
We would like to thank Referee #1 for his/her thoughtful comments and detailed suggestions to our 

manuscript. In the following, we answer to the reviewer’s comments and indicate the changes in the 

manuscript that were implemented according to the recommendations. The comments are in black. Our 

answers are in blue. All the figure numbers correspond to the revised manuscript. 

Anonymous Referee #1 

Received and published: 31 July 2020 

General Comments 

The study investigates potential sources of error for estimating urban CO2 emissions using atmospheric 

observations. Understanding and mitigating these errors is necessary to produce more accurate emission 

estimates, and the authors suggest several criteria to select data to avoid the impact of these error sources. 

While the study focuses on Paris, the methods and results presented are more widely applicable and of 

interest to other urban emission estimation schemes using atmospheric data and transport models. 

The methods of the paper focus on examining a set of clearly described WRF-Chem forward model runs, 

with the CO2 emissions, boundary conditions and physics schemes varied. These comprise a logical set of 

factors to explore, with the authors acknowledging this is a subset of all possible error sources but is still 

shown to be important. The detailed analysis of these results links well with the corresponding conclusions 

drawn (suggestions ii and iii of the abstract). I believe this paper is a useful contribution to the field, 

providing quantifications of significant sources of uncertainty in current models and providing a framework 

for further urban systems to examine their own uncertainties. However, I do have a few concerns with other 

aspects of the paper, as detailed below. Therefore, I recommend this paper for publication in ACP once the 

issues outlined below have been addressed. 

We thank the reviewer for these very supportive comments. 

Specific Comments 

Introduction - The study could be seen as an extension to previous works in looking at sources of uncertainty 

(Martin et al 2019 https://doi.org/10.1016/j.atmosenv.2018.11.013) and are complementary to other recent 

studies on uncertainties in estimating urban emissions (such as Balashov et al 2020 

https://doi.org/10.5194/acp-20-4545-2020). The context set out in the paper could be improved by 

including comparisons to such other studies. 

Please see our answer to Referee #2. Table R1 shows a comparison between this study and few pilot CO2 

urban studies with the objective to investigate in detail the sources of uncertainty/error in the atmospheric 

CO2 modeling for cities, such as Los Angeles (Feng et al., 2016) and Washington DC/Baltimore (Martin et 

al. 2019). Given that the sources and characteristics of urban fluxes of CH4 is different from those of CO2, 

we have not included a comparison with the Balashov et al. 2020 here. 

Page 1 line 28 – Value quoted is for scope 2 emissions, but inversions only estimate scope 1 emissions. 

Either this should be made clear or the authors should use scope 1 emissions value. 

As suggested, we have used the value of direct emissions (scope 1). The modified text is as follows: 

“cities directly release about 44 % of the global energy-related CO2 emissions” 

Page 6 line 6 – The use of the KNN outlier removal needs greater justification and is my greatest concern 

with this paper. The authors claim that this algorithm removes observations of sources too local to be 



resolved or meteorological conditions that model is less skilled with (which are valid reasons for removing 

data points) but provides no evidence that this is the case. As it is, the algorithm may just be arbitrarily 

throwing away data that highlights systematic over or underestimates in the emissions field that is needed 

for an inversion. Either it needs to be demonstrated that the algorithm only removes points that are linked 

to these conditions, or a different method, preferably based on physical reasoning, should be used. 

In response to the reviewer’s concerns about the KNN outlier removal, we did perform some further 

analyses and validations of this method to support the approach and the related statements in the manuscript. 

These analyses definitely show that the outliers generally correspond to either: 

1) the model’s inability under specific meteorological conditions. 

After analyzing the dates of the identified outliers, we found clusters of outliers that occur as the result of 

weather episodes with a duration of one-to-few days. Several cases were identified and described in Table 

S1. One sample case, presented here, shows unfavorable meteorological conditions from Jan 18th to 21st 

2016. During this 4-day period, with a return of the winter anticyclonic conditions over the entire region, 

dense fog and weak winds were observed. Stubborn low clouds kept temperatures chilly with little snow. 

Figure S3a shows the time series of the observed and modeled (using MYJ_BEP) hourly CO2 concentration 

at SAC station. The grey shaded areas indicate the ranges of model results with five physical 

parameterization schemes used in this study (Table 1a in the manuscript). The yellow vertical lines indicate 

the large model-observation misfits (outliers) detected by the KNN algorithm. It can be seen that for the 

certain hours that were tagged as outliers, the differences between observed and modeled CO2 

concentrations can be as large as 70 ppm. Meanwhile, the spread of the simulations of CO2 is much larger 

than during the days before and after this period, leading to a higher mean bias error and root-mean square 

error of the ensemble mean. Figure S3b shows the distribution of the hourly CO2 concentrations as a 

function of the wind speed for the year 2016. It clearly illustrates that the detected outliers occurred more 

often in weak-wind conditions (< 2.5m/s) which are difficult to reproduce by the model. From this example, 

we can say that KNN can detect outliers corresponding to conditions when the model physics encounters 

limitations. 

2) the specific measurement contaminations from local unresolved sources of CO2 emissions. 

On the other hand, this KNN method was inspected for its ability to remove some CO2 spikes due to very 

local influences or sampling contaminations, mainly under low wind speed conditions. We illustrate this 

phenomenon with the example of the measurements of hourly CO and CO2 concentrations (CO being used 

to confirm the anthropogenic origin of the spikes in the atmospheric concentration) at the OVS station in 

2016. The CO and CO2 hourly mole fractions, as well as their ratios, are plotted as a function of observed 

wind speed and direction (Figure S4a). The location of the CRDS CO & CO2 sampling inlet is on a building 

roof, where there is a building ventilation exhaust shown in Figure S4b. Figure S4a shows that the CO 

signal tends to be larger relative to that of CO2 with low winds (< 4m/s) blowing from the east. This 

corresponds to the position of the building exhaust air system relative to that of the sampling inlet, and this 

is at odd with the North East position of the Paris urban area or of the main neighbor and large area sources 

relative to the OVS site. Further investigation shows that these CO spikes at OVS are mostly measured at 

night in winter, leading to a nighttime mean concentration even much larger than those two urban stations 

(JUS and CDS). We thus highly suspect that the measurements of CO and CO2 are contaminated by the 

exhaust air of the building under specific conditions (winter nighttime with light winds). Most of the dates 

corresponding to these CO and CO2 spikes exactly coincide with the outliers at OVS that have been detected 

by the KNN algorithm shown in Figure 5 in the manuscript. From this example, we can say that KNN can 

detect outliers (in the data) corresponding to real physical local contaminations. 



Therefore, the KNN method, as shown above, can detect misfits between the observations and the models 

that would be misleading for the city scale inversions. But we also acknowledge the fact that removing data 

points simply based on statistical analysis without identifying the outliers on a case-by-case basis may lead 

to a loss of data that are suitable for the city scale inversion. In practice, manual inspection is preferable for 

the identification of the cause of the error. However, this is not practical given a large amount of data at six 

in situ stations collected over one year as those analyzed in this study. It is also difficult to find a general 

outlier detection method fitting to any site, model and atmospheric transport conditions. 

The above analyses, table and figures will be put into the supplement. We have added the following text in 

section 3.1.2:  

“We further analyzed the filtered hourly concentrations (detailed in supplement material Figure S3 and S4) 

and confirmed the contamination at one of our sites (OVS) and the relationship between meteorological 

conditions and excluded modeled concentrations.” 

Regarding the conclusion and discussion section, we agree with the reviewer that it would be more 

appropriate to encourage the use of the KNN algorithm based on a deeper analysis of the detected outliers 

instead of just saying one should use it as crude data filtering. We have rephrased the text as follows: 

“We should also note that removing outliers based on statistical analysis without attributing them to a real 

data contamination or model limitation has potential for data loss, which could ‘over-filter’ the solution of 

an inversion for emissions. Manual inspection combined with KNN statistical filtering was shown on two 

examples to be a promising way to confirm that outliers have a physically justified reason to be filtered for 

an atmospheric inversion that aims at quantifying the city emissions. However, the amount of data removed 

by this filtering approach is rather low and, therefore, the information from these data should not be 

statistically significant for the city scale inversions. We note however that it can be critical to discard them 

since the least square formulation of the optimization underlying these inversions could provide much 

weight to these data with large discrepancies to the model.” 

Table S1. Meteorological conditions for several situations when large model-data misfits have been 

detected by the KNN algorithm. 

Date Bulletin Climatique Météo-France* 

January 19-21 

2016 

With the anticyclonic conditions, frosty fogs and stubborn low clouds were observed. 

Temperatures dropped below normal with local snow. The wind was weak to 

moderate. 

April 12-13 

2016 

Disturbances crossed the region on 9th, followed by a rain-unstable rise from 10th to 

13th. 

