
We thank the reviewer for providing the thoughtful comments and suggestions. Point-to-point responses to all 

comments are provided below. Corresponding changes in the manuscript are described in italics. The inversion is re-

performed in response to comments from reviewer #1. The manuscript has been updated based on the new inversion 

results with track changes. 

 

Response to Reviewer #1 comments: 
Comment 1 

This manuscript by Chen et al. used the recently developed multiphase CMAQ adjoint model and IASI satellite total 

NH3 column observations to constrain the monthly NEI NH3 emissions at 36 km spatial resolution in April, July, and 

October in 2011. A hybrid, two-step optimization scheme was applied. First the NEI inventory was nudged towards 

the posterior values by a mass-balance approach at a much coarser grid (216 km), and then 4D-Var inversion was 

performed using the updated inventory as the prior. The posterior emissions were then used to drive the CMAQ model, 

and the simulated NH3 abundance, NH4 deposition, and aerosol chemical composition were evaluated against 

independent observational datasets. Overall this work is solid, has applied state-of-the art satellite data and CTM tools, 

and could advance our limited understanding on the emission of NH3 if its methodology can be fully justified. 

Hopefully the paper can be further improved after addressing my comments below. 

Response 

We thank the reviewer for providing insightful comments. In this revision, we addressed these comments carefully. 

In particular, the inversion was re-performed using daily IASI-NH3 averages as constrain and revised error terms. 

The revisions help partly resolved the over-adjustment issue we encountered in Pennsylvania and surrounding 

regions. Please see our point-by-point responses for details. We hope that this new version of the manuscript has 

addressed all the concerns raised by the reviewer. 

Comment 2 

NEI 2011 covers the entire year continuously but this work only focused on three months, April, July, and October. 

Presumably the computing cost prohibited optimizing NEI for other months, but this should be discussed. Many CTM 

users would use multiple months or the entire year of NEI, and those three isolated months would hinder further 

application of the results of this work. Especially, the month of May will be a significant opportunity missed as a large 

fraction of fertilizer application happens in May, leading to abruptly different emission and column density dynamics 

relative to April and June. 

Response 

We thank the reviewer for pointing this out. Yes, we focused on three months because the computational cost to run 

full year simulation using adjoint model is too high. The CPU time required for one-day forward and adjoint 

simulation is 9.5 hours and 48 hours, respectively, which means that it takes over 20,000 CPU hours to perform a 

full year simulation. If the inversion takes 3~5 iterations to reach the converge criteria, the CPU time can reach 

60,000 to 100,000 hours. A sentence is added to line 155 to clarify that the optimization only focused on three 

months due to the high computational cost as follows. “Limited by the high computational cost of adjoint-model-

based inversion, the optimization is only performed for the three months selected instead of a full year.” In addition, 

as explained in the sentence in line 155 to 156, the optimization was not performed for the winter months 

(November, December and January) because the IASI-NH3 observations are too noisy to serve as a reliable 

constrain. 

The comparison between monthly average IASI NH3 column density and CMAQ simulated values using the a priori 

NH3 emission inventory for all twelve months in 2011 are provided in the revised SI (Figure S9). Simulated NH3 

column densities are biased low comparing to the IASI observed ones especially from April to August. For May, the 

simulated NH3 column densities are much lower than the IASI observations, especially in southern states (Texas and 

Oklahoma). Although we only performed the inverse modeling in April to represent the spring months, we expect 



the emission and column density dynamics in May are similar to those in April. Sentences are added in line 287 to 

imply the potential low bias of NH3 emission estimates in the NEI inventory in other months. “Although the 

inversion is only applied for the three selected months, the simulated NH3 column densities using the a priori 

inventory are consistently lower than the IASI-NH3 observations in 2011 (Figure S9), suggesting that the NH3 

emission estimates in 2011 NEI may be biased low in other months, too.” 

Figure S9 was added to SI to provide the results of the comparison between monthly average IASI NH3 column 

density and CMAQ simulated values using the a priori NH3 emission inventory for all twelve months in 2011. 

 

Figure S9 Comparison between monthly average IASI NH3 column density (a-c, g-i, m-o, s-u) and CMAQ 

simulated values (d-f, j-l, p-r, v-x) based on the a priori NH3 emission inventory in 2011. The monthly average 

relative error associated with the observed IASI NH3 column density is shown in the corner of the corresponding 

plots. 



 

 

Comment 3 

The observation used in the inversion seems to be monthly averaged data over 36-km grid cells, and the grid average 

absolute error was used in the observational error covariance matrix. This may have led to the counterintuitively high 

values in Pennsylvania and southern Texas, as the monthly averaged grid value could have been driven by a few 

 

Figure S9 (continued) Comparison between monthly average IASI NH3 column density (a-c, g-i, m-o, s-u) and 

CMAQ simulated values (d-f, j-l, p-r, v-x) based on the a priori NH3 emission inventory in 2011. The monthly 

average relative error associated with the observed IASI NH3 column density is shown in the corner of the 

corresponding plots. 



anomalously high observation dates, given the sparsity of IASI pixels. The error term (in Equation 1) does not include 

the scaling of the square root of N (the central limit theorem). As a result, if a grid cell contained only one day with 

extremely high values (the other days in the month were missing), it would be treated the same way as if all 30 days 

were those high values. Specifically, the high emissions in Pennsylvania, western New York, and east/south Texas 

(Fig. 3d) that were seemly driven by high IASI values in April (Fig. 1a) are hard for me to believe. It might be helpful 

to check IASI April data in other years, e.g., 2010 and 2012, to see if those high column abundance (and consequently 

high posterior emissions) are consistent. 

Response 

The reviewer’s thought is well-taken. Indeed, using monthly averaged NH3 column densities and averaged absolute 

error may lead to biased posterior emission estimates when the high averaged values are driven by high observations 

in several days. In response to this comment, we redid the inversion using daily observations as constraints. We also 

change the method to calculate the error term. A simple standard error of the mean column density in each grid was 

used. Please note that this was achieved by rerunning all the simulations, which was one of the main reasons we 

postponed the revision due date. 

The specifics are described as follows. 

The sentence in lines 146-147 is revised as “The mean column density (Ωo) is calculated as the arithmetic mean of 

all retrievals with their centroids falling in the same grid cell, following …” 

The sentence in line 148-153 is revised as “The error (molec/cm2) corresponding to the mean column density in 

each grid is calculated as:  

𝜎 = √
∑(𝜎𝑖 × 𝛺𝑖)

2

𝑛 − 1
 

where 𝜎 is the mean error (molec/cm2), Ωi is the NH3 column density from IASI-NH3 level 2 data, σi is the relative 

error associated with each Ωi as reported, n is the number of retrievals within each grid cell during the defined time 

period. For 4D-Var inversion and IMB inversion, daily and monthly means and errors are calculated, respectively.” 

For the iterative mass balance optimization (IMB) step, the emission scaling factors are still derived at 216 km by 

216 km resolution. However, in each day, only grid cells with satellite observations at 36 km by 36 km resolution 

are adjusted. Otherwise, the grid cells without observations at 36 km by 36 km resolution may be over-adjusted in 

the IMB step and there will not be enough constraint in the 4D-Var inversion to further adjust the emissions in these 

grid cells. 

The sentences in line 178-185 are revised as “The first step is to apply the IMB  approach to adjust the a priori 

(2011 NEI) NH3 emission at 216 km by 216 km resolution (referred to as the coarse grid cell hereafter) based on the 

ratio between the monthly-averaged observed and simulated NH3 column density at the satellite overpassing time, 

iteratively. At each iteration, the emission in each 36 km by 36 km grid cell (referred to as the fine grid hereafter) is 

scaled by the ratio following the equation below,         

𝐸𝑡,𝑖,𝑗 = {

𝛺𝑜,𝑚

𝛺𝑎,𝑚
× 𝐸𝑎,𝑖,𝑗 , 𝐼𝐴𝑆𝐼 𝑝𝑖𝑥𝑒𝑙𝑠 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 𝑖𝑛 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 𝑖 𝑖𝑛 𝑑𝑎𝑦 𝑗 

𝐸𝑎,𝑖,𝑗 , 𝑛𝑜 𝐼𝐴𝑆𝐼 𝑝𝑖𝑥𝑒𝑙𝑠 𝑖𝑛 𝑔𝑟𝑖𝑑 𝑐𝑒𝑙𝑙 𝑖 𝑖𝑛 𝑑𝑎𝑦 𝑗 
                                                          (2) 

where Et,i,j and Ea,i,j are the new and a priori emission estimates in fine grid cell i within the coarse grid cell on the 

jth day of the month, respectively. Ωo,m and Ωa,m are the monthly-averaged observed and simulated NH3 column 

density in coarse grid cells, respectively. It is a modified version of IMB optimization performed in previous studies 

(Li et al., 2019; Cooper et al., 2017; Martin et al., 2003). The emissions in grid cells without IASI retrievals are kept 

unchanged to avoid over-adjustment.” 



The sentence in line 190 is revised as “The final scaling factor (ε0) for each grid cell is the multiplication of the 

scaling factors derived at each iteration.” 

For the 4D-Var inversion, daily mean column density from the IASI-NH3 observations are used as constraints. Daily 

emission scaling factors are derived through optimization.  

The sentences in lines 119-210 are revised as below. 

“ 

J = γ(𝜀 − 𝜀0)𝑇𝑆𝑎
−1(𝜀 − 𝜀0) + (Ω𝑜,𝑑 − F(𝜀))

𝑇
𝑆𝑜

−1(Ω𝑜,𝑑 − F(𝜀))                                                                        (3) 

ε is the daily emission scaling factor to be optimized at each iteration where 𝜀 = 𝑙𝑜𝑔 (
𝐸𝑡

𝐸𝑎
⁄ ) on the 36 km by 36 km 

CMAQ grid, consisting of 6104 elements overland grid cells in CONUS. Ωo,d is daily-averaged IASI-NH3 column 

densities and F(ε) is CMAQ simulated NH3 column density sampled at the satellite passing time if there is at least 

one IASI-NH3 retrieval in that grid cell. Sa and So are error covariance matrices for the a priori emission estimates 

and IASI-NH3 retrievals, respectively. The two matrices are assumed to be diagonal. For So, the simple standard 

error corresponding to Ωo,d is used to represent the observational error (Equation (1)). Our test shows that negative 

Ωo,d will lead to a continuous decrease in the adjusted emission for the grid cell because modeled column density 

cannot become negative. To limit the influence of these negative Ωo,d, their original weights are multiplied by 0.01. 

For Sa, the uncertainty in each grid cell is assumed to be 100% of the a priori emissions. γ is the regularization 

factor balancing the relative contribution of the a priori emission inventory and IASI-NH3 retrievals to the J value. γ 

is chosen to be 800 for April and 500 for July and October based on the L-curve criteria (Hansen, 1999) (Figure 

S5).” 

Using daily mean IASI-NH3 column densities as constraints do help alleviate the over-adjustment in Pennsylvania in 

April. The posterior emission estimate in Pennsylvania is 127% higher than the a priori estimates using daily means 

as constraint, whereas 717% higher when using monthly means. For Texas, the difference is smaller (237% higher 

using daily means versus 335% higher using monthly means) because high IASI-NH3 column densities were 

observed on many days, possibly because of the warmer weather condition and earlier fertilizer application activities 

in 2011. Please refer to the response to Comment 11 for a detailed discussion. Again, we thank the reviewer for 

providing this insightful comment on the inversion method. 

Comment 4 

Page 2, line 49: clarify which NEI it is (prior or posterior) in “NEI-based” assessments. 

Response 

Thanks for the suggestion. The sentence is revised as “The model results suggest that the estimated contribution of 

ammonium nitrate would be biased high in a priori NEI-based assessments.” 

Comment 5 

Page 2, lines 61-65: this sentence might fit better at the last paragraph of the introduction. 

Response 

We thank the reviewer for this suggestion. The sentence in lines 61-65 is moved to the beginning of the last 

paragraph of the introduction. The last paragraph is revised as “This work utilizes satellite observations from the 

IASI NH3 column density measurements (IASI-NH3) (Clarisse et al., 2009;Van Damme et al., 2017), to provide a 

high-resolution, optimized NH3 emission inventory for the U.S. developed using an adjoint inverse modeling 

technique (Li et al., 2019), the robustness of which is demonstrated by evaluation against multiple independent in-

situ measurements. The IASI-NH3 dataset was applied to optimize NH3 emission estimates from the 2011 National 

Emission Inventory (NEI 2011) using CMAQ and its adjoint model at a 36 km×36 km resolution. …” 



IASI is spelled out at its first appearance in line 70 as “Several studies have utilized NH3 column density retrieved 

from the Infrared Atmospheric Sounding Interferometer (IASI) (Clarisse et al., 2009; Van Damme et al., 2015b) …” 

Comment 6 

Page 5, equation 1: this is a strange statistic to calculate. As indicated a few lines above, Ω0 is the monthly arithmetic 

mean within a grid cell, but the ∑(𝜎𝑖 𝜎𝑖
2⁄ )/ ∑(1 𝜎𝑖

2)⁄  term is the variance-weighted mean of error. A simple standard 

error of the mean or standard error of the weighted mean (https://doi.org/10.1016/1352-2310(94)00210-C) might be 

better choices. 

Response 

In response to this comment, the error term is changed to a simple standard error of the daily mean in the revised 

manuscript, and the simulations are re-performed with the revised error covariance matrices. The results are updated 

throughout the text. 

The sentence in line 148-153 is revised as “The error (molec/cm2) corresponding to mean column density in each 

grid cell is calculated as:  

𝜎 = √
∑(𝜎𝑖 × 𝛺𝑖)

2

𝑛 − 1
 

where 𝜎 is the mean error (molec/cm2), Ωi is the NH3 column density from IASI-NH3 level 2 data, σi is the relative 

error associated with each Ωi as reported, n is the number of retrievals within each grid cell during the defined time 

period. For 4D-Var inversion and IMB inversion, daily and monthly means and errors are calculated, respectively.” 

Comment 7 

Page 7, lines 201-202: how justified is it to assume that the a priori covariance matrix is diagonal? The error/bias in 

NEI often seem spatially correlated. 

Response 

Thank you for raising this concern. The error covariance matrix is assumed to be diagonal because there is no data 

available to estimate the spatial correlation of errors in NH3 emission estimates. Including non-diagonal terms to the 

a priori covariance matrix, therefore, may further introduce uncertainties in the inverse modeling. The sentence in 

line 201-202 is revised to clarify the reason why the a priori covariance matrix is assumed to be diagonal as follow. 

“With limited information on the spatial correlation of the error covariance, the two matrices are assumed to be 

diagonal (Paulot et al., 2014; Zhu et al., 2013).” 

References 

Paulot, F., Jacob, D.J., Pinder, R.W., Bash, J.O., Travis, K., Henze, D.K.: Ammonia emissions in the United States, 

European Union, and China derived by high-resolution inversion of ammonium wet deposition data: 

Interpretation with a new agricultural emissions inventory (MASAGE_NH3). J. Geophys. Res. Atmos. 119, 

4343-4364, https://doi.org/10.1002/2013JD021130, 2014. 

