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Abstract. Cloud condensation nuclei (CCN) number concentrations are an important aspect of aerosol–cloud interactions and

the subsequent climate effects; however, their measurements are very limited. We use a machine learning tool, random deci-

sion forests, to develop a Random Forest Regression Model (RFRM) to derive CCN at 0.4% supersaturation ([CCN0.4]) from

commonly available measurements. The RFRM is trained on the long-term simulations in a global size-resolved particle mi-

crophysics model. Using atmospheric state and composition variables as predictors, through associations of their variabilities,5

the RFRM is able to learn the underlying dependence of [CCN0.4] on these predictors, which are: 8 fractions of PM2.5 (NH4,

SO4, NO3, secondary organic aerosol (SOA), black carbon (BC), primary organic carbon (POC), dust, and salt), 7 gaseous

species (NOx, NH3, O3, SO2, OH, isoprene, and monoterpene), and 4 meteorological variables (temperature (T), relative

humidity (RH), precipitation, and solar radiation). The RFRM is highly robust: median mean fractional bias (MFB) of 4.4%

with ∼ 96.33% of the derived [CCN0.4] within a good agreement range of −60%<MFB<+60% and strong correlation of10

Kendall’s τ coefficient ≈ 0.88. The RFRM demonstrates its robustness over 4 orders of magnitude of [CCN0.4] over varying

spatial (such as continental to oceanic, clean to polluted, and near surface to upper troposphere) and temporal (from the hourly

to the decadal) scales. At the Atmospheric Radiation Measurement Southern Great Plains observatory (ARM SGP) in Lamont,

Oklahoma, United States, long-term measurements for PM2.5 speciation (NH4, SO4, NO3, and organic carbon (OC)), NOx,

O3, SO2, T, and RH, as well as [CCN0.4] are available. We modify, optimise, and retrain the developed RFRM to make predic-15

tions from 19→ 9 of these available predictors. This retrained RFRM (RFRM-ShortVars) shows a reduction in performance

due to the unavailability and sparsity of measurements (predictors); it captures the [CCN0.4] variability and magnitude at SGP

with ∼ 67.02% of the derived values in the good agreement range. This work shows the potential of using the more commonly

available measurements of PM2.5 speciation to alleviate the sparsity of CCN number concentrations’ measurements.
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1 Introduction

Minute particles suspended in the atmosphere prove to be the most non-trivial sources of uncertainty (variability across mod-

eling efforts) in our understanding of climate change (IPCC AR5, 2013). These particles or aerosols, or rather CCN (cloud

condensation nuclei: aerosols capable of being imbibed in clouds and modifying their properties) have direct and indirect

sources. They can directly get into the atmosphere as sea salt, primary inorganic particulates such as dust and carbon, or pri-25

mary organic particulates. Aqueous chemistry can modify the chemical species in the cloud droplet, which on evaporation

will result in an aerosol size distribution capable of acting as CCN at lower RH (Hoppel et al., 1994). In the air, emissions of

SO2/DMS, NOx, and organics can undergo gas-phase (photo-)chemistry to form condensible vapors that may take part in new

particle formation (nucleation) that converts gas to particle; this process is an important source of aerosols, especially from

anthropogenic sources, and subsequent growth contributes up to 50% or more of global CCN (e.g., Merikanto et al., 2009; Yu30

and Luo, 2009).

Of the uncertainty in the effective radiative forcing (ERF) in global climate models associated with aerosols, the aerosol

indirect effect primarily through aerosol–cloud interactions (aci) is predominant (IPCC AR5, 2013): ERFaci =−1.2 to 0

Wm−2. These aerosol–cloud interactions are through CCN that affect cloud micro- and macro-physics primarily through their

interaction with water vapor to modify cloud droplet size and number. There are various such indirect effects: First Indirect35

Effect (Twomey, 1977), Second Indirect Effect (Albrecht, 1989), and others such as effects on cloud formation and precipitation

dynamics (Seinfeld et al., 2016, and the references therein), which affect the atmospheric energy balance.

The numerous physical and chemical effects of and on CCN and their non-linear interactions as detailed above provide

a glimpse into the complexities and challenges associated with developing a valid physical description of aerosol processes

in global climate models. A major problem is the accurate characterisation of CCN number concentrations ([CCN]) in the40

atmosphere and quantification of their effects on Earth’s radiative budget. Extensive measurements of [CCN] would help in

this regard, towards reducing the uncertainties in modeling aerosol–cloud interactions. Unfortunately, these are sparse; there are

some in situ measurements available during short campaigns and for a few sites from networks such as Atmospheric Radiation

Measurement Climate Research Facility (ARM), Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS), and

Global Atmosphere Watch (GAW), while satellite inference of [CCN] is not yet robust, suffering from missing data and45

coarse resolution. In contrast, particle mass concentration and speciation have been routinely measured in a large number of

networks, such as the Interagency Monitoring of Protected Visual Environments (IMPROVE), Chemical Speciation Network

(CSN/STN), and Clean Air Status and Trends Network (CASTNET) in the United States, Campaign on Atmospheric Aerosol

Research network of China (CARE-China), National Air Quality Monitoring Programme (NAMP) in India, and AirBase and

the EMEP (European Monitoring and Evaluation Programme) networks in the European Union, with some of the earliest50

measurements from the 1980s.

We investigate the possibility of using machine learning techniques to obtain CCN number concentrations from these mea-

surements. Machine learning is a statistical learning branch of artificial intelligence where computers learn without being

explicitly programmed to generalise from knowledge acquired by being trained on a huge number of specific scenarios. The
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development and use of machine learning to develop predictive models has been burgeoning over the last couple of decades,55

with recent applications in the atmospheric sciences such as in atmospheric new particle formation (e.g., Joutsensaari et al.,

2018; Zaidan et al., 2018), mixing-state (e.g., Christopoulos et al., 2018; Hughes et al., 2018), air quality (e.g., Huttunen et al.,

2016; Grange et al., 2018), remote-sensing (e.g., Fuchs et al., 2018; Mauceri et al., 2019; Okamura et al., 2017), and other

aspects (e.g., Dou and Yang, 2018; Jin et al., 2019). These and other studies show the power of machine learning as a tool

to account for the high non-linearities in the associations between atmospheric states and compositions towards predictive60

modeling.

