the lower troposphere are expected to be included in the future Parisian CO2 

monitoring network. Such complementary measurements will be of great help to understand the characteristics of CO2 vertical 

distribution under both stable and convective boundary-layer conditions. It can also be used to verify and validate the atmospheric 20 

transport model, and to reduce transport errors based on the data assimilation of more meteorological observations, leading to 

much higher accuracy in the atmospheric inversion system that aims at retrieving urban CO2 fluxes. 

In the suburbs, further away from the urban sources, the anthropogenic emissions are lower and the vertical gradient of CO2 

concentration, generated by the city emissions, is smoothed out by the atmospheric convection and diffusion processes. There is 

then less uncertainty than within the city about the efficiency of the vertical mixing. The link between the anthropogenic emission 25 

and the CO2 concentration during the afternoon in winter can then be derived from the model with more confidence. However, the 

contribution of the biogenic flux to the CO2 concentration is an issue during the growing season. The difficulty is mainly related 

to the simulation of the nocturnal CO2 concentrations because of the large uncertainties in the atmospheric transport modeling as 

well as the biogenic fluxes. Focusing on the Paris region, two limitations of this study should be acknowledged and worth further 

investigating based on the high-resolution urban ecosystem modeling and monitoring so as to better quantify the impact of urban 30 

biogenic fluxes: (i) due to the coarse-resolution (1 km) SYNMAP land use data used for the VPRM model, the simulated biogenic 

fluxes in center Paris in this study are almost zero except for a few grid cells containing two big parks that are located in the eastern 

and western outskirts of the Paris city. While in reality, there are still a number of green space and pervious landscaped areas 

unevenly distributed in the city of Paris that need be considered with a fine-scale (sub-kilometer) model; (ii) there is a lack of 

validation of the Paris-VPRM model in this study since no eddy covariance measurement is available within the Paris urban area 35 

and its surroundings. This limitation could be overcome by an expansion of the observation network with the neighborhood-scale 

urban eddy covariance flux measurements included. Moreover, additional measurements of carbon isotopes (14C, 13C) and tracers 

coemitted with CO2 (e.g., CO, NOx) could be used to separate the contributions from fossil fuel and biogenic components to the 

total CO2 concentrations, which would be beneficial for the optimization of sectoral CO2 fluxes. 
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The influence of different CO2 boundary conditions for our model domain is dependent on synoptic weather situations. As for the 

Paris region, the simulated CO2 differences between CAMS and CarbonTracker are less than one ppm during most periods of 

westerly winds that bring in clean oceanic air masses, but they can vary by several ppm during some synoptic episodes, e.g. with 

north and easterly winds. This result advocates the practice of using additional observations to constrain the boundary inflow (e.g. 

Nickless et al., 2019; Mueller et al., 2018), or using CO2 gradients when the wind direction is properly aligned with two (upwind-5 

downwind) stations in the inversion of CO2 fluxes of the Paris region (e.g. Bréon et al., 2015; Staufer et al., 2016). 
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Figure 1: (a) Three domains of WRF-Chem that are used for the simulations discussed in this study, together with the large-scale CO2 

emission for a weekday in November; Distributions of CO2 emissions for a typical weekday in November from the (b) AirParif and (c) 

IER inventories. The bottom two maps show the location of six CO2 measurement stations (blue inverted triangle), one PBL height 

measurement station (magenta circle) and the administrative limits of the Île-de-France region. 5 
 

 

 
Figure 2: Diurnal profiles (for January) of anthropogenic emissions in the grid cell of the emission map containing the CDS station. (a) 

is for the 1-km grid cell of the AirParif emission inventory that contains the station, whereas (b) is the 5-km grid cell of the IER 10 
inventory around the same station. The local time in Paris is one hour ahead of UTC (UTC+1) from November to March, and two 

hours ahead of UTC (UTC+2) from April to October. 
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Figure 3: Time series of average CO2 concentration differences between CAMS and CarbonTracker at four lateral boundaries (west, 

east, south, north), averaged over the lowest 0.7 km AGL, of D01 for 00 UTC in blue and 12 UTC in red. The lines indicate the spatial 

means over each boundary (a latitudinal transect for western and eastern boundaries / a longitudinal transect for southern and 

northern boundaries). The shaded areas extend over one standard deviation (± 1σ) computed over the grid cells that make the lateral 5 
boundary (spatial standard deviation). The yellow symbols indicate the days when the wind blows from outside of the domain at the 

respective domain boundary. The numbers on the right side of the figure indicate annual means of (i) the spatial mean and (ii) the 

spatial standard deviation. 
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Figure 4: Time series of the daily afternoon mean (11-16 UTC) observed and BEP_MYJ modeled (a) temperature, (b) wind speed, (c) 

wind direction and (e) CO2 concentration at SAC100 station. (d) Time series of the daily afternoon mean (11-16 UTC) observed and 

modeled PBL height at SIRTA station. 

 5 
 

 
Figure 5: Observed and BEP_MYJ (control run) simulated all hourly CO2 concentrations at six monitoring sites from December 2015 

to November 2016. The color of dots represents the density of points at a given position. The shade of blue area indicates the anomaly 

score for each point, with the minimum in dark blue and the threshold value in light blue. The dots lying outside the red contour 10 
(threshold value) are the large model-observation misfits (outliers) detected by the K-nearest neighbors (KNN) algorithm with an 

outlier fraction of 0.1. 
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Figure 6: Comparison of average diurnal variations between the (a) BEP_MYJ simulated (control run), (b) observed CO2 

concentrations, and (c) CO2 differences between the model and the observations for four seasons. DJF denotes December-January-

February, MAM denotes March-April-May, JJA denotes June-July-August and SON denotes September-October-November. The JUS 5 
instrument was not working during the summer of 2016. 