Zhu, L., Henze, D. K., Cady-Pereira, K. E., Shephard, M. W., Luo, M., Pinder, R. W., Bash, J. O., and Jeong, G. R.: 

Constraining U.S. ammonia emissions using TES remote sensing observations and the GEOS-Chem adjoint 

model, J. Geophys. Res. Atmos., 118, 3355-3368, https://doi.org/10.1002/jgrd.50166, 2013. 

Comment 8 

Page 7, lines 203: it is important to let the readers understand if the observation vector used in the inversion is 

composed of single IASI pixels (level 2) or regridded maps (level 3). My impression is that the level 3 regridded IASI 

https://doi.org/10.1016/1352-2310(94)00210-C


data were used. In that case, the single sounding detection limit of 4.8×1015 is not relevant as the averaging will reduce 

the noise level, and it is important to consider the number of averaging per grid cell. 

Response 

Yes, level 3 regrided IASI data is used in the inversion. In response to comment 3, the inversion was re-performed 

and daily means regrided at 36 km 36 km resolution were used as constraints in the 4D-Var inversion. The reviewer 

is right that the single sounding detection limit is higher than the actual noise level when pixels are averaged. We no 

longer add a detection limit to the error covariance So. The simulations are re-performed with the revised error 

covariance matrices, and the results are updated throughout the text. 

This sentence in lines 203-205, “To reduce the influence of retrievals close to or below the detection limit, an estimated 

detection limit of 4.8×1015 molecules/cm2 is added to the So (Dammers et al., 2019)”, is deleted. 

Comment 9 

Page 7, line 215: the convergence criterion that J decreases by less than 2% seems large and arbitrary. 

Response 

The convergence criterion was chosen following previous inverse modeling studies to optimize NH3 emission 

estimates. Citations are added in the sentence in line 215 to clarify the choice of the convergence criterion. “The 

iteration process is terminated when the decrease in J is less than 2% or the local minimum is reached (Li et al., 

2019; Zhu et al., 2013).” 

References 

Li, C., Martin, R. V., Shephard, M. W., Cady‐Pereira, K., Cooper, M. J., Kaiser, J., Lee, C. J., Zhang, L., and Henze, 

D. K.: Assessing the Iterative Finite Difference Mass Balance and 4D‐Var Methods to drive ammonia 

emissions over North America using synthetic observations, J. Geophys. Res. Atmos., 124, 4222-4236, 

https://doi.org/10.1029/2018jd030183, 2019. 

Zhu, L., Henze, D. K., Cady-Pereira, K. E., Shephard, M. W., Luo, M., Pinder, R. W., Bash, J. O., and Jeong, G. R.: 

Constraining U.S. ammonia emissions using TES remote sensing observations and the GEOS-Chem adjoint 

model, J. Geophys. Res. Atmos., 118, 3355-3368, https://doi.org/10.1002/jgrd.50166, 2013. 

Comment 10 

Figure 2: please consider adding the residual map (IASI column-modeled column) as inserts, similar to Fig. 1. 

Response 

Residual maps are inserted as suggested by the reviewer. Figure 2 is revised as follows, 



 

Comment 11 

Page 8, lines 234-235: please define the exact location of NRMSE that reduced by 98%. The high NH3 observations 

in April in southern states seem curious and may warrant a closer investigation. 

Response 

By “southern states” we are referring to the states in the southern region defined by the USDA Farm Production 

region, which includes Texas and Oklahoma. In the revised simulation, the NRMSE in the southern states was 

reduced by 50% instead of 98% with the optimized NH3 emission estimates. The sentence in lines 234-235 is 

revised as follows “The optimized NH3 emission successfully captures the high NH3 column density in southern 

states (Texas and Oklahoma), reducing the NRMSE by half in that region.” 

 

Figure 2 CMAQ simulated monthly average NH3 column density for April, July, and October 2011 using the a 

priori emissions (a, b, c), the emissions adjusted by IMB (d,e,f), and the final optimized emissions using the 

hybrid approach (g,h,i). For comparison with the IASI-NH3 retrievals, simulated NH3 columns at the passing 

time are derived when there are observations in that grid cell. Normalized root mean square error (NRMSE) and 

normalized mean bias (NMB) between the simulated values and IASI-NH3 are provided. Residue map (IASI-

NH3 – simulated NH3 column densities) is shown in the corner of each plot. 



The enhanced NH3 emissions in the southern states in the optimized emission estimates are more consistent with the 

total NH3 emission estimates when air-surface bidirectional exchange is considered (Shen et al., 2020). The ratio 

between NH3 emission estimates in southern states and total NH3 emission within CONUS is 20% and 18% in the 

optimized estimates and estimates including NH3 bidirectional exchange in 2011, respectively. In comparison, the 

ratio is only 10% in the a priori NEI estimates. 

The comparison of IASI-NH3 in 2011 and adjacent years shows a substantial variation in the retrieved NH3 column 

densities in the southern states. The NH3 observations are the highest in 2011 and the lowest in 2010 in April and 

May. The difference coincides with the higher surface temperature in the southern states in these two months. NH3 

volatilization from agricultural lands will increase under warmer conditions (Shen et al., 2020). 

The pieces of evidence mentioned above are incorporated in the discussion to support the increased NH3 emission in 

southern states in the optimized estimates as follows. The sentences in line 261-263 are revised as “The higher NH3 

emission estimates in the southern states are driven by the enhanced NH3 column densities from IASI over that 

region. IASI-NH3 column densities are higher in 2011 than those in adjacent years (Figure S7), which coincides 

with the higher surface temperature observed in 2011 (NOAA 2019)(Figure S8). NH3 emission will increase due to 

enhanced NH3 volatilization from agricultural lands under warmer conditions (Bash et al., 2013; Shen et al., 2020). 

In fact, the optimized NH3 emission pattern in April is more consistent with the spatial pattern of inorganic nitrogen 

fertilizer estimated based on plant demand (Cooter et al., 2012). NH3 emission in 2011 estimated by CMAQ with 

NH3 bidirectional exchange model also predicted higher NH3 emission in the southern states (Shen et al., 2020). The 

ratio between NH3 emission estimates in southern states and that within CONUS is 26% and 18% in the optimized 

estimates and estimates including NH3 bidirectional exchange, respectively. In comparison, the ratio is only 10% in 

the a priori NEI estimates, suggesting a potential low bias in 2011 NEI.” 

Two figures were added to SI as follows to provide the IASI-NH3 column densities for 2010, 2011, and 2012 and 

surface temperature maps for these three years. 

 

 

Figure S7 Monthly averaged IASI-NH3 column densities in April and May from 2010 to 2012. The satellite 

retrievals are regridded at 36 km by 36 km resolution. 



 

References 

Shen, H., Chen, Y., Hu, Y., Ran, L., Lam, S. K., Pavur, G. K., Zhou, F., Pleim, J. E., and Russell, A. G.: Intense 

Warming Will Significantly Increase Cropland Ammonia Volatilization Threatening Food Security and 

Ecosystem Health, One Earth, 3, 126-134, https://doi.org/10.1016/j.oneear.2020.06.015, 2020. 

Bash, J.O., Cooter, E.J., Dennis, R.L., Walker, J.T., Pleim, J.E.: Evaluation of a regional air-quality model with 

bidirectional NH3 exchange coupled to an agroecosystem model. Biogeosciences. 10, 1635-1645, 

https://doi.org/10.5194/bg-10-1635-2013, 2013. 

Comment 12 

Page 9, line 277: it may be helpful to also include a priori emission totals in those three months. The posterior 

emission indicates that the total NH3 emission decreases linearly from April to July and to October. Then what 

would the seasonality look like? 

Response 

In response to this comment, a sentence is added in line 278 to include a priori emission totals, and the posterior 

emission estimates constrained by daily IASI-NH3 averages are updated as follow: “The total NH3 emissions in the 

optimized estimates are 623 Gg, 564 Gg, and 320 Gg per month in April, July, and October, respectively. In 

comparison, the emission estimates in the 2011 NEI are 462 Gg, 475 Gg, and 304 Gg per month for the three 

months.”  

 

Figure S8 The monthly averaged surface temperature in April and May from 2010 to 2012.  



The updated posterior emission estimate in April is still the highest. But the difference between emission totals in 

April and July is much smaller comparing to that between the emission estimates constrained by monthly IASI-NH3 

averages. In comparison, the a priori emission estimate in July is slightly higher than that in April. Yet, we cannot 

draw a confident conclusion on the seasonality of NH3 emissions due to high uncertainties in NH3 emission 

estimates in April. As we suggested in the manuscript (lines 232 – 234, and lines 281 – 284), optimizing NH3 

emissions in April using the inverse modeling technique is more challenging than July and October because of the 

greater differences in the magnitude and the spatial distribution of the emissions. Better knowledge about 

agricultural activities and more independent ground and space observations are needed to better constrain the NH3 

emission inventory in the spring months. 

Comment 13 

Page 9, line 297 and page 12, line 384: it is contradictory to claim that the hybrid inversion “overcomes the over-

adjusting problem for high emission rates” and meanwhile attribute the worsening RMSE against AMoN to the 

emission over-adjustment problem that has supposedly been overcome. Especially the comparison between posterior 

and AMoN in April (Fig. 4a) seems problematic. 

Response 

In response to this comment, the sentence in line 297 “This is likely due to the tendency of satellite-based inversion 

to over-adjust emissions in high concentration areas (Zhu et al., 2013).” is deleted. The simulated NH3 

concentration using optimized NH3 emission estimates agrees better with AMoN observations when daily IASI-NH3 

means instead of monthly means are used as constraints in the 4D-Var inversion. In the updated results, only model 

evaluation in April shows an obvious increase in NRMSE and a decrease in R2.  

The worsening performance in April is caused by the over-adjustment of NH3 emissions in Pennsylvania. Using 

daily means instead of monthly means as constraints help alleviate the over-adjustment. High NH3 column densities 

were observed on April 14th and 15th. When daily means are used in the inversion, emissions in other days of the 

month won’t be driven high by these two high observation days. In fact, the posterior emission estimate in 

Pennsylvania using daily means as constraint is 100% higher than the a priori estimates, whereas 700% higher when 

using monthly means as constraints in the inversion. 

The over-adjustment still exists when comparing the simulated surface NH3 and NH4
+ concentrations with 

independent field observations. Although our hybrid method can overcome the over-adjusting problem for high 

emission areas in the direct 4D-Var method, it tends to over-adjust local emissions when long-range transport 

dominates the observed high NH3 column densities. As we mentioned in lines 302 – 303, the hotspot in 

Pennsylvania on April 14th and 15th possibly came from a large transported plume at high altitude from the central 

U.S. (Figure S10 and Figure S11). If that was the case, the hybrid inverse modeling framework would have 

difficulties reproducing the long-range transport contribution for two reasons. First, local emissions in Pennsylvania 

would be enhanced in the IMB inversion and inter-grid transport were neglected at 216 km by 216 km resolution. 

Second, the results from such a statistical optimization method are always locally optimal rather than globally 

optimal. The 4D-Var inversion is more likely to adjust emissions from local and surrounding grid cells instead of 

grid cells at distance to achieve a local minimum of the cost function. Besides, the IASI-NH3 column densities may 

be overestimated because vertical profiles with the highest concentrations near the surface have been assumed in the 

retrieval process.  

The sentences in line 295 – 308 were revised to update the model evaluation results against AMoN observations and 

better explain the worsening model performance in April, as follow. “In general, the optimized NH3 emission 

reduces the negative NMB when comparing the CMAQ outputs with AMoN NH3 concentration for all three months. 

There is a greater improvement at the high concentration end than the low concentration end because both IASI 

satellite and the passive samplers at the AMoN sites have higher uncertainties in areas with low NH3 abundance 

(Van Damme et al., 2015a; Puchalski et al., 2011). Yet, the NRMSE gets higher and R2 gets lower in April, 

indicating a higher spatial variation in the residuals. There is an over-adjustment for sites in Pennsylvania in April 

where there is a hotspot observed by IASI in April 14th and 15th. The hotspot possibly came from a large transported 



plume at a higher altitude from the central U.S. to Pennsylvania (Figure S10 and Figure S11), which is not 

measured by ground observations at AMoN sites at biweekly resolution. If that is the case, the hybrid inverse 

modeling framework would have difficulties in reproducing the long-range transport contribution for two reasons. 

First, local emissions in Pennsylvania would be enhanced in the IMB inversion and inter-grid transport were 

neglected at 216 km by 216 km resolution. Second, the following 4D-Var inversion very likely reached a local 

optimal by adjusting emissions from local and surrounding grid cells near the observed hotspot rather than grid 

cells at distance. Besides, the IASI-NH3 column densities may be overestimated because vertical profiles with 

highest concentrations near the surface were assumed in the retrieval process (Whitburn et al., 2016).” 

The limitation is addressed by adding the following sentence in line 315: “… in most of the CONUS, except in 

Pennsylvania and surrounding regions in April. The hybrid inverse modeling technique may over-adjust local 

emissions in hotspots dominated by long-range transport.” 

The sentence in line 385 is also revised as follow: “The hybrid approach overcomes the over-adjusting problem for 

high emission areas in the direct 4D-Var method and reduces the computational cost, but it may introduce over-

adjustment in special cases where the NH3 abundance is dominated by transport instead of local emissions.” 

Comment 14 

Table 1: the R2 of 0.08 at other (also the majority of) sites between simulated NH4
+ and observations in April is 

bothersome. The N is a reasonably large number (115), so such a low R2 indicates that the model essentially lost all 

explanation power after the inversion. The authors are suggested to take a closer look at the April data (for other 

years than 2011 as well) and make sure they are representative. 

Response 

When checking the data of Table 1 multiple calculation errors are found. We sincerely apologize for the mistakes. 

The R2 at other sites between simulated NH4
+ and observations in April is 0.26 instead of 0.08. 

Both corrected Table 1 for the initial submission version and revised Table 1 based on new optimizing scaling 

factors are provided below for comparison. The optimized NH3 emission estimates still exacerbate the high bias in 

the Pennsylvania state and surrounding areas, but the magnitude is significantly reduced comparing to the initial 

version. The high IASI-NH3 observations in April in Pennsylvania state was driven by high retrievals in a few days 

and using daily means instead of monthly means as constraints helped avoid the artificial high bias in the days 

without observations. We thank the reviewer again for the critical suggestion. 

By comparing the satellite data in different years, we find that IASI-NH3 column densities in April are higher in 

2011 than in 2010 and 2012, however, it is common to have high variations in the column densities in adjacent years 

and months (Figure S7). We believe the IASI-NH3 observations in 2011 show a reasonable pattern of NH3 column 

densities considering the variations in meteorological conditions and emission activities. The over-adjustment in 

Pennsylvania and the surrounding region is possibly due to the tendency of this hybrid inverse modeling technique 

to over-adjust local emissions when long-range transport contributed to the high abundance of NH3 in that region. 

Please refer to the response to Comment 13 for a detailed explanation. 

