
Response to Anonymous Referee #1

We are grateful to Anonymous Referee #1 for constructive comments and suggestions, which have helped
us revise and improve the clarity of this manuscript. Our replies addressing the referee comments follow;
corresponding revisions (boxed) are in the revised manuscript and marked in a separate tracked-changes
version.

General Comments

Referee Point P 1.1 — The paper proposed a Random Forest Regression Model (RFRM) based
on machine learning to derive [CCN0.4] number concentrations from commonly available mea-
surements (8 fractions of PM2.5, 7 gaseous specie, and 4 meteorological variables) over varying
spatial and temporal scales. The CCN number concentrations is an essential task for environment
evaluation and can be used for many different applications. The optic of this paper is interesting
and it is valuable to investigate. The author explained the detailed data acquisition and processing
steps of the proposed model. The suggested RFRM is trained on the long-term simulations in a
global size-resolved particle microphysics model and can be applied to any area of the world. The
experimental results demonstrate robustness of the proposed method. Also, there are still serval
problems that should be answered by the authors for a better understanding of the paper.

Reply: We are grateful to Anonymous Referee #1 for reviewing this manuscript and affirmation of the value
of this work and robustness of the method. Their following questions and suggestions were helpful in the
revision of this manuscript.

Specific Comments

Referee Point P 1.2 — In the process of geospatial analysis, it is essential to ensure that all the
relevant elements are at the same or very approximate temporal stamps. How do you confirm the
measure data at the SGP site (Meteorology and Chemical Species) are all in the same temporal
scale? No specific detailed explanation was found in section 2.4.1([CCN0.4] measurements) and
section 2.4.3 (Atmospheric state and composition measurements).

Reply: True. We have now made it clear in the manuscript as follows:

Lines 200–201
For observation–model simultaneity, all data (atmospheric state, composition, and [CCN0.4]) are
integrated to the hourly resolution with their geometric mean.

Referee Point P 1.3 — This work use the Random Forest approach to fill the missing observa-
tions with other reported supersaturation ratios (0.2–0.6%). I am wondering whether other work
had ever done using this method before. Are there any other different better ways to achieve data
filling? Is there any connection between the reduction performance of RFRMShortVars and filling
of the [CCN0.4] measurement gaps?

Reply: We have not found such application in the atmospheric sciences; this is indeed a useful machine
learning approach for experimentalists dealing with missing data and also in data quality checks. Breiman
(2003) made the first suggestion of Random Forest for dealing with missing values and there have been sub-
sequent applications in other fields (Stekhoven et al., 2011; Shah et al., 2014; Tang et al., 2017; Kokla et al.,
2019). The additional advantage here over these ‘traditional’ RF imputation methods, is that the ‘predictors’
are the same physical parameter ([CCN]) except at different supersaturations, which compensates for the
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smaller training data size, and results in the exceedingly good agreements seen in Table 1. There are a wide
variety of statistical methods of imputation from simple averaging to stochastic imputation, as well as their
ensemble approaches; there could be better ways to achieve data filling, but it is dependent on the nature of
the data.
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Figure 1: Mean fractional bias (MFB) of the RF-derived compared to measured [CCN0.4]. The stacked
(purple: [CCN0.4] measurements and orange: RF-derived [CCN0.4] from CCN[0.2–0.6] measurements)
histogram shows the pairwise counts by MFB, binwidth = 0.05. The vertical line segments indicate MFB of
0 (black), +1 (dashed red), −1 (dashed blue), +0.6 (dotted red), and −0.6 (dotted blue).

We could find only minimal contribution of filling the measurement gaps to the observed decrease in
RFRM performance (from RF-AllVars → RF-ShortVars). Fig. 1 shows the MFB distribution à la Figure
13(a) in the manuscript. Omitting the filled-in [CCN0.4] for RF-ShortVars’ [CCN0.4] derivation, Kendall’s
τ correlation increased from 0.363 → 0.415, percentage in the good-agreement range (|MFB| < 0.6) from
67.02% → 69.34%, and sample size n from 39, 811 → 29, 047. We have clarified this in the revised
manuscript:

Lines 334–339
We note that filling the measurement gaps (per Section 2.4.2) could contribute to this observed de-
crease in RFRM performance (from RF-AllVars→ RF-ShortVars). However, this contribution is min-
imal: when comparing the RF-ShortVars-derived [CCN0.4] with measurements excluding the filled-in
[CCN0.4], Kendall’s τ correlation increased from 0.36 → 0.42, and percentage within the good-
agreement range from 67.02%→ 69.34%, with the sample size n reducing from 39, 811→ 29, 047.
The deteriorated performance is mainly due to the reduction of necessary predictors to the available
ones; the uncertainties associated with the measurements themselves may compound this.