August 27 

2016 

The weather was under some unstable intermissions, e.g., stormy on 27th and 28th, then 

a few showers remained on 29th. 

October 25 

2016 

With the gradual increase of pressure until 1035 hPa on 28th, low clouds and fogs were 

tenacious. 

… … 

* Accessible at: 
https://donneespubliques.meteofrance.fr/?fond=produit&id_produit=129&id_rubrique=29 



    

Figure S3. (left) Time series of the observed and MYJ_BEP modeled hourly CO2 concentration at SAC 

station from Jan 18th to 21st 2016. The grey shaded areas indicate the ranges of simulation results with 

five physical schemes used in this study (Table 1a in the manuscript). The yellow vertical lines indicate 

the large model-observation misfits (outliers) detected by the K-nearest neighbors (KNN) algorithm. 

(right) Distribution of the hourly CO2 concentrations as a function of the wind speed for the year 2016.  

 

Figure S4. (a) Hourly CO and CO2 concentration measurements as a function of wind speed and direction 

at OVS station for the year 2016. (b) Image of the rooftop at OVS station with the CRDS CO & CO2 

sampling inlet in cyan and the building exhaust air system in red and green.  

Page 7 line 2 – The authors say that individual measurement errors are negligible compared to model-data 

differences. However, model-data comparisons are made on hourly time scales and there will be (potentially 

large) variation within the hour. How is this sub-hour variation accounted for in model-data comparison? 

In response to the reviewer’s question about the sub-hour CO2 variation, we also show the distribution of 

the standard deviation of all minute-scale CO2 samples per hour at CDS station for the year 2016 (Figure 

R1). The median value of standard deviation is around 1.3 ppm and the upper quartile (75th percentile) is 

less than 2.5 ppm. The magnitude of this sub-hour variability is much smaller than the RMSE value (14.5 

ppm, shown in Figure 4) of model-data comparison. We thus consider that the CO2 measurements provided 

by the CRDS instrument have a high precision and the individual measurement errors are negligible 

compared to the model-data differences. Furthermore, the model was set to output concentration at hourly 

scale so that we do not have the sub-hourly simulated instant concentrations to make the high-frequency 

model-data comparison. 



 

Figure R1. Distribution of the standard deviation of all minute-scale CO2 samples per hour at CDS station 

for the year 2016. The midpoint, the box and the whiskers in the boxplot represent the 0.5 quantile, 

0.25/0.75 quantiles, and 0.1/0.9 quantiles respectively. The median is shown as a horizontal line going 

through the box with the value in red. 

Page 8 line 17 – The authors suggest upwind-downwind gradient can be used even in growing seasons as 

natural biogenic fluxes do not completely offset anthropogenic fluxes – but this still requires good 

knowledge of biogenic fluxes as they will make a major contribution to the observed mole fraction 

difference. The authors note several lines later that the biogenic fluxes show systematic errors, does this 

contradict the first statement? 

The first statement intended to explain that biogenic fluxes in growing seasons do not offset the signal of 

anthropogenic emissions, but that uncertainty in biogenic fluxes makes it more difficult to quantify 

anthropogenic emissions in an inversion during the growing season. This is linked to the impact of biogenic 

fluxes on the knowledge of the anthropogenic contribution to the CO2 gradients. We rewrote the two 

sentences in section 3.2.2 as follows: 

The first statement as “During the afternoon, the CO2 differences are mostly positive and result primarily 

from the larger contribution of the anthropogenic emissions at CDS, both during the growing and non-

growing season. This result indicates that the magnitude of daytime net carbon uptake plants between the 

stations does not fully offset that of the anthropogenic emissions, and thus the CO2 concentration gradients 

between the upwind and downwind stations that are used in previous inversion studies. Nevertheless, the 

biogenic contribution to the gradient is not negligible with a potential impact on the estimate of the 

anthropogenic emissions from the measured gradient.” 

The second statement as “The respiration emission at night seems to be underestimated by the VPRM model. 

If this nighttime respiration bias would be correlated with the daytime respiration bias (Reichstein et al., 

2005), it would imply that modeled positive gradients of CO2 between urban and rural stations could be 

overestimated during the growing season. We thus recommend for an inversion to control separately (with 

a priori) anthropogenic emissions and net ecosystem exchange, or even photosynthesis and respiration if 

additional data confirm a bias of respiration in VPRM.” 

Page 10 lines 1-21 (and Figure 11) – This section should be reworked for clarity. My understanding is that 

the authors have averaged the difference of tracer concentrations between runs across time (by month) and 

horizontal space (by land type) to calculate the individual values shows in figure 11 – but this should be 

made clearer in the writing. For many of the values, the standard deviation is large w.r.t. the mean difference. 

A different type of plot that shows the distribution, such as a violin plot, may be more appropriate. 

Note: Figure 11 is now ranked as Figure 12 in the revised manuscript. 



We have changed the legend of Figure 12, as well as the description at the beginning of the paragraph where 

Figure 12 is mentioned. 

The modified legend is: 

“Figure 12. Analysis of the CO2 difference between the control run (BEP_MYJ) and each of the other four 

sensitivity runs over two one-month periods. The colored bars show the monthly mean difference whereas 

the black lines indicate +/- one standard deviation of the monthly values. The results are shown for two 

periods of the day (afternoon 11-16 UTC, nighttime 00-05 UTC) and for three land use types (urban, crop 

and the others).” 

The modified text is: 

“We also accessed the respective contributions of anthropogenic and biogenic fluxes to the simulated spread 

of CO2 concentrations using different physics schemes. This allows an estimate of the impact of 

uncertainties in the atmospheric transport modeling along with that of the impact of the various flux 

contributions. Figure 12 shows the statistics of the differences in simulated anthropogenic and biogenic 

CO2 at approximately 20 m AGL between the control run (BEP_MYJ) and each of the other four sensitivity 

runs.” 

Page 11 line 13 – A strong conclusion for the use of KNN outlier removal that is not justified, see above. 

Please see the answer above. 

Figure 12 – Why use a cumulative distribution and not a histogram – what are the authors trying to show 

with this choice? 

Note: Figure 12 is now ranked as Figure 13 in the revised manuscript. 

Figure 13b is changed to a basic histogram as suggested. The cumulative histogram makes it easy to 

quantify the fraction of data below or above a threshold, while the basic histogram is much easier for a 

visual representation of data distribution. Given that these two formats make no difference in representing 

the core findings of the study, we therefore changed it to a basic one to make the content more readable. 

Technical Comments 

Page 8 line 18 – suggest “(the SAC station had unfortunately measurement gaps)” -> “(unfortunately the 

SAC station had measurement gaps)” and dates of gap added. 

Text is modified as suggested: 

“(unfortunately the SAC station had measurement gaps from May 3rd to June 23rd and from July 7th to July 

12th)” 

General note on figures – Rainbow colour schemes should be replaced with perceptually uniform colour 

schemes, and red-green colour schemes should be avoided due to Colour vision deficiency (colour 

blindness). 

We thank the reviewer for the suggestion. The rainbow colour scheme in Figure 8 has been replaced with 

a perceptually uniform colour scheme. 

Figure 4 – Both the dark blue-filled contour and red contour are called the ‘threshold’ but the two are not 

in agreement (red contour seems to be the correct one). 



Note: Figure 4 is now ranked as Figure 5 in the revised manuscript. 

We thank the reviewer for having spotted the mistake. We have corrected the caption. The filled contour 

with the blue colormap is from the minimum anomaly score (dark blue) to a threshold value (light blue), so 

that it is the light blue and the red contour that indicates the threshold. The modified text is as follows: 

“The shade of blue area indicates the anomaly score for each point, with the minimum in dark blue and the 

threshold value in light blue.” 

Figure 6 – A note to remind the reader that this figure is for January only would be helpful. 

Note: Figure 6 is now ranked as Figure 7 in the revised manuscript. 

We have added “in January” in the caption. 

Figure 7 – This figure is dense, which hinders clarity. I suggest the wind direction and mf time series to be 

moved to new windows with a shared x axis. The boundary layer height should also have a larger contrast 

to make it more visible. 

Note: Figure 7 is now ranked as Figure 8 in the revised manuscript. 

Figure 8 is changed as suggested. The time series of the wind arrow and the model-data CO2 concentration 

has been moved to a new panel (Figure 8b). Apart from changing the line color, we also added the PBL 

height measurements in Figure 8a.  

Figure 10 – Showing the line of transect for the south-north slice on the lat-lon plots would make 

interpretation of the figure clearer. 

Note: Figure 10 is now ranked as Figure 11 in the revised manuscript. 

Figure 11 is changed as suggested. We have added a white dash line to show this south-north transect. 

