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Abstract 

Ammonia (NH3) emissions have large impacts on air quality and nitrogen deposition, influencing human health and 

the well-being of sensitive ecosystems. Large uncertainties exist in the “bottom-up” NH3 emission inventories due to 35 

limited source information and a historical lack of measurements, hindering the assessment of NH3-related 

environmental impacts. The increasing capability of satellites to measure NH3 abundance and the development of 

modeling tools enable us to better constrain NH3 emission estimates at high spatial resolution. In this study, we 

constrain the NH3 emission estimates from the widely used national emission inventory for 2011 (2011 NEI) in the 

U. S. using Infrared Atmospheric Sounding Interferometer NH3 column density measurements (IASI-NH3) gridded 40 

at a 36 km by 36 km horizontal resolution. With a hybrid inverse modeling approach, we use CMAQ and its 

multiphase adjoint model to optimize NH3 emission estimates in April, July, and October. Our optimized emission 

estimates suggest that the total NH3 emissions are biased low by 26% in 2011 NEI in April with overestimation in 

Midwest and underestimation in the Southern States. In July and October, the estimates from NEI agree well with 

the optimized emission estimates, despite a low bias in hotspot regions. Evaluation of the inversion performance 45 

using independent observations shows reduced underestimation in simulated ambient NH3 concentration in all three 

months and reduced underestimation in NH4
+ wet deposition in April. Implementing the optimized NH3 emission 

estimates improves the model performance in simulating PM2.5 concentration in the Midwest in April. The model 

results suggest that the estimated contribution of ammonium nitrate would be biased high in a priori NEI-based 

assessments. The higher emission estimates in this study also imply a higher ecological impact of nitrogen 50 

deposition originating from NH3 emissions. 

1. Introduction 

Ammonia (NH3) emissions play a major role in ambient aerosol formation and reactive nitrogen deposition 

(Stevens, 2019: Houlton et al., 2013). However, our understanding of NH3 sources and sinks is limited by the large 

uncertainties present in the NH3 emissions inventories (Xu et al., 2019; McQuilling and Adams, 2015). In chemical 55 

transport models, uncertainties in NH3 emissions propagate into the dynamic modeling of the atmospheric transport, 

chemistry, and deposition of NH3, other reactive nitrogen species, and other key atmospheric constituents associated 

with NH3 (Heald et al., 2012; Paulot et al., 2013; Kelly et al., 2014; Zhang et al., 2018b), hindering an accurate 

assessment of the various NH3-related environmental impacts and the associated sources. The large uncertainties in 

the NH3 emission inventories are partially due to a lack of sufficient in-situ NH3 measurements that could be used to 60 

constrain emission estimates (Zhu et al., 2015).  

Emerging satellite observations of gaseous NH3 provide a unique opportunity to better constrain the bottom-up NH3 

emission estimates for both their spatial distribution and seasonality. Bottom-up inventories calculate the NH3 

emissions based on estimated activity levels and corresponding emission factors, both of which are subject to high 

uncertainties, particularly for agricultural sources, the major contributor (Cooter et al., 2012;McQuilling and Adams, 65 

2015). Several studies have utilized NH3 column density retrieved from the Infrared Atmospheric Sounding 



 

3 
 

Interferometer (IASI) (Clarisse et al., 2009; Van Damme et al., 2015b) or the Atmospheric Infrared Sounder (AIRS; 

(Warner et al., 2016)) as well as the inferred surface mixing ratio of NH3 from the Cross-track Infrared Sounder 

(CrIS; (Shephard and Cady-Pereira, 2015; Shephard et al., 2019)) to characterize the spatiotemporal distribution of 

NH3. These satellite measurements are useful for supplementing emission inventories to identify and quantify 70 

underestimated or missing emission hotspots, especially in intensive agricultural zones (Van Damme et al., 2018; 

Dammers et al., 2019; Clarisse et al., 2019). These studies find that the satellite-derived emission estimates are often 

twice as much as the bottom-up estimates on a regional scale and can be over 10 times higher over hotspots. 

However, the NH3 retrievals from satellites are also subject to large uncertainties when the signal-to-noise ratio is 

low, which limits their ability to accurately measure NH3 columns in low emission areas (Clarisse et al., 2010; Van 75 

Damme et al., 2015a). 

Inverse modeling-based optimization combines the information from a priori emission inventories and observations 

and allows us to use the information from both. As one of the inverse modeling methods, the four-dimensional 

variational assimilation (4D-Var) method seeks the best emission estimate by minimizing a cost function that 

measures the differences between observations and model predictions, as well as the differences between a prior and 80 

adjusted emission estimates. 4D-Var can be computationally expensive at fine model resolutions or with a large set 

of observations to be assimilated (Brasseur and Jacob, 2017). Recent studies took advantage of the implementation 

of the adjoint technique in the chemical transport models to conduct 4D-Var for optimizing emissions estimation 

(Zhu et al., 2013; Paulot et al., 2014; Zhang et al., 2018c). The adjoint-based inversion method calculates the 

gradients of a cost function analytically and searches the solution using a steepest-descent optimization algorithm 85 

through iterating (Brasseur and Jacob, 2017). By testing the performance of the inverse modeling method using 

artificial observational data, Li et al. (2019) proposed that a two-step optimization process, which combines the 

iterative mass balance (IMB) method and the 4D-Var method, can further reduce the computational cost. The IMB 

method assumes a linear relationship between the NH3 column density and local NH3 emission and searches the 

emission scaling factors iteratively until the simulated NH3 column density converges to the observations. At a 90 

coarse (2×2.5) resolution, the IMB method is as effective as the 4D-Var method and requires 2/3 less 

computational time. In the second step, emission scaling factors obtained from the IMB method with a coarser 

resolution are used as an initial starting point for 4D-Var optimization process to reduce the overall computational 

time (Li et al., 2019). 