Referee Point P 1.4 — In Section 2.4.1(RFRM: training, testing, and optimising), why did the
author just ignore the ARM SGP site? Is it possible to choose more sites among the 47 sites in
later section?

Reply: Lines 208–209 were not very clear and have been modified as below. These 47 sites were chosen
based on the availability of aerosol measurements. However, over the US, the ARM SGP site was the
only one with ‘good-enough’ (long-term, with less gaps, and available co-located predictor measurements)
publicly available data for application and evaluation of the RFRM.
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Lines 207–208
The RFRM is trained on a subset of this data. First, the ARM SGP site is ignored; this is to establish
a completely independent analysis with available observational data in Section 3.2.2.

Referee Point P 1.5 — Overall, it is suggested to consider publish this paper after some minor
revisions, and some specific comments are listed as follows:

Technical Corrections

Referee Point P 1.6 — Figure 1 in page 7: It is recommended to describe the figure in more
detail, E.g. the description of the Meteorology rectangle is not very clear.

Reply: Fixed as follows:

Figure 1 caption, Page 2
Figure 1. The ARM SGP site in Lamont, Oklahoma, U.S.A with marked locations of the instruments. Legend— Meteorol-

ogy: temperature and relative humidity measurements from the ARM Surface Meteorology Systems (MET) (Holdridge and

Kyrouac, 1993; Chen and Xie, 1994). ACSM: Aerodyne Aerosol Chemical Speciation Monitor (Ng et al., 2011). [SO2]:

concentrations of SO2 measured by the ARM Aerosol Observing System (AOS; Hageman et al., 1996). CCNc: Cloud

Condensation Nuclei Particle Counter (CCNc) (Shi and Flynn, 2007; Smith et al., 2011a, b; Hageman et al., 2017). This

image is adapted from satellite imagery © 2020 Maxar Technologies, USDA Farm Service Agency obtained through the

Google Maps Static API.

Referee Point P 1.7 — Page 8 in Line 188: I guess rate of increase is about 57%.

Reply: The values (42.4923%, 65.5809%, and 54.336%) are rounded in the paper.

Lines 185–186
Using this approach, we fill in the missing observations and improve data completeness from ≈
42%→≈ 66%, an increase of ≈ 54%, for [CCN0.4] during this period (see Fig. 2.

Referee Point P 1.8 — Figure 3 in page 10: Should the line color in the Figure be changed to
dark purple to avoid misunderstanding?

Reply: Figure 3 justifies the random sampling of a subset of GEOS-Chem-APM output data for training
the RFRM. The overlap cannot be resolved unless zoomed in, which is good for the point we are making
here. However, we have made the change as suggested in Fig. 2 (Figure 3 in the revised manuscript).
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Figure 2: Scaled Gaussian kernel density estimate for [CCN0.4] for the training set (dark purple) and each of
its subsets (10%: light purple; 1%: light orange; 0.1%: dark orange). The distributions are almost identical.
A 1% randomly sampled subset is used to train the RFRM.
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Response to Anonymous Referee #2

Referee Point P 2.1 — This study demonstrates the use of a random forest regressor (RFR)
to predict cloud condensation nuclei (CCN) concentrations at 0.4% supersaturation from features
derived from chemical-transport model output (GEOS-Chem-APM) and measurements from a sur-
face monitor. The authors train a RFR using GEOS-Chem-APM output and compare these results
to observations at the SGP monitoring site. They then re-train models based on measurements
available at this site. While I found the approach promising and the subject matter (using a combi-
nation of modeling techniques to predict CCN) fits in well with the subject matter at ACP, I feel that
the scientific goal of the manuscript in its current form is not sufficient to recommend publication.

Reply: We are grateful to Anonymous Referee #2 for reviewing this manuscript and providing constructive
comments and suggestions, which have helped us revise and improve the clarity of this manuscript. We have
addressed the referee’s concerns about the scientific goal of this manuscript, as detailed below. Our replies
addressing the referee comments follow; corresponding revisions (boxed) are in the revised manuscript and
marked in a separate tracked-changes version.

