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ABSTRACT 26 

Ambient fine particulate matter (PM2.5) mitigation relies strongly on anthropogenic emission control measures, the actual 27 

effectiveness of which is challenging to pinpoint owing to the complex synergies between anthropogenic emissions and 28 

meteorology. Here, observational constraints on model simulations allow us to derive not only reliable PM2.5 evolution but 29 

also accurate meteorological fields. On this basis, we isolate meteorological factors to achieve reliable estimates of surface 30 

PM2.5 responses to both long-term and emergency emission control measures from 2016 to 2019 over the Yangtze River Delta 31 

(YRD), China. The results show that long-term emission control strategies play a crucial role in curbing PM2.5 levels, especially 32 

in the megacities and other areas with abundant anthropogenic emissions. The G20 summit hosted in Hangzhou in 2016 33 

provides a unique and ideal opportunity involving the most stringent, even unsustainable, emergency emission control 34 

measures. These emergency measures lead to the largest decrease (~ 35 μg/m3, ~ 59%) in PM2.5 concentrations in Hangzhou. 35 

The hotspots also emerge in megacities, especially in Shanghai (32 μg/m3, 51%), Nanjing (27 μg/m3, 55%), and Hefei (24 36 

μg/m3, 44%) because of the emergency measures. Compared to the long-term policies from 2016 to 2019, the emergency 37 

emission control measures implemented during the G20 Summit achieve more significant decreases in PM2.5 concentrations 38 

(17 μg/m3 and 41%) over most of the whole domain, especially in Hangzhou (24 μg/m3, 48%) and Shanghai (21 μg/m3, 45%). 39 

By extrapolation, we derive insight into the magnitude and spatial distribution of PM2.5 mitigation potential across the YRD, 40 

revealing significantly additional room for curbing PM2.5 levels.  41 

1 INTRODUCTION 42 

Anthropogenic induced fine particulate matter (particulate matter with an aerodynamic diameter smaller than 2.5 μm, 43 

hereinafter denoted as PM2.5) is a principal object of air pollution control in China (Huang et al., 2014; Zhang et al., 2015). 44 

Moreover, the government has made major strides in curbing anthropogenic emissions (e.g., SO2, NOx, and CO) via both long-45 

term and emergency measures during the past decade (Yan et al., 2018; Yang et al., 2019; Zhang et al., 2012). However, owing 46 

to the complex synergy of chemistry and meteorology (Seinfeld and Pandis, 2016), the extent to which these measures have 47 

abated PM2.5 pollution, as well as the attainable mitigation potential, remains unclear (An et al., 2019).  48 

The main challenge involves reliably representing substantial and rapid changes in anthropogenic emissions resulting from 49 

both long-term and emergency control measures (Chen et al., 2019; Cheng et al., 2019; Zhang et al., 2014; Yang et al., 2016; 50 

Zhai et al., 2019; Zhang et al., 2019; Zhong et al., 2018). To gain timely insight into variations in anthropogenic emissions, 51 

considerable efforts went into establishing detailed bottom-up emissions and derived valuable findings (Cheng et al., 2019; 52 

Zhang et al., 2019). Yet bottom-up inventories were built on the basis of activity data as well as emission factors. These input 53 

data can be absent or outdated, likely leading to misunderstandings of anthropogenic impacts, particularly in terms of the 54 
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magnitude (Jiang et al., 2018). Recent studies applied available observations to construct multilinear regression models 55 

(emission-based or meteorology-related), thus allowing us to separate contributions from anthropogenic emissions and 56 

meteorology to some extent (Zhai et al., 2019; Zhong et al., 2018). However, the uncertainties in bottom-up inventories and 57 

meteorology remained. Here we switched to observational constraints on a state-of-the-art chemical model. This can be a 58 

potential way to tackle this challenge.  59 

Since 2013, the China National Environmental Monitoring Center (CNEMC) has established 1415 ground-based PM2.5 60 

measurement sites across 367 key cities (Zhang and Cao, 2015). In contrast to satellite observations with sparse spatiotemporal 61 

coverages (Ma et al., 2014, 2015; Xue et al., 2019), these ground sites can provide hourly PM2.5 concentrations at high spatial 62 

resolution in urban areas. Data assimilation (DA) methods that have been widely used in meteorology can be extended to 63 

integrate those continuous observational constraints with chemical transport models (CTMs) (Bocquet et al., 2015; Chai et al., 64 

2017; Gao et al., 2017; Jung et al., 2019; Ma et al., 2019). It has been demonstrated that the capability of several representative 65 

DA methods, such as the optimal interpolation (OI) (Chai et al., 2017), 3D/4D variational methods (Li et al., 2016), and the 66 

ensemble Kalman filter algorithm (Chen et al., 2019), can bridge the estimation gaps between observed and simulated results. 67 

Thus, observational constraints can be taken full advantage of to identify the effects of anthropogenic emission controls.  68 

From the perspective of policymaking, 2016 was a special year for air pollution control in China. Since 2013, the Chinese 69 

government instituted extensive policies, such as the Air Pollution Prevention and Control Action Plan. These strategies were 70 

initiated and implemented through generally shutting down or relocating high emission traditional industrial enterprises 71 

(Sheehan et al., 2014; Shi et al., 2016; Xie et al., 2015). Starting from January 1, 2016, the relevant law, as well as the “Blue 72 

Sky Battle Plan”, came into full effect and profoundly shifted how China prioritized air quality management(Feng and Liao, 73 