This work utilizes satellite observations from the IASI NH3 column density measurements (IASI-NH3) (Clarisse et 95 

al., 2009;Van Damme et al., 2017), to provide a high-resolution, optimized NH3 emission inventory for the U.S. 

developed using an adjoint inverse modeling technique (Li et al., 2019), the robustness of which is demonstrated by 

evaluation against multiple independent in-situ measurements. The IASI-NH3 dataset was applied to optimize NH3 

emission estimates from the 2011 National Emission Inventory (NEI 2011) using CMAQ and its adjoint model at a 

36 km×36 km resolution. The multiphase adjoint model for CMAQ v5.0 was developed recently, including full 100 

adjoints for gas-phase chemistry, aerosols, cloud process, diffusion, and advection (Zhao et al., 2019). Both process-

by-process and full adjoint model evaluations show reasonable accuracy based on agreements between the adjoint 
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sensitivities and forward sensitivities (Zhao et al., 2019). Previous inversion based NH3 emission constraint using in-

situ measures are limited by the spatial coverage and representativeness of the measurements (Gilliland et al., 2006; 

Henze et al., 2009; Paulot et al., 2014;). Zhu et al. (2013) first attempted to optimize NH3 emission inventory using 105 

NH3 derived from the Tropospheric Emission Spectrometer (TES) satellite at 2×2.5 resolution (Zhu et al., 2013). 

Inverse modeling at such a coarse resolution is limited to refining regional emissions. Similar to the inversion using 

CrIS NH3 measurements (Cao et al., 2020), inversion with the IASI-NH3 dataset allows us to perform the 

optimization at a finer resolution with its daily global spatial coverage. Besides, the hybrid inversion approach 

adopted in this study allows us to calculate full adjoint sensitivities online instead of using approximated 110 

sensitivities from the offline simulations (Zhu et al., 2013, Cao et al., 2020). The performance of our optimized 

estimates and the NEI 2011 are evaluated and compared based on in-situ observed ambient NH3 concentrations and 

NH4
+ wet deposition. Finally, by substituting the a priori NH3 emissions with the optimized emissions, we assess the 

subsequent changes in simulated ambient PM2.5 concentrations and nitrogen deposition exceedances. 

2. Materials and Methods 115 

2.1 IASI-NH3 observations 

NH3 column densities retrieved from IASI onboard the Metop-A satellite are assimilated to constrain spatially-

resolved NH3 emissions using the 2011 NEI as the a priori inventory (Clarisse et al., 2009; Van Damme et al., 2014; 

USEPA, 2014). The polar sun‐synchronous satellite has a 12-km diameter footprint at nadir and a bidaily global 

coverage. Only observations from the morning pass around 9:30 am local standard time (LST) are used due to more 120 

favorable thermal contrast and smaller errors comparing to the ones from the night pass around 9:30 pm (LST). A 

comparison between the IASI-NH3 data and ground-based Fourier transform infrared observations shows a 

correlation between the two with r = 0.8 and the slope = 0.73, indicating a tendency of IASI-NH3 to underestimate 

the FTIR observations (Dammers et al., 2016). A comparison between IASI-NH3 and airborne measurements also 

indicated an underestimation in California, while the comparison between IASI-NH3 and ground observation from 125 

Ammonia Monitoring Network (AMoN) network indicated an overestimation (Van Damme et al., 2015a; NADP, 

2014). Overall, the evaluations show broad consistency between IASI-NH3 and other independent measurements 

with no consistent biases identified. These evaluations were based on previous datasets. Here we use a new version 

that relies on another retrieval algorithm, which among other things has a better performance for measurements 

under unfavorable conditions (Whitburn et al., 2016; Van Damme et al., 2017). 130 

Specifically, the NH3 products for 2011 from ANNI-NH3-v2.2R-I datasets were used (Van Damme et al., 2017). The 

algorithm relies on the conversion of hyperspectral range indices to NH3 column density using a neural network that 

takes into account 20 input parameters characterizing temperature, pressure, humidity, and NH3 vertical profiles. A 

relative uncertainty estimate is provided along with each of the NH3 vertical column density in the dataset. Small 

negative columns are possible – and these are valid observations, needed to reduce overall biases in the dataset. As 135 

the retrieval is unconstrained, no averaging kernels are calculated. We therefore directly compare the IASI-NH3 
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column density with the simulated column density in CMAQ. Such comparison may be biased because the 

sensitivity of retrieved NH3 column densities to NH3 concentrations is height-dependent (typically peaks around 700 

– 850 hPa) (Dammers et al., 2017; Shephard et al., 2015). Although the CMAQ simulated NH3 columns are also 

most sensitive to NH3 concentration changes between 700 to 900 hPa (Figure S1), we cannot quantify the relating 140 

uncertainties without knowing the averaging kernels. Without information on averaging kernels, differences 

between NH3 vertical profiles in CMAQ and the ones used for retrieval may also contribute to the bias between 

retrieved and modeled column densities, depending on the magnitude of differences (Whitburn et al., 2016).  