Table 1 (corrected version for initial submission) Statistical summary of the correlation between simulated 

monthly average NH4
+ and NO3

- concentrations and observations in Aprila 

NH4
+ Midwest Penn Other 

 a priori optimized a priori optimized a priori optimized 

N 47 37 115 

NMB 0.27 0.07 0.00 0.48 -0.35 -0.36 

NRMSE 0.40 0.14 0.28 0.42 0.45 0.32 



slope 0.52 0.58 0.41 0.32 0.60 0.56 

R2 0.57 0.62 0.24 0.36 0.25 0.26 

NO3
- Midwest Penn Other 

 a priori optimized a priori optimized a priori optimized 

N 69 38 240 

NMB 0.64 0.29 0.25 1.40 -0.39 -0.41 

NRMSE 0.96 0.66 0.66 1.73 0.63 0.80 

slope 0.44 0.50 0.29 0.48 0.62 0.33 

R2 0.76 0.73 0.33 0.67 0.28 0.13 

a The correlation between observed concentrations and simulated ones based on a priori and optimized NH3 

emission estimates are compared. The sites are grouped as the Midwest region, Pennsylvania state and 

surrounding areas, and other areas. 

 

Table 1 (revised version) Statistical summary of the correlation between simulated monthly average NH4
+ and 

NO3
- concentrations and observations in Aprila 

NH4
+ Midwest Penn Other 

 a priori optimized a priori optimized a priori optimized 

N 47 37 115 

NMB 0.27 0.22 0.00 0.07 -0.35 -0.35 

NRMSE 0.40 0.35 0.28 0.30 0.45 0.44 

slope 0.52 0.54 0.41 0.39 0.60 0.65 

R2 0.57 0.65 0.24 0.18 0.25 0.28 

NO3
- Midwest Penn Other 

 a priori optimized a priori optimized a priori optimized 

N 69 38 240 

NMB 0.64 0.55 0.25 0.43 -0.39 -0.38 

NRMSE 0.96 0.88 0.66 0.73 0.63 0.65 

slope 0.44 0.46 0.29 0.29 0.62 0.55 

R2 0.76 0.78 0.33 0.31 0.28 0.25 

a The correlation between observed concentrations and simulated ones based on a priori and optimized NH3 

emission estimates are compared. The sites are grouped as the Midwest region, Pennsylvania state and 

surrounding areas, and other areas. 

 

Comment 15 

Page 10, line 302-303 and page 11, lines 345-346: as CMAQ is a full 3D CTM driven by real WRF meteorology and 

hourly emissions, those transport should have been captured. Why not? 



Response 

The hybrid inverse modeling technique is a statistical optimization technique that takes into account the chemistry 

and physics of the CTM. The system is underdetermined because the model freedom far exceeds the number of 

satellite observations available. The forward CMAQ model can indeed capture long-range transport with real WRF 

meteorology and hourly emissions. However, instead of solving for the global optimal, the inversion can adjust 

emissions from local and surrounding grids instead of grids at distance to achieve a local minimum of the cost 

function. Besides, in our case of over-adjustment in Pennsylvania, local emissions were enhanced in the IMB 

inversion and inter-grid transport was neglected at 216 km by 216 km resolution. 

It is a limitation of this hybrid inverse modeling method that local emissions may be over-adjusted when the satellite 

observed hotspots were dominated by long-range transport. The limitation is clarified and addressed in the revised 

manuscript as follows. 

The sentences in lines 300 – 308 are revised as “There is a greater improvement at the high concentration end than 

the low concentration end because both IASI satellite and the passive samplers at the AMoN sites have higher 

uncertainties in areas with low NH3 abundance (Van Damme et al., 2015a; Puchalski et al., 2011). Yet, the NRMSE 

gets higher and R2 gets lower in April, indicating a higher spatial variation in the residuals. There is an over-

adjustment for sites in Pennsylvania in April where there is a hotspot observed by IASI in April 14th and 15th. The 

hotspot possibly came from a large transported plume at a higher altitude from the central U.S. to Pennsylvania 

(Figure S10 and Figure S11), which is not measured by ground observations at AMoN sites at biweekly resolution. 

If that is the case, the hybrid inverse modeling framework would have difficulties in reproducing the long-range 

transport contribution for two reasons. First, local emissions in Pennsylvania would be enhanced in the IMB 

inversion and inter-grid transport were neglected at 216 km by 216 km resolution. Second, the following 4D-Var 

inversion very likely reached a local optimal by adjusting emissions from local and surrounding grid cells near the 

observed hotspot rather than grid cells at distance. Besides, the IASI-NH3 column densities may be overestimated 

because vertical profiles with highest concentrations near the surface were assumed in the retrieval process 

(Whitburn et al., 2016).” 

A sentence is added in line 315: “… in most of the CONUS, except in Pennsylvania and surrounding regions in 

April. The hybrid inverse modeling technique possibly over-adjusts local emissions in hotspots dominated by long-

range transport.” 

 

  



Response to Reviewer #2 comments: 

Comment 1 

This manuscript applied a hybrid inversion approach, which combines a coarse resolution mass balance inversion and 

a fine-resolution 4D-VAR inversion, to optimize NH3 emission estimates from the 2011 National emission inventory 

(2011 NEI) for the U.S. based on the satellite observations of the Infrared Atmospheric Sounding Interferometer NH3 

column density (IASI-NH3) and the numerical simulations using the CMAQ v5.0 and its multiphase adjoint model. 

The optimized NH3 emission inventory suggests the underestimation in the 2011 NEI, especially the NH3 emission 

amount in April. The study demonstrated the robustness of the inversed NH3 emission inventory by evaluating the 

CMAQ modeling performance of ambient NH3 concentrations and NH4
+ wet deposition, analyzed the potential factors 

accounting to the differences between the NH3 emissions in 2011 NEI and the optimized estimates, and assessed the 

influences of the optimized NH3 emissions to the simulations of ambient aerosol concentrations as well as to the 

nitrogen deposition exceedances in the U.S. The results are presented in a clear way and the manuscript stands in a 

good structure. I would recommend publication in Atmospheric Chemistry and Physics after consideration of the 

following comments. 

Response 

We thank the reviewer for the comments and valuable suggestions. The detailed responses can be seen below. 

Comment 2 

Specific comments 

1. The adjustment to the a priori emissions of NH3 is driven by the difference between the observed NH3 column 

density and the simulated one, which requires that the uncertainty in the a priori emissions is the dominant explanatory 

factor for the bias in the simulated NH3 column density. As we know, several factors other than NH3 emissions might 

affect the uncertainty of the simulated NH3 column density, such as the meteorological fields, the simulated 

concentrations of other related species, and even other primary emissions. The performance of the WRF model and 

the CMAQ model in the study are suggested to be introduced in the section 2.3. The influences of these factors on the 

inversion of NH3 emissions are also suggested to be discussed in the evaluation of the optimized emission estimates. 

Response 

We agree with the reviewer that the performance of the inversion will also be influenced by uncertainties and biases 

in the WRF and the CMAQ model. The model performance of the two models are added in the manuscript as suggested 

by the reviewer. 

The WRF model performance is evaluated by comparing simulated wind speed, temperature, and humidity against 

surface observations. In general, the WRF simulated meteorological fields agree well with the observations, except 

for a slight overestimation of wind speed. The CMAQ model performance for simulating gas-particle partitioning of 

semi-volatile species and reactive nitrogen deposition has been evaluated in detailed in our previous papers using the 

same input data and model configuration (Chen et al., 2019; Chen et al., 2020). There is a consistent low bias in 

simulated NH3 and NH4
+ concentrations indicating that the NH3 emission estimates are biased low. Most of the 

observation-simulation data pairs for ε(NH4
+) scatter within the 0.5 to 2 range, and there is no significant systematic 

bias found in ε(NH4
+). Larger biases were found for locations with low relative humidity, low NH3 and NOx emissions, 

or significant dust emissions (Chen et al., 2019). For deposition evaluation, both dry and wet deposition amount are 

biased low, further indicating a possible low bias in NH3 emission estimates. Besides, the biases in gas-particle 

partitioning ratio and precipitation amounts also affect the model performance (Chen et al., 2020). The most relevant 

evaluations including the gas-particle partitioning of NH3 and NH4
+ (ε(NH4

+), defined as the molar ratio of NH4
+ to 

the sum of NH3 and NH4
+), as well as deposition of NH4

+ are provided in the supporting information. 

A sentence describing the WRF model performance is added in line 170 as follows. “The simulated meteorological 

fields show good agreement with surface observations (Figure S2) (NOAA, 2020).” 



Sentences describing CMAQ model evaluation results are added in line 174, section 2.3, as follows. “To evaluation 

CMAQ model performance, the simulated gas-particle partitioning ratio of NH3-NH4
+ and NH4

+ deposition is 

compared with observations from AMoN, Clean Air Status and Trends Network (CASTNET), and National 

Atmospheric Deposition Program (NADP) (Figure S3 and Figure S4). CMAQ captures the overall spatial pattern of 

these governing processes for atmospheric NH3 abundance, considering the uncertainties in emissions, model 

parameters, and meteorological fields. Expanded evaluation of CMAQ model performance in simulating gas-particle 

partitioning and nitrogen deposition has been conducted in previous studies (Chen et al, 2019; Chen et al., 2020).” 

Sentences are added in the discussion to address the impacts of uncertainties from the WRF and the CMAQ model as 

follows. 

Sentences are added in line 284 as follows. “Besides the a priori emission inventory and observational constraints, 

the inversion performance will also be affected by other processes (e. g., gas-particle partition, transport, cloud and 

precipitation, and dry and wet deposition) governing the atmospheric abundance of NH3. Future works refining the 

pertinent processes will also help improve the optimized NH3 emission estimates.” 

A sentence is added in line 313 as follows. “A better representation of the cloud, precipitation, and deposition 

processes in the WRF and the CMAQ model is needed to close the gap between simulated and observed NH4
+ 

deposition amount.” 

 

Figures showing the WRF and CMAQ performance were added to SI as follows, 

 

 

 

Figure S2 Model evaluation for WRF simulated meteorological fields against TDL hourly observations for 

April, July, and October. The bias and RMSE are listed below each plot. 



 

 

 

 
 

Figure S3 Model evaluation for CMAQ simulated bi-weekly average surface concentrations of NH3 (a), NH4
+ 

(b), and the gas-particle partitioning ratios, ε(NH4
+) (c) against observations from collocated AMoN (Ammonia 

Monitoring Network) and CASTNET (Clean Air Status and Trends Network) sites. Overlay of annual mean 

ε(NH4
+) based on simulated (color map) and observed (colored dots) concentrations are also plotted (d). The 1:1 

line (solid black line), data range line (dashed back line with ratio labeled) and regression line (red) is also 

plotted. Number of data points (N), NMB, and NRMSE are provided along each plot. 



 

References 
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Chen, Z.; Smith, R. A.; Burtraw, D.; Driscoll, C. T.: Greater contribution from agricultural sources to 

future reactive nitrogen deposition in the United States. Earth’s Future, doi: 10.1029/2019EF001453, 2020. 

Comment 3 

 

 

Figure S4 Model evaluation for CMAQ simulated wet (a and b) and dry (c) deposition of NH4
+ against 

observations from the NADP (National Atmospheric Deposition Program) and the CASTNET (Clean Air Status 

and Trends) Network. Overlay of annual NH4
+ wet deposition based on simulated (color map) and observed 

(colored dots) amount are also plotted (d). The scatter plots show the comparison between CMAQ predicted and 

observed annual dry, wet, and total deposition amounts, with the blue line showing the linear regression line. The 

1:1 line (solid black line), data range line (dashed back line with ratio labeled) and regression line (red) is also 

plotted. Number of data points (N), NMB, and NRMSE are provided along each plot. For wet deposition, the 

CMAQ model performance with (a) and without (b) precipitation adjustment are evaluated. 

 



2. In section 3.3, lines 301-306: Do the outputs of the WRF/CMAQ model present the large transported plume from 

the central U.S. to Pennsylvania on April 14th and 15th? Do other data or analysis (such as wind observations at high 

altitude, trajectory analysis) support the possibility of this transport? 

Response 

The spatial pattern of CMAQ simulated NH3 column density does not present similar patterns observed by the IASI 

satellite on April 14th and 15th, even using optimized NH3 emissions as input. This is probably because the optimized 

results failed to capture long-range transport contribution and over-adjusted local emissions in Pennsylvania. 

Although the Atmospheric Infrared Sounder (AIRS) and the Tropospheric Emission Spectrometer (TES) also 

measures NH3 column densities in 2011, it is hard to derive daily spatial pattern in the CONUS. For AIRS, only 

monthly level 3 data has been developed at this moment and the coverage is poor in northeastern U.S. For TES, the 

satellite swath is too narrow to provide complete daily coverage for CONUS.  

In the revision, we performed a trajectory analysis using NOAA HYSPLIT model driven by meteorological fields 

forecasted by the North American Mesoscale Forecast System (NAM) at 12 km by 12 km resolution. Forward 

trajectory simulation was performed for April 13th to 15th with a source located in Oklahoma at surface level (37.0 

N, 94.7 W). Backward trajectory simulation was performed for April 15th with a receptor located in Pennsylvania 

(40.9 N, 77.6 W) at both surface level and elevated level (5 km). The forward air parcel trajectories show that long-

range transport toward northern and northeastern regions occurred on April 14th and 15th. The backward air parcel 

trajectories also show that NH3 in elevated height may came in from the central U.S. 

 

Again, the long-range transport contribution is our speculation based on the IASI-NH3 spatial distribution. Although 

the trajectory analysis partially supports our speculation, the high IASI-NH3 column densities on April 14th and 15th 

 

Figure S11 Forward and backward trajectory analysis generated from the NOAA HYSPLIT model. The location 

of the source (forward) and receptor (backward) are shown as stars in the figures. The starting time of each 

trajectory is 1 hour apart, from 00:00 to 24:00 local time on each day. 



warrants further investigation. In the revised manuscript, we further clarified that the long-range transport is our 

hypothesis to explain the discrepancy between IASI-NH3 and surface observations in Pennsylvania for April 2011.  

The sentences in lines 300 – 308 is revised as follows. “There is an over-adjustment for sites in Pennsylvania in 

April where there is a hotspot observed by IASI in April 14th and 15th. The hotspot possibly came from a large 

transported plume at a higher altitude from the central U.S. to Pennsylvania (Figure S10 and Figure S11), which is 

not measured by ground observations at AMoN sites at biweekly resolution. If that is the case, the hybrid inverse 

modeling framework would have difficulties in reproducing the long-range transport contribution for two reasons. 

First, local emissions in Pennsylvania would be enhanced in the IMB inversion and inter-grid transport were 

neglected at 216 km by 216 km resolution. Second, the following 4D-Var inversion very likely reached a local 

optimal by adjusting emissions from local and surrounding grid cells near the observed hotspot rather than grid 

cells at distance. Besides, the IASI-NH3 column densities may be overestimated because vertical profiles with 

highest concentrations near the surface were assumed in the retrieval process (Whitburn et al., 2016).” 

Figure S11 showing the trajectory analysis results is added to the SI. 

Comment 4 

3. As shown in Figure 4, the optimized NH3 emission reduces the negative NMB when comparing the CMAQ outputs 

with AMoN NH3 concentrations, but increases the NRMSE and decreases the correlation. In my opinion, the optimized 

NH3 inventory does not greatly improve the agreement between CMAQ simulated NH3 concentrations and the 

observations. The near ground ambient NH3 concentrations might reflect more direct signal of the NH3 emissions than 

the NH3 column density. If the ambient NH3 measurements together with the satellite observations are used to inverse 

the NH3 emissions, we would obtain more reasonable optimized emission estimates. 