 

All references mentioned in this response are already included in the manuscript. 

  



We would like to thank Referee #2 for the comments concerning our manuscript. Please find below a point-

by-point response (in blue) to each of the comments raised by the reviewer (in black). All the figure numbers 

correspond to the revised manuscript. 

Anonymous Referee #2 

Received and published: 3 August 2020 

General comments:  

The authors attempted to determine the uncertainty sources for the modeled CO2 concentrations over Paris, 

France, using a set of WRF-Chem simulations varying with physics-based transport, fossil fuel emissions, 

and CO2 boundary conditions, for 2016. They mainly focused on the impact of PBL schemes and with the 

combination of the urban canopy models, two fossil fuel emission inventories with /without hourly 

variability, and two global models as boundary conditions on the modeled CO2 in comparison with the 

ground-based in-situ CO2 measurements. Their results show that model-data mismatch maximizes in the 

nighttime so they recommended the readers to discard the model-data misfits and use afternoon 

measurements for inversion. This is not new, and I believe that is what we do in atmospheric inversion.  

Regarding this specific item, the point here is the assessment of such a traditional practice in global to 

regional scale inversions to the specific, fast-growing and more recent field of inverse modeling i.e. that of 

urban CO2 emissions based on ~1km resolution transport models, while the transport conditions and 

modeling skills over urban area can highly differ from larger scale transport conditions. 

They also found the boundary condition could cause large differences at the synoptic scale and suggest 

exploring more about the influence of the boundary condition on the inversed results and suggest using 

additional observation to constrain boundary conditions. This is also not new. The authors are aware of 

these points because they cited those papers. So, I failed to locate the novelty of the work that brought into 

the community. The authors, in my opinion, have repeated some of the previous studies without extending 

the science further. 

We thank the reviewer for giving us the opportunity to better explain the novelty of our results, and to better 

position our study with respect to similar one. In fact, few studies performed a detailed analysis of different 

sources of errors for modeling urban CO2 similar to the one presented in our study (Table R1). Here we 

present original work for the city of Paris with a deeper analysis on the concept of assimilating cross-city 

gradients and evaluates the inversions strengths and weaknesses with the results from a full year worth of 

CO2 measurements at 8 in-situ stations combined with the meteorological measurements, a sophisticated 

high-resolution atmospheric transport model coupled with the diagnostic biosphere VPRM model, and a 

series of sensitivity tests to the main components of the inverse modeling system.  

The use of city downwind-upwind gradients for city-scale inversion has been tested for Paris and promoted 

by a series of few publications (Bréon et al., 2015, Staufer et al. 2016, Wu et al. 2016) cited in this paper. 

Although the obtained results demonstrate the effectiveness of the inversion system, there are also several 

aspects concerning its improvement. For instance, the study in Lac et al. (2013), among others (e.g., Kim 

et al., 2013), demonstrates the potential improvements in the meteorological and atmospheric CO2 modeling 

over the Paris region. Therefore, it suggests investigating in more detail whether the urban effects on 

atmospheric transport modeling need to be accounted for in the inversion of CO2 fluxes for Paris. Lian et 

al. (2018) and Lian et al. (2019) attempted at setting up a high-resolution atmospheric transport modeling 

framework that is more robust or at least more flexible in terms of parameterization than those used in the 

previous Paris studies to account for the impacts of the urban effects, the biogenic flux and the model 



physics, which makes it promising to enlarge the set of data that can be assimilated for the inversions of the 

Paris CO2 emissions, and in a more general way, to strengthen the inversions.  

Moreover, since the publications by Bréon et al. (2015) and Staufer et al. (2016), the Paris CO2 network 

has been expanded and relocated since the year 2014, with several new in-situ CO2 stations combined with 

meteorological measurements. The present monitoring network, in particular the two newly built urban 

sites (JUS and CDS), is expected to provide new insights into the urban CO2 characteristics and the high-

resolution atmospheric CO2 modeling. A full re-assessment of the modeling skill and of the main sources 

of misfits between the observations and the model was needed on these new bases. This study actually 

presents a much more extensive analysis of the source of errors in the simulation over a one-year long 

period, in particular of the meteo-transport modeling errors, and of the skill for simulating the data from 

the site in the core of the urban area, than in the previous publications. In addition, Paris is a megacity like 

Los Angeles but surrounded by much more active vegetation in the growing season. In this study, the 

biogenic CO2 fluxes were calculated online in WRF-Chem by the diagnostic biosphere VPRM model at 1-

km horizontal resolution. We have demonstrated the impact of the biogenic activity on night-time 

measurements, which was not done before. 

In practice, even though the general conclusion converges towards those raised by the previous publications, 

the study conducted here provides some new error characterization and a range of new detailed insights on 

the signature of the different types of sources of errors at city scale during nighttime and daytime for the 

full year period. Our results not only reveal our greatest efforts and current ability to simulate the 

atmospheric CO2 concentration in an urban environment, but also prepare a promising way for a better 

inversion of CO2 emissions from Paris. Therefore, we believe that the experience gained on what can be 

done and not done over Paris, could provide useful insights to other cities. 

We have modified the text in the introduction section accordingly: 

“Since the year 2014, the Paris CO2 monitoring network has been relocated and expanded with seven in-

situ CO2 stations combined with meteorological measurements. The present network, in particular the two 

newly built urban sites, is expected to provide new insights into the urban CO2 characteristics. Lian et al. 

(2018) and Lian et al. (2019) attempted at setting up a high-resolution atmospheric transport modeling 

framework that is more robust or at least more flexible in terms of parameterization than those used in the 

previous Paris studies to account for the impacts of the urban effects, the biogenic flux and the model 

physics, which makes it promising to enlarge the set of data that can be assimilated for the inversions of the 

Paris CO2 emissions, and in a more general way, to strengthen the inversions. Therefore, a full re-

assessment of the modeling skills and of the main sources of misfits between the observations and the model 

is needed on these new bases. More specifically, we analyze in detail the model-measurement mismatches 

so as to identify critical sources of errors that would compromise a high-resolution atmospheric inversion 

of urban CO2 emissions in the Paris area. A set of forward simulations of atmospheric CO2 concentration 

are performed at 1-km horizontal resolution using the WRF-Chem model (Grell et al., 2005) with different 

anthropogenic emission inventories, physical parameterizations and CO2 boundary conditions over the 

Paris for the 1-year period spanning December 2015 to November 2016. The main objectives of this paper 

are to provide a rigorous and detailed error characterization of our atmospheric modeling system and to 

determine the data selection method (i.e. filtering of short-term model errors and local contamination) and 

CO2 boundary condition specifications at city scale during both daytime and nighttime over the full year 

period. We also address the question to what extent these model-measurement mismatches might be 

reduced and how our proposed diagnostics could be used to provide additional constraints for the inversion 

of CO2 emissions at the city scale.” 



Table R1. Few published studies with the objective to investigate the sources of error in atmospheric CO2 

modeling for city (comparison with this study). 

References City Objective Study Period Measurement Note 

Feng et al. 

2016 
Los Angeles 

Model-data 
comparison and 

network design 

evaluation 

One month 

(mid-May to 
mid-June 2010) 

 CO2 (2 in situ 
stations), PBL 

height, 

meteorological fields 

Sensitivity test of 
physical scheme 

and spatial 

resolution 

Martin et 

al. 2019 

Washington 

DC/Baltimore 

Analysis of errors in 

transport and fossil 
fuel emission 

One month 

(February 2016) 

CO2 (3 in situ 

stations + 1 rural 

station), PBL height, 

meteorological fields 

Sensitivity test of 

four fossil fuel 
inventory 

This study Paris 

Analysis of errors in 

fossil fuel emission, 

biogenic flux, 
atmospheric 

transport and CO2 

boundary condition 

One year 

(December 2015 
to November 

2016) 

CO2 (6 in situ 

stations + 2 rural 
station), PBL height, 

meteorological fields 

Sensitivity test of 

physical scheme, 

fossil fuel 
inventory and 

CO2 boundary 

condition 

 

Besides, the authors cited a few pilot CO2 urban studies, such as INFLUX and LA megacity. Both Lauvaux 

(2016) and Feng (2016) pointed out the significant improvement of using high resolution fossil fuel 

inventories in simulating CO2 in the urban environment. Although the authors included two different fossil 

fuel inventories in the simulation with the variation of the temporal components, I have a hard time 

following the goal of the experimental design. I thought they would explore the sensitivity of modeled CO2 

to the temporal resolutions when I was reading the methods and section 3.2.1, but the related findings were 

not emphasized in the conclusion. Why? 