2016; Li et al., 2019c). Hence, we address the impact of long-term emission control strategies on PM2.5 mitigation from 2016 74 

onward. 75 

The G20 summit hosted in Hangzhou in 2016 (hereinafter termed the G20 summit) provides a unique and ideal opportunity to 76 

further explore the attainable PM2.5 mitigation potential across the Yangtze River Delta (YRD) (Li et al., 2017c; Ma et al., 77 

2019; Shu et al., 2019; Yang et al., 2019). Prior to and during this period, the Chinese government enforced historically strictest, 78 

even unsustainable, emergency emission control measures, including significant control, even cessation, of factory operations, 79 

restrictions on vehicles in the region, thus achieving significant PM2.5 abatement at specific locations (e.g., Hangzhou) (Ji et 80 

al., 2018; Li et al., 2017c; Yang et al., 2019). Those measures were conducted across the whole YRD (including Zhejiang 81 

province, Shanghai municipality, Jiangsu province, and Anhui province), particularly in Hangzhou that served as the host city 82 

(Li et al., 2019b, 2017c; Ni et al., 2020; Yu et al., 2018). Li et al. (2017) assumed that most of anthropogenic emissions (e.g., 83 

those from industry, power plant, residential, and on-road transportation sectors) were reduced by around 50%. The role of 84 
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these emergency emission control measures, that is, the relatively localized PM2.5 mitigation potential, can thus be identified, 85 

and further extended to the entire YRD. 86 

To quantify the effectiveness of the emission control strategies, we constrained a state-of-the-art CTM by a reliable DA method 87 

with extensive chemical and meteorological observations. This comprehensive technical design provides a crucial advance in 88 

isolating the influences of emission changes and meteorological perturbations over the YRD from 2016 to 2019, thus deriving 89 

estimates of PM2.5 responses to both long-term and emergency emission control measures, and establishing the first map of 90 

the PM2.5 mitigation potential across the YRD. 91 

2 MATERIALS AND METHODS 92 

2.1 The two-way coupled WRF-CMAQ model 93 

The two-way coupled Weather Research and Forecasting (WRF) and Community Multiscale Air Quality (CMAQ) model (the 94 

WRF-CMAQ model), as the key core of the DA system, was applied to investigate the ambient PM2.5 feedbacks under different 95 

constraining circumstances (Byun and Schere, 2006; Wong et al., 2012; Yu et al., 2013). We utilized the CB05 and AERO6 96 

modules for gas-phase chemistry and aerosol evolution (Carlton et al., 2010; Yarwood et al., 2005), respectively. Both 97 

secondary inorganic and organic aerosol (i.e., SIA and SOA) were thus explicitly treated with the AERO6 scheme in the WRF-98 

CMAQ model. Together with the ISORROPIA II thermodynamic equilibrium module (Fountoukis and Nenes, 2007), SIA in 99 

the Aitken and accumulation modes (Binkowski and Roselle, 2003) was assumed to be in thermodynamic equilibrium with 100 

the gas phase, while that in the coarse mode was treated dynamically. SOA was formed via gas-, aqueous-, and aerosol-phase 101 

oxidation processes, such as in-cloud oxidation of glyoxal and methylglyoxal, absorptive partitioning of condensable oxidation 102 

of monoterpenes, long alkanes, low-yield aromatic products (based on m-xylene data), and high-yield aromatics, and NOx-103 

dependent yields from aromatic compounds (Carlton et al., 2010). The subsequent reaction products can be divided into two 104 

groups: non-volatile semi-volatile. Such treatments have been widely used and comprehensively validated. Longwave and 105 

shortwave radiation were both treated using the RRTMG radiation scheme (Clough et al., 2005). Related land surface energy 106 

balance and planetary boundary layer simulations were included in the Pleim-Xiu land surface scheme (Xiu and Pleim, 2001) 107 

and the asymmetric convective model (Pleim, 2007b, 2007a), respectively. The two-moment Morrison cloud microphysics 108 

scheme(Morrison and Gettelman, 2008) and the Kain-Fritsch cumulus cloud scheme (Kain, 2004) were employed for 109 

simulating aerosol-cloud interactions and precipitation. Default settings in the model were used to prescribe chemical initial 110 

and boundary conditions. A spin-up period of seven days was carried out in advance to eliminate artefacts associated with 111 

initial conditions. Meteorological initial and boundary conditions were obtained from the ECMWF reanalysis dataset with the 112 

spatial resolution of 1º × 1º and temporal resolution of 6 hours (http://www.ecmwf.int/products/data, last access: 7 March 113 

http://www.ecmwf.int/products/data
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2020). Biogenic and dust emissions were calculated on-line using the Biogenic Emission Inventory System version 3.14 114 

(BEISv3.14) (Carlton and Baker, 2011) and a windblown dust scheme embedded in CMAQ (Choi and Fernando, 2008), 115 

respectively. 116 

The horizontal domain of the model covered mainland China by a 395 × 345 grid with a 12 km horizontal resolution following 117 

a Lambert Conformal Conic projection (Figure 1). In terms of the vertical configuration, 29 sigma-pressure layers ranged from 118 

the surface to the upper level pressure of 100 hPa, 20 layers of which are located below around 3 km to derive finer 119 

meteorological and chemical characteristics within the planetary boundary layer. 120 

As a state-of-the-art CTM, the WRF-CMAQ model has been widely used to simulate spatiotemporal PM2.5 distributions at 121 

regional scales. However, model biases remain, mainly due to imperfect representations of chemical and meteorological 122 

processes. Inaccurate anthropogenic emissions will exacerbate these biases. Therefore, external constraints on simulated results 123 

enforced by the DA method will be taken into account in order to optimize spatiotemporal PM2.5 distributions (Bocquet et al., 124 