Response 

We agree with the reviewer that near ground ambient NH3 concentration observations might better constrain NH3 

emissions than the satellite NH3 column densities. However, only 110 active sites are measuring bi-weekly average 

NH3 concentration from the AMoN network in the U.S. The ground observations are too sparse to provide useful 

constraints in the inversion because of the high spatiotemporal heterogeneity of NH3. Therefore, we decide to leave 

out the AMoN observations as an independent set of observations to evaluate the robustness of the inversion 

outcomes. It would be ideal if the two sets of observations can be used together in the inversion if more ground NH3 

observations become available in the future. 

The sentence in line 395 is revised as follows: “…shows that the optimized NH3 emission estimates reduce the NMB 

between model outputs and independent observations, especially in April. The NRMSE remains high, indicating 1) 

the potential to further optimize NH3 emission estimates when more representative observations of ambient NH3 

abundance becomes available; 2) the need to address the uncertainties in other processes affecting the NH3 

abundance, such as gas-particle partitioning, dry and wet deposition, and in cloud processes.” 

Comment 5 

Technical comments 

1. In lines 434-436 and lines 541-542: Please add the journals which the references are submitted to. 

Response 

The two references are updated as follows. 

lines 434 – 436:  

Cao, H., Henze, D. K., Shephard, M. W., Dammers, E., Cady-Pereira, K., Alvarado, M., Lonsdale, C., Luo, G., Yu, 

F., Zhu, L., Danielson, C. G., and Edgerton, E. S.: Inverse modeling of NH3 sources using CrIS remote sensing 

measurements, Environ Res Lett, 15, 104082, 10.1088/1748-9326/abb5cc, 2020. 



lines 541 – 542:  

Shen, H., Chen, Y., Hu, Y., Ran, L., Lam, S. K., Pavur, G. K., Zhou, F., Pleim, J. E., and Russell, A. G.: Intense 

Warming Will Significantly Increase Cropland Ammonia Volatilization Threatening Food Security and Ecosystem 

Health, One Earth, 3, 126-134, https://doi.org/10.1016/j.oneear.2020.06.015, 2020. 
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Abstract 

Ammonia (NH3) emissions have large impacts on air quality and nitrogen deposition, influencing human health and 

the well-being of sensitive ecosystems. Large uncertainties exist in the “bottom-up” NH3 emission inventories due to 35 

limited source information and a historical lack of measurements, hindering the assessment of NH3-related 

environmental impacts. The increasing capability of satellites to measure NH3 abundance and the development of 

modeling tools enable us to better constrain NH3 emission estimates at high spatial resolution. In this study, we 

constrain the NH3 emission estimates from the widely used national emission inventory for 2011 (2011 NEI) in the 

U. S. using Infrared Atmospheric Sounding Interferometer NH3 column density measurements (IASI-NH3) gridded 40 

at a 36 km by 36 km horizontal resolution. With a hybrid inverse modeling approach, we use CMAQ and its 

multiphase adjoint model to optimize NH3 emission estimates in April, July, and October. Our optimized emission 

estimates suggest that the total NH3 emissions are biased low by 3226% in 2011 NEI in April with overestimation in 

Midwest and underestimation in the Southern States. In July and October, the estimates from NEI agree well with 

the optimized emission estimates, despite a low bias in hotspot regions. Evaluation of the inversion performance 45 

using independent observations shows reduced underestimation in simulated ambient NH3 concentration in all three 

months and reduced underestimation in NH4
+ wet deposition in April. Implementing the optimized NH3 emission 

estimates improves the model performance in simulating PM2.5 concentration in the Midwest in April. The model 

results suggest that the estimated contribution of ammonium nitrate would be biased high in a priori NEI-based 

assessments. The higher emission estimates in this study also imply a higher ecological impact of nitrogen 50 

deposition originating from NH3 emissions. 

1. Introduction 

Ammonia (NH3) emissions play a major role in ambient aerosol formation and reactive nitrogen deposition 

(Stevens, 2019: Houlton et al., 2013). However, our understanding of NH3 sources and sinks is limited by the large 

uncertainties present in the NH3 emissions inventories (Xu et al., 2019; McQuilling and Adams, 2015). In chemical 55 

transport models, uncertainties in NH3 emissions propagate into the dynamic modeling of the atmospheric transport, 

chemistry, and deposition of NH3, other reactive nitrogen species, and other key atmospheric constituents associated 

with NH3 (Heald et al., 2012; Paulot et al., 2013; Kelly et al., 2014; Zhang et al., 2018b), hindering an accurate 

assessment of the various NH3-related environmental impacts and the associated sources. The large uncertainties in 

the NH3 emission inventories are partially due to a lack of sufficient in-situ NH3 measurements that could be used to 60 

constrain emission estimates (Zhu et al., 2015). This work utilizes satellite observations from the Infrared 

Atmospheric Sounding Interferometer NH3 column density measurements (IASI-NH3) (Clarisse et al., 2009;Van 

Damme et al., 2017), to provide a high-resolution, optimized NH3 emission inventory for the U.S. developed using 

an adjoint inverse modeling technique (Li et al., 2019), the robustness of which is demonstrated by evaluation 

against multiple independent in-situ measurements.  65 



 

3 
 

Emerging satellite observations of gaseous NH3 provide a unique opportunity to better constrain the bottom-up NH3 

emission estimates for both their spatial distribution and seasonality. Bottom-up inventories calculate the NH3 

emissions based on estimated activity levels and corresponding emission factors, both of which are subject to high 

uncertainties, particularly for agricultural sources, the major contributor (Cooter et al., 2012;McQuilling and Adams, 

2015). Several studies have utilized NH3 column density retrieved from the Infrared Atmospheric Sounding 70 

Interferometer (IASI)from IASI  (Clarisse et al., 2009; Van Damme et al., 2015b) or the Atmospheric Infrared 

Sounder (AIRS; (Warner et al., 2016)) as well as the inferred surface mixing ratio of NH3 from the Cross-track 

Infrared Sounder (CrIS; (Shephard and Cady-Pereira, 2015; Shephard et al., 2019)) to characterize the 

spatiotemporal distribution of NH3. These satellite measurements are useful for supplementing emission inventories 

to identify and quantify underestimated or missing emission hotspots, especially in intensive agricultural zones (Van 75 

Damme et al., 2018; Dammers et al., 2019; Clarisse et al., 2019). These studies find that the satellite-derived 

emission estimates are often twice as much as the bottom-up estimates on a regional scale and can be over 10 times 

higher over hotspots. However, the NH3 retrievals from satellites are also subject to large uncertainties when the 

signal-to-noise ratio is low, which limits their ability to accurately measure NH3 columns in low emission areas 

(Clarisse et al., 2010; Van Damme et al., 2015a). 80 

Inverse modeling-based optimization combines the information from a priori emission inventories and observations 

and allows us to use the information from both. As one of the inverse modeling methods, the four-dimensional 

variational assimilation (4D-Var) method seeks the best emission estimate by minimizing a cost function that 

measures the differences between observations and model predictions, as well as the differences between a prior and 

adjusted emission estimates. 4D-Var can be computationally expensive at fine model resolutions or with a large set 85 

of observations to be assimilated (Brasseur and Jacob, 2017). Recent studies took advantage of the implementation 

of the adjoint technique in the chemical transport models to conduct 4D-Var for optimizing emissions estimation 

(Zhu et al., 2013; Paulot et al., 2014; Zhang et al., 2018c). The adjoint-based inversion method calculates the 

gradients of a cost function analytically and searches the solution using a steepest-descent optimization algorithm 

through iterating (Brasseur and Jacob, 2017). By testing the performance of the inverse modeling method using 90 

artificial observational data, Li et al. (2019) proposed that a two-step optimization process, which combines the 

iterative mass balance (IMB) method and the 4D-Var method, can further reduce the computational cost. The IMB 

method assumes a linear relationship between the NH3 column density and local NH3 emission and searches the 

emission scaling factors iteratively until the simulated NH3 column density converges to the observations. At a 

coarse (2×2.5) resolution, the IMB method is as effective as the 4D-Var method and requires 2/3 less 95 

computational time. In the second step, emission scaling factors obtained from the IMB method with a coarser 

resolution are used as an initial starting point for 4D-Var optimization process to reduce the overall computational 

time (Li et al., 2019). 

This work utilizes satellite observations from the IASI NH3 column density measurements (IASI-NH3) (Clarisse et 

al., 2009;Van Damme et al., 2017), to provide a high-resolution, optimized NH3 emission inventory for the U.S. 100 

developed using an adjoint inverse modeling technique (Li et al., 2019), the robustness of which is demonstrated by 
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evaluation against multiple independent in-situ measurements. In this study, tThe IASI-NH3 dataset was applied to 

optimize NH3 emission estimates from the 2011 National Emission Inventory (NEI 2011) using CMAQ and its 

adjoint model at a 36 km×36 km resolution. The multiphase adjoint model for CMAQ v5.0 was developed recently, 

including full adjoints for gas-phase chemistry, aerosols, cloud process, diffusion, and advection (Zhao et al., 2019). 105 

Both process-by-process and full adjoint model evaluations show reasonable accuracy based on agreements between 

the adjoint sensitivities and forward sensitivities (Zhao et al., 2019). Previous inversion based NH3 emission 

constraint using in-situ measures are limited by the spatial coverage and representativeness of the measurements 

(Gilliland et al., 2006; Henze et al., 2009; Paulot et al., 2014;). Zhu et al. (2013) first attempted to optimize NH3 

emission inventory using NH3 derived from the Tropospheric Emission Spectrometer (TES) satellite at 2×2.5 110 

resolution (Zhu et al., 2013). Inverse modeling at such a coarse resolution is limited to refining regional emissions. 

Similar to the inversion using CrIS NH3 measurements (Cao et al., 2020), inversion with the IASI-NH3 dataset 

allows us to perform the optimization at a finer resolution with its daily global spatial coverage. Besides, the hybrid 

inversion approach adopted in this study allows us to calculate full adjoint sensitivities online instead of using 

approximated sensitivities from the offline-simulationsoffline simulations (Zhu et al., 2013, Cao et al., 2020). The 115 

performance of our optimized estimates and the NEI 2011 are evaluated and compared based on in-situ observed 

ambient NH3 concentrations and NH4
+ wet deposition. Finally, by substituting the a priori NH3 emissions with the 

optimized emissions, we assess the subsequent changes in simulated ambient PM2.5 concentrations and nitrogen 

deposition exceedances. 

2. Materials and Methods 120 

2.1 IASI-NH3 observations 

NH3 column densities retrieved from IASI onboard the Metop-A satellite are assimilated to constrain spatially-

resolved NH3 emissions using the 2011 NEI as the a priori inventory (Clarisse et al., 2009; Van Damme et al., 2014; 

USEPA, 2014). The polar sun‐synchronous satellite has a 12-km diameter footprint at nadir and a bidaily global 

coverage. Only observations from the morning pass around 9:30 am local standard time (LST) are used due to more 125 

favorable thermal contrast and smaller errors comparing to the ones from the night pass around 9:30 pm (LST). A 

comparison between the IASI-NH3 data and ground-based Fourier transform infrared observations shows a 

correlation between the two with r = 0.8 and the slope = 0.73, indicating a tendency of IASI-NH3 to underestimate 

the FTIR observations (Dammers et al., 2016). A comparison between IASI-NH3 and airborne measurements also 

indicated an underestimation in California, while the comparison between IASI-NH3 and ground observation from 130 

Ammonia Monitoring Network (AMoN) network indicated an overestimation (Van Damme et al., 2015a; NADP, 

2014). Overall, the evaluations show broad consistency between IASI-NH3 and other independent measurements 

with no consistent biases identified. These evaluations were based on previous datasets. Here we use a new version 

that relies on another retrieval algorithm, which among other things has a better performance for measurements 

under unfavorable conditions (Whitburn et al., 2016; Van Damme et al., 2017). 135 
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Specifically, the NH3 products for 2011 from ANNI-NH3-v2.2R-I datasets were used (Van Damme et al., 2017). The 

algorithm relies on the conversion of hyperspectral range indices to NH3 column density using a neural network that 

takes into account 20 input parameters characterizing temperature, pressure, humidity, and NH3 vertical profiles. A 

relative uncertainty estimate is provided along with each of the NH3 vertical column density in the dataset. Small 

negative columns are possible – and these are valid observations, needed to reduce overall biases in the dataset. As 140 

the retrieval is unconstrained, no averaging kernels are calculated. We therefore directly compare the IASI-NH3 

column density with the simulated column density in CMAQ. Such comparison may be biased because the 

sensitivity of retrieved NH3 column densities to NH3 concentrations is height-dependent (typically peaks around 700 

– 850 hPa) (Dammers et al., 2017; Shephard et al., 2015). Although the CMAQ simulated NH3 columns are also 

most sensitive to NH3 concentration changes between 700 to 900 hPa (Figure S1), we cannot quantify the relating 145 

uncertainties without knowing the averaging kernels. Without information on averaging kernels, differences 

between NH3 vertical profiles in CMAQ and the ones used for retrieval may also contribute to the bias between 

retrieved and modeled column densities, depending on the magnitude of differences (Whitburn et al., 2016).  

The NH3 retrieved columns densities are regridded to the 36-km by 36-km CMAQ grid for 4D-Var data 

assimilation, and 216-km by 216-km resolution (a 6 grid by 6 grid CMAQ simulation grid matrix) for iterative mass 150 

balance (Figure 1). The mean column density (Ωo) is calculated as the arithmetic mean of all retrievals with their 

centroids falling in the same grid cell,The mean column density (Ωo) is calculated as the monthly arithmetic mean of 

all retrievals with their centroids falling in the same grid, following the recommendation that the unweighted mean 

is preferred for the updated version of IASI-NH3 as error-weighting can lead to biases (Van Damme et al., 2017). 

The error (molec/cm2) corresponding to the mean column density in each grid is calculated as:The relative error 155 

(molec/cm2) corresponding to mean column density in each grid is calculated following Van Damme et al. (2014) 

as: 

𝜎 =
∑

1

𝜎𝑖

∑
1

𝜎𝑖
2

× Ω𝑜 �̅� = √
∑(𝜎𝑖×𝛺𝑖)2

𝑛−1
                                                                                                                                           

(1) 

where σ̅ is the mean error (molec/cm2), Ωi is the NH3 column density from IASI-NH3 level 2 data, σi is the relative 160 

error associated with each Ωi as reported, n is the number of retrievals within each grid cell during the defined time 

period. For 4D-Var inversion and IMB inversion, daily and monthly means and errors are calculated, 

respectively.where σ̅ is mean relative error (molec/cm2), σi is the relative error associated with each NH3 column 

density retrieval as reported, and Ωo is the mean column density (Van Damme et al., 2014). 

The observations from April, July, and October are used to constrain the monthly NH3 emission estimates in 165 

corresponding months from 2011 NEI. Limited by the high computational cost of adjoint-model-based inversion, the 

optimization is only performed for the three months selected instead of a full year. Observations from winter months 

are not used because they are too noisy when the thermal contrast is low (Dammers et al., 2016). 