General Comments

Referee Point P 2.2 — My main concern with this manuscript is in framing the results as a
“proof of concept”. Given the current state of literature for CCN and machine learning techniques,
I do not think a proof of concept is sufficient for publication (for instance, there are a number
of previous studies cited here that make use of machine learning techniques for atmospheric
science). Further, as a proof of concept, the comparison to observations is limited to one surface
site. Could the comparison to observations be expanded to include more sites? This paper could
be strengthened by applying this technique further than what the authors did in the present study.
The suggestions the authors made in Section 4.2 sounded promising. I especially thought the
suggestion at Line 396 (using this approach in models with only bulk aerosol schemes) was a good
idea. For instance this paper could be strengthened by: training the model with GEOS-ChemAPM,
predicting the CCN based on the standard (bulk microphysics) GEOS-Chem, and then comparing
to a larger suite of measurements (perhaps including ATom or sites with an SMPS in Europe). This
way the authors could demonstrate if the random forest model provided an improved estimate in
CCN over the approach used with the standard GEOS-Chem model. (Note, I am not suggesting
the authors follow this suggestion exactly but I am trying to demonstrate how I feel the argument
of this paper could be strengthened). Overall, the authors did a detailed job in training the RFR
but the use of it is limited to comparing to only one surface site. How robust is the model if we only
see it compared to one site?

Reply: We agree. A novelty of this work compared to the literature we cited in the introductory section
is that we leverage a multi-modeling approach, i.e. a machine learning model that learns from a global
size-resolved particle microphysics model for effective application to resolve the absence of measurements.
Additionally, no previous study has examined this approach for CCN, the quantification of which is signif-
icant for estimating the effective radiative forcing through aerosol–cloud interactions. Also, Anonymous
Referee #1 notes (doi:10.5194/acp-2020-509-RC1): “CCN number concentrations is an essential task for
environment evaluation and can be used for many different applications” and that “experimental results
demonstrate robustness of the proposed method.” The points and suggestions made in P 2.2 are good; we
have been working on these concurrently. However, we feel that inclusion of these results are beyond the
scope of the present work. The present manuscript is a demonstration of random forest regression modeling
(RFRM) for resolving the absence of [CCN] measurements with a note in the concluding section about the
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potential application of this work to improve their simulated values using bulk microphysical models. With
regards to the former, it is indeed possible to extend the approach to other sites; however, measurements
are highly varied in the parameters quantified (which are used as ‘predictors’ in the RFRM) and we feel
inclusion of results for other sites and corresponding discussion of site-specific machine learning model
development will only be repetitive and take away attention from the crux of this paper. Regarding the
latter, we believe that the necessary optimizations to be made of the machine learning model for balance
between speed and accuracy in modified chemical transport/earth system models and subsequent analysis of
the modified model performance are a topic that deems a separate discussion in itself.

Referee Point P 2.3 — Similarly, the discussion in Section 3.2.2 (Lines 316 and onwards) about
training new models with different features feels somewhat unclear as to what the goal is. This is
related to my comment above about the framing of the study. Is the goal to use actual observed
pollutant and meteorological measurements to predict CCN or to use the same values used in
GEOS-Chem and provide an alternate GEOS-Chem estimate? It seems problematic to have one
model trained on global GEOS-Chem-APM output and a second based on observations at one
site (unless the goal here is to compare why the two predictions are different?).

Reply: In Section 3.2.2, we examine the ARM SGP site in detail with model–observation comparison.
Lines 316–322 describe the re-training of the RFRM with fewer variables (due to absence/paucity of obser-
vations; discussed in preceding Lines 310–315, Table 4) to create RF-ShortVars. Lines 323–332 discuss how
RF-ShortVars performance changes compared to the better-optimized RFRM and how this truncated model
compares to observations. Lines 333–346 discuss RFRM training using measurement data (rather than the
typically large amount of training data that models can provide; here measurement data size is ≈ 0.2% that
of modeled) to create an observation-based RFRM (ORF) and corresponding evaluation of the ORF. This
exercise: (a) demonstrates that it is unlikely that we have neglected to consider some important ‘predictor’,
(b) provides an additional check on the importance of the ‘predictors’ learned in the GEOS-Chem-APM-
based RFRM, (c) validates the consideration of fewer (based on availability of measurements from 19→ 9)
variables in RF-ShortVars, and (d) shows that if large observational data sets of ‘predictors’ are available,
the RFRM for [CCN] derivation can be directly developed on measurements rather than having to learn from
the model. So, yes, one of the goals here is to compare why the two predictions are different. However, we
note (also in Lines 345–347) that presently we were unable to find ‘large-enough’ (somewhat vague term:
dependent basically on how good the RFRM performs, which is reduction of incorrect generation of feature
space due to a small bootstrapped sample showing spurious association to the randomly sampled subset of
predictors during node-splitting) measurement data for this; and that the exercise should only be considered
academic. We have added the following lines to reflect the present discussion:

Lines 384–387

Further, this exercise is insightful in demonstrating the unlikelihood of missing any important predictor in the RFRM,

providing an additional check on the importance of the RFRM predictors, and the potential utility of this machine learn-

ing approach being trained directly, without a physicochemically informed model, on atmospheric state and composition

measurements to derive [CCN0.4].

Lines 62–63: "The goal of the present study is to explore the possibility of deriving the number concen-
trations of CCN at 0.4% supersaturation ([CCN0.4]) through more ubiquitous measurements of atmospheric
state and composition."
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Specific Comments

Referee Point P 2.4 — Section 3.2.2: I think it would be useful to compare the performance
of the RFR model relative to the observations at SGP and GEOS-Chem-APM at SGP. Does the
RFR perform as well at predicting CCN as GEOS-Chem-APM? Or is the decrease in accuracy
reasonable given the improvement in computation time of RFR over a microphysical model?

Reply:
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Figure 1: Fig 12 (b) in the revised manuscript: Performance comparison of the models in quantifying
[CCN0.4] compared to its measured values for the SGP site.

We agree. While these have already been discussed in some detail in Section 3.2.2, you make a great
point of warranted further discussion focusing on the relative performance of RFRM and GCAPM. We have
added Fig. 1 (as Figure 12 (b) with associated discussion in the revised manuscript as follows:

Lines 344–362

Fig. 12 (b) compares GCAPM and RFRM performance in quantifying [CCN0.4] for SGP with respect to its measurements

corresponding to Fig. 12 (a). In the left-hand panel, GCAPM simulated [CCN0.4] shows fair correlation (τ ≈ 0.27) with

SGP measurements and 65% within the good-agreement range. The general tendency is overestimation (median MFB ≈
0.25), seen as higher density above the perfect agreement line (dashed black). RFRM-ShortVars derives [CCN0.4]

(Fig. 12 (b): center) to a greater degree of agreement than GCAPM does, with τ ≈ 0.37 and ≈ 75% with |MFB| < 0.6

and median MFB ≈ −0.04 indicating a slight tendency to underestimate.

It is to be recalled that the GCAPM [CCN0.4] is more reflective of regional tendencies, simulating [CCN0.4] for a 2× 2.5

gridbox around the SGP site. The RFRM is trained on GCAPM, from where the associations were learned between at-

mospheric state and composition variables and [CCN0.4], thus implicitly imbibing the effect of physical and chemical

processes that control particle number concentrations. That RFRM-ShortVars-derived [CCN0.4] is better-representative

is a demonstration that these processes are well-represented within GCAPM. Leveraging this aspect as well as utilising

localised conditions (actual measurements) of atmospheric state and composition, the RFRM performs significantly better

than GCAPM. These results and the ability to capture the variability of [CCN0.4] across temporal scales demonstrates the

derivation of [CCN0.4] through the more commonly available measurements of meteorology, atmospheric chemical species

including speciation of particulate matter.

The right-hand panel of Fig. 12 (b) shows how RFRM-ShortVars performs when using GCAPM simulated values of the

input predictor variables. τ ≈ 0.24 and 71% with |MFB| < 0.6 indicates that the RFRM model performance is compara-

ble to GCAPM for the SGP site in alignment with our observations in Section 3.2.1. This is encouraging towards further

development of this machine learning approach for potential application in Earth system models (ESMs).

and continued:

3



Lines 362–367

The Random Forest technique discussed here has two key virtues: (1) its computational advantages as discussed in Sec-

tion 2.2 and (2) its learning from a state-of-the-science chemical transport model coupled with size-resolved microphysics.