2015). 125 

2.2 Anthropogenic emissions 126 

The anthropogenic emissions were obtained from the Multi-resolution Emission Inventory for China version 1.2 (MEIC)(Li 127 

et al., 2017b), which contained primary species (e.g., primary PM2.5, SO2, NOx, CO, and NH4) from five anthropogenic sectors 128 

(i.e., agriculture, power plant, industry, residential, and transportation). This inventory was initially designed with the spatial 129 

resolution of 0.25° × 0.25° and thus needed to be reallocated to match the domain configuration (i.e., 12km × 12km) in the 130 

study.  131 

Recent findings show that MEIC generally provides reasonable estimates of total anthropogenic emissions for several typical 132 

regions in China, such as the Beijing-Tianjin-Hebei region, the YRD, and the Pearl River Delta region (Li et al., 2017b). 133 

Nevertheless, large uncertainties in spatial proxies (e.g., population density and road networks) still exist within these specific 134 

regions (Geng et al., 2017). More, MEIC was originally constructed for the 2016 base year. Hence, owing to the impact of the 135 

long-term emission control measures, MEIC was considered to be inappropriate for this study period (i.e., 2019). 136 

Comparatively, emergency control measures could give rise to much more significant emission controls in the short term, 137 

thereby leading to further uncertainties.  138 

2.3 Observational network 139 

To track real-time air quality in China, the National Environmental Monitoring Center (CNEMC, http://www.cnemc.cn/, last 140 

access: 7 March 2020) has established 1415 sites across 367 cities since 2013 (Figure 1). Among these, 244 monitoring sites 141 

were densely distributed in 6660 grid cells across the YRD providing hourly PM2.5 measurements, resulting in potentially 142 

http://www.cnemc.cn/
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excellent roles in constraining simulated PM2.5 (Bocquet et al., 2015). In this study, we applied observed PM2.5 concentrations 143 

to constrain and evaluate the model performance. It is worth noting that the constraining capability of those observations varies 144 

depending on specific configurations (e.g., the nature of the utilized DA method, the assimilation frequency, and the 145 

representative errors of observations) (Bocquet et al., 2015; Chai et al., 2017; Ma et al., 2019; Rutherford, 1972). As shown in 146 

Figure 1a, to consider regional impacts outside the YRD, the ground-level observations in the fan-shaped quadrilateral were 147 

used to constrain the model performance. This was mainly due to the fact that this fan-shaped geographical scope covered 148 

almost all key regions that had potentially regional impacts on the YRD, involving the Beijing-Tianjin-Hebei region (BTH), 149 

the Pearl River Delta region, the Sichuan-Chongqing region, and the Shaanxi-Gansu region (Zhang et al., 2019). On the other 150 

hand, the ground monitoring sites within the fan-shaped quadrilateral were significantly denser than those outside, thus leading 151 

to much more effective DA results in practice (Bocquet et al., 2015; Chai et al., 2017). Collectively, to assimilate the 152 

observations in the fan-shaped quadrilateral might be a sensible way to balance the DA effectiveness and the computing 153 

efficiency. A resultant evidence lies in the model performance evaluation in Sect. 3.1, which would prove that this DA 154 

configuration can enable reliable PM2.5 simulations. 155 

2.4 Optimal interpolation 156 

Optimal interpolation (OI) was chosen to assimilate hourly observations into the WRF-CMAQ model, aiming to generate the 157 

accurate state of spatiotemporal PM2.5 distributions. Compared to the solely model-dependent results, this constraining method 158 

relies on observations and thus makes it possible to minimize model uncertainties in optimizing the spatiotemporal PM2.5 159 

changes resulting from emission controls (Chai et al., 2017; Jung et al., 2019). The analysed states from the OI method were 160 

calculated based on the following interpolation equation: 161 

𝐗a = 𝐗b + 𝐁𝐇T(𝐇𝐁𝐇T + 𝐎)−1(𝐘 − 𝐇𝐗b)                                                             (1)                                                                                                                     162 

where 𝐗𝑎 and 𝐗𝑏  denote the analysis (constrained) and background (simulated) values, respectively. B and O are background 163 

and observation error-covariance matrices, respectively, for which we assumed no correlation in this study. H refers to a 164 

linearized observational operator, and Y represents the observation vector. The OI method is described in detail in Adhikary 165 

et al. (Adhikary et al., 2008). 166 

Once available measurements were assimilated, the states of the simulated variables were adjusted from their background 167 

values to corresponding analysis states using the scaling ratio 𝐗𝒂/𝐗𝒃 obtained following equation (1). As the measurements 168 

were conducted at the surface, this ratio at each grid cell was used to scale all aerosol components below the boundary layer 169 

top. Such simplification compensated for the lack of information to constrain speciated aerosol components or their vertical 170 

distributions. When ground-level PM2.5 measurements were assimilated, hourly observations were put into equation (1) to 171 

construct the new analysis fields. All-day state variables associated with aerosols in the model were adjusted from their 172 
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background (simulated) to their analysis (constrained) states using the scaling factors (𝐗𝒂/𝐗𝒃). The adjusted model state 173 

variables were then used to initiate the model to predict the next background state (𝐗𝑏 ) in Equation (1). Therefore, the 174 

background state (𝐗𝑏) served as a prior model prediction before it was combined with the newly available observation (Y) to 175 

generate a new analysis state (𝐗𝑎) using Equation (1).  176 

Measurements within the background-error correlation length scale were used to shape analysis states (𝐗𝑎). The background 177 

error covariance 𝐂𝐎𝐕𝐢𝐣 between any two grid cells 𝐢 and 𝐣 was simulated as 178 

𝐂𝐎𝐕𝐢𝐣 = 𝛆𝐢𝛆𝐣ⅇ
−
𝚫𝐢𝐣

𝐋                                                                                     (2) 179 

where 𝛆𝐢 and 𝛆𝐣 referred to the standard deviations of the background errors in two grid cells and 𝚫𝐢𝐣 denoted the distance 180 

between the two grids. As a result, L was the background-error correlation length scale, which can be the Hollingsworth-181 