The NH3 retrieved columns densities are regridded to the 36-km by 36-km CMAQ grid for 4D-Var data 

assimilation, and 216-km by 216-km resolution (a 6 grid by 6 grid CMAQ simulation grid matrix) for iterative mass 145 

balance (Figure 1). The mean column density (Ωo) is calculated as the arithmetic mean of all retrievals with their 

centroids falling in the same grid cell, following the recommendation that the unweighted mean is preferred for the 

updated version of IASI-NH3 as error-weighting can lead to biases (Van Damme et al., 2017). The error (molec/cm2) 

corresponding to the mean column density in each grid is calculated as: 

 𝜎̅ = √
∑(𝜎𝑖×𝛺𝑖)2

𝑛−1
                                                                                                                                           (1) 150 

where σ̅ is the mean error (molec/cm2), Ωi is the NH3 column density from IASI-NH3 level 2 data, σi is the relative 

error associated with each Ωi as reported, n is the number of retrievals within each grid cell during the defined time 

period. For 4D-Var inversion and IMB inversion, daily and monthly means and errors are calculated, respectively. 

The observations from April, July, and October are used to constrain the monthly NH3 emission estimates in 

corresponding months from 2011 NEI. Limited by the high computational cost of adjoint-model-based inversion, the 155 

optimization is only performed for the three months selected instead of a full year. Observations from winter months 

are not used because they are too noisy when the thermal contrast is low (Dammers et al., 2016). 

2.2 NH3 emission from 2011 NEI 

The EPA 2011 NEI is used as a priori emission estimates. Major NH3 sources include livestock waste management, 

fertilizer application, mobile sources, fire, and fuel combustion, with the majority being emitted by the first two 160 

sources. Specifically, the emissions from livestock waste management are estimated based on county-level animal 

population data and process-based daily emission factors. Emissions from fertilizer applications are estimated based 

on county-level fertilizer quantities and fixed emission factors, following the CMU ammonia Model (USEPA, 

2015). The NH3 emissions over Mexico and Canada are derived from the simulation results of a fully coupled bi-

directional agroecosystem and chemical-transport model (FEST_C_EPIC_CMAQ_BIDI) (Shen et al., 2020). 165 

Emissions for other species also come from the 2011 NEI.  

2.3 CMAQ and its adjoint 
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We use the Community Multiscale Air Quality Modeling System (CMAQ) v5.0 (Byun and Schere, 2006; USEPA, 

2012) and its adjoint (Zhao et al., 2019), driven by meteorological fields produced from the Weather Research and 

Forecasting (WRF) Model v3.8.1 with grid nudging using the North American Regional Reanalysis (NARR) dataset 170 

(NOAA, 2019). The simulated meteorological fields show good agreement with surface observations (Figure S2) 

(NOAA, 2020). The CB05 chemical mechanism was adopted for gas-phase chemistry (Yarwood et al., 2005). The 

model implements ISORROPIA-II in the aerosol module (AERO06) to calculate the gas-particle partitioning of NH3 

and NH4
+ (Fountoukis and Nenes, 2007). The simulation domain covers the contiguous U.S. (CONUS) and part of 

Canada and Mexico with a 36 km by 36 km horizontal resolution and 13 vertical layers extending up to 14.5 KPa 175 

(~16 km) (Figure 1). To evaluation CMAQ model performance, the simulated gas-particle partitioning ratio of NH3-

NH4
+ and NH4

+ deposition is compared with observations from AMoN, Clean Air Status and Trends Network 

(CASTNET), and National Atmospheric Deposition Program (NADP) (Figure S3 and Figure S4). CMAQ captures 

the overall spatial pattern of these governing processes for atmospheric NH3 abundance, considering the 

uncertainties in emissions, model parameters, and meteorological fields. Expanded evaluation of CMAQ model 180 

performance in simulating gas-particle partitioning and nitrogen deposition has been conducted in previous studies 

(Chen et al, 2019; Chen et al., 2020). Monthly simulations are conducted for April, July, and October in 2011 with a 

10-day spin-up for each month. 

2.4 Hybrid inversion approach 

We chose the hybrid inversion approach to combine the advantage of the faster computational speed of the mass 185 

balance method and the better optimization performance of the 4D-Var method. The first step is to apply the IMB  

approach to adjust the a priori (2011 NEI) NH3 emission at 216 km by 216 km resolution (referred as the coarse grid 

hereafter) based on the ratio between the monthly-averaged observed (Ωo) and simulated (Ωa) NH3 column density at 

the satellite overpassing time, iteratively. At each iteration, the emission in each grid cell is scaled by the ratio 

following the equation below, 190 

𝐸𝑡 =  
𝛺𝑜

𝛺𝑎
× 𝐸𝑎                                                                                                                                                    (2) 

where Et and Ea are the new and a priori emission estimates, respectively. The method has been described in detail 

in previous studies (Li et al., 2019; Cooper et al., 2017; Martin et al., 2003). The IMB is applied at the coarse grid so 

that the NH3 column will be dominated by the local emissions instead of transport from neighboring grids (Li et al., 