This suggestion is well taken. We have added the following sentence in the method section to make the 

objective clearer: 

“In order to investigate the impact of the spatio-temporal distribution (especially the prescribed diurnal 

profile) of emissions on the modeled CO2 concentrations, we made a one-month simulation using these two 

anthropogenic inventories together with their respective temporal profiles (Table 1b). Within the same 

group of simulations, two more sensitivity tests of the diurnal profile were also carried out by using……” 

We also add the related findings in the conclusion: 

“Our results indicate that the temporal profile of the heating sector used by the AirParif inventory tends to 

bear a large uncertainty. It is one of the two major causes that led to the large model-data misfits during the 

nighttime. In the IdF region, CO2 emissions from the heating sector are linked to the burning of gas and oil, 

and electricity consumption. We could expect that a more constant diurnal profile should probably be a 

better approximation to the truth than the current one. This hypothesis has been further justified by an 

independent analysis of daily gas use and hourly electric consumption data within the IdF region 

(unpublished analysis led by a co-author of this study, François Marie Bréon).” 

One of the major concerns in the urban CO2 studies falls in the impact of the biosphere around or within 

the cities. The results of this study also showed that the impact of the biogenic fluxes is significant and not 

negligible, meaning that the biosphere is another uncertainty source over Paris. The author can refer to Feng 

(2019a; 2019b) to construct a set of biospheric fluxes and investigate the uncertainty of the biospheric in 



the modeled CO2 as well. Additionally, the authors relied on the VPRM module in WRF-Chem to provide 

the biogenic fluxes. It’s not clear to me that if VPRM has been tuned with flux towers or not. The VPRM 

parameters in WRF-Chem are fixed and needed to be tuned with the flux towers to have a relatively accurate 

biospheric flux estimation (Hilton et al., 2013: Hilton et al., 2014). If the authors used the default values for 

the VPRM parameters in this study, the authors will have to consider the errors caused by the biosphere 

during the interpretation of the results which is almost impossible to isolate from transport, emission, or 

boundary condition. However, because of the simplicity of VPRM, the authors can build a set of parameter-

based perturbations of the biospheric fluxes via VPRM to address my first concern. 

In this study, the VPRM parameters (α, β, λ, and PAR0) have been calibrated using the eddy covariance 

flux measurements for different vegetation types in Europe made during the Integrated Project 

CarboEurope-IP (http://www.carboeurope.org/).  

More detailed descriptions in terms of the model setup used in this study, e.g. the domain setting, the 

nudging option and the VPRM model, can be found in Lian et al. (2019) paper. We have referred to this 

information at the beginning of section 2.1 in this manuscript: 

“Details regarding the model setup and the reference data used in the simulations are outlined briefly below 

and described in Lian et al. (2019).” 

For better clarity, we have also added the following statement in the revised manuscript: 

“The values of the four parameters (α, β, λ, and PAR0) for each vegetation type used by VPRM have been 

optimized against eddy covariance flux measurements over Europe collected during the Integrated Project 

CarboEurope-IP (http://www.carboeurope.org/).” 

Given the optimal VPRM parameters have already been implemented in the simulation, we thus feel that 

there is no need to make a set of user-defined parameter perturbations as suggested by the reviewer. 

The authors chose five combinations of the PBL schemes and urban canopy models to study the impact of 

the transport and concluded that it’s difficult to have “good” transport. First of all, what are the rationales 

the authors believe these two schemes are the key players of the CO2 urban modeling? Díaz-Isaac (2018) 

using an ensemble approach pointed out PBL indeed is a major player but ranked No. 2. The most dominant 

parameterization is the land surface model used in the study. I am aware that the response of the modeled 

CO2 to the model physics may vary when the location changes. Have the authors explored the impact of 

other model parameterizations on the simulated CO2? This may be also why the model results have such a 

large bias in this study.  

The experiment design and the selection of physical scheme in this study are mainly based on the results of 

our previous study (Lian et al., 2018). Lian et al. (2018) investigated for the city of Paris, whether the high-

resolution WRF model with its various configurations, can provide a good representation of meteorological 

fields in support of tracer atmospheric transport modeling. A series of numerical experiments (32 

simulations) were carried out with the goal of detecting the sensitivity of WRF to its various physics 

schemes (including 6 microphysics schemes, 3 radiation schemes, 5 cumulus convection schemes, 4 PBL 

& surface layer schemes, and urban canopy scheme) and nudging strategies (spectral nudging, grid nudging 

and the objective analysis program OBSGRID). The meteorology provided by WRF was evaluated against 

both ground-based and radiosonde vertical observations, with a focus on three atmospheric variables (air 

temperature, wind and PBL height) that are relevant to the CO2 transport in an urban environment. Our 

sensitivity tests with different WRF physics schemes show that the wind speed and the PBL height are 

much more strongly influenced by PBL schemes with respect to other physics schemes. The WRF model 

http://www.carboeurope.org/
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together with its urban canopy scheme makes it possible to represent the urban heat island effects. Results 

in Lian et al. (2018) show that the meteorological variables are generally well reproduced by our WRF 

setup with the objective analysis and multi-nudging options that have also been used in this study. 

Meanwhile, it also provides an objective method for us to select the appropriate model physical schemes. 

Thus in this study, we only carried out the sensitivity simulations with different PBL and urban canopy 

schemes as they are sufficient to address the paper main question regarding the ability of a configuration of 

the WRF-Chem model to simulate the atmospheric CO2 transport over Paris, but also to provide an estimate 

of the atmospheric transport uncertainty. All the other physics options remained the same in the experiments. 

In the manuscript, we already mentioned that: 

“These options correspond to those selected by Lian et al. (2018) which showed good performances for 

simulating near-surface winds and temperatures over the Paris region.” 

For better clarity, we have also added the following sentence in the revised manuscript to account for the 

reviewer’s comment: 

“These two physics schemes were selected as they have a more significant impact on the simulated 

meteorological variables than the other schemes based on our previous sensitivity study (Lian et al., 2018, 

Lian et al., 2019), and thus the differences between simulations with these two physical options could 

provide an estimate of the atmospheric transport uncertainty over the Paris region.” 

Secondly, the model-data mismatches are extremely large and out of my expiation. For example, the whole 

year averaged diurnal mismatch can be as large as -10 to 5 ppm at the two urban sites in Figure 5. I found 

a similar figure in Figure 9 of Feng (2016), even though it’s a month averaged value, in which the diurnal 

cycle from the high-resolution simulation looks almost identical to the observation. What causes the large 

bias in this work? I would check if any errors caused by other model physics.  

Note: Figure 5 is now ranked as Figure 6 in the revised manuscript. 

At first glance, the large model-data mismatches in Figure 6 shown in section “3.1 Overall model 

performance” might be a surprise since the model underestimates CO2 with a bias ranging from 0 to 12 

ppm across stations during the night until around 05 UTC. In fact, a fairly detailed explanation of the two 

causes of this model-data discrepancy was already provided and justified in section 3.2 of the manuscript. 

It is due to the prescribed nighttime heating emission profile used in the AirParif anthropogenic inventory 

(the second paragraph in section 3.2.1) and the nighttime model transport issue (the third paragraph in 

section 3.2.1).  

Thirdly, the authors concluded that the transport issue is difficult to identify. I disagree. The model transport 

can be evaluated with meteorological observations. Apparently, there are meteorological observations at 

the monitoring sites. Additionally, there are quite a few WMO stations in the domain. Comparing with 

meteorological observations in the model domain will allow the authors to have a better sense of the model 

transport. 

We certainly agree with the reviewer that the accuracy of the modeled CO2 concentrations depends on the 

quality of the meteorological model. Therefore, as a first step, our previous Lian et al. (2018) paper 

particularly focuses on the evaluation of WRF in simulating the meteorological variables over the Paris 

region. The statistics for WRF results as compared to the observations show that our model setup for Paris 

with its multi-nudging options can well reproduce the near-surface air temperature and wind without 

obvious technical or configuration issues (Figure S2 in Lian et al. 2018). We thus feel that there is no need 

to fully resume such a detailed meteorological validation in this study. We acknowledge nevertheless that 



the reader may want to see more so that we have provided the following assessment of the meteorological 

fields.  

We have added a new sub-section (section 3.1.1 Meteorological fields) together with the two new figures 

(Figure 4 and Figure S2) in the revised manuscript. 