In ESMs, where the demand for computational efficiency results in using simplified bulk microphysical treatment, the

RFRM can provide a more accurate representation of particle numbers, especially those that mediate aerosol-cloud interac-

tions, while remaining computationally efficient.

Regarding how reasonable is the accuracy vs. speed: a deliberation on this is beyond the scope of the
present paper as discussed in our reply to P 2.2.

Referee Point P 2.5 — Hyperparameter tuning (Line 215): Why were these three hyperparam-
eters chosen to be tuned as opposed to the other possible hyperparameters (such as max tree
depth)? This section is often framed as balancing accuracy with computational cost, but isn’t
overfitting also a large concern here?

Reply: Preliminary work (not discussed) involved k-fold cross validation with random and grid searches
of the hyperparameter space and determining which are important with smaller samples of data. The three
parameters were chosen based on this as well as literature (a comprehensive review by Probst et al. (2019)
covers these). True, max tree depth is important to consider in optimization of the RFRM, we have implicitly
considered this through min.node.size (mentioned in Lines 215–216, 249); setting the minimum number of
observations in the terminal nodes determines how deep each decision tree in the forest is. Lines 106–
109 discussed overfitting; random forests are expected to not suffer from the overfitting issues of decision
trees due to the ensemble of random individual models (Breiman, 2001). Further, the model optimization
process discussed in Section 3.1 provides further guarantee that overfitting is not a concern by evaluating
the model not just with data it is trained on, but also data it has never been exposed to, by additionally
optimizing for IQR(MFB) (Lines 217–219), and thus ensuring that performance metrics are consistent. For
these reasons, compensatory techniques such as pruning decision trees (that make up the random forest)
need not be applied here. To reflect this discussion, the following modified text is in the revised manuscript:

Lines 212–224

Once the data has been selected to train the RFRM, we tune the hyperparameters, which govern the training of the ma-

chine learning model. The default implementation of Wright and Zeigler (2017) comes with reasonable (balancing speed

and accuracy) choices for these. Based on literature review (Probst et al. (2019) and the references therein) as well as

our preliminary examination of RFRMs with varying hyperparameters, we identify the following as most important to

optimize— numtrees: number of trees in the forest, mtry: the minimum number of variables to consider for each split, and

min.node.size: the minimum node size, i.e. the minimum size of homogeneous data to prevent overfitting. By setting the

minimum number of training examples in the terminal nodes of the component trees of the RF, the individual tree depth

is controlled, which further mitigates the overfitting associated with decision tree algorithms (discussed in Section 2.2).

The default hyperparameter values in Wright and Zeigler (2017) are: numtrees = 500, mtry = rounded-down square root

of the number of variables, and min.node.size = 5. We verify if these hyperparameter choices are optimal by performing a

grid-search of the hyperparameters and training multiple Random Forest models and not just examining their performance

with the training set, but also additionally with the test set. By evaluating the RFRMs with the test set (data that the machine

learning algorithm was not exposed to during its training), additional mitigation of possible overfitting is achieved.
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Referee Point P 2.6 — The writing in Section 2.2 can be improved. First, the paragraph on
the random forest technique should be better cited. In addition, while a random forest can im-
prove overfitting issues over a single decision tree, it certainly does not completely correct over-
fitting. Finally, I do not think the paragraph at Line 100 (listing different techniques and super-
vised/unsupervised learning) is necessary.

Reply: Discussed ‘overfitting’ above in P 2.5. Modified accordingly as follows:

Lines 97–117

In the present study, we choose to use the Random Forest (RF) technique (Breiman, 2001) from the large suite of machine

learning techniques, for the following reasons: (a) our objective of predicting (regressing) values of [CCN0.4], (b) the ease-

of-physical-interpretability of RF models, (c) ease-of-implementation, and (d) the ability to tune this supervised machine

learning, which is learning by example.

A Random Forest (Breiman, 2001) is an ensemble of decision trees. A decision tree (Breiman et al., 1984) is a supervised

machine learning algorithm that recursively splits the data into subsets based on the input variables that best split the data

into homogeneous sets. This is a top-down ‘greedy’ approach called recursive binary splitting. Decision trees are easy to

visualise, are not influenced by missing data or outliers, and are non-parametric. They can, however, overfit on the data.