Lönnberg method (Chai et al., 2017; Hollingsworth and Lönnberg, 1986; Kumar et al., 2012). Figure 2 shows the correlation 182 

coefficient, i.e., 𝐂𝐎𝐕𝐢𝐣/𝛆𝐢𝛆𝐣, as a function of the separation distance between two grid cells, which was averaged over 10 km 183 

bins. The results identified that a correlation length scale of ∼ 180 km could be treated as the threshold. It allowed the 184 

correlation coefficients to fall within the range of ⅇ−𝟏, defining the effective radius of each individual observation. Due to the 185 

intensive monitoring sites in our study domain, this threshold was applied uniformly for the YRD. In this study, observations 186 

beyond the background-error correlation length scale would have no effect on 𝐗𝒂. Following Chai et al. (Chai et al., 2017), 187 

the standard deviation of the background errors was assigned as 60% of the background values, while the observational errors 188 

were assumed to be ± 20% of the measurement values.  189 

2.4 Experiment design 190 

Anthropogenic emission controls and meteorological perturbations are both critical factors that dominate interannual and daily 191 

variations in ambient PM2.5 (Zhang et al., 2019). Our major objective is to isolate the impacts of emission-oriented long-term 192 

and emergency measures and further explore the attainable PM2.5 mitigation potential. We designed three sets of experiments, 193 

which focused on three time periods, January 2016, January 2019, and the G20 period (from August 26, 2016 to September 7, 194 

2016), respectively (Table 1).  195 

For all experiments, the anthropogenic emissions were kept consistent (i.e., MEIC), while the ECMWF reanalysis datasets 196 

accounted for the hourly observational constraints on spatiotemporal meteorological evolutions. The ECMWF reanalysis 197 

datasets accounted for the hourly observational constraints on spatiotemporal meteorological evolutions. Therein almost all 198 

necessary meteorological factors (nine variables), involving temperature, U wind component, V wind component, pressure, 199 

relative humidity, precipitation, short-wave radiation, cloud cover, and planetary boundary layer height (PBLH), were 200 

assimilated (https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/, last access: 7 March 2020). These 201 

https://apps.ecmwf.int/datasets/data/interim-full-daily/levtype=sfc/
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configurations unified both chemical (i.e., emission inventories) and meteorological input data for the WRF-CMAQ model. 202 

Hence, the extent to which we introduce observational constraints on simulated PM2.5 variations using the OI method is the 203 

key to isolate the impacts of anthropogenic emission controls. Specifically, the differences in the constrained PM2.5 204 

concentrations between DA_2016 and DA_2019 reflected the net effects of anthropogenic emission controls and 205 

meteorological perturbations between 2016 and 2019, while meteorological impacts therein were calculated as the 206 

discrepancies in simulated PM2.5 concentrations between NO_2016 and NO_2019 (Chen et al., 2019). Hence, by subtracting 207 

meteorological impacts from the net effects, we can isolate the effects of anthropogenic emission controls attributable to the 208 

long-term strategies.  209 

The G20 summit provided a unique opportunity to realize the PM2.5 mitigation potential in specific regions (Li et al., 2019a, 210 

2017c; Ma et al., 2019; Shu et al., 2019; Yang et al., 2019). This is due to the fact that the Chinese government implemented 211 

the most historically stringent, even unsustainable, strategies to curb anthropogenic emissions during that period in Hangzhou 212 

and surrounding areas. To quantify the projected PM2.5 abatement, we adopted the abovementioned method to constrain the 213 

unique PM2.5 variations in the DA_G20 experiment and further compared the corresponding results with those of the sole 214 

model-dependent analysis (i.e., NO_G20). However, the subsequent discrepancies were related not only to the effects of 215 

emergency anthropogenic emission strategies but also to the inherent biases mainly due to the emission inventory (Zhang et 216 

al., 2019). In theory, such biases would generally remain unchanged in the short term when no emergency emission controls 217 

occurred. Their consequent impacts could thus be stable under similar meteorological conditions. Therefore, to avoid additional 218 

uncertainties, the adjacent periods of the G20 summit (i.e., pre- and post- periods, from August 11 to August 23, 2016 and 219 

from September 18 to September 30, 2016, respectively) are the optimal alternative to eliminate the impacts of those inherent 220 

biases. Figure S1 demonstrates the significantly similar meteorological fields among these three periods. As a result, the 221 

corresponding experiments (i.e., DA_CON_G20 and NO_CON_G20) (Table 1) were conducted. By subtracting such 222 

differences, we could isolate the PM2.5 responses to the solely emergency anthropogenic emission strategies and finally achieve 223 

the PM2.5 mitigation potential for specific locations. Such localized PM2.5 mitigation potential should be further expanded to 224 

the entire YRD based on the impacts of both long-term and emergency strategies.  225 

There is an essential prerequisite to above analysis. As the evaluation protocols, we need to verify that the DA experiments 226 