The goal of the present study is to explore the possibility of deriving the number concentrations of CCN at 0.4% super-

saturation ([CCN0.4]) through more ubiquitous measurements of atmospheric state and composition. For this, we develop a

Random Forest Regression Model (RFRM). The machine learning model is trained on 30 years’ (1989–2018) simulations from

a chemical transport model incorporating a size-resolved particle microphysics model. The expectation is that the RFRM is65

able to learn the associations between atmospheric state and composition predictors and the [CCN0.4] (outcome).

The remainder of this paper is organised as follows: Section 2 details the data, techniques, and statistical performance metrics

used in this study; Section 3 details the development of the RFRM, validation of its performance, and evaluation with empirical

data; Section 4.1 summarises the major findings of this study; and Section 4.2 discusses some of the implications of this work

and the avenues it opens up.70

2 Data and methods

2.1 GEOS-Chem-APM model (GCAPM)

GEOS-Chem is a global 3D chemical transport model (CTM) driven by assimilated meteorological observations from the

Goddard Earth Observing System (GEOS) of the NASA Global Modeling and Assimilation Office (GMAO). Several research

groups develop and use this model, which contains numerous state-of-the-art modules treating emissions (van Donkelaar et al.,75

2008; Keller et al., 2014) and various chemical and aerosol processes (e.g., Bey et al., 2001; Evans and Jacob, 2005; Martin

et al., 2003; Murray et al., 2012; Park, 2004; Pye and Seinfeld, 2010) for solving a variety of atmospheric composition research

problems. The ISORROPIA II scheme (Fountoukis and Nenes, 2007) is used to calculate the thermodynamic equilibrium of in-

organic aerosols. Secondary organic aerosol formation and aging are based on the mechanisms developed by Pye and Seinfeld

(2010) and Yu (2011). MEGAN v2.1 (Model of Emissions of Gases and Aerosols from Nature; Guenther et al. (2012)) im-80

plements biogenic emissions and GFED4 (Global Fire Emissions Database; Giglio et al. (2013)) implements biomass burning

emissions in GEOS-Chem.

The present study uses GEOS-Chem version 10-01 with the implementation of the Advanced Particle Microphysics (APM)

package (Yu and Luo, 2009), henceforth referred to as GCAPM. The APM model has the following features of relevance

towards accurate simulation of CCN number concentrations: (1) 40 bins to represent secondary particles with high size resolu-85

tion for the size range important for growth of nucleated particles to CCN sizes (Yu and Luo, 2009) (2) state-of-the-art Ternary

Ion mediated Nucleation (TIMN) mechanism (Yu et al., 2018) and temperature-dependent organic nucleation parameterisation
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(Yu et al., 2017); (3) calculation of H2SO4 condensation and the successive oxidation aging of secondary organic gases (SOG)

and explicit kinetic condensation of low volatile SOG onto particles (Yu, 2011); (4) contributions of nitrate and ammonium

via equilibrium uptake and semi-volatile organics through partitioning to particle growth considered (Yu, 2011). CCN number90

concentrations simulated by GCAPM has previously been shown to agree well with measurements (Yu and Luo, 2009; Yu,

2011; Yu et al., 2013).

The horizontal resolution of GCAPM in this study is 2°× 2.5°, with 47 vertical layers (14 layers from surface to 2 km above

the surface). The period of global simulation is 30-years from 1989–2018. For 47 sites spread across the globe, co-located

GCAPM data is output at the half-hourly time-step for all model layers in the troposphere. In the present application, we use95

those at 6 selected vertical heights: surface, ∼1 km, ∼2 km, ∼4 km, ∼6 km, and ∼8 km.

2.2 Random Forest Regression Modeling (RFRM)

There are various machine learning techniques: Linear Regression, Logistic Regression, Decision Trees, Support Vector Ma-

chines, Naive Bayesian Classifier, k- Nearest Neighbors, K-Means clustering, Random Forest, Dimensionality Reduction, and

Gradient Boosting are the most commonly developed and applied. These techniques can be broadly categorised into (a) Super-100

vised Learning (b) Unsupervised Learning, and (c) Reinforcement Learning.

In this study, we use the Random Forest due to our objective of predicting values of [CCN0.4], their ease-of-physical-

interpretability, ease-of-implementation, and the ability to tune the supervised machine learning.

A Random Forest is an ensemble of decision trees. A decision tree is a supervised machine learning algorithm that recursively

splits the data into subsets based on the input variables that best split the data into homogeneous sets. This is a top-down105

‘greedy’ approach called recursive binary splitting. Decision trees are easy to visualise, are not influenced by missing data or

outliers, and are non-parametric. They can, however, overfit on the data. Random Forest modeling is an ensemble technique

of growing numerous decision trees from subsets (bags) of the training data and then using all the decision trees to make

an aggregated (typically mean) prediction. This approach corrects for the overfitting of single decision trees. Additionally, the

bootstrap aggregating (bagging) allows for model validation during training, by evaluating each component tree of the Random110

Forest with the out-of-bag training examples (training data that was not subsetted in growing the decision tree). Random Forest

models are advantageous due to the component decision trees being able to resolve complex non-linear relationships between

predictor variables regardless of their inter-dependencies or cross-correlations and the outcome to be predicted. Further, they

are relatively easier to visualise and interpret as compared to black-box neural network or deep learning methods. For the

purpose of predictions, Random Forest models are one of the most accurate machine learning models with the ability to be115

trained fast due to the parallelisability of the growth of decision trees. For these reasons, Random Forest is our chosen machine

learning tool.