 

6 
 

2.2 NH3 emission from 2011 NEI 

The EPA 2011 NEI is used as a priori emission estimates. Major NH3 sources include livestock waste management, 170 

fertilizer application, mobile sources, fire, and fuel combustion, with the majority being emitted by the first two 

sources. Specifically, the emissions from livestock waste management are estimated based on county-level animal 

population data and process-based daily emission factors. Emissions from fertilizer applications are estimated based 

on county-level fertilizer quantities and fixed emission factors, following the CMU ammonia Model (USEPA, 

2015). The NH3 emissions over Mexico and Canada are derived from the simulation results of a fully coupled bi-175 

directional agroecosystem and chemical-transport model (FEST_C_EPIC_CMAQ_BIDI) (Shen et al., 20192020). 

Emissions for other species also come from the 2011 NEI.  

2.3 CMAQ and its adjoint 

We use the Community Multiscale Air Quality Modeling System (CMAQ) v5.0 (Byun and Schere, 2006; USEPA, 

2012) and its adjoint (Zhao et al., 2019), driven by meteorological fields produced from the Weather Research and 180 

Forecasting (WRF) Model v3.8.1 with grid nudging using the North American Regional Reanalysis (NARR) dataset 

(NOAA, 2019). The simulated meteorological fields show good agreement with surface observations (Figure S2) 

(NOAA, 2020). The CB05 chemical mechanism was adopted for gas-phase chemistry (Yarwood et al., 2005). The 

model implements ISORROPIA-II in the aerosol module (AERO06) to calculate the gas-particle partitioning of NH3 

and NH4
+ (Fountoukis and Nenes, 2007). The simulation domain covers the contiguous U.S. (CONUS) and part of 185 

Canada and Mexico with a 36 km by 36 km horizontal resolution and 13 vertical layers extending up to 14.5 KPa 

(~16 km) (Figure 1). To evaluation CMAQ model performance, the simulated gas-particle partitioning ratio of NH3-

NH4
+ and NH4

+ deposition is compared with observations from Ammonia Monitoring Network (AMoN), Clean Air 

Status and Trends Network (CASTNET), and National Atmospheric Deposition Program (NADP) (Figure S3 and 

Figure S4). CMAQ captures the overall spatial pattern of these governing processes for atmospheric NH3 190 

abundance, considering the uncertainties in emissions, model parameters, and meteorological fields. Expanded 

evaluation of CMAQ model performance in simulating gas-particle partitioning and nitrogen deposition has been 

conducted in previous studies (Chen et al, 2019; Chen et al., 2020). Monthly simulations are conducted for April, 

July, and October in 2011 with a 10-day spin-up for each month. 

2.4 Hybrid inversion approach 195 

We chose the hybrid inversion approach to combine the advantage of the faster computational speed of the mass 

balance method and the better optimization performance of the 4D-Var method. The first step is to apply the IMB  

approach to adjust the a priori (2011 NEI) NH3 emission at 216 km by 216 km resolution (referred as the coarse grid 

hereafter) based on the ratio between the monthly-averaged observed (Ωo) and simulated (Ωa) NH3 column density at 

the satellite overpassing time, iteratively. At each iteration, the emission in each grid cell is scaled by the ratio 200 

following the equation below, 
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𝐸𝑡 =  
𝛺𝑜

𝛺𝑎
× 𝐸𝑎                                                                                                                                                    (2) 

where Et and Ea are the new and a priori emission estimates, respectively. The method has been described in detail 

in previous studies (Li et al., 2019; Cooper et al., 2017; Martin et al., 2003). The IMB is applied at the coarse grid so 

that the NH3 column will be dominated by the local emissions instead of transport from neighboring grids (Li et al., 205 

2019). The coarse resolution also reduces the uncertainty associated with IASI-NH3 as the number of retrievals 

increases in each grid cell. For grids cells with mean relative error larger than 100%, the satellite observations are 

considered to be too noisy to provide useful constraints and the a priori emission estimates are retained. The 

iteration stops when the normalized mean square error either decreases by less than 10% or begins to increase. The 

final scaling factor (ε0) for each grid cell is the multiplication of the scaling factors derived at each iteration and 210 

downscaled to 36 km by 36 km resolution by assigning the same value to the 6 by 6 grid matrix. This scaling factor 

is applied to the 2011 NEI emissions to create the revised a priori estimate for the 4D-Var inversion. 

Next, the 4D-Var inversion is performed. The solution of the optimization problem is sought iteratively by 

minimizing the cost function (J) defined as the combination of error-weighted, squared difference between emission 

scaling factor and unity and the error weighted, squared difference between IASI-NH3 and the simulated column 215 

density, as below: 

J = γ(𝜀 − 𝜀0)𝑇𝑆𝑎
−1(𝜀 − 𝜀0) + (Ω𝑜 − F(𝜀))𝑇𝑆𝑜

−1(Ω𝑜 − F(𝜀))                                                                        (3) 

ε is the monthly emission scaling factor to be optimized at each iteration where 𝜀 = log (
𝐸𝑡

𝐸𝑎
⁄ ) on the 36 km by 36 

km CMAQ grid, consisting of 6104 elements overland grid cells in CONUS. Sa and So are error covariance matrices 

for the a priori emission estimates and IASI-NH3 retrievals, respectively. With limited information on the spatial 220 

correlation of the error covariance, the two matrices are assumed to be diagonal (Paulot et al., 2014; Zhu et al., 

2013).The two matrices are assumed to be diagonal. For So, the grid average absolute error is used to represent the 

observational error. To reduce the influence of retrievals close to or below the detection limit, an estimated detection 

limit of 4.8×1015 molecules/cm2 is added to the So (Dammers et al., 2019). Our test shows that negative Ωo will lead 

to a continuous decrease in the adjusted emission for the grid cell because modeled column density cannot become 225 

negative. To limit the influence of these negative Ωo, their original weights are multiplied by 0.01. For Sa, the 

uncertainty in each grid cell is assumed to be 100% of the a priori emissions. F(ε) is CMAQ simulated NH3 column 

density sampled at the satellite passing time if there is at least one IASI-NH3 retrieval in that grid cell; γ is the 

regularization factor balancing the relative contribution of the a priori emission inventory and IASI-NH3 retrievals 

to the J value. γ is chosen to be 800 for April and 500 for July and October30 for all 3 months based on the L-curve 230 

criteria (Hansen, 1999) (Figure S2S5). 

The gradients of the cost function to NH3 emissions are calculated by the CMAQ adjoint model. In each iteration, 

the emission-weighted monthly averaged sensitivities in each grid cell are supplied to the L-BFGS-B optimization 

routine contained in the “optimr” package in R to find the scaling factors that will achieve the minimum of the cost 

function (Zhu et al., 1997; Byrd et al., 1995). NH3 column density is re-simulated using adjusted emissions by the 235 
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new set of scaling factors. The iteration process is terminated when the decrease in J is less than 2% or the local 

minimum is reached (Li et al., 2019; Zhu et al., 2013). 

2.5 Posterior evaluation 

The posterior emissions are evaluated by comparing the model simulation from optimized emissions with 

observations. Simulated results are compared with ambient NH3 concentrations from the AMoN (NADP, 2014), and 240 

the NH4
+ wet deposition from the National Atmospheric Deposition ProgramNADP (NADP, 2019). The simulated 

NH3 concentration in ppmV is converted to µg/m3 using local temperature and pressure from the model 

meteorological inputs. For evaluation against the NH4
+ wet deposition, the simulated deposition is scaled by the ratio 

between measured and simulated precipitation to eliminate the bias introduced by precipitation fields (Appel et al., 

2011).  245 

3. Results 

3.1 Optimization performance evaluation 

The optimized NH3 emissions reduce the bias in the NH3 columns between the satellite observation and the model 

prediction as shown by the decrease in the values of normalized root mean square error (NRMSE) and normalized 

mean biases (NMBs) in Figure 2. There are negative biases using 2011 NEI in all three months, especially in areas 250 

with high emission rates. Although the IMB inversion can lower the NRMSE, it tends to over-adjust and introduce a 

positive bias likely because of the coarse resolution and neglect of the impact of transport. The 4D-Var inversion 

effectively decreases the positive bias and further reduces the NRMSE. The cost function value reduces by 5085%, 

5746%, and 3438% with the 4D-Var inversion in April, July, and October, respectively. We find that it is more 

challenging to adjust the emissions in April than in the other two months because of the greater differences in the 255 

magnitude and the spatial distribution of the emissions. The optimized NH3 emission successfully captures the high 

NH3 column density in the Southern States (Texas and Oklahoma), reducing the NRMSE by 98half % in that region. 

Despite the general improvement in the model performance, negative biases in July increase in California’s San 

Joaquin Valley. Scaling up the emission in the San Joaquin Valley will result in high NH3 concentrations downwind 

even when the local NH3 emissions downwind are zeroed, whereas the IASI-NH3 observed concentrations 260 

downwind are low. The transported hotspot downwind of the San Joaquin Valley in CMAQ only occurs in July, 

suggesting near field removal may not be captured at the current resolution, and warrants further investigation. Grid 

by grid comparison between model-simulated NH3 column density using the a priori and optimized estimates with 

IASI-NH3 shows improved agreement in both high and low emission grid cells after optimization (Figure S3S6). It 

shows that the hybrid inversion approach can alleviate the weakness of direct 4D-Var inversion which tends to over-265 

adjust high emission regions and under-adjust low emission regions, mainly because the IMB inversion provides a 

better initial state. 



 

9 
 

The IMB inversion took three iterations to achieve the convergence condition for each month, and subsequently, the 

4D-Var inversion took fiveten, four, and three six iterations for April, July, and October, respectively. Fewer 

iterations are needed with the hybrid approach than the direct 4D-Var inversion which typically takes up to 15 to 20 270 

iterations of adjoint simulation (Paulot et al., 2014; Zhang et al., 2018a). The CPU time of a forward simulation is 

only 1/5 of an adjoint simulation. In total, the CPU time required by the hybrid approach is expected to be 60%1/3 to 

2/3 lower than the direct 4D-Var inversion approach. 

3.2 Optimized estimate of NH3 emissions 

The monthly total NH3 emission in CONUS increases by 4635% in April, 6.618% in July, and 6.910% in October 275 

for the optimized estimates, respectively. Spatially, the distribution for high emission regions shifts from Midwest in 

the 2011 NEI to the Southern States in the optimized estimates in April, whereas the hot spot regions remain 

consistent in July and October (Figure 3). Regional total emissions are summarized according to the USDA Farm 

Production regions, which defines the areas with similar crop production activities (Cooter et al., 2012). In general, 

the regional variation of NH3 emissions in April is dominated by fertilizer application. The optimized estimates in 280 

the Corn Belt and Lake States regions are lower than the 2011 NEI, with where high contributions from fertilizer 

applications were estimated in 2011 NEI, including the Corn Belt, Lake States, and Northern Plains, are lower than 

the 2011 NEI. In contrast, the optimized estimates are 2 – 3 times higher than the 2011 NEI estimates in the Delta 

States and Southern States where the a priori estimates for NH3 emission from fertilizer application are low. The 

higher NH3 emission estimates in the southern states are driven by the enhanced NH3 column densities from IASI 285 

over that region. IASI-NH3 column densities are higher in 2011 than those in adjacent years (Figure S7), which 

coincides with the higher surface temperature observed in 2011 (NOAA 2019)(Figure S8). NH3 emission will 

increase due to enhanced NH3 volatilization from agricultural lands under warmer conditions (Bash et al., 2013; 

Shen et al., 2020). In fact, the optimized NH3 emission pattern in April is more consistent with the spatial pattern of 

inorganic nitrogen fertilizer estimated based on plant demand (Cooter et al., 2012). NH3 emission in 2011 estimated 290 

by CMAQ with NH3 bidirectional exchange model also predicted higher NH3 emission in the southern states (Shen 

et al., 2020). The ratio between NH3 emission estimates in southern states and that within CONUS is 26% and 18% 

in the optimized estimates and estimates including NH3 bidirectional exchange, respectively. In comparison, the 

ratio is only 10% in the a priori NEI estimates, suggesting a potential low bias in 2011 NEI.The optimized NH3 

emission pattern in April is more consistent with the spatial pattern of inorganic nitrogen fertilizer estimated based 295 

on plant demand (Cooter et al., 2012) as well as the livestock population distribution (USDA, 2012), suggesting the 

potential bias in the agricultural practices used in 2011 NEI. In July, regional differences are smaller except for the 

Northern Plain and SoutheastMountain region. In the Northern Plain, the NH3 emission is 66% higher in the 

optimized estimates, driven by the emission increase in hotspot areas with concentrated animal feeding operations 

(CAFO) (USDA, 2012; Van Damme et al., 2017, Clarisse et al., 2019). The potential bias in different sectors 300 

suggests the need for sectoral inversion when a larger observational dataset becomes available in the future.. In the 

Southeast, the IASI-NH3 column densities are very low, even over known CAFO sites, and had high errors 
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associated with the retrievals because of the low thermal contrast and a smaller number of retrievals (Schiferl et al., 

2014). The negative increment in the Pacific region is due to the disagreement between modeled high NH3 columns 

and observed low values from IASI-NH3 downwind of the San Joaquin Valley of California, as discussed 305 

previously. In October, the relative difference is less than 10% in most of the regions, indicating that the 2011 NEI 

appropriately reflects the NH3 emission pattern. There is a significant increase in the NH3 emissions in Mexico 

during all three months. Such an emission increment is crucial to improving the model performance in both Mexico 

and the southwestern U. S. However, it was not a goal of this study to determine emissions biases in Mexico given 

the limited information on NH3 emissions. 310 

The total NH3 emissions in the optimized estimates are 671 623 Gg, 500 564 Gg, and 320 335 Gg per month in 

April, July, and October, respectively. In comparison, the emission estimates in the 2011 NEI are 462 Gg, 475 Gg, 

and 304 Gg per month for the three months. Similar to a bottom-up agricultural NH3 emission inventory 

(MASAGE_NH3) and two inverse model optimized estimates based on NH4
+ wet deposition, we find a higher 

emission in the spring season (Paulot et al., 2014; Gilliland et al., 2006), while others, including the NEI, estimates a 315 

summertime peak (Zhu et al., 2013; USEPA, 2015; Cooter et al., 2012, Cao et al., 2020). The large variation 

between different inventories warrants both improved information on bottom-up inventories and more observations 

to support inverse model optimization in the spring season. Better knowledge about agricultural activities and more 

independent ground and space observations are needed. Besides the a priori emission inventory and observational 

constraints, the inversion performance will also be affected by other processes (e. g., gas-particle partition, transport, 320 

cloud and precipitation, and dry and wet deposition) governing the atmospheric abundance of NH3. Future works 

refining the pertinent processes will also help improve the optimized NH3 emission estimates. It should also be 

noted that there are interannual variations in emission inventories developed for different years. The total emission 

estimates in July and October are closer to the 2011 NEI estimates than those estimates from other emission 

inventories and inverse analysis. The good spatial agreement with IASI-NH3 indicates that the 2011 NEI captures 325 

the NH3 emission pattern in general in these two months. Although the inversion is only applied for the three 

selected months, the simulated NH3 column densities using the a priori inventory are consistently lower than the 

IASI-NH3 observations in 2011 (Figure S9), suggesting that the NH3 emission estimates in 2011 NEI may be biased 

low in other months, too. 