2019). The coarse resolution also reduces the uncertainty associated with IASI-NH3 as the number of retrievals 195 

increases in each grid cell. For grid cells with mean relative error larger than 100%, the satellite observations are 

considered to be too noisy to provide useful constraints and the a priori emission estimates are retained. The 

iteration stops when the normalized mean square error either decreases by less than 10% or begins to increase. The 

final scaling factor (ε0) for each grid cell is the multiplication of the scaling factors derived at each iteration and 

downscaled to 36 km by 36 km resolution by assigning the same value to the 6 by 6 grid matrix. This scaling factor 200 

is applied to the 2011 NEI emissions to create the revised a priori estimate for the 4D-Var inversion. 
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Next, the 4D-Var inversion is performed. The solution of the optimization problem is sought iteratively by 

minimizing the cost function (J) defined as the combination of error-weighted, squared difference between emission 

scaling factor and unity and the error weighted, squared difference between IASI-NH3 and the simulated column 

density, as below: 205 

J = γ(𝜀 − 𝜀0)𝑇𝑆𝑎
−1(𝜀 − 𝜀0) + (Ω𝑜 − F(𝜀))𝑇𝑆𝑜

−1(Ω𝑜 − F(𝜀))                                                                        (3) 

ε is the monthly emission scaling factor to be optimized at each iteration where 𝜀 = log (
𝐸𝑡

𝐸𝑎
⁄ ) on the 36 km by 36 

km CMAQ grid, consisting of 6104 elements overland grid cells in CONUS. Sa and So are error covariance matrices 

for the a priori emission estimates and IASI-NH3 retrievals, respectively. With limited information on the spatial 

correlation of the error covariance, the two matrices are assumed to be diagonal (Paulot et al., 2014; Zhu et al., 210 

2013). For So, the grid average absolute error is used to represent the observational error. Our test shows that 

negative Ωo will lead to a continuous decrease in the adjusted emission for the grid cell because modeled column 

density cannot become negative. To limit the influence of these negative Ωo, their original weights are multiplied by 

0.01. For Sa, the uncertainty in each grid cell is assumed to be 100% of the a priori emissions. F(ε) is CMAQ 

simulated NH3 column density sampled at the satellite passing time if there is at least one IASI-NH3 retrieval in that 215 

grid cell; γ is the regularization factor balancing the relative contribution of the a priori emission inventory and 

IASI-NH3 retrievals to the J value. γ is chosen to be 800 for April and 500 for July and October based on the L-

curve criteria (Hansen, 1999) (Figure S5). 

The gradients of the cost function to NH3 emissions are calculated by the CMAQ adjoint model. In each iteration, 

the emission-weighted monthly averaged sensitivities in each grid cell are supplied to the L-BFGS-B optimization 220 

routine contained in the “optimr” package in R to find the scaling factors that will achieve the minimum of the cost 

function (Zhu et al., 1997; Byrd et al., 1995). NH3 column density is re-simulated using adjusted emissions by the 

new set of scaling factors. The iteration process is terminated when the decrease in J is less than 2% or the local 

minimum is reached (Li et al., 2019; Zhu et al., 2013). 

2.5 Posterior evaluation 225 

The posterior emissions are evaluated by comparing the model simulation from optimized emissions with 

observations. Simulated results are compared with ambient NH3 concentrations from the AMoN (NADP, 2014), and 

the NH4
+ wet deposition from the NADP (NADP, 2019). The simulated NH3 concentration in ppmV is converted to 

µg/m3 using local temperature and pressure from the model meteorological inputs. For evaluation against the NH4
+ 

wet deposition, the simulated deposition is scaled by the ratio between measured and simulated precipitation to 230 

eliminate the bias introduced by precipitation fields (Appel et al., 2011).  

3. Results 
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3.1 Optimization performance evaluation 

The optimized NH3 emissions reduce the bias in the NH3 columns between the satellite observation and the model 

prediction as shown by the decrease in the values of normalized root mean square error (NRMSE) and normalized 235 

mean biases (NMBs) in Figure 2. There are negative biases using 2011 NEI in all three months, especially in areas 

with high emission rates. Although the IMB inversion can lower the NRMSE, it tends to over-adjust and introduce a 

positive bias likely because of the coarse resolution and neglect of the impact of transport. The 4D-Var inversion 

effectively decreases the positive bias and further reduces the NRMSE. The cost function value reduces by 85%, 

46%, and 38% with the 4D-Var inversion in April, July, and October, respectively. We find that it is more 240 

challenging to adjust the emissions in April than in the other two months because of the greater differences in the 

magnitude and the spatial distribution of the emissions. The optimized NH3 emission successfully captures the high 

NH3 column density in the Southern States (Texas and Oklahoma), reducing the NRMSE by half  in that region. 

Despite the general improvement in the model performance, negative biases in July increase in California’s San 

Joaquin Valley. Scaling up the emission in the San Joaquin Valley will result in high NH3 concentrations downwind 245 

even when the local NH3 emissions downwind are zeroed, whereas the IASI-NH3 observed concentrations 

downwind are low. The transported hotspot downwind of the San Joaquin Valley in CMAQ only occurs in July, 

suggesting near field removal may not be captured at the current resolution, and warrants further investigation. Grid 

by grid comparison between model-simulated NH3 column density using the a priori and optimized estimates with 

IASI-NH3 shows improved agreement in both high and low emission grid cells after optimization (Figure S6). It 250 

shows that the hybrid inversion approach can alleviate the weakness of direct 4D-Var inversion which tends to over-

adjust high emission regions and under-adjust low emission regions, mainly because the IMB inversion provides a 

better initial state. 