In this study, we use a fast implementation (Wright and Ziegler, 2017) of Random Forest models (Breiman, 2001) in R

(R Core Team, 2020) trained on the above detailed GCAPM modeled [CCN0.4]. Further details of model development and

applications are in section 3.1.120
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2.3 Statistical estimators of model performance

In this study, we use the Kendall rank correlation coefficient (τ ) and Mean Fractional Bias (MFB) as statistical estimators of

correlation and deviation, respectively. These statistical parameters are more robust (as discussed later in this section) than

the conventionally used Pearson product-moment correlation coefficient (r) and Mean Normalised Error (MNE) (or similar

parameters).125

Pearson product-moment correlation coefficient (r) is:

r =
n∑
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i −Cm)(Co
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where n is the sample size, C is the value, t is the number of ties in the ith group of ties, and [ ]m denotes modeled and [ ]o130

denotes observed values.

As noted in Nair et al. (2019):

In the use of Pearson’s r are the following assumptions: (1) continuous measurements with pairwise complete

observations for the two samples being compared (2) absence of outliers (3) Gaussian distribution of values (4)

linearity between the two distributions, with minimal and homogenous variation about the linear fit (homoscedas-135

ticity).

Kendall’s τ is a nonparametric rank correlation coefficient that is not constrained by the assumptions in the use

of Pearson’s r. This parameter is also intuitive and simpler to interpret due to (a) the maximum possible value of

+1 indicative of complete concordance and the minimum possible value of−1 indicative of complete discordance

and (b) the ratio of concordance to discordance being (1 + τ)/(1− τ) (Kendall, 1970; Noether, 1981).140

Mean Normalised Error (MNE) and Mean Fractional Bias (MFB) are defined as:

MNE =
1
n

n∑
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∣∣∣∣
Cm

i −Co
i

Co
i

∣∣∣∣ and MFB =
1
n

n∑
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i −Co

i )

(Cm
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2 )

where n is the sample size, C is the value, [ ]m denotes modeled and [ ]o denotes observed values, and i is the ith of their n

pairs.

As noted in Nair et al. (2019):145

In the use of MNE, it is assumed that observed values are true values and not just estimates. MNE can easily

blow up to ∞ when observed values are very small. Further, positive bias is weighted more than negative bias.

Related parameters such as Normalised Mean Bias and Error (NMB and NME) also suffer from these deficiencies.
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Mean Fractional Bias (MFB) is not limited by the issues in the use of MNE. As a measure of deviation, Mean

Fractional Bias (MFB), ranging from [−2,+2], is symmetric about 0 and also not skewed by extreme differences150

in the compared values.

The following quantitative ranges are provided (arbitrarily) to qualitatively describe the degree of correlation: (1) Poor

agreement: τ ≤ 0.2, (2) Fair agreement: 0.2< τ ≤ 0.4, (3) Moderate agreement: 0.4< τ ≤ 0.6, (4) Good agreement: 0.6<

τ ≤ 0.8), and (5) Excellent agreement: 0.8< τ ≤ 1.0. Additionally, it is defined (arbitrarily; factor of 1.86 deviation) that there

is good agreement between derived and expectated values when the MFB is within [−0.6,+0.6].155

Statistical analyses are performed using R: a freely available language and environment for statistical computing and graphics

(R Core Team, 2020) and with the aid of the ‘Kendall’(McLeod, 2011) and ‘pcaPP’(Filzmoser et al., 2018) packages.

2.4 Observational data

For validation of the developed RFRM, we use in situ measurements of atmospheric state and composition as inputs to the

RFRM and compare the output [CCN0.4] with its measurements. The U.S. Department of Energy’s (DOE) Atmospheric160

Radiation Measurement (ARM) Southern Great Plains (SGP) Central Facility located in Lamont, Oklahoma (36◦36′18′′ N,

97◦29′6′′ W, 318 m; Fig. 1) was established with the mission statement of “provid[ing] the climate research community with

strategically located in situ and remote-sensing observatories designed to improve the understanding and representation, in

climate and earth system models, of clouds and aerosols as well as their interactions and coupling with the Earth’s surface.”

We use data from this facility, which has the longest record of [CCN0.4] at the hourly resolution.165

2.4.1 [CCN0.4] measurements

[CCN0.4] measurements at this SGP site have been made from 2007–present using a Cloud Condensation Nuclei Particle

Counter (CCNc) developed by Roberts and Nenes (2005) with technical details in Uin (2016). The CCNc is a continuous-

flow thermal-gradient diffusion chamber for measuring aerosols that can act as CCN. To measure these, aerosol is drawn

into a column, where well-controlled and quasi-uniform centerline supersaturation created. Through software controls, the170

temperature gradient and flow rate are modified to vary (0.1–3%) supersaturations and obtain CCN spectra. Water vapor

condenses on CCN in the sampled air to form droplets, just as cloud drops form in the atmosphere; these activated droplets are

counted and sized by an Optical Particle Counter (OPC).

We integrate the quality-checked data (Shi and Flynn, 2007; Smith et al., 2011a, b; Hageman et al., 2017) made publicly

available through ARM from co-located instruments at the SGP site to form a long-term record of [CCN0.4] as in Fig. 2 and175

for later analysis and validation of the RFRM.
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Figure 1. The ARM SGP site in Lamont, Oklahoma, U.S.A with marked locations of the instruments. The image is adapted from satellite

imagery © 2020 Maxar Technologies, USDA Farm Service Agency obtained through the Google Maps Static API.

Figure 2. Hourly [CCN0.4] measurements at Lamont, Oklahoma from 2007–2020. The orange circles show the data for [CCN0.4] measured

here. The purple circles show the data for [CCN0.4] derived from [CCN0.2–0.6] according to the method described in Section 2.4.2.
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Table 1. Evaluation metrics of the Random Forest models developed to derive [CCN0.4] from other supersaturations.