(i.e., DA_2016, DA_2019, DA_G20, and DA_CON_G20) can reproduce the spatiotemporal variations in the PM2.5 and major 227 

meteorological fields (i.e., temperature, relative humidity, wind speed and air pressure) (Chai et al., 2017). While 244 228 

monitoring stations reside in 6660 grid cells, 16 grid cells have two to three monitors in them. For these grid cells, only one 229 

averaged measurement was used for DA. However, all the observations were compared against the constrained results. 230 

Although SIA and SOA are key components of the ambient PM2.5, extensive measurements at the regional scale of these 231 

components are generally lacking. It is thus difficult to generate appropriate constraints on SIA and SOA (Chai et al., 2017; 232 
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Gao et al., 2017). Note that different anthropogenic emissions might lead to inconsistent estimation of meteorological effects 233 

on ambient PM2.5 (Chen et al., 2019). To eliminate this doubt, we conducted sensitivity tests by reducing MEIC with three 234 

reasonable ratios (i.e., -5%, -25%, and -40%) over the YRD based on NO_2016 and NO_2019.  235 

3 RESULTS 236 

3.1 Data assimilation performance 237 

Figure 3 shows spatial comparisons of hourly averaged concentrations of constrained and simulated PM2.5 (i.e., the ones from 238 

the cases with and without DA, respectively) with ground-level observations across the YRD for January 2016, January 2019, 239 

and the G20 summit. In the NO_2016, NO_2019, and NO_G20 experiments, the simulated PM2.5 concentrations generally 240 

overestimated observed values by 16 ~ 57 μg/m3, especially those in Hangzhou and surrounding areas during the G20 summit 241 

(> 21 μg/m3). Such prevailing overestimates were mainly a result of the anthropogenic emission inventory (i.e., MEIC), as a 242 

bottom-up product, which notably cannot capture interannual emission changes since the base year 2012, as well as the large 243 

emission controls resulting from the emergency controls during the G20 summit. By comparison, the constrained results 244 

significantly approach observations. Specifically, in the DA_2016, DA_2019, and DA_G20 cases, the biases of the assimilated 245 

PM2.5 were all constrained in an extremely narrow range (i.e., 10 μg/m3, 12 μg/m3, and 13 μg/m3, respectively), suggesting that 246 

the DA method can reproduce the spatiotemporal distributions of surface PM2.5 at the regional scale.  247 

To achieve more targeted evaluations, it is necessary to further assess the ability of the DA method in reproducing the city-248 

level PM2.5 responses. With the analysis of time series over the same periods, Figure 4 illustrates the comparisons between 249 

hourly observed, simulated, and constrained PM2.5 concentrations over the whole domain and four representative cities (i.e., 250 

Shanghai, Hangzhou, Nanjing, and Hefei). Similar to the spatial comparisons, the constrained PM2.5 generally reproduces the 251 

temporal variations in observations, while the model-dependent simulated results are prone to overestimating those 252 

observations, in particular, the peaks by 85 ~ 257 μg/m3.  253 

As expected, basic evaluation indicators (i.e., the NMB and R values) of assimilated PM2.5 exhibited significantly better 254 

behaviour than those without constraints (Figure S2). Taking the simulated and assimilated results for Hangzhou during 255 

January 2016 as an example, the corresponding R values improved from 0.63 to 0.98, while the NMB values were reduced 256 

from 17% to 3%. Similar improvements, but with varying extent, were found in other paired experiments. 257 

Owing to the fact that the distinct PM2.5 levels might also play a potential role in the DA performance, we thus separated the 258 

entire range of the observed PM2.5 concentrations into four intervals (i.e., < 35 μg/m3, 35 ~ 75 μg/m3, 75 ~ 115 μg/m3, and > 259 

115 μg/m3), exactly corresponding to the continuously increasing PM2.5 levels. Figure S3 demonstrates that, relative to the sole 260 

model-dependent configurations, this constraining method could substantially strengthen the model performance, especially 261 
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for the relatively elevated concentration intervals. Overall, the ranges of the NMB values and associated standard deviations 262 

decreased from -24 ~ 86% to -9 ~ 25% and 34 ~ 174 μg/m3 to 12 ~ 52 μg/m3, respectively. Theoretically, more frequent DA 263 

should lead to more robust simulations. Hourly observational constraints on the PM2.5 concentrations were thus adopted to 264 

tackle this issue. This is the reason why the corresponding NMB values in the constraining cases roughly maintain stability, 265 

fluctuating over a narrow range (i.e., ± 20%) in the study periods (Figure S4). In addition, given that the assimilated ERA 266 

reanalysis dataset has much wider spatial coverage than ground-based measurements, we also reproduced the spatiotemporal 267 

variations in the meteorological factors (e.g., temperature, relative humidity, wind speed, and air pressure) (Figures S5 ~ S8). 268 

Together the comprehensive evaluation statistics as summarized in Tables S1 ~ S5, it has been demonstrated that the DA 269 

method can enable one to derive not only reliable PM2.5 evolution but also accurate meteorological fields. Regional transport 270 

of PM2.5 can thus be captured reasonably in this way.  271 

3.2 Ambient PM2.5 responses to the long-term strategies 272 

The Chinese government has been implementing stringent emission control strategies since 2016, especially in the YRD (Feng 273 

and Liao, 2016; Li et al., 2019c). To quantify subsequent PM2.5 responses is thus the prerequisite to our final objective, that is, 274 

to explore the associated PM2.5 mitigation potential.  275 

Interannual changes in spatiotemporal PM2.5 distributions depended strongly on both anthropogenic emission controls and 276 

meteorological variations from 2016 to 2019. Their combined effects were reflected by the differences between the constrained 277 

results from DA_2016 and DA_2019. As shown in Figure 5a, such net impacts led to prevailing PM2.5 abatement in the domain, 278 

especially in megacities, such as Shanghai (13 μg/m3, 21%), Hangzhou (13 μg/m3, 17%), Nanjing (6 μg/m3, 8%), and Hefei (2 279 