“In this section, we start with an evaluation of the overall performance of the control run (BEP_MYJ) in 

simulating both meteorological fields and atmospheric CO2 over the full-year period. Since the accuracy of 

the modeled CO2 concentrations depends on the quality of the meteorological model, the simulated 

meteorology by WRF was first evaluated against observations at SAC100 and SIRTA stations with a focus 

on three variables (air temperature, wind and PBL height). Figure 4 shows the time series of the 1-year 

daily afternoon mean (11-16 UTC) observed and modeled temperature, wind speed and wind direction at 

SAC100 station, together with their statistics summarized in the scatter plots. The daily nighttime mean 

(21-05 UTC) data are shown in Figure S2. In general, both daytime and nighttime temperature are well 

reproduced by WRF with correlation coefficient, RMSE and MBE of 1.0, 0.44℃, 0.06℃ and 0.99, 0.67℃, 

0.23℃ respectively. The analysis of the MBE shows that the wind speeds are slightly overestimated by 

WRF, with a bias of 0.96 m/s for afternoon and 0.68 m/s at night. As for the wind direction, the model-data 

misfits decrease with the increasing wind speed. Seasonal (and even some day-to-day) variations in the 

afternoon average PBL heights diagnosed from the model data are in general agreement with the 

observations at the suburban SIRTA site with a RMSE of 359 m and a positive bias of 82 m. Some 

disagreements between the model-data PBL height estimates can be expected given layer heights from 

aerosol-based methods (as here applied to the observations) tend to lag behind those determined from 

thermodynamic methods (applied to the model data) during the course of the day (Kotthaus et al., 2018). 

Relative agreement between PBL heights is reduced at night (Figure S2), as uncertainties are higher in both 

the observed layer heights (Section 2.2) and those diagnosed from the model data (Shin and Hong, 2011). 

In general, results in Figure 4 and Figure S2 show that the simulated meteorological fields agree reasonably 

well with observations both during day and night which indicates parameter settings suitable overall.” 



 

Figure 4. Time series of the daily afternoon mean (11-16 UTC) observed and BEP_MYJ modeled (a) 

temperature, (b) wind speed, (c) wind direction and (e) CO2 concentration at SAC100 station. (d) Time 

series of the daily afternoon mean (11-16 UTC) observed and modeled PBL height at SIRTA station. 

 



 

Figure S2. Time series of the daily nighttime mean (21-05 UTC) observed and BEP_MYJ modeled (a) 

temperature, (b) wind speed, (c) wind direction and (e) CO2 concentration at SAC100 station. (d) Time 

series of the daily nighttime mean (21-05 UTC) observed and modeled PBL height at SIRTA station. 

As the authors mentioned that boundary conditions can lead to large bias in the inversed results, the results 

showed that 5-20 ppm day-to-day difference between the two global models along the edges of the model 

domain. In the CO2 regional (inverse) modeling, one of the major concerns about the boundary condition 

is the conservation of mass (Butler et al., 2020). How did the authors handle mass conservation when 

incorporating global modeled CO2 into the regional model domain?  

As described in the manuscript, both global datasets (CAMS and CarbonTracker) were interpolated onto 

the outermost domain of WRF-Chem (D01) (bilinearly in longitude, longitude and linearly in pressure) so 

as to provide the lateral boundary conditions for CO2 simulations. We did not specifically address the 

pressure-weighted integrated columnar concentration of CO2 as we only focus on the model-data 

comparison for the near surface in situ CO2 measurements rather than the column-average dry-air mole 



fractions of CO2 (XCO2) measured by the satellite or the ground-based remote sensing system. In addition, 

it is worth pointing out that west winds (180-360° headings) are dominant in the Paris area. For most time 

of the year (~73%), the differences in simulated CO2 concentrations over Paris are within the range of ±1 

ppm since they are mainly affected by those differences between CAMS and CarbonTracker at the western 

boundary of D01. Even though the differences between CAMS and CarbonTracker are larger at the eastern 

boundary (-4.8 ± 7.4 ppm for 00 UTC and -1.7 ± 3.3 ppm for 12 UTC), the magnitude of uncertainties 

becomes much smaller after a long-distance transport of CO2 (up to 5 ppm during several synoptic episodes). 

Under these circumstances, we also suggest the use of CO2 gradients between upwind-downwind stations 

in the inversion for Paris, which will further decrease the impacts as compared to a mass-balance inversion 

method.  

Another issue is that the number of boundary conditions used is too small to quantify the uncertainty. 

Strictly speaking, to be able to claim quantification of the uncertainty sources, a large number of the 

ensemble and a set of calibration procedures are required, such as rank histogram, reliability diagram, brier 

scores, etc. (Garaud and Mallet, 2011). Although it may be difficult to meet two criteria with the CO2 

modeling, the authors will at least need three of them to study the sensitivity. 

We disagree on this point. By using the two state of the art global CO2 atmospheric inversion products 

(CAMS and CarbonTracker), the results in this study do show a fairly detailed information of uncertainties 

linked with the boundary condition hypothesis. It also provides an insight for the use of CO2 gradients 

between upwind-downwind stations in the inversion of CO2 fluxes for Paris so as to remove the potential 

errors from the boundary conditions, in particular when winds blowing from the east during the period of 

inversion. It is worth noting that the sensitivity tests in this study do not intend to explore and cover the full 

uncertainty space. We are more interested in the order of magnitude with the current two realistic boundary 

conditions rather than the theoretical perturbations with three members (or even more). With this 

perspective, using these two most suitable products is well enough to achieve our objective. 

In summary, this work claims that it has a quantitative evaluation of uncertainty sources in the CO2 

modeling, but the experimental design is far from achieving the goal. It eventually is merely a sensitive 

study of modeled CO2 to the selected fossil fuel emissions, the combination of PBL and urban canopy 

models, and boundary conditions. The size of the ensemble they built does not allow them to do a solid 

quantification study. As I mentioned, this study appears repeating some of the previous studies without 

advancing the understanding the community already holds currently, neither in science nor in techniques. 

It is well known that city-scale inversion bears a large number of challenges that we do not claim to solve 

at once. We believe that the present manuscript provides error characterization and a range of new detailed 

insights on the signature of the different types of sources of errors at city scale, that most likely will remain 

during the forthcoming years. Meanwhile, following the suggestion from Reviewer #3, we have modified 

the title to better reflect our intent.  

There are no clear rationales why they made such selection as I pointed out with the transport “ensemble”. 

The authors did not address the major issues in urban modeling, i.e., the impact of biosphere, and regional 

modeling, i.e., the conservation of mass when applying boundary conditions. They also failed to have a 

clear conclusion about the findings associated with fossil fuel emissions. In my opinion, this work is 

incomplete and must be extended to consider publication; these concerns I brought up can be addressed, 

which, however, will require a new design of the method. In addition to the specific comments I listed 

below, I would not recommend this MS to be a published in ACP. 

Please see our answer above in terms of the VPRM biogenic flux, the conservation of mass, and the 

conclusion about the fossil fuel emissions.  



Specific comments: 

Section 2: There are important details missing in the description of the model setup. 

1) Did the model use simulation cycles? If yes, how often is it? If yes, how was the CO2 field addressed, 

initializing every time or being carried over simulation cycles? 

Following the reviewer’s suggestion, we have added the following sentence in section 2.1.3 to address 

this point: 

“The simulation was restarted every 5 days with the CO2 initial values from the previous run.” 

2) ERA-Interim and the outermost domain of WRF-Chem have quite different resolutions. What are the 

rationales that the authors used grid nudging over spectral nudging? 

As mentioned above, the choice of the model configuration in this study corresponds to those selected by 

Lian et al. (2018) which showed good performances for a representation of meteorological fields in support 

of the atmospheric transport modeling. The impact of grid nudging, spectral nudging, and WRF OBSGRID 

program have been investigated in Lian et al. (2018). We used the combination of grid nudging, surface 

analysis nudging and observation nudging together with the objective analysis (the latter three are generated 

by OBSGRID) to maximize the benefit of assimilating surface and upper air meteorological observations. 

The model performance of this multi-nudging options (WRF_OA) was compared to the one with the 

spectral nudging (WRF_noOA). Results show that WRF_OA provides obvious improvements in modeled 

surface temperature and wind speed over WRF_noOA, and is therefore recommended to be used in the 

atmospheric transport modeling when an accurate description of reality is needed. More details regarding 

the nudging to different variables and their coefficients are all described in Lian et al. (2018).  

We feel that there is no need to explain in detail why we used grid nudging instead of spectral nudging in 

this study for two reasons: 

(1) Comparison of the performance of nudging techniques (e.g. grid nudging vs. spectral nudging) is 

not closely related to the objective of this study. It has already been investigated in our previous 

study and referred in this manuscript. 

(2) The nudging strategy used in this study has already been described in section 2.1 as follows: 

“The grid nudging option in WRF to relax the model to ERA-Interim on large scales was applied 

to temperature and wind fields at model levels above the planetary boundary layer (PBL) of the 

outer two domains. We also used the surface analysis nudging and observation nudging options to 

assimilate the National Centers for Environmental Prediction (NCEP) operational global upper-air 

(ds351.0) and surface (ds461.0) observation weather station data 

(https://rda.ucar.edu/datasets/ds351.0/; https://rda.ucar.edu/datasets/ds461.0/), which are described 

in more detail in Lian et al. (2018).” 