RF–Model IQR(MFB) τ

rf_2356 0.05 0.93

rf_235 0.06 0.92

rf_256 0.08 0.91

rf_236 0.09 0.91

rf_356 0.10 0.90

rf_25 0.11 0.88

rf_26 0.11 0.89

rf_35 0.11 0.88

rf_56 0.11 0.89

rf_36 0.15 0.87

rf_23 0.25 0.74

2.4.2 Filling the [CCN0.4] measurement gaps

The temporal range of available observations for [CCN0.4] at the SGP site is 2007-05-19 17:00:00 to 2020-01-29 23:00:00. For

this period of 111319 hours, there is only ∼ 42% data completeness. To improve the data coverage, we examine the possibility

of using [CCN] for other reported supersaturation ratios (0.2− 0.6%).180

In a sneak preview of the efficacy of Random Forest for regression, we train Random Forest models that output [CCN0.4]

from [CCN0.2–0.6]. These models are listed in Table 1, with the notation rf_n, where n denotes the supersaturations used

as input (for instance, rf_356 indicates [CCN0.3], [CCN0.5], and [CCN0.6] were used as inputs to derive [CCN0.4]). The

approach works exceptionally well and shows the potential for application with other datasets to fill in such gaps as well as to

perform sanity checks on available data. As reported in Table 1, there is high correlation (Kendall’s τ ) and minimal deviation185

(interquartile range of mean fractional bias (IQR(MFB)) between Random Forest derived [CCN0.4] and measured [CCN0.4],

when simultaneous data for [CCN0.4] is available.

Using this approach, we fill in the missing observations and improve data completeness from 42%→ 66%, a 54% increase,

for [CCN0.4] during this period (see Fig. 2).

2.4.3 Atmospheric state and composition measurements190

Meteorological data is sourced from the ARM Surface Meteorology Systems (MET) (Holdridge and Kyrouac, 1993) with

technical details in Ritsche (2011). We use the ARM Best Estimate Data Products (ARMBEATM; Chen and Xie (1994))

derived from (Holdridge and Kyrouac, 1993) when available (1994–2016).

Trace gas concentrations are obtained from the ARM Aerosol Observing System (AOS; Hageman et al. (1996)) with tech-

nical details in Jefferson (2011). Unfortunately, at the SGP site, measurements (Springston, 2012) are available only for [SO2]195
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Table 2. Selected atmospheric state and composition variables as RFRM predictors for [CCN0.4].

Meteorological

Temperature Precipitation RH Solar Radiation

Chemical Species

[NOx] [NH3] [OH] [Isoprene]

[SO2] [O3] [Monoterpene]

PM2.5 Speciated Mass Fraction

SO4 NO3 NH4 BC

POC SOA Dust Salt

from 2016–present. To compensate for this, we use data from the United States Environmental Protection Agency (EPA) Air

Quality System (AQS) made publicly available at https://www.epa.gov/air-data from monitors in the vicinity (< 100 km) of the

SGP site.

Real-time aerosol mass loadings and their chemical composition measurements have been made from 2010–present using

an Aerodyne Aerosol Chemical Speciation Monitor (ACSM; Ng et al. (2011)) with technical details in (Watson, 2017). We use200

the aerosol chemical speciation data (Watson et al., 2018; Kulkarni, 2019; Behrens et al., 1990), which is publicly available

through ARM.

3 Results and Discussion

3.1 RFRM: training, testing, and optimising

The GEOS-Chem-APM (GCAPM) output for 47 sites across the globe, for 6 selected vertical levels from surface to ∼ 8 km,205

and for 30 years (1989–2018) at the half-hour time-step (∼150 million rows, i.e. sets of predictors and [CCN0.4]) is considered

in training the random forest regression model (RFRM). The predictors of importance in controlling [CCN0.4] are listed in

Table 2. The RFRM is trained on a subset of this data. First, the ARM SGP site is ignored, which will be discussed separately

with available observational data in a later section. The remaining data for 46 sites and 6 vertical levels each are partitioned into

training (∼101 million rows) and testing sets (∼44 million rows) in a 7:3 ratio. Due to the large number of training and testing210

examples, these sets are reduced to a 1% random subset; it is ensured to be representative, with almost identical statistical

properties, of the training datasets (Fig. 3).
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Figure 3. Scaled Gaussian kernel density estimate for [CCN0.4] for the training set (dark purple) and each of its subsets (10%: light purple;

1%: light orange; 0.1%: dark orange). The distributions are almost identical. A 1% randomly sampled subset is used to train the RFRM.

Once the data has been selected to train the RFRM, we tune the parameters of the model. The default implementation of

Wright and Ziegler (2017) comes with reasonable (balancing speed and accuracy) choices for the number of trees in the forest

(numtrees), the minimum number of variables to consider for each split (mtry), and the minimum node size (min.node.size),215

i.e. the minimum size of homogeneous data to prevent overfitting. These defaults are: numtrees = 500,mtry = rounded-down

square root of the number of variables, and min.node.size = 5. We verify if these hyperparameter choices are optimal by

performing a grid-search of the hyperparameters and training multiple Random Forest models and not just examining their

performance with the training set, but also additionally with the test set. Figs. 4 & 5 show the results of this exercise.

Fig. 4 has 9 panels; from top to bottom:220

– the top 3 are for varying number of trees in the Random Forest: numtrees from 1 (a single decision tree) to 1800,

through the default choice of 500 (marked with vertical black dotted line);

– the middle 3 are for varying number of variables considered at each split point: mtry from 1 to 19, through the default

choice of 4 (marked with vertical black dotted line); and

– the bottom 3 are for varying minimum size of the terminal nodes: min.node.size from 1 to 10, through the default225

choice of 5 (marked with vertical black dotted line).

from left to right:

– the left 3 (green) show the overall out-of-bag error, i.e. the mean square error for the entire Random Forest computed

using the complement of the bootstrapped data used to train each tree;

– the middle 3 (orange) show the R2 values indicating the explained variance by the Random Forest; and230
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Figure 4. RFRM evaluation through OOB error (green), R2 (orange), and IQR(MFB) (purple) with varying hyperparameters. The hyperpa-

rameters are (from top to bottom): numtrees, mtry, and min.node.size. Default hyperparameters for each trained model are: numtrees

= 500, mtry = 4, and min.node.size = 5, also shown with the vertical black dotted lines when the corresponding default parameter has

been varied.

– the right 3 (purple) show the interquartile range of the mean fractional bias of the Random Forest model when applied

to the test set.