μg/m3, 2%). In addition, noticeable PM2.5 controls also occurred in the western and northern YRD, where abundant 280 

anthropogenic emissions are concentrated (Figure S9). Detailed differences are shown in Table S6. 281 

Figure 5b highlights that the sole meteorological interferences played an extensively positive role in increasing the regional 282 

PM2.5 concentrations for most areas of the domain (~ 12 μg/m3, 15%). This also indirectly implied the importance of 283 

assimilating meteorology, which, however, were generally neglected by previous studies (Chen et al., 2019). In this study, we 284 

have eliminated this speculation. As shown in Figure S10 and Figure 5, even with the largest adjustment (i.e., -40%), such 285 

interferences could be well controlled within the 5% (< 3 μg/m3) scope, let alone other tests (i.e., < 3%, < 2 μg/m3). Moreover, 286 

these findings are consistent with previous analyses (Chen et al., 2019; Zhang et al., 2019). They generally reveal that 287 

reasonable changes in the bottom-up emissions, together with the same meteorology input data, would not remarkably alter 288 

the simulated results associated with meteorological effects on surface PM2.5 (< 5%). As a result, some past studies even 289 

directly ignored such sensitivity tests without any discussion (Chen et al., 2019). Therefore, by subtracting those 290 

meteorological influences from the combined outcomes, we can finally derive the contributions of anthropogenic emission 291 
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controls to the PM2.5 mitigation at the regional scale. Figure 5c illustrates that long-term emission control strategies from 2016 292 

to 2019 produced substantial (> 14 μg/m3, 19%) decreases in regional PM2.5 concentrations, which are similar to those 293 

combined effects in terms of the spatial distributions.  294 

For the entire domain, as well as the four representative cities, the synergy between anthropogenic emission controls and 295 

meteorological interferences on the PM2.5 concentrations were calculated at the city level (Figure 6). We found that their net 296 

effects resulted in uniformly positive mitigations as follows: -2 μg/m3 (-3%), -13 μg/m3 (-21%), -12 μg/m3 (-17%), -6 μg/m3 297 

(-8%), and -2 μg/m3 (-3%) for the whole domain, Shanghai, Hangzhou, Nanjing, and Hefei, respectively, while the 298 

meteorological conditions therein offset such effects to different extents (5 ~ 18 μg/m3, 16 ~ 24%). We recognized that the 299 

impacts of anthropogenic drivers on PM2.5 concentrations in the southern and eastern parts of Zhejiang were evidently weaker 300 

than those in other regions in the YRD. This divergence can mostly be explained by spatial distributions of anthropogenic 301 

emissions. That is, anthropogenic emissions in the southern and eastern of Zhejiang were also significantly less than those in 302 

other regions (Figure S9), thus leading to substantially low PM2.5 concentrations (Figure 3). Besides, meteorological fields in 303 

coastal regions, more conducive to PM2.5 diffusion (Figure 5), might be another cause. The above findings confirmed that the 304 

PM2.5 mitigation was dominated by anthropogenic emission controls, rather than meteorological variations. Furthermore, the 305 

corresponding spatiotemporal patterns were highly correlated to those of the anthropogenic emissions (Figure S9). This 306 

indicates that the impacts of the long-term strategies are mainly driven by anthropogenic emission mitigation.  307 

3.3 Ambient PM2.5 mitigation potential 308 

The G20 summit offered a unique and ideal opportunity to clarify the effects of the most stringent emission control measures 309 

across the YRD from 2016 to 2019, which could be regarded as the localized PM2.5 mitigation potential. Figure 7a shows the 310 

spatial differences between the constrained and simulated PM2.5 concentrations, which were extracted from DA_G20 and 311 

NO_G20, for the period of the G20 summit. Inherent biases remained, primarily attributable to the priori anthropogenic 312 

emissions. Their subsequent impacts were then quantified by comparing the discrepancies between the results from two 313 

additional experiments (i.e., DA_CON_G20 and NO_CON_G20) (Figure 7b). More, such impacts were associated with 314 

relatively low standard deviations (< 5%), thus presenting a stably spatiotemporal state (Figure S11). This means that such 315 

estimations were also suitable for the G20 summit. Therefore, by subtracting them, the re-corrected differences would reflect 316 

the actual effects of the most stringent emission control measures for the G20 summit (Figure 7c). Such hotspots with extremely 317 

negative values reveal the dramatic PM2.5 mitigations for these specific locations. The corresponding largest decreases in PM2.5 318 

concentrations (35 μg/m3, 59%) occurred in Hangzhou and its surrounding areas, as expected. Following Hangzhou, other 319 

hotspots with relatively prominent declines also emerged in megacities, especially in Shanghai (32 μg/m3, 51%), Nanjing (27 320 

μg/m3, 55%) and Hefei (24 μg/m3, 44%). This behaviour could be explained by two inferences that: (i) local emission controls 321 
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in Hangzhou were projected to be conducted with the maximum execution efficiency compared to those in surrounding regions; 322 