3) As I mentioned in the general comments, have the VPRM parameters constrained with the flux tower 

measurements? 

See answer above. In this study, the VPRM parameters have already been optimized with the eddy 

covariance flux measurements over Europe. 

4) When the authors were incorporating CO2 IC/BC to WRF-Chem, how did the author address the 

conservation of CO2 mass? 

See answer above. 



5) When using global modeled CO2 as IC, the discontinuity of the global and regional model dynamic can 

cause discrepancy of the CO2 as well. How much the difference caused by the discontinuity would be? 

We follow the traditional method used in the modeling community for the IC & BC interpolation and the 

WRF downscaling. The WRF outermost boundaries were set far away from the area of our interest, with 

three levels of nesting with horizontal grid spacing of 25, 5 and 1 km, covering Europe (D01), Northern 

France (D02) and the IdF region (D03) respectively. We thus believe that such a discontinuity of the global 

and regional model dynamic at the D01 boundaries is not a critical issue for the simulated CO2 concentration 

over Paris, especially for the CO2 gradients across the city. This paper did not aim at solving such specific 

secondary problems in depth, which is out of the scope of this study. 

P 6, L 25-30: the author interoperated that the reason of the higher CO2 concentrations in fall than in winter 

was due to the anticyclone keeping the high CO2 in the domain for quite a while. I disagree. If it’s due to 

meteorology, the impact on the fossil fuel CO2 and biospheric CO2 concentration should be the same. We 

should see lower CO2 in the suburban sites, but we don’t. 

The figure below (Figure R2) and analysis of weather regimes show that the higher concentration in autumn 

2016 are partly due to more anticyclonic events associated with CO2 peaks from mid-October to mid-

November 2016 compared to December 2015. The impact on the concentrations is not only a function of 

the atmospheric circulation, but also on the fluxes. Tracer simulations (Figure R2c and R2d) indicate that 

these peaks in autumn 2016 are mainly explained by a higher contribution of anthropogenic emissions 

compared to those of 2015, whereas the contribution of biogenic respiration is similar between autumn 

2016 and winter 2015. 

 

Figure R2. Time series of the BEP_MYJ simulated daily average (a) total, (b) background, (c) 

anthropogenic and (d) biogenic CO2 concentration at CDS and SAC station 



P7, L1-5: as I said earlier, the authors should be able to identify at least to some degree if the issues are in 

transport or boundary conditions by comparing with the meteo data. 

See answer above. 

P10, L10-15: what causes the different bias between the BEP and UCM schemes? I would like to see a 

deeper explanation of that instead of simply saying lower or higher. 

Concisely, the two schemes differ in their representations of the near-surface mixing which leads to large 

differences in the modeled CO2 concentrations. Figure S7a shows the annual average of the vertical 

distribution of CO2 concentrations at JUS station for 24 hours a day for the two schemes BEP, UCM and 

their differences. It can be seen that both BEP and UCM schemes reproduce large vertical gradients in CO2 

concentrations in the low atmosphere levels, i.e. up to approximately 300 m AGL but mostly in the first 

100 m. In general, the BEP scheme reproduces smaller CO2 concentrations in the lower part of the 

atmosphere (<100m) than UCM does. After the sunrise at 5 UTC, the mixing by turbulent diffusion and 

afterwards by thermal plume dilute CO2 to higher levels more quickly in BEP than UCM. The height of the 

boundary layer keeps increasing between sunrise and noon. During the afternoon, the boundary layer is 

well developed with enough mixing, resulting in CO2 being transported to the upper layers through 

atmospheric convection. Figure S7b shows the vertical distributions of CO2 concentrations during the 

afternoon (11-16 UTC) at JUS station for 12 calendar months. The UCM scheme reproduces a much larger 

vertical gradient in CO2 concentrations close to the surface than the BEP scheme does, especially in the 

winter time. This is because of the high emissions (mainly household heating) and the more stable 
atmosphere in winter than in summer.  

More precisely, the different depictions of the urban canopy parameters in the two modules (e.g. building 

heights, pervious area fractions, street canyons, heat capacity and thermal conductivity) and their impact 

on the energy budget and atmospheric transport are most likely to be the cause of the performance difference 

between BEP and UCM. The simulated near-surface CO2 concentrations are highly sensitive to small 

differences in urban friction coefficient, wind velocity and vertical mixing associated with turbulence over 

the emission-rich areas (e.g. city center in winter). Even though we have modified the geometric and 

thermal parameters in the module over Paris based on the work of Kim et al. (2013), there are still many 

land surface characteristics that were not calibrated due to lack of detailed information of the urban form 

for the Paris city. A further improvement of the urban canopy schemes and a deeper analysis are out of the 

scope of this study. 

Based on the discussion above, we have added the following sentence in the manuscript and Figure S7 in 

the supplement to account for the reviewer’s comment: 

“This is because the BEP scheme generates more mixing in the lowest atmosphere especially from 07 to 14 

UTC in the day and in winter relative to summer, which reduces the vertical gradient and therefore the 

largest concentrations near the surface (Figure S7).” 



 

Figure S7. (a) Annual average of the vertical distributions of CO2 concentrations at JUS station for 24 

hours of the day for BEP, UCM and their differences; (b) Vertical distributions of CO2 concentrations 

during afternoon (11-16 UTC) at JUS station for 12 calendar months for BEP, UCM and their differences. 

P11, L19-21: I agree that based on the current setup, there is little hope to improve the model performance. 

However, the authors can follow my suggestion listed in the general comments. For example, checking the 

land surface model used, comparing with meteo data, etc., to identify if the problem is caused by transport 

is the first step. Then the authors can look into the emission, boundary conditions, etc. 

Please see our answers above in terms of the choice of physics schemes, the model-data validation for the 

meteorological variables. Our previous study and the subsequent analyses (section 3.1.1 together with 

Figure 4 and S2) in this study indicate that the model-data discrepancy is not merely due to an obvious error 

in the atmospheric transport modeling. We thus analyze in further detail these measurement-model 

discrepancies and attempt to identify cases when they appear to be mainly driven by uncertainties in the 

anthropogenic emissions, in the biogenic fluxes, in the physical parameterizations of the atmospheric 

transport model, or in the CO2 boundary conditions, as presented in section 3.2. 

Figure 5: please use local time in the x-axis instead of UTC. The much bigger issue is the large bias in the 

biases. 

Note: Figure 5 is now ranked as Figure 6 in the revised manuscript. 

The local time in Paris is one hour ahead of UTC (UTC+1) from November to March, and two hours ahead 

of UTC (UTC+2) from April to October. As the time zone difference is only one or two hours from UTC 

to the local time, it may not seriously affect our visual interpretation of the results. Moreover, given that 

the time scale for the other figures and text in this manuscript are all shown as UTC, we might prefer to use 

UTC in the x-axis of Figure 6. We have added the following text in the caption of Figure 2 to clarify this 

point: 



“The local time in Paris is one hour ahead of UTC (UTC+1) from November to March, and two hours ahead 

of UTC (UTC+2) from April to October.” 

Please see our answer above in terms of the large bias. 
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We would like to thank the reviewer for the valuable comments and suggestions for improving our 

manuscript. Please find below a point-by-point response (in blue) to each of the comments raised by the 

reviewer (in black). All the figure numbers correspond to the revised manuscript. 

Anonymous Referee #3 

Received and published: 7 August 2020 

General Comments:  

This study by Lian et al., 2020 attempts to identify and quantify significant sources of errors that can hinder 

the accurate estimation of urban-scale emissions. The objective of this study, as claimed by the authors, 

also includes demonstrating how these diagnostics can be used for inverse modelling studies. An ensemble 

of WRF-Chem simulations are performed, varying emission inventories (one month of simulations), PBL 

schemes and urban canopy schemes (one year of simulations), and boundary conditions (one year of 

simulations). The topic is fascinating and is essential to investigate the how sensitive is the emission 

estimate to the different components of the transport mechanisms (simulated by the model), flux variations, 

and assumptions/methods employed. This is a well-written manuscript with clearly described methods and 

results arranged in a logical order, which made the manuscript easy to follow. The conclusions drawn, based 

on their analyses, are reasonable and are applicable to those working on city-scale and mesoscale inversions 

of CO2 using WRF-Chem. 

We thank the reviewer for his work and this positive general assessment of the manuscript. 

The study in this present form, however, fails to justify the title. Though the study considered an ensemble 

of simulations and subsequent analyses, it is still insufficient to make a quantitative estimation/evaluation 

of sources of errors in CO2 simulations which is adequate to the broad spectrum of inverse modelling studies. 