3.3 Evaluation of the optimized emission estimates against independent datasets 330 

The robustness of the NH3 emission optimization is evaluated by comparing the model outputs using both the a 

priori and optimized emission estimates with independent observations. The bias and uncertainties inherited in the 

CMAQ forward model and its adjoint, as well as the assumptions made about the uncertainties of the a priori 

emission inventory and IASI-NH3 observations, will all influence the robustness. Here, we choose to evaluate the 

outputs against 1) biweekly average ambient NH3 concentrations measured by AMoN; 2) weekly average NH4
+ wet 335 

deposition measured by NADP (Figure 4). 
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In general, the optimized NH3 emission reduces the negative NMB when comparing the CMAQ outputs with AMoN 

NH3 concentration for all three months. There is a greater improvement at the high concentration end than the low 

concentration end because both IASI satellite and the passive samplers at the AMoN sites have higher uncertainties 

in areas with low NH3 abundance (Van Damme et al., 2015a; Puchalski et al., 2011). Yet, the NRMSE gets higher 340 

and R2 gets lower in April, indicating a higher spatial variation in the residuals. There is an over-adjustment for sites 

in Pennsylvania in April where there is a hotspot observed by IASI in April 14th and 15th. The hotspot possibly came 

from a large transported plume at a higher altitude from the central U.S. to Pennsylvania (Figure S10 and Figure 

S11), which is not measured by ground observations at AMoN sites at biweekly resolution. If that is the case, the 

hybrid inverse modeling framework would have difficulties in reproducing the long-range transport contribution for 345 

two reasons. First, local emissions in Pennsylvania would be enhanced in the IMB inversion and inter-grid transport 

were neglected at 216 km by 216 km resolution. Second, the following 4D-Var inversion very likely reached a local 

optimal by adjusting emissions from local and surrounding grid cells near the observed hotspot rather than grid cells 

at distance. Besides, the IASI-NH3 column densities may be overestimated because vertical profiles with highest 

concentrations near the surface were assumed in the retrieval process (Whitburn et al., 2016).In general, the 350 

optimized NH3 emission reduces the negative NMB when comparing the CMAQ outputs with AMoN NH3 

concentration for all three months. Yet, the NRMSE gets higher and R2 gets lower in April, indicating a higher 

spatial variation in the residuals. This is likely due to the tendency of satellite-based inversion to over-adjust 

emissions in high concentration areas (Zhu et al., 2013). There is a greater improvement at the high concentration 

end than the low concentration end because both IASI satellite and the passive samplers at the AMoN sites have 355 

higher uncertainties in areas with low NH3 abundance (Van Damme et al., 2015a; Puchalski et al., 2011). There is an 

over-adjustment for sites in Pennsylvania in April where there is a hotspot observed by IASI. The hotspot in 

monthly average is dominated by high NH3 column densities observed in April 14th and 15th, possibly from a large 

transported plume from the central U.S. to Pennsylvania (Figure S4). The fact that it is transported at higher altitude 

in 2 days could explain that it is not measured by ground observations at AMoN sites at biweekly resolution. The 360 

long-range transport at higher altitude may lead to an overestimation in IASI retrieved NH3 column densities which 

assume a vertical profile with highest concentrations near the surface (Whitburn et al., 2016). Such transport is also 

not well represented in the hybrid inverse modeling approach where the transport effect is not included in the IMB 

inversion at 216 km by 216 km resolution.  

For evaluation against NADP observations, there is a noticeably improved agreement in April with reduced negative 365 

NMB and reduced discrepancies for most of the data pairs. For July, the emission optimization only slightly 

improved the model performance. For October, the optimization increased the NMB from -1.8% to 104.8%. It 

indicates that NH3 emission is not the dominant explanatory factor for bias in simulated NH4
+ wet deposition that is 

commonly observed in chemical transport models (Appel et al., 2011; Paulot et al., 2014). A better representation of 

the cloud, precipitation, and deposition processes in the WRF and the CMAQ model is needed to close the gap 370 

between simulated and observed NH4
+ deposition amount. Overall, the improved model operational performance for 

ambient NH3 suggests that the inverse model optimization applied in this study provides improvements in the NH3 

emission estimates during all three months in most of the CONUS, except in Pennsylvania and surrounding regions 
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in April. The hybrid inverse modeling technique may over-adjust local emissions in hotspots dominated by long-

range transport. 375 

4. Implications 

4.1 Ambient aerosol concentration 

As a major precursor of ambient aerosol formation, the NH3 emission inventory is believed to be a major source of 

uncertainty in PM2.5 assessment in several parts of the CONUS (Henze et al., 2009; Schiferl et al., 2014; Heald et 

al., 2012), which can further bias the source contribution assessments on PM2.5-related health impacts  (Lee et al., 380 

2015, Zhao et al., 2019). Comparison of the simulated PM2.5 mass concentration using the a priori and optimized 

NH3 emission estimates shows that the NH3 emission bias in April is a major factor for bias in the modeled PM2.5 

concentration leading to high or low bias in ammonium nitrate (NH4NO3) formation (Figure 5). The relative change 

of the monthly average PM2.5 concentration is over 105% in one-fifth of the CONUS, including an increase in the 

Northeastern, Pacific West, and Rocky Mountains regions, part of Texas, and Gulf coast region, and a decrease in 385 

the Midwest. For most of these regions, over 90% of the change is driven by the change in concentration of NH4
+ 

and NO3
-.  

Comparison of the simulated monthly average NH4
+ and NO3

- concentration using the a priori estimates against 

ambient monitoring network data (USEPA, 2018) shows that there is a high bias in the Midwest region and 

Pennsylvania state, and underestimation low bias for the rest of the sites (Table 1). Simulations using the optimized 390 

NH3 emission estimates reduce the high bias in the Midwest region but exacerbate the high bias in the Pennsylvania 

state and surrounding areas. For the other sites, the impact of optimization is mixed but minor in general. 

For the Midwest, our optimized NH3 emission is 3112% lower than the 2011 NEI, leading to a 20 5 - 30% decrease 

in NH4
+ and NO3

- concentration. Overestimation of NO3
- in the Midwest has been recognized in previous model 

evaluations. Previous studies attempted to moderate the high bias by lowering the nitric acid (HNO3) concentration 395 

through either lowering both daytime and nighttime HNO3 formation rate or raising deposition removal rate (Heald 

et al., 2012; Zhang et al., 2012; Walker et al., 2012). It was found that such modification in the model 

parameterization cannot fully account for the overestimation (Heald et al., 2012; Zhang et al., 2012; Walker et al., 

2012). Our study implies that the springtime overestimation can partly be explained by the overestimation in NH3 

emissions which drives the high bias in NH4NO3 formation.  400 

The large increase of the NH4NO3 concentration in Pennsylvania state and surrounding areas is due to the over-

amplified local NH3 emissions in the optimized estimates to match the high NH3 column density in IASI-NH3 2011, 

as discussed earlier. It adds to the existing overestimation inleads to higher magnitude of biases in NH4
+ and NH4

+
 

and NO3
- concentration as compared to ground measurements. The fact that the simulated ambient NH3 

concentration, NH4
+ concentration, and NH4

+ wet deposition using the optimized NH3 estimates is biased high in 405 
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comparison with independent ground measurements suggests the enhanced NH3 abundance observed from IASI isis 

possibly driven by long-range transport at higher altitudes instead of local surface emissions. 

For the rest of the CONUS, there is only a slight impact of the optimization on simulated NH4NO3 formation. For 

example, although the NH3 emission is doubled in the San Joaquin Valley in California, the modeled NH4
+ and NO3

- 

concentrations are still biased low using the optimized estimates. A sensitivity test using GEOS-Chem shows that 410 

the San Joaquin Valley region is nitric acid-limited instead of ammonia-limited (Walker et al., 2012), suggesting that 

there is an underestimation in HNO3 formation. A comparison of the simulated and measured speciated PM2.5 shows 

that there is a low bias in non-volatile cation concentrations in the sites in the San Joaquin Valley, limiting the 

formation of NH4NO3 through gas-particle partitioning (Chen et al., 2019). Thus, attempts to close the gap between 

the simulated and monitored NH4
+

 and NO3
-
 concentrations by scaling NH3 emission alone are ineffective and might 415 

lead to an overestimation in local NH3 emissions. 

For July and October, there is a very limited difference between the simulated PM2.5 concentration using the 

optimized and a priori NH3 emission estimates, as expected, because the change in NH3 emission is smallminor. 

There are only 1% and 4% of the CONUS with a relative change in PM2.5 concentration over 105%. This result 

shows that the uncertainty in NH3 emission estimates is moderate and is not a major contributor to biases in modeled 420 

PM2.5 in July and October. 

4.2 Reactive nitrogen (Nr) deposition 

The uncertainties in NH3 emission inventory also impact the reactive nitrogen (Nr) deposition assessment, which 

informs the ecosystem impacts evaluation and effective mitigation actions (Ellis et al., 2013). To evaluate the impact 

of the NH3 emission optimization on simulated Nr deposition, the Nr deposition amount simulated using optimized 425 

and a priori emission estimates is analyzed in all biodiversity-protected areas designated by the USGS (Figure 

S5S12) within CONUS (USGS, 2018). In total, the Nr deposition increased by 3927%, 29%, and 95% on average in 

these protected areas in April, July, and October, respectively. A regional comparison based on the Level I 

ecoregions (Pardo et al., 2015) shows that the deposition increment is the highest in the Great Plain regionTropical 

Wet Forests (+7364%), followed by the Eastern Temperate ForestGreat Plain region (+4146%) in April (Figure 6). 430 

Although the overall increase is small in July and October, the increment can be high in individual ecoregions, 

including Southern Semiarid Highlands (+10995% in July) and , Temperate Sierras (+6662% in July), and Marine 

West Coast (+64% in October).. In addition to the increment in deposition amount, higher NH3 emission, especially 

in intensive agriculture regions, may indicate higher source contribution from agricultural NH3 than previous 

estimates (Lee et al., 2016).  435 

Driven by the increase in the reduced form of Nr (NH3 and NH4
+) deposition, a higher share of reduced form of Nr 

to the total Nr deposition is found in most of the ecoregions for all three months than the NEI-based estimates. More 

detrimental impacts on sensitive species and biodiversity are expected when this change in dominant Nr form are 



 

14 
 

considered in addition to the increase in magnitude because the growth of many sensitive plant species will be 

inhibited by a high NH4
+ to NO3

- ratio in soil and water (Bobbink and Hicks, 2014). 440 

5. Conclusions 

We apply the newly developed multiphase adjoint of the CMAQ v5.0 chemical transport model and NH3 column 

observations from the satellite-borne IASI to optimize NH3 emissions estimates in the CONUS using a hybrid 

inversion modeling approach. The approach consists of a coarse-resolution iterative mass balance inversion (216 km 

by 216 km) and a fine-resolution 4D-VAR inversion (36 km by 36 km) and is performed using IASI-NH3 445 

observations in April, July, and October. The hybrid approach overcomes the over-adjusting problem for high 

emission areas in the direct 4D-Var method and reduces the computational cost., but it may introduce over-

adjustment in special cases where the NH3 abundance is dominated by transport instead of local emissions. 

We use the NH3 emission from 2011 NEI commonly used in regional and national simulations and assessments as 

the a priori emission. We find that the optimized NH3 emission inventory differs greatly with the 2011 NEI in April. 450 

The emission in Midwest is overestimated and the emission in Southern states is underestimated in the 2011 NEI. 

Overall, the optimized emission is 4635% higher in April. The optimized emission estimates in July and October are 

slightly also higher (6.618% and 6.910%) than the 2011 NEI estimates and but the spatial distribution agrees well. 

The IASI-NH3 observations indicate a consistent underestimation of NH3 emissions in California’s San Joaquin 

Valley in all three months, however, the inverse modeling fails to properly scale up the emissions in July. The 455 

evaluation of simulation outputs against ground measurements including ambient NH3 concentrations from AMoN 

and NH4
+ wet deposition from NADP shows that the optimized NH3 emission estimates improve the 

agreementreduce the NMB between model outputs and independent observations, especially in April. The NRMSE 

remains high, indicating 1) the potential to further optimize NH3 emission estimates when more representative 

observations of ambient NH3 abundance becomes available; 2) the need to address the uncertainties in other 460 

processes affecting the NH3 abundance, such as gas-particle partitioning, dry and wet deposition, and in cloud 

processes. 

Application of the optimized NH3 emission estimates also yields a better agreement between the simulated and 

observed PM2.5 concentration in April in the Midwest region by improving the model performance on simulated 

NH4
+ and NO3

-. It is consistent with previous findings that the uncertainty in NH3 emission is a key factor limiting 465 

the model performance of PM2.5. The optimized NH3 emission estimates in general increase the Nr deposition 

amount and the relative importance of reduced form Nr, highlighting the importance of constraining NH3 emission 

estimates for accurately assessing nitrogen deposition and ecosystem health over sensitive regions.  

Data availability. The IASI/Metop-A NH3 total column Level 2 data is available at the IASI portal provided by the 

AERIS data infrastructure (ULB, 2018). Independent observations for evaluation including surface NH3 470 
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concentrations, NH4
+ wet depositions, and speciated PM2.5 concentrations are available from the NADP website and 

Air Quality System (NADP, 2019, 2014; USEPA, 2018).  

Author contribution. AR and YC conceived the study. YC, AR, HZ, and JK contributed to the design the method. 

YC conducted the inverse modeling and data analysis. LC, PFC and MVD are responsible for the IASI NH3 data. 

SC, SZ, AH, MR, MT, DH, PP, JR, AN, AP, SN, JB, KF, GC, CS, TC, AR developed the adjoint model of CMAQ. 475 

YC prepare the manuscript, with discussions and comments from HS, AR, JK, YH, SC, SZ, JS, and GP. All authors 

have given approval to the final version of the manuscript. 

Competing interests. The authors declare that they have no conflict of interest. 

Disclaimer. Contents of this publication are solely the responsibility of the grantee and do not necessarily represent 

the official views of the supporting agencies. Further, the US government does not endorse the purchase of any 480 

commercial products or services mentioned in the publication. 

Acknowledgments 

This publication was made possible by funding from the US EPA under grants R83588001, NASA under grant 

NNX16AQ29G, and China Scholarship Council (CSC) Grant #201606010393. The authors acknowledge the AERIS 

data infrastructure for providing access to the IASI data in this study. ULB has been supported by the Belgian State 485 

Federal Office for Scientific, Technical and Cultural Affairs (Prodex arrangement IASI.FLOW). L.C. and M.V.D are 

respectively research associate and postdoctoral researcher with the Belgian F.R.S-FNRS. 

References 

Appel, K. W., Foley, K. M., Bash, J. O., Pinder, R. W., Dennis, R. L., Allen, D. J., and Pickering, K.: A multi-

resolution assessment of the Community Multiscale Air Quality (CMAQ) model v4.7 wet deposition 490 
estimates for 2002-2006, Geosci. Model Dev., 4, 357-371, https://doi.org/10.5194/gmd-4-357-2011, 2011. 