The IMB inversion took three iterations to achieve the convergence condition for each month, and subsequently, the 

4D-Var inversion took ten, four, and six iterations for April, July, and October, respectively. Fewer iterations are 255 

needed with the hybrid approach than the direct 4D-Var inversion which typically takes up to 15 to 20 iterations of 

adjoint simulation (Paulot et al., 2014; Zhang et al., 2018a). The CPU time of a forward simulation is only 1/5 of an 

adjoint simulation. In total, the CPU time required by the hybrid approach is expected to be 1/3 to 2/3 lower than the 

direct 4D-Var inversion approach. 

3.2 Optimized estimate of NH3 emissions 260 

The monthly total NH3 emission in CONUS increases by 35% in April, 18% in July, and 10% in October for the 

optimized estimates, respectively. Spatially, the distribution for high emission regions shifts from Midwest in the 

2011 NEI to the Southern States in the optimized estimates in April, whereas the hot spot regions remain consistent 

in July and October (Figure 3). Regional total emissions are summarized according to the USDA Farm Production 

regions, which defines the areas with similar crop production activities (Cooter et al., 2012). In general, the regional 265 

variation of NH3 emissions in April is dominated by fertilizer application. The optimized estimates in the Corn Belt 
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and Lake States regions are lower than the 2011 NEI, where high contributions from fertilizer applications were 

estimated. In contrast, the optimized estimates are 2 – 3 times higher than the 2011 NEI estimates in the Delta States 

and Southern States where the a priori estimates for NH3 emission from fertilizer application are low. The higher 

NH3 emission estimates in the southern states are driven by the enhanced NH3 column densities from IASI over that 270 

region. IASI-NH3 column densities are higher in 2011 than those in adjacent years (Figure S7), which coincides 

with the higher surface temperature observed in 2011 (NOAA 2019)(Figure S8). NH3 emission will increase due to 

enhanced NH3 volatilization from agricultural lands under warmer conditions (Bash et al., 2013; Shen et al., 2020). 

In fact, the optimized NH3 emission pattern in April is more consistent with the spatial pattern of inorganic nitrogen 

fertilizer estimated based on plant demand (Cooter et al., 2012). NH3 emission in 2011 estimated by CMAQ with 275 

NH3 bidirectional exchange model also predicted higher NH3 emission in the southern states (Shen et al., 2020). The 

ratio between NH3 emission estimates in southern states and that within CONUS is 26% and 18% in the optimized 

estimates and estimates including NH3 bidirectional exchange, respectively. In comparison, the ratio is only 10% in 

the a priori NEI estimates, suggesting a potential low bias in 2011 NEI. In July, regional differences are smaller 

except for the Northern Plain and Mountain region. In the Northern Plain, the NH3 emission is 66% higher in the 280 

optimized estimates, driven by the emission increase in hotspot areas with concentrated animal feeding operations 

(CAFO) (USDA, 2012; Van Damme et al., 2017, Clarisse et al., 2019). The potential bias in different sectors 

suggests the need for sectoral inversion when a larger observational dataset becomes available in the future. In 

October, the relative difference is less than 10% in most of the regions, indicating that the 2011 NEI appropriately 

reflects the NH3 emission pattern. There is a significant increase in the NH3 emissions in Mexico during all three 285 

months. Such an emission increment is crucial to improving the model performance in both Mexico and the 

southwestern U. S. However, it was not a goal of this study to determine emissions biases in Mexico given the 

limited information on NH3 emissions. 

The total NH3 emissions in the optimized estimates are 623 Gg, 564 Gg, and 335 Gg per month in April, July, and 

October, respectively. In comparison, the emission estimates in the 2011 NEI are 462 Gg, 475 Gg, and 304 Gg per 290 

month for the three months. Similar to a bottom-up agricultural NH3 emission inventory (MASAGE_NH3) and two 

inverse model optimized estimates based on NH4
+ wet deposition, we find a higher emission in the spring season 

(Paulot et al., 2014; Gilliland et al., 2006), while others, including the NEI, estimates a summertime peak (Zhu et al., 

2013; USEPA, 2015; Cooter et al., 2012, Cao et al., 2020). The large variation between different inventories 

warrants both improved information on bottom-up inventories and more observations to support inverse model 295 

optimization in the spring season. Better knowledge about agricultural activities and more independent ground and 

space observations are needed. Besides the a priori emission inventory and observational constraints, the inversion 

performance will also be affected by other processes (e. g., gas-particle partition, transport, cloud and precipitation, 

and dry and wet deposition) governing the atmospheric abundance of NH3. Future works refining the pertinent 

processes will also help improve the optimized NH3 emission estimates. It should also be noted that there are 300 

interannual variations in emission inventories developed for different years. The good spatial agreement with IASI-

NH3 indicates that the 2011 NEI captures the NH3 emission pattern in general in these two months. Although the 

inversion is only applied for the three selected months, the simulated NH3 column densities using the a priori 
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inventory are consistently lower than the IASI-NH3 observations in 2011 (Figure S9), suggesting that the NH3 

emission estimates in 2011 NEI may be biased low in other months, too. 305 

3.3 Evaluation of the optimized emission estimates against independent datasets 

The robustness of the NH3 emission optimization is evaluated by comparing the model outputs using both the a 

priori and optimized emission estimates with independent observations. The bias and uncertainties inherited in the 

CMAQ forward model and its adjoint, as well as the assumptions made about the uncertainties of the a priori 

emission inventory and IASI-NH3 observations, will all influence the robustness. Here, we choose to evaluate the 310 

outputs against 1) biweekly average ambient NH3 concentrations measured by AMoN; 2) weekly average NH4
+ wet 

deposition measured by NADP (Figure 4). 