Random Forest modeling is an ensemble technique of growing numerous decision trees from subsets (bags) of the training

data and then using all the decision trees to make an aggregated (typically mean) prediction. This approach corrects for

the overfitting of single decision trees. Additionally, the bootstrap aggregating (bagging; Breiman, 1996) allows for model

validation during training, by evaluating each component tree of the Random Forest with the out-of-bag training examples

(training data that was not subsetted in growing the decision tree). Random Forest models are advantageous due to the

component decision trees being able to resolve complex non-linear relationships between predictor variables regardless

of their inter-dependencies or cross-correlations and the outcome to be predicted. Further, they are relatively easier to

visualise and interpret as compared to black-box neural network or deep learning methods. For the purpose of predictions,

Random Forest models are one of the most accurate machine learning models with the ability to be trained fast due to the

parallelisability of the growth of decision trees. For these reasons, Random Forest is our chosen machine learning tool.

We utilise a fast implementation (Wright and Ziegler, 2017) of Random Forest models (Breiman, 2001) in R (R Core

Team, 2020) trained on the GCAPM modeled [CCN0.4] detailed in Section 2.1. Further details of model development and

applications are in Section 3.1.

Referee Point P 2.7 — The first two paragraphs of the introduction can be cleaned up. For
instance:

– Line 23 reads “these particles or aerosols, or rather CCN”, equates aerosols to CCN which
is not technically correct.

– The word “particles” should be used instead of “particulates”.

– Line 25: I suggest changing “directly get into the atmosphere” with “emitted”.

– Line 34: “Aerosol–cloud interactions are through CCN” is vague (“depend on”?). This also
neglects to mention the intermediate step of cloud droplet number concentration (the authors
point is still valid).

Reply: We have made the following changes (italicized) in the revised manuscript:
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Lines 23–26

These particles/aerosols, or rather CCN (cloud condensation nuclei: aerosols capable of being imbibed in clouds and

modifying their properties) have direct and indirect sources. They can be directly emitted into the atmosphere as sea salt,

primary inorganic particulates such as dust and carbon, or primary organic particulates.

Lines 33–34

These aerosol–cloud interactions are mediated by CCN that affect cloud micro- and macro-physics primarily through their

interaction with water vapor to modify cloud droplet size and number.

We retain "particulates" instead of the suggested "particles" as we feel its meaning of ‘matter in the form
of minute separate particles’ is better-suited here.

Technical Comments

Referee Point P 2.8 — Line ∼135: The paragraph citation of Nair et al. (2019) does not seem
needed here, especially since this paragraph cites two other papers.

Reply: We retain this to avoid self-plagiarism of the block quote.

Referee Point P 2.9 — Line 209: “The remaining data..”: Does the word ‘data’ here refer to GC
model output or observed data?

Reply: Clarified in the revised manuscript:

Lines 208–209

The remaining GCAPM data for 46 sites and 6 vertical levels each are partitioned into training (≈101 million rows) and

testing sets (≈44 million rows) in a 7:3 ratio.

Referee Point P 2.10 — Line 327: A tau of 0.36 is pretty low, correct? This seems like a notable
decrease in model accuracy.

Reply: Yes, τ ≈ 0.36 is in the fair agreement range that we define in Section 2.2. Lines 316–322 &
326–329 discussed the decrease and possible reasons for this.

Referee Point P 2.11 — Line 353: Minor typo (subscript 2.5)

Reply: Changed all instances of "PM2.5"→ "PM2.5" in the revised manuscript.
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Abstract. Cloud condensation nuclei (CCN) number concentrations are an important aspect of aerosol–cloud interactions and

the subsequent climate effects; however, their measurements are very limited. We use a machine learning tool, random de-

cision forests, to develop a Random Forest Regression Model (RFRM) to derive CCN at 0.4% supersaturation ([CCN0.4])

from commonly available measurements. The RFRM is trained on the long-term simulations in a global size-resolved particle

microphysics model. Using atmospheric state and composition variables as predictors, through associations of their variabili-5

ties, the RFRM is able to learn the underlying dependence of [CCN0.4] on these predictors, which are: 8 fractions of PM2.5

:::::
PM2.5:

(NH4, SO4, NO3, secondary organic aerosol (SOA), black carbon (BC), primary organic carbon (POC), dust, and salt),