A single decision tree (left-most point in each of the top 3 panels of Fig. 4) is able to explain the variance (R2 ≈ 0.81) in

[CCN0.4] through the predictors’ and has an interquartile range in the MFB (which has a median of∼ 0.004: not pictured as the

symmetry of MFB means the median→ 0) of 0.41, which corresponds to a deviation of ∼±20%. However, this is drastically235

improved when moving beyond a simple decision tree to even a small ensemble of 30 trees (R2 ≈ 0.91; IQR(MFB) ≈ 0.27),

which plateaus (within a range of ±0.0005) after ∼500 trees. The out-of-bag (OOB) error shows a similar trend. Growing a

Random Forest of 500 trees with a min.node.size of 5, we see the effect of varying mtry in the middle 3 panels. Instead,

keeping the mtry fixed at the default value of 4: the rounded down square root of the 19 predictor variables, the Random

Forest performance metrics with varying min.node.size are shown in the bottom 3 panels. Fig. 4 thus shows the possibility240

of improving the Random Forest derivation of [CCN0.4] by changing the default choices of Wright and Ziegler (2017) for this

specific work. It must be kept in mind that a reasonable cutoff, beyond which there is imperceptible gain in performance at

increased computational cost, should be considered.
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Figure 5. RFRM evaluation through OOB error (top), R2 (middle), and IQR(MFB) (bottom) with varying hyperparameters selected from

the best balanced (accuracy and computational expense) ranges in Fig. 4.

The results shown in Fig. 4 motivate a zoomed-in hyperparameter grid search to choose the optimal (accurate and fast)

RFRM. Fig. 5 shows this for the best performing Random Forest models with numtrees ranging from 600 to 1400, mtry245

from 6 to 18, and min.node.size from 3 to 6. While there is variability, it must be noted that the y-axes range over 2%, 0.2%,

and 2% of the values of OOB error, R2, and IQR(MFB), respectively. While, indeed, considering a larger (numtrees) forest

is beneficial, considering the cost-to-benefit ratio, the hyperparameters we choose are a maximum number of 800 trees in the

forest, 12 (mtry) variables are randomly chosen at each split, minimum node size of 3 as the only control on tree depth, and

the splitting rule is the minimisation of variance. With these parameters, the Random Forest has IQR(MFB), R2, and OOB250

error of ∼ 100.34%, ∼ 99.93%, and ∼ 100.56% of the best-performing model for each parameter, respectively.

3.2 What the model learns

We train the optimised RFRM using the 19 predictors listed in Table 2 as predictors of [CCN0.4]; these are: 8 fractions of

PM2.5 (ammonium, sulfate, nitrate, secondary organic aerosol (SOA), black carbon (BC), primary organic carbon (POC),

dust, and salt), 7 gaseous species (nitrogen oxides (NOx), ammonia (NH3), ozone (O3), sulfur dioxide (SO2), hydroxyl radical255

(OH), isoprene, and monoterpene), and 4 meteorological variables (temperature, relative humidity (RH), precipitation, and

solar radiation).

Fig. 6 shows the importance of each predictor in determining the CCN0.4 number concentration in the above-trained RFRM.

This importance measure is obtained by randomly permuting values of each predictor to break the association with CCN0.4.

Also, the model is fed a pseudo-predictor of randomly generated white noise, labelled ‘Random’ in Fig. 6. Most important are260
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Figure 6. Importance (in decreasing order) of each predictor in the RFRM derivation of [CCN0.4].

component mass fractions of PM2.5, especially its inorganic fraction (ammonium, sulfate, and nitrate), [SO2], the other PM2.5

fractions excluding the salt and dust fractions, [NOx], and [NH3]. The ‘Random’ predictor is least important; contributing

imperceptibly to the [CCN0.4] prediction.

To quantify the importance of each of the 19 predictors, we do the following: (1) RF-Blind: train RFRMs without considering

one variable at a time and (2) RF-Random: randomise each predictor variable and input into RFRM-AllVars. These exercises265

will provide a more robust, as well as more intuitive measure of the importance of each predictor by analyzing and comparing

the deviation in predicted [CCN0.4] compared to the baseline optimised RFRM (hereafter, RFRM-AllVars). Table 3 shows the

median±median-absolute-deviation of mean fractional bias (MFB) for each such trained RF-Blind and RF-Random evaluated

with the test dataset, with the values for the baseline RF-AllVars at the bottom. For the MFB, its median-absolute-deviation

(and even IQR(MFB)) is a stronger indicator of the performance than the median, due to the symmetry of MFB. Examining the270

median-absolute-deviation of the MFB, the ‘Blind’ approach shows that the ammonium (PM2.5NH4), sulfate (PM2.5SO4),

and secondary organic (PM2.5SOA) fractions of PM2.5 are most important (in increasing order) in determining [CCN0.4]. The

‘Blind’ approach may however underestimate the importance of a predictor due to possible correlations with other predictors,

as seen in Fig. 7. These cross-correlations could mean the implicit participation of a predictor despite its absence in training the

RFRM. To overcome this limitation, in the ‘Random’ approach, the trained RFRM-AllVars is then input randomised predictors275

(one at a time) from the testing dataset. This breaks the association of each predictor with the outcome ([CCN0.4]) as well as

with other predictors. The resulting change (if any) in the RFRM-AllVars would show the importance of the specific predictor.

RF-Random for each predictor shows that all predictors (except solar radiation) are important, with the most important being

PM2.5SOA, PM2.5SO4, and PM2.5NH4.
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Table 3. Mean fractional bias (MFB) of each Random Forest Regression Model (RFRM). RF-Blind refers to the RFRM trained ignoring

the particular predictor. RF-Random refers to the randomisation of the particular predictor before input into RF-AllVars. RF-AllVars (at the

bottom of the table) is the baseline model where no variable is omitted/randomised. Values are median±median-absolute-deviation of MFB.