In general, the optimized NH3 emission reduces the negative NMB when comparing the CMAQ outputs with AMoN 

NH3 concentration for all three months. There is a greater improvement at the high concentration end than the low 

concentration end because both IASI satellite and the passive samplers at the AMoN sites have higher uncertainties 315 

in areas with low NH3 abundance (Van Damme et al., 2015a; Puchalski et al., 2011). Yet, the NRMSE gets higher 

and R2 gets lower in April, indicating a higher spatial variation in the residuals. There is an over-adjustment for sites 

in Pennsylvania in April where there is a hotspot observed by IASI in April 14th and 15th. The hotspot possibly came 

from a large transported plume at a higher altitude from the central U.S. to Pennsylvania (Figure S10 and Figure 

S11), which is not measured by ground observations at AMoN sites at biweekly resolution. If that is the case, the 320 

hybrid inverse modeling framework would have difficulties in reproducing the long-range transport contribution for 

two reasons. First, local emissions in Pennsylvania would be enhanced in the IMB inversion and inter-grid transport 

were neglected at 216 km by 216 km resolution. Second, the following 4D-Var inversion very likely reached a local 

optimal by adjusting emissions from local and surrounding grid cells near the observed hotspot rather than grid cells 

at distance. Besides, the IASI-NH3 column densities may be overestimated because vertical profiles with highest 325 

concentrations near the surface were assumed in the retrieval process (Whitburn et al., 2016).  

For evaluation against NADP observations, there is a noticeably improved agreement in April with reduced negative 

NMB and reduced discrepancies for most of the data pairs. For July, the emission optimization only slightly 

improved the model performance. For October, the optimization increased the NMB from -1.8% to 4.8%. It 

indicates that NH3 emission is not the dominant explanatory factor for bias in simulated NH4
+ wet deposition that is 330 

commonly observed in chemical transport models (Appel et al., 2011; Paulot et al., 2014). A better representation of 

the cloud, precipitation, and deposition processes in the WRF and the CMAQ model is needed to close the gap 

between simulated and observed NH4
+ deposition amount. Overall, the improved model operational performance for 

ambient NH3 suggests that the inverse model optimization applied in this study provides improvements in the NH3 

emission estimates during all three months in most of the CONUS, except in Pennsylvania and surrounding regions 335 

in April. The hybrid inverse modeling technique may over-adjust local emissions in hotspots dominated by long-

range transport. 
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4. Implications 

4.1 Ambient aerosol concentration 

As a major precursor of ambient aerosol formation, the NH3 emission inventory is believed to be a major source of 340 

uncertainty in PM2.5 assessment in several parts of the CONUS (Henze et al., 2009; Schiferl et al., 2014; Heald et 

al., 2012), which can further bias the source contribution assessments on PM2.5-related health impacts  (Lee et al., 

2015, Zhao et al., 2019). Comparison of the simulated PM2.5 mass concentration using the a priori and optimized 

NH3 emission estimates shows that the NH3 emission bias in April is a major factor for bias in the modeled PM2.5 

concentration leading to high or low bias in ammonium nitrate (NH4NO3) formation (Figure 5). The relative change 345 

of the monthly average PM2.5 concentration is over 5% in one-fifth of the CONUS, including an increase in the 

Northeastern, Pacific West, Rocky Mountains regions, part of Texas, and Gulf coast region, and a decrease in the 

Midwest. For most of these regions, over 90% of the change is driven by the change in concentration of NH4
+ and 

NO3
-.  

Comparison of the simulated monthly average NH4
+ and NO3

- concentration using the a priori estimates against 350 

ambient monitoring network data (USEPA, 2018) shows that there is a high bias in the Midwest region and 

Pennsylvania state, and underestimation low bias for the rest of the sites (Table 1). Simulations using the optimized 

NH3 emission estimates reduce the high bias in the Midwest region but exacerbate the high bias in the Pennsylvania 

state and surrounding areas. For the other sites, the impact of optimization is mixed but minor in general. 

For the Midwest, our optimized NH3 emission is 12% lower than the 2011 NEI, leading to a 5 - 30% decrease in 355 

NH4
+ and NO3

- concentration. Overestimation of NO3
- in the Midwest has been recognized in previous model 

evaluations. Previous studies attempted to moderate the high bias by lowering the nitric acid (HNO3) concentration 

through either lowering both daytime and nighttime HNO3 formation rate or raising deposition removal rate (Heald 

et al., 2012; Zhang et al., 2012; Walker et al., 2012). It was found that such modification in the model 

parameterization cannot fully account for the overestimation (Heald et al., 2012; Zhang et al., 2012; Walker et al., 360 

2012). Our study implies that the springtime overestimation can partly be explained by the overestimation in NH3 

emissions which drives the high bias in NH4NO3 formation.  