I’d instead consider it as a study on diagnosing the effect of vertical mixing (PBL schemes), specific 

modelling criteria (urban schemes) as well as boundary conditions in city-scale modelling, in addition to 

assessing the sensitivity of simulations to the emission patterns. I believe that the title can be reworked 

accordingly to present the study appropriately. Additionally, some other sections require more clarification, 

modification, and further analysis, as mentioned below. Thus, I would recommend a major revision before 

considering for publication in ACP.  

We greatly appreciate the reviewer's suggestion and fully agree that the title needs to be made more concise 

and to have a clearer description of the objective so that the reader can more easily understand the analysis 

undertaken. We thus have altered the title to better reflect our intent: 

“Sensitivity to the sources of uncertainties in the modeling of atmospheric CO2 concentration within and in 

the vicinity of Paris city” 

Though it is mentioned as one of the objectives, I don’t see that the study has addressed the question to 

what extent or how the model-measurement error can be reduced. This is a major concern of mine. I’d 

consider that the authors could devise efficient analysis strategies to address this, given the availability of 

measurements from 6 +2 sites and ensemble of simulations. An adequate diagnosis of model-measurement 

mismatches is missing, which is a weakness of this manuscript. A discussion on how the diagnostic results 

can be used for the betterment of inversion studies is vaguely articulated in the manuscript. All the 

guidelines for the data selection put forward by the study (such as discard data with high model-data misfits, 

use only afternoon values; test the influence of boundary conditions) is already known to the community 

and currently practised in inverse model calculations. I would suggest authors avoid the above statement of 



objective or revise thoroughly while incorporating additional analysis to explain the novelty of their 

findings.  

We have expanded the discussion section and attempted to use it to consolidate the conclusions as far as 

possible. The following two paragraphs have been added to provide the perspective on reducing the model-

measurement error that would be beneficial to the future atmospheric inversion studies. 

“Furthermore, it remains difficult to interpret and use quantitatively in situ measurements within the city as 

long as there is no proper information about the turbulent airflow within and above the urban canopy. The 

near-surface mixing is not only controlled by the atmospheric stability conditions but also affected by the 

urban roughness and anthropogenic heat production. If the complex vertical mixing processes cannot be 

properly constrained in the transport model, it will be difficult to use the measurements acquired close to 

the sources in the atmospheric inversion system. Therefore, regular measurements of vertical CO2 profiles, 

combined with relevant upper-air meteorological data (e.g., potential temperature and wind) and the mixing 

layer heights in the lower troposphere are expected to be included in the future Parisian CO2 monitoring 

network. Such complementary measurements will be of great help to understand the characteristics of CO2 

vertical distribution under both stable and convective boundary-layer conditions. It can also be used to 

verify and validate the atmospheric transport model, and to reduce transport errors based on the data 

assimilation of more meteorological observations, leading to much higher accuracy in the atmospheric 

inversion system that aims at retrieving urban CO2 fluxes.” 

“Focusing on the Paris region, two limitations of this study should be acknowledged and worth further 

investigating based on the high-resolution urban ecosystem modeling and monitoring so as to better 

quantify the impact of urban biogenic fluxes: (i) due to the coarse-resolution (1 km) SYNMAP land use 

data used for the VPRM model, the simulated biogenic fluxes in center Paris in this study are almost zero 

except for a few grid cells containing two big parks that are located in the eastern and western outskirts of 

the Paris city. While in reality, there are still a number of green space and pervious landscaped areas 

unevenly distributed in the city of Paris that need to be considered with a fine-scale (sub-kilometer) model; 

(ii) there is a lack of validation of the Paris-VPRM model in this study since no eddy covariance 

measurement is available within the Paris urban area and its surroundings. This limitation could be 

overcome by an expansion of the observation network with the neighborhood-scale urban eddy covariance 

flux measurements included.” 

Specific Comments:  

Fig. 2. For Line style descriptions, please use another colour (e.g. black) than those used as line colours. 

Blue is already used for “Total”. I had a hard time understanding. Also, I’d suggest you remove (c) and (d) 

and include AirParif (daily) and Constant in (a) and (b). 

Figure 2 is changed as suggested. 

Differences between CAMS and CarbonTracker at the four lateral boundaries: Why are there substantial 

differences between daytime and nighttime in East boundaries, sometimes even in opposite phases (Fig. 

3b)? Please explain. 

The CAMS and CarbonTracker could be considered as two independent global CO2 analyses and 

atmospheric inversion systems. They have used a variety of different inputs (e.g. different prior estimates 

of CO2 fluxes, observation datasets, etc.) and approaches or tools (e.g. different global atmospheric 

transport models with different meteorological forcing, different data assimilation methods with from the 

variational method applied to long temporal window and an ensemble Kalman filter-based method applied 



to much shorter analysis windows) to estimate the CO2 surface fluxes and transport them to simulate the 

three-dimensional atmospheric CO2 mole fraction. Therefore, it is hard to fully rule out the detailed causes 

of the substantial difference at the eastern boundary. A possible explanation is the larger differences 

between both the fossil fuel and biogenic CO2 fluxes over the European continent as a result of their 

respective analysis (http://www.globalcarbonatlas.org/en/CO2-emissions). It may also because of the 

sensitivity of the modeled CO2 concentrations to the transport fields over the mountain region in the eastern 

part of the outer domain. 

We have added the following sentence in the manuscript to account for the reviewer’s comment:  

“A possible explanation could be that both fossil fuel and biogenic CO2 fluxes and associated uncertainties 

are larger over the European continent than over the oceans. It may also be caused by the sensitivity of the 

modeled CO2 concentrations to the transport fields over the Alps mountain region at the eastern boundary.” 

Evaluation with in situ observations: I am not very convinced with the usage of KNN method? How is the 

outlier fraction calculated? How sensitive is the filter size in another outlier fraction? What are the criteria 

for the choice of 0.1 in this case?  

Regarding the evaluation in section 3.1, it is worth noting that we also look at statistics without removing 

outliers, and the text is based on the analyses both with and without the KNN method. Moreover, please 

see our answer to Reviewer #1 on this topic where we show indications that this method successfully 

removes outliers that are due to the measurement contaminations from local unresolved sources of 

emissions and/or the model’s inability under complex meteorological conditions. Regarding the 

conclusion/discussion section, we recognize that it would be more appropriate to encourage the use of this 

KNN algorithm based on a deeper analysis of the detected outliers instead of using it as a crude data filtering. 

We thus have rephrased the text in the revised manuscript (also see answer to Reviewer #1 for details).  

The basic idea is that errors from emissions or from patterns that can be modeled at 1 km resolution should 

have a frequency and timescale longer than that of misfits removed by the algorithm. The algorithm is 

expected to remove isolated outliers that are not representative of normal conditions. It remains an arbitrary 

issue in terms of the definition of an outlier and the decision of whether to remove or keep it.  

In response to the reviewer’s concerns, we made a test of sensitivity to the outlier fraction, with values for 

this fraction ranging from 0 to 0.3. Figure R3 shows the change of the RMSE and MBE as a function of the 

outlier fraction values at one urban station (CDS) and one suburb station (SAC). In this study, the choice 

of 0.1 was an arbitrary selection based on the visual judgment of Figure R3 and Figure 5 (scatter plot of the 

model-data comparison). 



 

Figure R3. Change of the RMSE and MBE (statistics for all hourly model-data CO2 comparison from 

December 2015 to November 2016) as a function of the outlier fraction values used in the KNN method 

at one urban station (CDS) and one suburb station (SAC). 

Given that outliers are removed, why the model-observation mismatch is this high (Fig. 4)? How can these 

mismatches be reduced? How about background sites in terms of evaluation? In addition to reporting the 

mismatches, I’d suggest the authors explain the reasons for these large deviations from observations. This 

is critical as I also see unexpectedly significant model-measurement differences in diurnal averages. Have 

authors checked different choices of physics/dynamics schemes or other parameters available in WRF-

Chem to reduce this mismatch? 

Note: Figure 4 is now ranked as Figure 5 in the revised manuscript. 

This large all hourly model-data mismatch is mainly because the model underestimates CO2 with a bias 

ranging from 0 to 12 ppm across stations during the night until around 05 UTC (also see Figure 6). In fact, 

a fairly detailed explanation of the two main causes of this model-data discrepancy was already provided 

and justified in section 3.2 of the manuscript. It is probably due to the prescribed nighttime heating emission 

profile used in the AirParif anthropogenic inventory (the second paragraph in section 3.2.1) and the 

nighttime model transport issue (the third paragraph in section 3.2.1). More precisely, our results first 

indicate that the temporal profile of the heating sector used by the AirParif inventory (with a significant 

decrease along the night) tends to bear a large uncertainty. In the IdF region, CO2 emissions from the heating 

sector are linked to the burning of gas and oil, and electricity consumption. We could expect that a more 

constant diurnal profile should probably be a better approximation to the truth than the current one. This 

uncertainty could be justified and reduced by a further analysis of these related source data. Moreover, 

another two paragraphs in terms of the atmospheric transport and the modeled biogenic flux have also been 

added in the discussion section to provide the perspective on reducing the model-measurement error (please 

see our answer above).  