Predictor RF-Blind RF-Random

PM2.5SOA 0.056± 0.261 0.120± 0.888

PM2.5SO4 0.051± 0.238 0.133± 0.493

PM2.5NH4 0.044± 0.214 0.079± 0.345

Temperature 0.050± 0.221 0.109± 0.333

[SO2] 0.049± 0.215 0.059± 0.296

PM2.5BC 0.044± 0.211 0.094± 0.263

PM2.5SALT 0.044± 0.224 0.054± 0.256

PM2.5POC 0.044± 0.211 0.082± 0.246

[O3] 0.044± 0.212 0.056± 0.239

[NOx] 0.043± 0.209 0.058± 0.223

PM2.5NO3 0.044± 0.208 0.059± 0.223

PM2.5DUST 0.044± 0.211 0.056± 0.221

Relative Humidity 0.040± 0.208 0.047± 0.221

[NH3] 0.046± 0.209 0.052± 0.218

[Monoterpene] 0.045± 0.209 0.048± 0.213

[Isoprene] 0.044± 0.209 0.046± 0.211

[OH] 0.044± 0.208 0.048± 0.211

Precipitation 0.044± 0.209 0.046± 0.210

Solar Radiation 0.044± 0.208 0.045± 0.209

RF-AllVars 0.044± 0.209

Table 3 thus shows the importance of each predictor towards determining [CCN0.4] in decreasing order, which complements280

the results in Fig. 6. Fig. 6 shows the out-of-bag increase in mean square error upon permutation of a specific predictor. We

modify the approach in Wright and Ziegler (2017) (a) to leverage the advantages of the Mean Fractional Bias (MFB); (b) to

account for any implicit correlations between the data used to train (bagged) and evaluate (out-of-bag) the RFRM by using the

unseen testing dataset; and (c) to dissociate the effects of cross-correlations between predictors. The results of this modified

evaluation of the RFRM are in Table 3. These exercises to probe into the working of the RFRM show that all of the predictors285

were deemed necessary to capture [CCN0.4] magnitude and variability. The most important predictors are the PM2.5 speciated

components, gases including [SO2], [O3], and [NOx], and temperature and relative humidity.

14

https://doi.org/10.5194/acp-2020-509
Preprint. Discussion started: 10 June 2020
c© Author(s) 2020. CC BY 4.0 License.



Solar Radiation
Precipitation

Temperature
Relative Humidity

[SO2]
[NH3]

[OH]
[NOx]

[O3]
[Isoprene]

[Monoterpene]
PM2.5SO4

PM2.5NO3

PM2.5NH4

PM2.5SOA
PM2.5BC
PM2.5POC

PM2.5SALT
PM2.5DUST

[CCN0.4]

Kendall's tau:
 −1.0            −0.5               0.0               0.5                1.0

Figure 7. Kendall rank correlation (τ ) for the 19 predictors and [CCN0.4] in the RFRM training dataset (∼ 101 million rows). The boxes

show corresponding τ value according to color-scale. Boxes are divided vertically to represent τ for each selected model height: surface,∼1

km, ∼2 km, ∼4 km, ∼6 km, and ∼8 km.

3.2.1 Comparison with GCAPM [CCN0.4]

We examine the RFRM in further detail with the subset of data excluded for testing, i.e. for the sites that RF-AllVars has not

been exposed to during its training. Fig. 8 (a) shows RF-AllVars derived [CCN0.4] against that simulated by GCAPM for all290

of the testing dataset. RF-AllVars predicted [CCN0.4] values are highly correlated with expected values from GCAPM, with a

correlation of τ ≈ 0.88 and highest density along the dashed black line in Fig. 8 (a) denoting MFB = 0 or complete agreement.

The dashed blue and red lines denote −1<MFB <+1; ∼ 99.69% of the values are within this factor of 3× deviation. The

dotted lighter blue and red lines denote−0.6<MFB <+0.6;∼ 96.33% of the values are within this range of good agreement

between derived and expected [CCN0.4] values.295

Overall, the RFRM is able to derive [CCN0.4] with a median (median-absolute-deviation) MFB of 4.4(21)%. A comparison

to expected [CCN0.4] values from GCAPM in Fig. 9 (a) by means of the MFB shows the robustness of RF-AllVars in greater

detail. The highest density of MFBs is on or around 0, reiterating how well RF-AllVars predictions of [CCN0.4] compares to

GCAPM simulated values.
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Figure 8. Binned scatterplot of RFRM versus GCAPM simulated [CCN0.4]. Color bar shows the counts of points in each hexagonal bin.

Bins with low counts (< 1% of maximum count:∼ 3% of the data) are shaded grey. The lines indicate MFB of 0 (black; perfect agreement),

+1 (darker red), −1 (darker blue), +0.6 (lighter red), and −0.6 (lighter blue).

0

2000

4000

6000

−2.0 −1.0 −0.6 0.0 0.6 1.0
MFB

C
ou

nt

(a) For the testing dataset

6th: [70, 95) 7th: [95, 162) 8th: [162, 472) 9th: [472,1240) 10th: > 1240

1st: < 20 2nd: [20, 33) 3rd: [33, 44) 4th: [44, 55) 5th: [55, 70)

−2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2 −2 −1 0 1 2

0

500

1000

1500

0

500

1000

1500

MFB

C
ou

nt

(b) Faceted by each decile of the expected GCAPM [CCN0.4]

2.0

Figure 9. Mean fractional bias (MFB) of RFRM derived [CCN0.4] compared to expected values from GCAPM in the testing dataset (441756

values). Histogram shows the counts of the pairs by MFB. The lines indicate perfect agreement (black), MFB of +1 (dashed red), and MFB

of −1 (dashed blue). The dotted lines indicate MFB of +0.6 (dotted red) and −0.6 (dotted blue).

Fig. 8 (a) is faceted by height in Fig. 8 (b). Across the various heights, with varied [CCN0.4] ranges, RF-AllVars performs300

robustly with |MFB|< 2. Its robustness across varied [CCN0.4] ranges is further shown in Fig. 9 (b), where Fig. 9 (a) is faceted

by the deciles of the GCAPM simulated [CCN0.4]. RF-AllVars performs well over 4 orders of magnitude of [CCN0.4] from

100 to 2.7× 104 cm−3.
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Figure 10. Time series (weekly-aggregated) for the surface 2× 2.5◦ GCAPM gridbox containing the SGP site: (a) GCAPM simulated, (b)

RFRM-AllVars, and (c) RFRM-ShortVars derived [CCN0.4]; and the Mean Fractional Bias (MFB) of the RFRM with (b) AllVars and (e)

ShortVars. Dotted lines show the good agreement range of |MFB|< 0.6.