(ii) most of the emergency measurements generally targeted the vehicle and industry emissions that are clustered around the 323 

urban rather than rural areas. 324 

Compared to the long-term policies from 2016 to 2019, the emergency emission control measures implemented during the 325 

G20 Summit achieved more significant decreases in PM2.5 concentrations (17 μg/m3 and 41%) over most of the whole domain, 326 

especially in Hangzhou (24 μg/m3, 48%) and Shanghai (21 μg/m3, 45%) (Figure 8). Detailed differences are summarized in 327 

Table S6. 328 

To gain the regional PM2.5 mitigation potential, (i) we first pinpointed the main urban areas of Hangzhou that covered 25 grid 329 

cells (Figure S12), in which the most substantial PM2.5 abatement, i.e., the localized PM2.5 mitigation potential (> 22 μg/m3 330 

and > 59%) were identified. (ii) As the above hypothesis, the spatial distributions of the regional PM2.5 mitigation potential 331 

across the YRD were then assumed to follow those of the long-term strategy effects. (iii) Thus, by extrapolation in equal 332 

proportion following such patterns and the localized PM2.5 mitigation potential, we established the map of the PM2.5 mitigation 333 

potential across the YRD (Figure 9a). It should be noted that, as long as three premises, including typical weather backgrounds, 334 

stable structures of anthropogenic emissions, and analogous emission control measures, remain unchanged, Figure 9a is a 335 

reliably quantitative reference to characterize the attainable PM2.5 abatement for the YRD in future. 336 

4 DISCUSSION 337 

The actual effectiveness of anthropogenic emission control measures, especially those directed at PM2.5 mitigation, has long 338 

been excluded from evaluation of air pollution policies in China, in part due to the complex synergy between anthropogenic 339 

emissions and meteorology. Here, we provide a novel approach to explore the PM2.5 responses to anthropogenic emission 340 

control measures and their mitigation potential from 2016 to 2019 across the YRD, China. With the data assimilation method, 341 

these estimates are projected to be highly reliable due to the sufficient observational constraints. The results demonstrate that 342 

long-term anthropogenic emission control strategies from 2016 to 2019 have led to extensive impacts on PM2.5 abatement 343 

across the YRD, especially in the megacities, Shanghai, Hangzhou, Nanjing, and Hefei. In the context of the G20 summit, the 344 

emergency strategies could achieve significant PM2.5 abatement (> 50%) at specific locations, (i.e., urban Hangzhou), 345 

representing the localized mitigation potential. By extrapolation based on the above results, we have established the first map 346 

of the PM2.5 mitigation potential for the YRD.  347 

Numerous analyses have focused on Hangzhou during the G20 summit to detect impacts of emergency emission controls (Li 348 

et al., 2019b, 2017c; Yu et al., 2018). However, previous analyses generally found more effective predictions (> 50%) at the 349 

city level. This discrepancy might be related to the fact that such results were generally based on sole model-dependent 350 

predictions, which are normally driven by uncertain bottom-up estimates of anthropogenic emissions. In addition, this study 351 
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addresses the YRD after 2016. Besides, similar opportunities also occurred at other spatiotemporal scales, such as the “APEC 352 

Blue” in 2014 and “Parade Blue” in 2015 over the BTH (Liu et al., 2016; Sun et al., 2016; Zhang et al., 2016). More aggressive 353 

achievements (> 55%) were generally attributed to emergency anthropogenic emission control measures (Sun et al., 2016). 354 

This might be related to the fact that, compared to the YRD, the BTH is associated with more abundant primary emissions 355 

(Zhang et al., 2019). The impacts of natural sources (e.g., biogenic emissions, wild fires, and natural dust) are not considered 356 

in this study. This is mainly because of two reasons. First, it has been widely demonstrated that biogenic emission changes are 357 

dominated by meteorological variations over a period of a few years (Wang et al., 2019). Moreover, the former is generally of 358 

minor significance for interannual PM2.5 variations for the YRD (Mu and Liao, 2014; Tai et al., 2012). Second, satellite 359 

products, including MOD14 and AIRIBQAP_NRT.005 (https://worldview.earthdata.nasa.gov/), show that there was no 360 

noticeable wild fires and natural dust storms during this study period, thus allowing us to ignore the corresponding interferes. 361 

This study takes the advantage of observational constraints to gain the regional PM2.5 mitigation potential. It could be further 362 

optimized by more extensive observations. Besides, extending the PM2.5 mitigation potential in urban Hangzhou during the 363 

study period to the entire YRD in other time periods may introduce some uncertainties due to varying meteorology. As 364 

abovementioned, impacts of the extreme emergency emission controls are spatially inconsistent across the YRD. To explore 365 

regional PM2.5 mitigation potential, it is thus unavoidable to extrapolate from local to regional scale. The consequent 366 

uncertainty mainly relates to the hypothesis that the spatial patterns of the PM2.5 mitigation potential across the YRD should 367 

follow those of the impacts of the long-term emission control strategies. In addition, there are distinct DA methods (Bocquet 368 

et al., 2015). It is thus believed that replacing the OI with another DA algorithm would lead to slightly different results. Note 369 

that, as previous studies have demonstrated (Cheng et al., 2019; Zhai et al., 2019; Zhong et al., 2018), model uncertainties 370 

remain, although we have verified the constrained results. We have supplemented the additional discussions in Sect. 4 for 371 

further explanation. For instance, model simulations of aerosol components (e.g., sulfate and nitrate) are still poorly 372 

constrained. Moreover, they have not been evaluated due to lack of available observations. Yet previous studies find that the 373 

model tends to underestimate sulfate production during high RH (as pointed by the reviewer) as well as SOA (Li et al., 2017a; 374 