We have also checked the background site at TRN station, located 101 km away from the center of Paris 

(see Figure 1) with air inlets placed at 5m, 50m, 100m and 180m AGL respectively. Figure R4a shows the 

scatter plot of the observed and BEP_MYJ (control run) simulated all hourly CO2 concentrations at 50m 

and 100m sampling heights from December 2015 to November 2016. The comparison of the average 

diurnal variations between observation and model is shown in Figure R4b. Results show that the model also 

underestimates the CO2 concentrations at this background site during the night, which is consistent with the 



conclusions obtained from the stations within the IdF region. It is worth noting that both the observation 

and the model show an increase of CO2 during the night at TRN, whereas the opposite was found to be true 

for the modeled value within IdF. This is because the fossil fuel CO2 emissions outside the IdF region were 

taken from the IER inventory that has a more constant nighttime diurnal profile than the AirParif does. 

We also made the model-data CO2 comparisons of the other four sensitivity tests of physics schemes in this 

study (Table 1a). The results are shown to be similar to the control run (BEP_MYJ), except that the model 

runs with the UCM scheme tend to have larger misfits at the two urban stations (JUS and CDS). The two 

schemes differ in their representations of the near-surface mixing which leads to large differences in the 

modeled CO2 concentrations (please see our answer to Reviewer #2 for details). On the other hand, we also 

evaluated WRF simulated meteorological fields against the observations. Results indicate that the model 

does not suffer from obviously inappropriate/wrong parameter settings that could lead to a significant 

transport error (also see our answer to Reviewer #2 for details). 

 

Figure R4. (a) Observed and BEP_MYJ (control run) simulated all hourly CO2 concentrations at TRN site 

with sampling heights at 50m and 100m above ground level respectively from December 2015 to 

November 2016. (b) Comparison of the average diurnal variations between the observed (dash line) and 

modeled (solid line) CO2 concentrations, and the model-data CO2 misfits at TRN site. 

Sect. 3.2.1 “modeled value (green line in Figure 6) gets somewhat closer to the observation” In Fig. 6, the 

blue curve represents constant emissions. Please check. The simulations (BEP_MYJ_CON) reproduce the 

observed patterns better than other simulations; however, not in magnitude. So please rephrase the sentence 

accordingly: “modeled value (green line in Figure 6) gets somewhat closer to the observation”.  

Note: Figure 6 is now ranked as Figure 7 in the revised manuscript. 

As described in section 2.1.2, the green line (BEP_MYJ_AIP) is the AirParif inventory with a constant 

temporal profile (each pixel has a different emission, but constant in time based on the temporal average of 

the AirParif inventory). The blue line (BEP_MYJ_CON) is a constant and spatially homogeneous emission 

where the emissions are distributed uniformly over the IdF whole territory.  



The original sentence in section 3.2.1 is “Indeed, when assuming an emission constant in time, the 

decreasing trend is reduced and the modeled value (green line in Figure 7) gets somewhat closer to the 

observation.” 

For better clarity, we have changed the “an emission constant in time” to “the AirParif inventory with a 

constant temporal profile”. The modified text is as follows: 

“Instead, the decrease of anthropogenic emissions during the night (Figure 2) explains part of the decrease 

in modelled concentrations. Assuming the AirParif inventory with a constant temporal profile, the 

decreasing trend at night is reduced and the modeled value (green line in Figure 7) is closer to the 

observation than the control run (BEP_MYJ).” 

Also please indicate the season (or January) in the Figure 6 caption.  

Note: Figure 7 is now ranked as Figure 8 in the revised manuscript. 

Done 

Also, I am happy to note that the authors demonstrate the effect of emission trend and atmospheric vertical 

mixing here. Please comment on the effect of boundary conditions (though I expect it to be minimal by 

looking at the patterns in BEP_MYJ_CON). 

We have updated Figure 7 to include the average diurnal cycle for the biogenic and background CO2 along 

with the one of the total and anthropogenic CO2 concentrations. It is worth noting that only the control run 

(BEP_MYJ) was plotted. This is because there were 6 distinct CO2 tracers within this one-month simulation. 

Four of them corresponded to each of the four sensitivity tests of anthropogenic emissions to record their 

distinct atmospheric CO2 signatures. The other two tracers were for the biogenic and background CO2 

respectively. Therefore, there will be no difference in the simulated biogenic and background CO2 values 

among the four sensitivity tests. Results in Figure 7c and 7d show that the impacts of biogenic flux and 

background condition on this simulated decrease are relatively small, which is on the order of a fraction of 

a ppm.  

The revised manuscript has included the following sentence as suggested by the reviewer: 

“Results in Figure 7c and 7d show that the impacts of biogenic flux and background condition on this 

simulated decrease are relatively small as they are on the order of a fraction of a ppm.” 

PBLH and vertical distribution of the modelled CO2 (BEP_MYJ): It is not clear to me why authors have 

mentioned Nielsen-Gammon et al., 2008 for PBLH estimation. What extent the MYJ scheme and Nielsen-

Gammon et al., 2008 differ in deriving the PBLH? If different, a comparison plot will be helpful here.  

Numerous thermodynamic parameters, including temperature, humidity and their derivatives (e.g., 

potential/virtual potential temperature) have been widely used to define the PBL height. The 1.5-theta-

increase method defines boundary layer top based on the potential temperature and it has widely proven to 

be fairly representative and practical for PBL height detection. The diagnosed PBL heights obtained directly 

from different PBL schemes in WRF are calculated based on their own specific formulations. The MYJ 

scheme determines the PBL height using the turbulent kinetic energy (TKE) profile. The top of the PBL is 

defined to the height where the TKE profile decreases to a prescribed low threshold value (Janjic 2001). 

For the purpose of a fair comparison among the 3 PBL schemes (YSU, MYJ, BouLac) tested in this study, 

the 1.5-theta-increase method was used as a criterion to diagnose PBL heights. However, these comparison 

results are not shown in Figure 8 as they might be fruitless for the objective here.  



In response to the reviewer’s concerns, we performed a comparison of PBL heights estimated by the model 

against measurements at SIRTA station located about 20 km southwest of Paris center during January 2016 

(Figure R5). Generally, the temporal variation of the diagnosed PBL heights is shown to be similar for the 

MYJ method and the 1.5-theta-increase (NG) method. The correlations with hourly observations are similar 

for MYJ (0.57) and NG (0.56), but the associated RMSE and MBE are better for NG. Both methods indicate 

that the model control run (BEP-MYJ) overestimates the PBL heights with a MBE of 136 m for MYJ and 

54 m for NG. 

 

Figure R5. Time series of the BEP-MYJ (control run) simulated PBL heights diagnosed by the MYJ 

scheme (in blue) and the 1.5-theta-increase method (NG, in green) with respect to the observations at 

SIRTA station (in red) for January 2016. 

I am a bit surprised with the high PBL values in winter (initial half-month) over Paris. Do authors look at 

the PBL measurements (e.g. lidar measurements)? Fig. 7 is confusing as the 34-m AGL curves have nothing 

to do with the left Y-axis values. I would suggest authors separate these two curves (magenta and pink) 

from this and make an independent plot along with PBLH.  

Note: Figure 7 is now ranked as Figure 8 in the revised manuscript. 

Figure 8 has been modified as suggested. The time series of the wind arrow and the model-data CO2 

concentration has been moved to a new panel (Figure 8b). Apart from changing the line color, we also 

added the PBL height measurements in Figure 8a. The PBL heights data were obtained at the SIRTA station 

located about 20 km southwest of Paris center (Kotthaus et al., 2020. https://sirta.ipsl.fr/) as shown in Figure 

1 in the revised manuscript. The comparison of all hourly measured and modeled PBL heights show that 

the model could well reproduce the temporal variation of the PBL heights in January and there is not an 

obvious long-term bias.  

In addition, we also carried out a one-year validation of the PBL heights. Results in Figure 4d and Figure 

S2d further confirm that the model is capable of reproducing the PBL heights for other months in the year. 

Sect. 4: Please see my comments above (w.r.t title) and refine this section thoroughly.  

Please see the answer above. 

Minor comments:  

Page 7, “from 18 pm to 22 pm)” Please change to 18:00 UTC to 22:00 UTC. 

Text is changed as suggested. 

All references mentioned in this response are already included in the manuscript. 

https://sirta.ipsl.fr/