The large increase of the NH4NO3 concentration in Pennsylvania state and surrounding areas is due to the over-

amplified local NH3 emissions in the optimized estimates to match the high NH3 column density in IASI-NH3 2011, 

as discussed earlier. It leads to higher magnitude of biases in NH4
+ and NO3

- concentration as compared to ground 365 

measurements. The fact that the simulated ambient NH3 concentration, NH4
+ concentration, and NH4

+ wet 

deposition using the optimized NH3 estimates is biased high in comparison with independent ground measurements 

suggests the enhanced NH3 abundance observed from IASI is possibly driven by long-range transport at higher 

altitudes instead of local surface emissions. 

For the rest of the CONUS, there is only a slight impact of the optimization on simulated NH4NO3 formation. For 370 

example, although the NH3 emission is doubled in the San Joaquin Valley in California, the modeled NH4
+ and NO3

- 
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concentrations are still biased low using the optimized estimates. A sensitivity test using GEOS-Chem shows that 

the San Joaquin Valley region is nitric acid-limited instead of ammonia-limited (Walker et al., 2012), suggesting that 

there is an underestimation in HNO3 formation. A comparison of the simulated and measured speciated PM2.5 shows 

that there is a low bias in non-volatile cation concentrations in the sites in the San Joaquin Valley, limiting the 375 

formation of NH4NO3 through gas-particle partitioning (Chen et al., 2019). Thus, attempts to close the gap between 

the simulated and monitored NH4
+

 and NO3
-
 concentrations by scaling NH3 emission alone are ineffective and might 

lead to an overestimation in local NH3 emissions. 

For July and October, there is a very limited difference between the simulated PM2.5 concentration using the 

optimized and a priori NH3 emission estimates, as expected, because the change in NH3 emission is minor. There 380 

are only 1% and 4% of the CONUS with a relative change in PM2.5 concentration over 5%. This result shows that 

the uncertainty in NH3 emission estimates is moderate and is not a major contributor to biases in modeled PM2.5 in 

July and October. 

4.2 Reactive nitrogen (Nr) deposition 

The uncertainties in NH3 emission inventory also impact the reactive nitrogen (Nr) deposition assessment, which 385 

informs the ecosystem impacts evaluation and effective mitigation actions (Ellis et al., 2013). To evaluate the impact 

of the NH3 emission optimization on simulated Nr deposition, the Nr deposition amount simulated using optimized 

and a priori emission estimates is analyzed in all biodiversity-protected areas designated by the USGS (Figure S12) 

within CONUS (USGS, 2018). In total, the Nr deposition increased by 27%, 9%, and 5% on average in these 

protected areas in April, July, and October, respectively. A regional comparison based on the Level I ecoregions 390 

(Pardo et al., 2015) shows that the deposition increment is the highest in the Tropical Wet Forests (+64%), followed 

by the Great Plain region (+46%) in April (Figure 6). Although the overall increase is small in July and October, the 

increment can be high in individual ecoregions, including Southern Semiarid Highlands (+95% in July) and 

Temperate Sierras (+62% in July). In addition to the increment in deposition amount, higher NH3 emission, 

especially in intensive agriculture regions, may indicate higher source contribution from agricultural NH3 than 395 

previous estimates (Lee et al., 2016).  

Driven by the increase in the reduced form of Nr (NH3 and NH4
+) deposition, a higher share of reduced form of Nr 

to the total Nr deposition is found in most of the ecoregions for all three months than the NEI-based estimates. More 

detrimental impacts on sensitive species and biodiversity are expected when this change in dominant Nr form are 

considered in addition to the increase in magnitude because the growth of many sensitive plant species will be 400 

inhibited by a high NH4
+ to NO3

- ratio in soil and water (Bobbink and Hicks, 2014). 

5. Conclusions 

We apply the newly developed multiphase adjoint of the CMAQ v5.0 chemical transport model and NH3 column 

observations from the satellite-borne IASI to optimize NH3 emissions estimates in the CONUS using a hybrid 
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inversion modeling approach. The approach consists of a coarse-resolution iterative mass balance inversion (216 km 405 

by 216 km) and a fine-resolution 4D-VAR inversion (36 km by 36 km) and is performed using IASI-NH3 

observations in April, July, and October. The hybrid approach overcomes the over-adjusting problem for high 

emission areas in the direct 4D-Var method and reduces the computational cost, but it may introduce over-

adjustment in special cases where the NH3 abundance is dominated by transport instead of local emissions. 

We use the NH3 emission from 2011 NEI commonly used in regional and national simulations and assessments as 410 

the a priori emission. We find that the optimized NH3 emission inventory differs greatly with the 2011 NEI in April. 

The emission in Midwest is overestimated and the emission in Southern states is underestimated in the 2011 NEI. 