Wang et al., 2014; Zhong et al., 2018). As a result, these uncertainties can be propagated into the estimations of meteorological 375 

effects. Besides, like other atmospheric chemical transport models, the WRF-CMAQ model cannot provide model uncertainty 376 

information, while Monte Carlo simulations for complex CTMs would be unrealistic due to extremely high computation 377 

loadings (Zhong et al., 2018). Looking forward, continued advances in observational techniques, better understanding of 378 

chemical and meteorological processes, and their improved representations in CTMs are all factors that are critical to 379 

optimizing the estimates of the PM2.5 mitigation potential. 380 

https://worldview.earthdata.nasa.gov/
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 497 
Figure 1. (a) The model domain. Red dots denote the ground-level PM2.5 measurements, which, within the 498 

fan-shaped quadrilateral, are used to constrain the model predictions. (b) Black lines outline the boundaries 499 

of the Yangtze River Delta (YRD), as well as four major cities considered (i.e., SH: Shanghai; HZ: Hangzhou; 500 

NJ: Nanjing; HF: Hefei). 501 

 502 
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 511 

Figure 2. Correlation coefficients (averaged over 10 km) as a function of the separation distances between two 512 

surface-level monitoring stations using the Hollingsworth-Lönnberg method. 513 

 514 



 515 
Figure 3. Spatial comparisons of hourly-averaged concentrations of simulated and constrained PM2.5 with 516 

surface observations across the YRD for January 2016 (top panel), January 2019 (middle panel), and the G20 517 

summit (bottom panel): (a) NO_2016; (b) DA_2016; (c) NO_2019; (d) DA_2019; (e) NO_G20; (f) DA_G20. 518 

Circles denote ground measurement sites. 519 



 520 

Figure 4. Time series of the comparisons between hourly observed, simulated, and constrained PM2.5 concentrations for January 2016 (left column), January 2019 (middle column), 521 

and the G20 summit (right column) over (a – c) the whole domain as well as in four representative cities, which are as follows: (d - f) Shanghai, (g - i) Hangzhou, (j - l) Nanjing, and (m 522 

- o) Hefei. The black circles, black lines, and red lines denote the hourly observed, simulated, and constrained PM2.5 concentrations, respectively.  523 



 524 
Figure 5. The impacts of anthropogenic emission controls and meteorological variations on spatial PM2.5 concentrations in January from 2016 to 2019. (a, d) Their net impacts. (b, e) 525 

meteorological impacts. (c, f) the impacts of anthropogenic emission controls. The top and bottom panels refer to the changes in absolute values and relative percentages, respectively. 526 



 527 

Figure 6. The impacts of anthropogenic emission controls and meteorological variations on PM2.5 concentrations in January from 2016 to 2019 over the whole domain as well as in four 528 

representative cities (i.e., Shanghai, Hangzhou, Nanjing, and Hefei). The top and bottom panels refer to the changes in absolute values and relative percentages, respectively. 529 



 530 

Figure 7. The impacts of anthropogenic emission controls and inherent biases on spatial PM2.5 concentrations during the G20 summit. (a, d) Their net impacts. (b, e) the impacts of 531 

inherent biases. (c, f) the impacts of anthropogenic emission controls. The top and bottom panels refer to the changes in absolute values and relative percentages, respectively. Inherent 532 

biases are mainly due to the prior anthropogenic emissions.  533 



 534 

Figure 8. The impacts of anthropogenic emission controls and inherent biases on PM2.5 concentrations during the G20 summit over the whole domain as well as in four representative 535 

cities (i.e., Shanghai, Hangzhou, Nanjing, and Hefei). The top and bottom panels refer to the changes in absolute values and relative percentages, respectively. Inherent biases are 536 

mainly due to the prior anthropogenic emissions.  537 



 538 

Figure 9. (a) Spatial distributions of the PM2.5 mitigation potential across the YRD and (b) their differences with the impacts of long-term emission control strategies from 2016 to 2019 539 

(Fig. 5f). Both spatial patterns of long-term emission control strategy impacts (Fig. 5f) and the localized PM2.5 mitigation potential in the main urban areas of Hangzhou (Fig. S10), with 540 

the proportion calculator, result in Fig. 9a. 541 
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Table 1. The experiments to isolate the effects of anthropogenic emission controls due to the long-term and emergency emission control strategies. 544 

Experiments Time Periods 
Priori Anthropogenic 

Emissions 

Constrained 

Meteorology 

Constrained 

Observations 
Comparisons and Purposes 

DA_2016 January 2016 

MEICv1.2 

Yes Yes The net effects of major driving factors (i.e., anthropogenic 

emission controls and meteorological variations) from 2016 

to 2019. 
DA_2019 January 2019 Yes Yes 

NO_2016 January 2016 
MEICv1.2 

Yes No 
The effects of meteorological variations from 2016 to 2019. 

NO_2019 January 2019 Yes No 

DA_G20 
from August 26 to 

September 7, 2016 
MEICv1.2 

Yes Yes The net effects of major driving factors (i.e., anthropogenic 

emission controls and the uncertainties in the priori 

anthropogenic emissions) during the G20 summit. 
NO_G20 Yes No 

DA_CON_G20 from August 11 to 

August 23 and from 

September 18 to 

September 30, 2016 

MEICv1.2 

Yes Yes 

The effects of the uncertainties in the priori anthropogenic 

emissions. NO_CON_G20 Yes No 
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