Bash, J.O., Cooter, E.J., Dennis, R.L., Walker, J.T., Pleim, J.E.: Evaluation of a regional air-quality model with 

bidirectional NH3 exchange coupled to an agroecosystem model. Biogeosciences. 10, 1635-1645, 

https://doi.org/10.5194/bg-10-1635-2013, 2013. 

 495 

Bobbink, R., and Hicks, W. K.: Factors affecting nitrogen deposition impacts on biodiversity: an overview, in: 

Nitrogen deposition, critical loads and biodiversity, edited by: Sutton, M. A., Mason, K. E., Sheppard, L. J., 

Sverdrup, H., Haeuber, R., and Hicks, W. K., Springer Netherlands, Dordrecht, 127-138, 2014. 

Brasseur, G. P., and Jacob, D. J.: Modeling of atmospheric chemistry, Cambridge University Press, 520-525, 2017. 

Byrd, R. H., Lu, P., Nocedal, J., and Zhu, C.: A limited memory algorithm for bound constrained optimization, 500 
SIAM J. Sci. Comput., 16, 1190-1208, https://doi.org/10.1137/0916069, 1995. 



 

16 
 

Byun, D., and Schere, K. L.: Review of the governing equations, computational algorithms, and other components 

of the models-3 Community Multiscale Air Quality (CMAQ) modeling system, Appl. Mech. Rev., 59, 51-

77, https://doi.org/10.1115/1.2128636, 2006. 

Cao, H., Henze, D. K., Shephard, M. W., Dammers, E., Cady-Pereira, K., Alvarado, M., Lonsdale, C., Luo, G., Yu, 505 
F., Zhu, L., Bash, J., Rao, V., and Danielson, C. G., and Edgerton, E. S.: Inverse modeling of NH3 sources 

using CrIS remote sensing measurements, Environ. Res. Lett., 15, 104082, 10.1088/1748-9326/abb5cc, 

2020 (under review), 2020. 

Chen, Y., Shen, H., and Russell, A. G.: Current and future responses of aerosol ph and composition in the U.S. to 

declining SO2 emissions and increasing NH3 emissions, Environ. Sci. Technol., 53, 9646-9655, 510 
https://doi.org/10.1021/acs.est.9b02005, 2019. 

Chen, Y.; Shen, H.;  Shih, J.-S.; Russell, A. G.; Shao, S.; Hu, Y.; Odman, M. T.; Nenes, A.; Pavur, G. K.; Zou, Y.; 

Chen, Z.; Smith, R. A.; Burtraw, D.; Driscoll, C. T.: Greater contribution from agricultural sources to 

future reactive nitrogen deposition in the United States. Earth’s Future, doi: 10.1029/2019EF001453, 2020. 

Clarisse, L., Clerbaux, C., Dentener, F., Hurtmans, D., and Coheur, P. F.: Global ammonia distribution derived from 515 
infrared satellite observations, Nat. Geosci., 2, 479-483, https://doi.org/10.1038/ngeo551, 2009. 

Clarisse, L., Shephard, M. W., Dentener, F., Hurtmans, D., Cady‐Pereira, K., Karagulian, F., Van Damme, M., 

Clerbaux, C., and Coheur, P.‐F. Satellite monitoring of ammonia: A case study of the San Joaquin Valley, 

J. Geophys. Res., 115, D13302, https://doi.org/10.1029/2009JD013291, 2010. 

Clarisse, L., Van Damme, M., Clerbaux, C., and Coheur, P.-F.: Tracking down global NH3 point sources with wind-520 
adjusted superresolution, Atmos. Meas. Tech., 12, 5457–5473, https://doi.org/10.5194/amt-12-5457-2019, 

2019. 

Cooper, M., Martin, R. V., Padmanabhan, A., and Henze, D. K.: Comparing mass balance and adjoint methods for 

inverse modeling of nitrogen dioxide columns for global nitrogen oxide emissions, J. Geophys. Res. 

Atmos., 122, 4718-4734, https://doi.org/10.1002/2016jd025985, 2017. 525 

Cooter, E. J., Bash, J. O., Benson, V., and Ran, L.: Linking agricultural crop management and air quality models for 

regional to national-scale nitrogen assessments, Biogeosciences, 9, 4023-4035, https://doi.org/10.5194/bg-

9-4023-2012, 2012. 

Dammers, E., Palm, M., Van Damme, M., Vigouroux, C., Smale, D., Conway, S., Toon, G. C., Jones, N., 

Nussbaumer, E., Warneke, T., Petri, C., Clarisse, L., Clerbaux, C., Hermans, C., Lutsch, E., Strong, K., 530 
Hannigan, J. W., Nakajima, H., Morino, I., Herrera, B., Stremme, W., Grutter, M., Schaap, M., Kruit, R. J. 

W., Notholt, J., Coheur, P. F., and Erisman, J. W.: An evaluation of IASI-NH3 with ground-based Fourier 

transform infrared spectroscopy measurements, Atmos. Chem. Phys., 16, 10351-10368, 

https://doi.org/10.5194/acp-16-10351-2016, 2016. 

Dammers, E., Shephard, M. W., Palm, M., Cady-Pereira, K., Capps, S., Lutsch, E., Strong, K., Hannigan, J. W., 535 
Ortega, I., Toon, G. C., Stremme, W., Grutter, M., Jones, N., Smale, D., Siemons, J., Hrpcek, K., Tremblay, 

D., Schaap, M., Notholt, J., and Erisman, J. W.: Validation of the CrIS fast physical NH3 retrieval with 

ground-based FTIR, Atmospheric Measurement Techniques, 10, 2645-2667, 10.5194/amt-10-2645-2017, 

2017. 

Dammers, E., McLinden, C. A., Griffin, D., Shephard, M. W., Van der Graaf, S., Lutsch, E., Schaap, M., Gainairu-540 
Matz, Y., Fioletov, V., Van Damme, M., Whitburn, S., Clarisse, L., Cady-Pereira, K., Clerbaux, C., 

Coheur, P. F., and Erisman, J. W.: NH3 emissions from large point sources derived from CrIS and IASI 

satellite observations, Atmos. Chem. Phys., 19, 12261-12293, https://doi.org/10.5194/acp-19-12261-2019, 

2019. 

Ellis, R. A., Jacob, D. J., Sulprizio, M. P., Zhang, L., Holmes, C. D., Schichtel, B. A., Blett, T., Porter, E., Pardo, L. 545 
H., and Lynch, J. A.: Present and future nitrogen deposition to national parks in the United States: critical 

load exceedances, Atmos. Chem. Phys., 13, 9083-9095, https://doi.org/10.5194/acp-13-9083-2013, 2013. 



 

17 
 

Fountoukis, C., and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for 

K+-Ca2+-Mg2+-NH4
+-Na+-SO4

2--NO3
--Cl--H2O aerosols, Atmos. Chem. Phys., 7, 4639-4659, 

https://doi.org/10.5194/acp-7-4639-2007, 2007. 550 

Gilliland, A. B., Wyat Appel, K., Pinder, R. W., and Dennis, R. L.: Seasonal NH3 emissions for the continental 

united states: Inverse model estimation and evaluation, Atmos. Environ., 40, 4986-4998, 

https://doi.org/10.1016/j.atmosenv.2005.12.066, 2006. 

Hansen, P. C.: The L-curve and its use in the numerical treatment of inverse problems, in: Computational Inverse 

Problems in Electrocardiology, ed. P. Johnston, Advances in Computational Bioengineering, 119-142, 555 
1999. 

Heald, C. L., Collett, J. L., Lee, T., Benedict, K. B., Schwandner, F. M., Li, Y., Clarisse, L., Hurtmans, D. R., Van 

Damme, M., Clerbaux, C., Coheur, P. F., Philip, S., Martin, R. V., and Pye, H. O. T.: Atmospheric 

ammonia and particulate inorganic nitrogen over the United States, Atmos. Chem. Phys., 12, 10295-10312, 

https://doi.org/10.5194/acp-12-10295-2012, 2012. 560 

Henze, D. K., Seinfeld, J. H., and Shindell, D. T.: Inverse modeling and mapping US air quality influences of 

inorganic PM2.5 precursor emissions using the adjoint of GEOS-Chem, Atmos. Chem. Phys., 9, 5877-

5903, https://doi.org/10.5194/acp-9-5877-2009, 2009. 

Houlton, B. Z., Boyer, E., Finzi, A. C., Galloway, J., Leach, A., Liptzin, D., Melillo, J., Rosenstock, T. S., Sobota, 

D., and Townsend, A. R.: Intentional versus unintentional nitrogen use in the United States: trends, 565 
efficiency and implications, Biogeochemistry, 114, 11-23, https://doi.org/10.1007/s10533-012-9801-5, 

2013. 

Kelly, J. T., Baker, K. R., Nowak, J. B., Murphy, J. G., Markovic, M. Z., VandenBoer, T. C., Ellis, R. A., Neuman, 

J. A., Weber, R. J., Roberts, J. M., Veres, P. R., de Gouw, J. A., Beaver, M. R., Newman, S., and Misenis, 

C.: Fine-scale simulation of ammonium and nitrate over the South Coast Air Basin and San Joaquin Valley 570 
of California during CalNex-2010, J. Geophys. Res. Atmos., 119, 3600-3614, 2014. 

Lee, H. M., Paulot, F., Henze, D. K., Travis, K., Jacob, D. J., Pardo, L. H., and Schichtel, B. A.: Sources of nitrogen 

deposition in Federal Class I areas in the US, Atmos. Chem. Phys., 16, 525-540, 

https://doi.org/10.5194/acp-16-525-2016, 2016. 

Lee, C. J., Martin, R. V., Henze, D. K., Brauer, M., Cohen, A., van Donkelaar, A.: Response of global particulate-575 
matter-related mortality to changes in local precursor emissions. Environ .Sci. Technol., 49, 4335–4344, 

https://doi.org/10.1021/acs.est.5b00873, 2015. 

Li, C., Martin, R. V., Shephard, M. W., Cady‐Pereira, K., Cooper, M. J., Kaiser, J., Lee, C. J., Zhang, L., and Henze, 

D. K.: Assessing the Iterative Finite Difference Mass Balance and 4D‐Var Methods to drive ammonia 

emissions over North America using synthetic observations, J. Geophys. Res. Atmos., 124, 4222-4236, 580 
https://doi.org/10.1029/2018jd030183, 2019. 

Martin, R. V., Jacob, D. J., Chance, K., Kurosu, T. P., Palmer, P. I., and Evans, M. J.: Global inventory of nitrogen 

oxide emissions constrained by space-based observations of NO2 columns, J. Geophys. Res. Atmos., 108, 

Artn 4537, https://doi.org/10.1029/2003jd003453, 2003. 

McQuilling, A. M., and Adams, P. J.: Semi-empirical process-based models for ammonia emissions from beef, 585 
swine, and poultry operations in the United States, Atmos. Environ., 120, 127-136, 

https://doi.org/0.1016/j.atmosenv.2015.08.084, 2015. 

NADP (2014). Ambient Ammonia Monitoring Network (AMoN). Wisconsin State Laboratory of Hygiene, 465 

Henry Mall, Madison, WI 53706., NADP Program Office. http://nadp.slh.wisc.edu/data/AMoN/ last 

access: 22 April 2020 590 

NADP (2019). National Atmospheric Deposition Program (NRSP-3). . Wisconsin State Laboratory of Hygiene, 465 

Henry Mall, Madison, WI 53706., NADP Program Office. http://nadp.slh.wisc.edu/data/NTN/ last access: 

22 April 2020 



 

18 
 

NOAA (2019). North American Regional Reanalysis. Asheville, NC, National Oceanic and Atmospheric 

Administration (NOAA). https://www.ncdc.noaa.gov/data-access/model-data/model-datasets/north-595 
american-regional-reanalysis-narr last access: 31 March 2020 

NOAA (2020). Meteorological Development Laboratory/Office of Science and Technology/National Weather 

Service/NOAA/U.S. Department of Commerce: TDL U.S. and Canada Surface Hourly Observations, 

Research Data Archive at the National Center for Atmospheric Research, Computational and Information 

Systems Laboratory, https://rda.ucar.edu/datasets/ds472.0/, 1987. last access: 24 Dec 2020. 600 

Pardo, L. H., Robin-Abbott, M. J., Fenn, M. E., Goodale, C. L., Geiser, L. H., Driscoll, C. T., Allen, E. B., Baron, J. 

S., Bobbink, R., Bowman, W. D., Clark, C. M., Bowman, W. D., Emmett, B., Gilliam, F. S., Greaver, T. L., 

Hall, S. J., Lilleskov, E. A., Liu, L. L., Lynch, J. A., Nadelhoffer, K. J., Perakis, S. J., Stoddard, J. L., 

Weathers, K. C., and Dennis, R. L.: Effects and empirical critical loads of nitrogen for ecoregions of the 

United States, Environ. Pollut. Ser., 25, 129-169, https://doi.org/10.1007/978-94-017-9508-1_5, 2015. 605 

Paulot, F., Jacob, D. J., and Henze, D. K.: Sources and processes contributing to nitrogen deposition: an adjoint 

model analysis applied to biodiversity hotspots worldwide, Environ. Sci. Technol., 47, 3226-3233, 

https://doi.org/10.1021/es3027727, 2013. 

Paulot, F., Jacob, D. J., Pinder, R. W., Bash, J. O., Travis, K., and Henze, D. K.: Ammonia emissions in the United 

States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: 610 
Interpretation with a new agricultural emissions inventory (MASAGE_NH3), J. Geophys. Res. Atmos., 

119, 4343-4364, https://doi.org/10.1002/2013jd021130, 2014. 

Puchalski, M. A., Sather, M. E., Walker, J. T., Lehmann, C. M., Gay, D. A., Mathew, J., and Robarge, W. P.: 

Passive ammonia monitoring in the United States: comparing three different sampling devices, J. Environ. 

Monit., 13, 3156-3167, https://doi.org/10.1039/c1em10553a, 2011. 615 

Schiferl, L. D., Heald, C. L., Nowak, J. B., Holloway, J. S., Neuman, J. A., Bahreini, R., Pollack, I. B., Ryerson, T. 

B., Wiedinmyer, C., and Murphy, J. G.: An investigation of ammonia and inorganic particulate matter in 

California during the CalNex campaign, J. Geophys. Res. Atmos., 119, 1883-1902, 

https://doi.org/10.1002/2013jd020765, 2014. 

Shen, H., Chen, Y., Hu, Y., Ran, L., Lam, S. K., Pavur, G. K., Zhou, F., and Russell, A. G.Armistead, R.: Intense 620 
Warming Will Significantly Increase Cropland Ammonia Volatilization Threatening Food Security and 

Ecosystem Health, One Earth, 3, 126-134, https://doi.org/10.1016/j.oneear.2020.06.015, 2020.Increased 

agricultural nitrogen loss via cropland ammonia volatilization under warming, (under review), 2019. 

Shephard, M. W., Dammers, E., Cady-Pereira, K. E., Kharol, S. K., Thompson, J., Gainariu-Matz, Y., Zhang, J., 

McLinden, C. A., Kovachik, A., Moran, M., Bittman, S., Sioris, C. E., Griffin, D., Alvarado, M. J., 625 
Lonsdale, C., Savic-Jovcic, V., and Zheng, Q.: Ammonia measurements from space with the Cross-track 

Infrared Sounder: characteristics and applications, Atmos. Chem. Phys., 20, 2277–2302, 

https://doi.org/10.5194/acp-20-2277-2020, 2020.  