3.2.2 Comparisons for the SGP site

We also examine the temporal trends of [CCN0.4] for the SGP site (the surface 2×2.5◦ model gridbox), which was completely305

excluded from the RFRM training. Fig. 10 shows the weekly-aggregated time series from 1989–2018 for (a) GCAPM simulated

and (b) RFRM-AllVars derived [CCN0.4]. Also shown in Fig. 10(d) is the comparison, using MFB, of the derived [CCN0.4]

of RFRM-AllVars versus the GCAPM [CCN0.4] values. The RFRM performs well, being able to capture weekly variations

with good correlation (τ ≈ 0.68) and low deviation (∼ 99.87% within the good agreement range of |MFB|< 0.6).

As detailed in Section 2.4, there are numerous observations of atmospheric state and composition for the SGP site that can310

be utilised to validate the RFRM with empirical data. In an ideal situation, continuous, long-term, high quality measurements

for all the inputs to the RFRM (the predictor variables listed in Table 2) would have aided in this analysis. However, due to

the sparsity and absence of measurements of certain predictors, we are limited to the available factors listed in Table 4. These
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Table 4. RFRM predictors for [CCN0.4] as listed in Table 2. Italicised text shows those predictors determined (in Section 3.2) to not strongly

impact RFRM prediction of [CCN0.4]. Strike-through text shows the absence of their hourly measurements.

Meteorological

Temperature Precipitation RH Solar Radiation

Chemical Species

[NOx] ���[NH3] ���[OH] ���
��[Isoprene]

[SO2] [O3] ((((
(([Monoterpene]

PM2.5 Speciated Mass Fraction

SO4 NO3 NH4 ��BC

POC† SOA† ��Dust ���Salt*

Note: † Measurements for PM2.5 POC and SOA are reported as PM2.5

OC (total organic carbon). * For PM2.5 Salt, PM2.5 Chloride measurements

are available, but subject to a large percent of missing data.

are shown in Fig. 11, with the speciated PM2.5 predictors in Fig. 11(a), the trace gas measurements in Fig. 11(b), and the

meteorological variables in Fig. 11(c).315

Thus, with a reduction from 19→ 9 predictor variables, we retrain the RFRM to use only these as inputs to derive [CCN0.4].

The RFRM optimisation is carried out as described in Sec. 2.2; the RFRM parameters are numtrees= 1000, mtry =

3, and min.node.size= 3 and uses the 9 predictors listed in Table 4 to derive [CCN0.4]. This retrained RFRM (hence-

forth, RF-ShortVars) is evaluated using the testing dataset; with median (median-absolute-deviation) MFB deteriorating from

0.044(0.209)→−0.184(0.382), 96.33→ 80.30% of the derived [CCN0.4] values in the good agreement range, and correla-320

tion reducing from τ ≈ 0.88→ 0.79. While RFRM-ShortVars is less robust compared to RFRM-AllVars, the statistical esti-

mators of model performance are still high for RFRM-ShortVars.

Specifically for the SGP site, Fig. 10 (c) & (e) show the weekly-aggregated RFRM-ShortVars derived [CCN0.4] and its

comparison with the GCAPM [CCN0.4] values, respectively. RFRM-ShortVars performs well, being able to capture these

variations with good correlation (τ ≈ 0.66) and low deviation (∼ 98.72% within the good agreement range).325

Using measurements of the 9 predictor variables at the SGP site for 2010–2020, we use the developed RF-ShortVars to derive

[CCN0.4]. Compared to [CCN0.4] measurements, the RFRM performs well, with τ ≈ 0.36 and ∼ 67% with |MFB|< 0.6.

Apart from the expected deteriorated performance due to the reduction of necessary predictors to the available ones, the

uncertainties associated with the measurements themselves may compound this. Regardless, the variability from diurnal to

decadal scales are captured by the RFRM (top-left panel in Fig. 12) when compared to the measurements (bottom-left panel330
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in Fig. 12) of [CCN0.4]. For reference, in Fig. 12 the top-right and bottom-right panels are the same as in Fig. 10 (c) & (a),

respectively, but for this period of measurements.

Development of the machine learning model generally requires a large number of training examples, however, we also

investigate the possibility of developing an RFRM with the measurement data alone. The RFRM optimisation is carried

out as described in Sec. 2.2; this RFRM trained on actual measurements at SGP has numtrees= 1000, mtry = 3, and335

min.node.size= 5. Compared to the RFRM trained on GCAPM simulated data (∼150 million training examples), such an

RFRM has only∼34,000 training examples for the SGP site. We train such an RFRM, henceforth denoted as ORF (observation-

based random forest regression model), and examine its performance.

In comparison with SGP measured [CCN0.4], ORF shows correlation of τ ≈ 0.53 and good agreement with ∼ 81.22% of

its derived [CCN0.4] values. The time series (daily-aggregated) of ORF-derived [CCN0.4] is shown in Fig. 12, with measured340

predictors as input to the RFRM in the middle-left panel and GCAPM predictors as input to the RFRM in the middle-right

panel. In Fig. 13(b) ORF-derived [CCN0.4] is compared to hourly measurements. ORF appears to perform better than RF-

ShortVars from the summary statistics. However, it is unable to capture the range of variations in magnitude (middle-left panel

in Fig. 12). Similar results are observed (Fig. 13(d) and Fig. 12 middle-right) when ORF is applied to GCAPM simulated data.

