High-resolution Hybrid Inversion of IASI Ammonia Columns to Constrain U.S. Ammonia Emissions Using the CMAQ Adjoint Model

Yilin Chen¹, Huizhong Shen¹, Jennifer Kaiser^{1,2}, Yongtao Hu¹, Shannon L. Capps³, Shunliu Zhao⁴, Amir Hakami⁴, Jhih-Shyang Shih⁵, Gertrude K. Pavur¹, Matthew D. Turner⁶, Daven K. Henze⁷, Jaroslav Resler⁸, Athanasios Nenes^{9,10}, Sergey L. Napelenok¹¹, Jesse O. Bash¹¹, Kathleen M. Fahey¹¹, Gregory R. Carmichael¹², Tianfeng Chai¹³, Lieven Clarisse¹⁴, Pierre-François Coheur¹⁴, Martin Van Damme¹⁴, Armistead G. Russell¹

¹School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States

²School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States

³Department of Civil, Architectural, and Environmental Engineering, Drexel University, Philadelphia, Pennsylvania 19104, United States

⁴Department of Civil and Environmental Engineering, Carleton University, Ottawa, Ontario K1S5B6, Canada

⁵Resources for the Future, Washington, D.C. 20036, USA

⁶SAIC, Stennis Space Center, MS 39529, USA

⁷Mechanical Engineering Department, University of Colorado, Boulder, CO 80309, USA

⁸Institute of Computer Science of the Czech Academy of Sciences, Prague, 182 07, Czech Republic

⁹Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, GR-26504, Greece

¹⁰School of Architecture, Civil & Environmental Engineering, Ecole polytechnique fédérale de Lausanne, CH-1015, Lausanne, Switzerland

¹¹Atmospheric & Environmental Systems Modeling Division, U.S. EPA, Research Triangle Park, NC 27711, USA

¹²Department of Chemical and Biochemical Engineering, University of Iowa, Iowa City, IA 52242, USA

¹³NOAA Air Resources Laboratory (ARL), Cooperative Institute for Satellites Earth System Studies (CISESS), University of Maryland, College Park, MD 20740, USA

¹⁴Université libre de Bruxelles (ULB), Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), Brussels, Belgium

Correspondence to: Armistead G. Russell (ar70@ce.gatech.edu)

This material includes 5 figures.

List of Figures

S1. The correlation between monthly average CMAQ simulated NH_3 column densities and NH_3 concentrations at all 13 layers in April, July, and October.

S2. The L-curve for regularization factor (γ) value selection for April, July, and October.

S3. Comparison between simulated NH_3 column density against the IASI- NH_3 observations in April, July, and October using *a priori* (blue dots) and optimized NH_3 emission estimates (red dots).

S4. IASI NH₃ column density in April 13^{th} , 14^{th} , and 15^{th} at 36 m by 36 km resolution within the model simulation domain of this study.

S5. Protected areas for biodiversity conservation defined by the U.S. Geological Survey (USGS) Gap Analysis Project (A). And fraction of protected areas in each 36 km by 36 km simulated grids in this study (B).

Figure S1 The correlation between monthly average CMAQ simulated NH_3 column densities and NH_3 concentrations at all 13 layers in April, July, and October. The grid cells with satellite observations are sampled at the IASI overpassing time. Monthly average NH_3 column densities and concentrations are calculated for each grid cell. R^2 for all data pairs in each month are calculated.

Figure S2 The L-curve for regularization factor (γ) value selection for April, July, and October. The error weighted squared difference between emission scaling factor and the a priori values (J_{*a priori*}) is plotted against error weighted squared difference between IASI-NH₃ and simulated column density (J_{observation}) with different choices of γ values as denoted along the curve.

Figure S3 Comparison between simulated NH₃ column density against the IASI-NH₃ observations in April, July, and October using *a priori* (blue dots) and optimized NH₃ emission estimates (red dots).

Figure S4 IASI NH₃ column density in April 13^{th} , 14^{th} , and 15^{th} at 36 m by 36 km resolution within the model simulation domain of this study.

Figure S5 Protected areas for biodiversity conservation defined by the U.S. Geological Survey (USGS) Gap Analysis Project (A). And fraction of protected areas in each 36 km by 36 km simulated grids in this study (B).