Overall, the optimized emission is 35% higher in April. The optimized emission estimates in July and October are 

also higher (18% and 10%) than the 2011 NEI estimates but the spatial distribution agrees well. The IASI-NH3 

observations indicate a consistent underestimation of NH3 emissions in California’s San Joaquin Valley in all three 415 

months, however, the inverse modeling fails to properly scale up the emissions in July. The evaluation of simulation 

outputs against ground measurements including ambient NH3 concentrations from AMoN and NH4
+ wet deposition 

from NADP shows that the optimized NH3 emission estimates reduce the NMB between model outputs and 

independent observations, especially in April. The NRMSE remains high, indicating 1) the potential to further 

optimize NH3 emission estimates when more representative observations of ambient NH3 abundance becomes 420 

available; 2) the need to address the uncertainties in other processes affecting the NH3 abundance, such as gas-

particle partitioning, dry and wet deposition, and in cloud processes. 

Application of the optimized NH3 emission estimates also yields a better agreement between the simulated and 

observed PM2.5 concentration in April in the Midwest region by improving the model performance on simulated 

NH4
+ and NO3

-. It is consistent with previous findings that the uncertainty in NH3 emission is a key factor limiting 425 

the model performance of PM2.5. The optimized NH3 emission estimates in general increase the Nr deposition 

amount and the relative importance of reduced form Nr, highlighting the importance of constraining NH3 emission 

estimates for accurately assessing nitrogen deposition and ecosystem health over sensitive regions.  
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Figure 1 IASI monthly average NH3 column density in April, July, and October 2011 at 36 km by 36 km (a, b, 

c) and 216 km by 216 km (d, e, f) resolutions within the model simulation domain of this study. The average 

relative error associated with the column density is shown in the corner of each plot. 
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Figure 2 CMAQ simulated monthly average NH3 column density for April, July, and October 2011 using the a 

priori emissions (a, b, c), the emissions adjusted by IMB (d,e,f), and the final optimized emissions using the 

hybrid approach (g,h,i). For comparison with the IASI-NH3 retrievals, simulated NH3 columns at the passing 

time were derived when there are observations in that grid cell. Normalized root mean square error (NRMSE) 

and normalized mean bias (NMB) between the simulated values and IASI-NH3 are provided. Residue map 

(IASI-NH3 – simulated NH3 column densities) is shown in the corner of each plot. 
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Figure 3 The spatial distribution of monthly total NH3 emission from the a priori (a, b, c) and optimized (d, e, f) 

estimates in April, July, and October. The total emission based on the a priori and optimized estimates are 

summarized for each USDA Farm Production region (g, h, i). The source contributions to total emission are 

shown for the a priori estimates. 
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Figure 4 Evaluation of the simulated NH3 surface concentration (a, b, c) and NH4
+ wet deposition (d, e, f) 

against biweekly NH3 concentration observations from AMoN and weekly NH4
+ wet deposition observations 

from NADP, respectively. The orange circles and blue dots represent comparison using the a priori and 

optimized NH3 emission estimates, respectively. Summary statistics including sample size (N), normalized mean 

bias (NMB), normalized root mean square error (NRMSE), least square error regression slope and intercept, and 

R square (R2) for all comparisons are listed below the plots. 
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Figure 5 The changes in monthly average PM2.5, NH4
+, and NO3

- mass concentration in April due to the NH3 

emission adjustment in the optimized estimates. The change is defined as concoptimized – conca priori, where 

concoptimized and conca priori represents the simulated monthly average mass concentration using the optimized and 

a priori NH3 emission estimates, respectively. The difference between the observed NH4
+, and NO3

- mass 

concentration and simulated concentrations using the a priori NH3 emission (concobs – conca priori , where concobs 

represents the observed monthly average mass concentration) are overlaid using colored dots with the same color 

scheme. 
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Figure 6 The changes in the simulated monthly reactive nitrogen (Nr) deposition amount in protected areas for 

biodiversity conservation caused by the emission adjustment in April, July, and October. For each month, the left 

bar is for the a priori deposition amounts and the right bar is for the optimized deposition amounts. The 

deposition is grouped for 10 level I ecoregions defined by the Commission for Environmental Cooperation, 

including Northern Forests (NF), Great Plains (GP), Northwestern Forested Mountains (NFM), Marine West 

Coast Forest (MWCF), North American Deserts (NAD), Mediterranean California (MC), Southern Semiarid 

Highlands (SSH), Temperate Sierras (TS), and Tropical Wet Forests (TWF). 
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Table 1 Statistical summary of the correlation between simulated monthly average NH4
+ and NO3

- concentrations 

and observations in Aprila 680 

NH4
+ Midwest Penn Other 

 a priori optimized a priori optimized a priori optimized 

N 47 37 115 

NMB 0.27 0.22 0.00 0.07 -0.35 -0.35 

NRMSE 0.40 0.35 0.28 0.30 0.45 0.44 

slope 0.52 0.54 0.41 0.39 0.60 0.65 

R2 0.57 0.65 0.24 0.18 0.25 0.28 

NO3
- Midwest Penn Other 

 a priori optimized a priori optimized a priori optimized 

N 69 38 240 

NMB 0.64 0.55 0.25 0.43 -0.39 -0.38 

NRMSE 0.96 0.88 0.66 0.73 0.63 0.65 

slope 0.44 0.46 0.29 0.29 0.62 0.55 

R2 0.76 0.78 0.33 0.31 0.28 0.25 

a The correlation between observed concentrations and simulated ones based on a priori and optimized NH3 

emission estimates are compared. The sites are grouped as the Midwest region, Pennsylvania state and 

surrounding areas, and other areas. 

 

 

 

 