This exercise of developing an observation-based RFRM is, however, not technically justifiable due to the small number of345

training examples and applicability to only the SGP site. Regardless, this exercise provides insight into whether considering

only 9 out of the 19 required predictor variables is sufficient for RF-ShortVars, examination of which suggests the affirmative.
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Figure 12. Time series (daily-aggregated) for [CCN0.4] derived by RF-ShortVars (top two) and ORF (middle two), compared to SGP

measured (bottom-left) and GCAPM-simulated (bottom-right).
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Figure 13. Mean fractional bias (MFB) of the random forest derived [CCN0.4] compared to expected values. Lefthand panels: comparison

with measured [CCN0.4]. Righthand panels: comparison with GCAPM simulated [CCN0.4]. The histograms show the pairwise counts (total

is inset top-left in each panel) by MFB. The lines indicate MFB of 0 (black), +1 (dashed red), −1 (dashed blue), +0.6 (dotted red), and

−0.6 (dotted blue). The percentage of RFRM derived values in good (|MFB|< 0.6) and fair (|MFB|< 1) agreement are shown close to the

+0.6 and +1.0 MFB lines, respectively.
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4 Conclusions

4.1 Summary

We develop a Random Forest Regression Model (RFRM) to predict the number concentrations of cloud condensation nuclei at350

0.4% supersaturation ([CCN0.4]) from atmospheric state and composition variables. This RFRM, trained on 30-year simula-

tions by a chemical transport model (GEOS-Chem) with a detailed microphysics scheme (APM), is able to predict [CCN0.4]

values. The RFRM learns that the PM2.5 fractions (except salt and dust) and gases such as SO2 and NOx are the most impor-

tant determinants of [CCN0.4]. The RFRM is robust in its derivation of [CCN0.4], with median (median-absolute-deviation)

mean fractional bias of 4.4(21)% with 96.33% of the derived values within the good agreement range (|MFB|< 0.6) and355

strong correlation of Kendall’s τ ≈ 0.88 for various locations around the globe, at various altitudes in the troposphere, and

across a varied range of [CCN0.4] magnitudes. We also demonstrate application of this technique for deriving [CCN0.4] from

measurements of [CCN] at other supersaturations. For a location in the Southern Great Plains region of the United States, using

real measurements as input to the RFRM demonstrates its applicability. To use the measurement data as input to the RFRM

required its tweaking to account for unavailable measurements for certain predictors. The truncated RFRM performs robustly360

despite these adjustments: median (median-absolute-deviation) mean fractional bias (MFB) of −18(38)% with 80.30% of the

derived [CCN0.4] in good agreement and strong correlation of Kendall’s τ ≈ 0.79. Specifically for the ARM SGP site, using

measured predictors as input to the RFRM and comparison with measured [CCN0.4], the median (median-absolute-deviation)

mean fractional bias (MFB) is −6(61)% with 67.02% of the derived [CCN0.4] in good agreement and Kendall’s correlation

coefficient τ ≈ 0.36.365

4.2 Further discussion and outlook

There are a number of limitations in the application of the present study to augment empirical measurements of [CCN]. These

are as follows:

– The RFRM is trained on GCAPM, with the assumption that the physical and chemical processes that relate the ‘pre-

dictor’ variables to the [CCN0.4] outcome are accurate. Previous studies show that GCAPM performs reasonably when370

compared to observations, but uncertainties in both model and observation may contribute to uncertainties in the RFRM

derivation.

– Co-located and simultaneous (with [CCN0.4] measurements) measurements of the required ‘predictor’ variables were

available only for certain predictors. We had to retrain the RFRM to account for these constraints, which sacrificed its

accuracy in deriving [CCN0.4]. Other issues with measurements arise from the limitations of their accuracy, precision,375

and detection limits. Further sources of error are the utilisation of ‘predictor’ measurements from nearby (but not co-

located) monitors to fill in significant gaps in the required data for the SGP site.

– Random Forest was the machine learning tool of choice due to its parallelisability and high degree of accuracy. There

are, however, other tools such as XGBoost (a choice for many winners of machine learning competitions) or regression
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neural networks. These, among others, could offer improved [CCN0.4] derivation. A cursory examination for the present380

study, however, showed no significant improvement at the cost of much higher computational expense.

– To overcome some of the gaps in the [CCN0.4] measurement data from the SGP site, we proposed and implemented a

derivation of [CCN0.4] from [CCN] measurements at other supersaturations using the Random Forest technique. While

this derivation was confirmed to be exceptionally good, this is an approximation.

– Development of an observation-based RFRM is presented in this study. However, it can be significantly improved with385

more observations for the SGP site, and generalisable if trained with observations from numerous other sites. This was

presently not possible.

Despite the caveats associated with this work, this proof-of-concept shows promise for wide-ranging development and

deployment. This machine learning approach can provide improved representation of cloud condensation nuclei numbers:

– in locations where their direct measurements are limited, but measurements of other atmospheric state and composi-390

tion variables are available. Typically, since measurements of PM2.5 speciation, trace gases, and meteorology are easier

than those of [CCN0.4], there are longer and more widely (spatially) distributed in situ measurement records, especially

through air quality monitoring networks. The developed RFRM can derive [CCN0.4] from these ubiquitous measure-

ments to complement [CCN0.4] measurements when available and fill in the gaps in their absence.

– in earth system models:395

– by providing a more accurate alternative to bulk microphysical parameterisations

– by providing a computationally less intensive alternative to explicit bin-resolving microphysics models

This work is an initial step towards fast and accurate derivation of [CCN0.4], in the absence of their measurements, con-

strained by empirical data for other measurements of atmospheric state and composition. This work demonstrates the possible

applications of machine learning tools in handling the complex, non-linear, ordinal, and large amounts of data in the atmo-400

spheric sciences.

Code and data availability. Data for training the RFRM are generated by GEOS-Chem, a grass-roots open-access model available at http:

//acmg.seas.harvard.edu/geos/, last accessed on 20/05/2020. Model training and analysis of predictions in this study are though the free

software environment for statistical computing and graphics: R (https://www.r-project.org/) and facilitated mainly by the ‘ranger’ package

(https://cran.r-project.org/web/packages/ranger/index.html). Data were obtained from the Atmospheric Radiation Measurement (ARM) user405

facility, a U.S. Department of Energy (DOE) Office of Science User Facility managed by the Biological and Environmental Research pro-

gram, which is publicly available at the ARM Discovery Data Portal at https://www.archive.arm.gov/discovery/, last accessed on 20/05/2020

and the EPA AirData Portal at https://www.epa.gov/air-data/, last accessed on 20/05/2020

.
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