Shephard, M. W., and Cady-Pereira, K. E.: Cross-track Infrared Sounder (CrIS) satellite observations of 

tropospheric ammonia, Atmos. Meas. Tech., 8, 1323-1336, https://doi.org/10.5194/amt-8-1323-2015, 2015. 630 

Shephard, M. W., McLinden, C. A., Cady-Pereira, K. E., Luo, M., Moussa, S. G., Leithead, A., Liggio, J., Staebler, 

R. M., Akingunola, A., Makar, P., Lehr, P., Zhang, J., Henze, D. K., Millet, D. B., Bash, J. O., Zhu, L., 

Wells, K. C., Capps, S. L., Chaliyakunnel, S., Gordon, M., Hayden, K., Brook, J. R., Wolde, M., and Li, S. 

M.: Tropospheric Emission Spectrometer (TES) satellite observations of ammonia, methanol, formic acid, 

and carbon monoxide over the Canadian oil sands: validation and model evaluation, Atmos. Meas. Tech., 8, 635 
5189-5211, 10.5194/amt-8-5189-2015, 2015. 

Stevens, C. J.: Nitrogen in the environment, Science, 363, 578-580, https://doi.org/10.1126/science.aav8215, 2019. 

ULB:  Ammonia total columns retrieved from IASI measurements from the ANNI-NH3-v2.2 retrieval algorithm, 

Universite Libre de Bruxelles (ULB)/Laboratoire atmosphères, milieux et observations spatiales 

(LATMOS). https://iasi.aeris-data.fr/NH3_IASI_A_data, 2018. 640 



 

19 
 

USDA: 2012 Census Ag Atlas Maps - Livestock and Animals, United States Department of Agriculture, National 

Agricultural Statistics Service, 

https://www.nass.usda.gov/Publications/AgCensus/2012/Online_Resources/Ag_Atlas_Maps/Livestock_an

d_Animals, 2012. 

USEPA: 2011 National Emissions Inventory Data & Documentation, https://www.epa.gov/air-emissions-645 
inventories/2011-national-emissions-inventory-nei-data, US Environmental Protection Agency Office of 

Air Quality Planning and Standards, 2015. 

USEPA: CMAQ v5.0,  US Environmental Protection Agency, http://doi.org/10.5281/zenodo.1079888, 2012. 

USEPA: Preparation of Emissions Inventories for the Version 6.1, 2011 Emissions Modeling Platform, US 

Environmental Protection Agency, https://www.epa.gov/air-emissions-modeling/2011-version-61-650 
technical-support-document, 2014. 

USEPA: Air Quality System Data Mart, US Environmental Protection Agency, 

https://aqs.epa.gov/aqsweb/documents/data_api.html, last access: 06 July 2018. 

USGS: Protected Areas Database of the United States (PAD-US) 2.0, U.S. Geological Survey (USGS) Gap Analysis 

Project (GAP), https://gapanalysis.usgs.gov/padus, 2018. 655 

Van Damme, M., Clarisse, L., Heald, C. L., Hurtmans, D., Ngadi, Y., Clerbaux, C., Dolman, A. J., Erisman, J. W., 

and Coheur, P. F.: Global distributions, time series and error characterization of atmospheric ammonia 

(NH3) from IASI satellite observations, Atmos. Chem. Phys., 14, 2905-2922, https://doi.org/10.5194/acp-

14-2905-2014, 2014. 

Van Damme, M., Clarisse, L., Dammers, E., Liu, X., Nowak, J. B., Clerbaux, C., Flechard, C. R., Galy-Lacaux, C., 660 
Xu, W., Neuman, J. A., Tang, Y. S., Sutton, M. A., Erisman, J. W., and Coheur, P. F.: Towards validation 

of ammonia (NH3) measurements from the IASI satellite, Atmos. Meas. Tech., 8, 1575-1591, 

https://doi.org/10.5194/amt-8-1575-2015, 2015a. 

Van Damme, M., Erisman, J. W., Clarisse, L., Dammers, E., Whitburn, S., Clerbaux, C., Dolman, A. J., and Coheur, 

P. F.: Worldwide spatiotemporal atmospheric ammonia (NH3) columns variability revealed by satellite, 665 
Geophys. Res. Lett., 42, 8660-8668, https://doi.org/10.1002/2015gl065496, 2015b. 

Van Damme, M., Whitburn, S., Clarisse, L., Clerbaux, C., Hurtmans, D., and Coheur, P. F.: Version 2 of the IASI 

NH3 neural network retrieval algorithm: near-real-time and reanalysed datasets, Atmos. Meas. Tech., 10, 

4905-4914, https://doi.org/10.5194/amt-10-4905-2017, 2017. 

Van Damme, M., Clarisse, L., Whitburn, S., Hadji-Lazaro, J., Hurtmans, D., Clerbaux, C., and Coheur, P. F.: 670 
Industrial and agricultural ammonia point sources exposed, Nature, 564, 99-103, 

https://doi.org/10.1038/s41586-018-0747-1, 2018. 

Walker, J. M., Philip, S., Martin, R. V., and Seinfeld, J. H.: Simulation of nitrate, sulfate, and ammonium aerosols 

over the United States, Atmos. Chem. Phys., 12, 11213-11227, https://doi.org/10.5194/acp-12-11213-2012, 

2012. 675 

Warner, J. X., Wei, Z. G., Strow, L. L., Dickerson, R. R., and Nowak, J. B.: The global tropospheric ammonia 

distribution as seen in the 13-year AIRS measurement record, Atmos. Chem. Phys., 16, 5467-5479, 

https://doi.org/10.5194/acp-16-5467-2016, 2016. 

Whitburn, S., Van Damme, M., Clarisse, L., Bauduin, S., Heald, C. L., Hadji-Lazaro, J., Hurtmans, D., Zondlo, M. 

A., Clerbaux, C., and Coheur, P. F.: A flexible and robust neural network IASI-NH3 retrieval algorithm, J. 680 
Geophys. Res. Atmos., 121, 6581-6599, https://doi.org/10.1002/2016jd024828, 2016. 

Xu, R. T., Tian, H. Q., Pan, S. F., Prior, S. A., Feng, Y. C., Batchelor, W. D., Chen, J., and Yang, J.: Global 

ammonia emissions from synthetic nitrogen fertilizer applications in agricultural systems: Empirical and 

process-based estimates and uncertainty, Glob. Change Biol., 25, 314-326, 

https://doi.org/10.1111/gcb.14499, 2019. 685 



 

20 
 

Yarwood, G., Sunja, R., Mark, Y., and Gary, Z. W.: Updates to the carbon bond chemical mechanism: CB05. Report 

to the U.S. Environmental Protection Agency., 

http://www.camx.com/publ/pdfs/cb05_final_report_120805.pdf, 2005. 

Zhang, L., Jacob, D. J., Knipping, E. M., Kumar, N., Munger, J. W., Carouge, C. C., van Donkelaar, A., Wang, Y. 

X., and Chen, D.: Nitrogen deposition to the United States: distribution, sources, and processes, Atmos. 690 
Chem. Phys., 12, 4539-4554, https://doi.org/10.5194/acp-12-4539-2012, 2012. 

Zhang, L., Chen, Y. F., Zhao, Y. H., Henze, D. K., Zhu, L. Y., Song, Y., Paulot, F., Liu, X. J., Pan, Y. P., Lin, Y., 

and Huang, B. X.: Agricultural ammonia emissions in China: reconciling bottom-up and top-down 

estimates, Atmos. Chem. Phys., 18, 339-355, https://doi.org/10.5194/acp-18-339-2018, 2018a. 

Zhang, R., Thompson, T. M., Barna, M. G., Hand, J. L., McMurray, J. A., Bell, M. D., Malm, W. C., and Schichtel, 695 
B. A.: Source regions contributing to excess reactive nitrogen deposition in the Greater Yellowstone Area 

(GYA) of the United States, Atmos. Chem. Phys., 18, 12991-13011, https://doi.org/10.5194/acp-18-12991-

2018, 2018b. 

Zhang, Y. Q., Mathur, R., Bash, J. O., Hogrefe, C., Xing, J., and Roselle, S. J.: Long-term trends in total inorganic 

nitrogen and sulfur deposition in the US from 1990 to 2010, Atmos. Chem. Phys., 18, 9091-9106, 700 
https://doi.org/10.5194/acp-18-9091-2018, 2018c. 

Zhao, S., Russell, M. G., Hakami, A., Capps, S. L., Turner, M. D., Henze, D. K., Percell, P. B., Resler, J., Shen, H., 

Russell, A. G., Nenes, A., Pappin, A. J., Napelenok, S. L., Bash, J. O., Fahey, K. M., Carmichael, G. R., 

Stanier, C. O., and Chai, T.: A multiphase CMAQ version 5.0 adjoint, Geosci. Model Dev., 

https://doi.org/10.5194/gmd-2019-287, 2019. 705 

Zhu, C., Byrd, R., Lu, P., and Nocedal, J.: Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-

constrained optimization, ACM T. Math. Software, 23(4), 550-560, 

https://doi.org/10.1145/279232.279236, 1997.  

Zhu, L., Henze, D. K., Cady-Pereira, K. E., Shephard, M. W., Luo, M., Pinder, R. W., Bash, J. O., and Jeong, G. R.: 

Constraining U.S. ammonia emissions using TES remote sensing observations and the GEOS-Chem adjoint 710 
model, J. Geophys. Res. Atmos., 118, 3355-3368, https://doi.org/10.1002/jgrd.50166, 2013. 

Zhu, L. Y., Henze, D. K., Bash, J. O., Cady-Pereira, K. E., Shephard, M. W., Luo, M., and Capps, S. L.: Sources and 

impacts of atmospheric NH3: current understanding and frontiers for modeling, measurements, and remote 

sensing in North America, Curr. Pollut. Rep., 1, 95-116, https://doi.org/10.1007/s40726-015-0010-4, 2015. 

 715 



 

21 
 

  

 

Figure 1 IASI monthly average NH3 column density in April, July, and October 2011 at 36 km by 36 km (a, b, 

c) and 216 km by 216 km (d, e, f) resolutions within the model simulation domain of this study. The average 

relative error associated with the column density is shown in the corner of each plot. 
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Figure 2 CMAQ simulated monthly average NH3 column density for April, July, and October 2011 using the a 

priori emissions (a, b, c), the emissions adjusted by IMB (d,e,f), and the final optimized emissions using the 

hybrid approach (g,h,i). For comparison with the IASI-NH3 retrievals, simulated NH3 columns at the passing 

time were derived when there are observations in that grid cell. Normalized root mean square error (NRMSE) 

and normalized mean bias (NMB) between the simulated values and IASI-NH3 are provided. Residue map 

(IASI-NH3 – simulated NH3 column densities) is shown in the corner of each plot. 
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Figure 3 The spatial distribution of monthly total NH3 emission from the a priori (a, b, c) and optimized (d, e, f) 

estimates in April, July, and October. The total emission based on the a priori and optimized estimates are 

summarized for each USDA Farm Production region (g, h, i). The source contributions to total emission are 

shown for the a priori estimates. 
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Figure 4 Evaluation of the simulated NH3 surface concentration (a, b, c) and NH4
+ wet deposition (d, e, f) 

against biweekly NH3 concentration observations from AMoN and weekly NH4
+ wet deposition observations 

from NADP, respectively. The orange circles and blue dots represent comparison using the a priori and 

optimized NH3 emission estimates, respectively. Summary statistics including sample size (N), normalized mean 

bias (NMB), normalized root mean square error (NRMSE), least square error regression slope and intercept, and 

R square (R2) for all comparisons are listed below the plots. 
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Figure 5 The changes in monthly average PM2.5, NH4
+, and NO3

- mass concentration in April due to the NH3 

emission adjustment in the optimized estimates. The change is defined as concoptimized – conca priori, where 

concoptimized and conca priori represents the simulated monthly average mass concentration using the optimized and 

a priori NH3 emission estimates, respectively. The difference between the observed NH4
+, and NO3

- mass 

concentration and simulated concentrations using the a priori NH3 emission (concobs – conca priori , where concobs 

represents the observed monthly average mass concentration) are overlaid using colored dots with the same color 

scheme. 
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Figure 6 The changes in the simulated monthly reactive nitrogen (Nr) deposition amount in protected areas for 

biodiversity conservation caused by the emission adjustment in April, July, and October. For each month, the left 

bar is for the a priori deposition amounts and the right bar is for the optimized deposition amounts. The 

deposition is grouped for 10 level I ecoregions defined by the Commission for Environmental Cooperation, 

including Northern Forests (NF), Great Plains (GP), Northwestern Forested Mountains (NFM), Marine West 

Coast Forest (MWCF), North American Deserts (NAD), Mediterranean California (MC), Southern Semiarid 

Highlands (SSH), Temperate Sierras (TS), and Tropical Wet Forests (TWF). 
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Table 1 Statistical summary of the correlation between simulated monthly average NH4
+ and NO3

- concentrations 

and observations in Aprila 

NH4
+ Midwest Penn Other 

 a priori optimized a priori optimized a priori optimized 

N 47 37 115 

NMB 0.18 0.03 0.03 0.33 -0.24 -0.2 

NRMSE 0.39 0.29 0.33 0.59 0.45 0.49 

slope 0.52 0.60 0.47 0.33 0.74 0.28 

R2 0.60 0.65 0.34 0.49 0.22 0.08 

NO3
- Midwest Penn Other 

 a priori optimized a priori optimized a priori optimized 

N 69 38 240 

NMB 0.50 0.22 0.10 0.58 -0.66 -0.69 

NRMSE 0.75 0.51 0.27 0.72 0.82 1.03 

slope 0.44 0.50 0.18 0.48 0.33 0.48 

R2 0.76 0.72 0.31 0.67 0.13 0.67 

a The correlation between observed concentrations and simulated ones based on a priori and optimized NH3 

emission estimates are compared. The sites are grouped as the Midwest region, Pennsylvania state and 

surrounding areas, and other areas. 

 

NH4
+ Midwest Penn Other 

 a priori optimized a priori optimized a priori optimized 

N 47 37 115 

NMB 0.27 0.22 0.00 0.07 -0.35 -0.35 

NRMSE 0.40 0.35 0.28 0.30 0.45 0.44 

slope 0.52 0.54 0.41 0.39 0.60 0.65 

R2 0.57 0.65 0.24 0.18 0.25 0.28 

NO3
- Midwest Penn Other 

 a priori optimized a priori optimized a priori optimized 

N 69 38 240 

NMB 0.64 0.55 0.25 0.43 -0.39 -0.38 

NRMSE 0.96 0.88 0.66 0.73 0.63 0.65 

slope 0.44 0.46 0.29 0.29 0.62 0.55 

R2 0.76 0.78 0.33 0.31 0.28 0.25 
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a The correlation between observed concentrations and simulated ones based on a priori and optimized NH3 

emission estimates are compared. The sites are grouped as the Midwest region, Pennsylvania state and 

surrounding areas, and other areas. 
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