 

 

 

Figure 7: Average diurnal cycle of (a) total, (b) anthropogenic, (c) biogenic and (d) background CO2 concentrations in January for the 10 
four experiments at CDS station (Table 1b). The shaded areas extend over the standard deviation of the CO2 concentration divided by 

the square root of the number of observations. BEP_MYJ is the control run using the AirParif inventory with hourly profile. 

BEP_MYJ_IER uses the IER inventory with hourly profile, BEP_MYJ_AIP uses a constant temporal profile (each pixel has a 

different emission, but constant in time based on the temporal average of the AirParif inventory). BEP_MYJ_CON uses a constant and 

spatially homogeneous emission where the emissions are distributed uniformly over the IdF whole territory. 15 
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Figure 8: (a) Vertical distribution of CO2 concentrations at CDS station for January 2016, together with time series of the observed 

and BEP_MYJ simulated PBL heights at SIRTA station. (b) Time series of the observed and simulated CO2 concentration at CDS. The 5 
arrows on the top of the figure indicate the wind speed and direction every day at noon and midnight. The simulation uses the AirParif 

CO2 emission inventory. 

 

 

 10 
Figure 9: Daily (a) afternoon mean (11-16 UTC) and (b) nighttime mean (21-05 UTC) CO2 horizontal differences between CDS and 

SAC. Daily CO2 horizontal differences between CDS and SAC from each sector for (c) Non-growing season from October to April and 

(d) Growing season from May to September. OBS indicates the observed CO2 concentration differences. TOT, ANT, BIO and BCK 

indicates the simulated total, anthropogenic, biogenic and background CO2 concentration differences respectively. 

 15 



23 
 

 

Figure 10: Daily (a) afternoon mean (11-16 UTC) and (b) nighttime mean (21-05 UTC) CO2 vertical differences at SAC (15m-100m). 

Daily CO2 vertical differences at SAC (15m-100m) from each sector for (c) Non-growing season from October to April and (d) 

Growing season from May to September. OBS indicates the observed CO2 concentration differences. TOT, ANT, BIO and BCK 

indicates the simulated total, anthropogenic, biogenic and background CO2 concentration differences respectively. 5 

 

Figure 11: Analysis of the “signal-to-noise” as discussed in the text for two periods of the day (afternoon 11-16 UTC, nighttime 00-05 

UTC), and two months (January, July 2016). (a) is the median of the hourly standard deviation of the simulated near-surface CO2 

concentration computed among the five sensitivity runs (Table 1a); (c) is the same as (a) but for a vertical south-north slice that goes 

through the JUS station (shown as white dash lines); (b) is the median ratios of the hourly anthropogenic CO2 concentration (average 10 
of the five sensitivity runs) to its respective standard deviation of the total CO2 concentrations among the five sensitivity runs; (d) is the 

same as (b) but for the same vertical slice as in (c). 
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Figure 12. Analysis of the CO2 difference between the control run (BEP_MYJ) and each of the other four sensitivity runs over two one-

month periods. The colored bars show the monthly mean difference whereas the black lines indicate +/- one standard deviation of the 5 
monthly values. The results are shown for two periods of the day (afternoon 11-16 UTC, nighttime 00-05 UTC) and for three land use 

types (urban, crop and the others). 

 

 

 10 

Figure 13. (a) Time series and (b) Distribution of all hourly CO2 concentration differences between BEP_MYJ and BEP_MYJ_CT 

using CAMS and CarbonTracker as CO2 boundary conditions respectively. This comparison is based on the simulated values in the 

25-km grid cell of the outermost domain (D01) containing the Paris city. 
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Table 1. Summary of WRF-Chem configurations used for the sensitivity experiments in this study. The bold text indicates the settings 

of the control run which is the same in all sets of sensitivity experiments. 

(a) Sensitivity experiments of physics schemes carried out for a full-year period (2015.09-2016.11) 

Configuration 
PBL 

Scheme 

Urban Canopy 

Scheme 
Vertical Resolution 

Anthropogenic 

Inventory 

Boundary 

Condition 

BEP_MYJ MYJ  

BEP 

44 levels (wherein 25 

below 1.5 km). The 

lowest layer top is 

around 3.8 m AGL IER (5 km, outside 

IdF) + AirParif (1 

km, within IdF) 

with hourly profile 

CAMS 

BEP_BouLac BouLac  

UCM_MYJ MYJ  

UCM 

34 levels (wherein 15 

below 1.5 km). The 
lowest layer top is 

around 19 m AGL 

UCM_BouLac BouLac 

UCM_YSU YSU 

(b) Sensitivity experiments of anthropogenic emissions carried out for a one-month period (2016.01) 

Configuration Anthropogenic Inventory 
PBL Scheme + Urban 

Canopy Scheme 

Boundary 

Condition 

BEP_MYJ IER (5 km, outside 

IdF) + AirParif (1 

km, within IdF) 

with hourly profile 

MYJ + BEP CAMS 

BEP_MYJ_AIP without hourly profile 

BEP_MYJ_IER IER (5 km) with hourly profile 

BEP_MYJ_CON Constant (5.28 gCO2/m2/day) 

(c) Sensitivity experiments of CO2 boundary conditions carried out for the outermost domain (D01) for a full-year period (2015.09-5 
2016.11) 

Configuration Boundary Condition 
PBL Scheme + Urban 

Canopy Scheme 

Anthropogenic 

Inventory 

BEP_MYJ CAMS 

MYJ + BEP 
IER (5 km) 

with hourly profile BEP_MYJ_CT CarbonTracker 

 

 