7 gaseous species (NOx, NH3, O3, SO2, OH, isoprene, and monoterpene), and 4 meteorological variables (temperature (T),

relative humidity (RH), precipitation, and solar radiation). The RFRM is highly robust: median mean fractional bias (MFB)

of 4.4% with ∼ 96.33%
::::::::
≈ 96.33%

:
of the derived [CCN0.4] within a good agreement range of −60%<MFB<+60% and10

strong correlation of Kendall’s τ coefficient ≈ 0.88. The RFRM demonstrates its robustness over 4 orders of magnitude of

[CCN0.4] over varying spatial (such as continental to oceanic, clean to polluted, and near surface to upper troposphere) and

temporal (from the hourly to the decadal) scales. At the Atmospheric Radiation Measurement Southern Great Plains obser-

vatory (ARM SGP) in Lamont, Oklahoma, United States, long-term measurements for PM2.5
:::::
PM2.5 speciation (NH4, SO4,

NO3, and organic carbon (OC)), NOx, O3, SO2, T, and RH, as well as [CCN0.4] are available. We modify, optimise, and15

retrain the developed RFRM to make predictions from 19→ 9 of these available predictors. This retrained RFRM (RFRM-

ShortVars) shows a reduction in performance due to the unavailability and sparsity of measurements (predictors); it captures

the [CCN0.4] variability and magnitude at SGP with ∼ 67.02%
:::::::::
≈ 67.02% of the derived values in the good agreement range.

This work shows the potential of using the more commonly available measurements of PM2.5
:::::
PM2.5:

speciation to alleviate

the sparsity of CCN number concentrations’ measurements.20

Copyright statement.
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1 Introduction

Minute particles suspended in the atmosphere prove to be the most non-trivial sources of uncertainty (variability across mod-

eling efforts) in our understanding of climate change (IPCC AR5, 2013). These particlesor /aerosols, or rather CCN (cloud

condensation nuclei: aerosols capable of being imbibed in clouds and modifying their properties) have direct and indirect25

sources. They can directly get
::
be

::::::
directly

:::::::
emitted into the atmosphere as sea salt, primary inorganic particulates such as dust

and carbon, or primary organic particulates. Aqueous chemistry can modify the chemical species in the cloud droplet, which

on evaporation will result in an aerosol size distribution capable of acting as CCN at lower RH (Hoppel et al., 1994). In the air,

emissions of SO2/DMS, NOx, and organics can undergo gas-phase (photo-)chemistry to form condensible vapors that may

take part in new particle formation (nucleation) that converts gas to particle; this process is an important source of aerosols,30

especially from anthropogenic sources, and subsequent growth contributes up to 50% or more of global CCN (e.g., Merikanto

et al., 2009; Yu and Luo, 2009).

Of the uncertainty in the effective radiative forcing (ERF) in global climate models associated with aerosols, the aerosol

indirect effect primarily through aerosol–cloud interactions (aci) is predominant (IPCC AR5, 2013): ERFaci =−1.2 to 0

Wm−2. These aerosol–cloud interactions are through
::::::::
mediated

::
by

:
CCN that affect cloud micro- and macro-physics primarily35

through their interaction with water vapor to modify cloud droplet size and number. There are various such indirect effects:

First Indirect Effect (Twomey, 1977), Second Indirect Effect (Albrecht, 1989), and others such as effects on cloud formation

and precipitation dynamics (Seinfeld et al., 2016, and the references therein), which affect the atmospheric energy balance.

The numerous physical and chemical effects of and on CCN and their non-linear interactions as detailed above provide

a glimpse into the complexities and challenges associated with developing a valid physical description of aerosol processes40

in global climate models. A major problem is the accurate characterisation of CCN number concentrations ([CCN]) in the

atmosphere and quantification of their effects on EarthΓÇÖs radiative budget. Extensive measurements of [CCN] would help in

this regard, towards reducing the uncertainties in modeling aerosol–cloud interactions. Unfortunately, these are sparse; there are

some in situ measurements available during short campaigns and for a few sites from networks such as Atmospheric Radiation

Measurement Climate Research Facility (ARM), Aerosol, Clouds and Trace Gases Research Infrastructure (ACTRIS), and45

Global Atmosphere Watch (GAW), while satellite inference of [CCN] is not yet robust, suffering from missing data and

coarse resolution. In contrast, particle mass concentration and speciation have been routinely measured in a large number of

networks, such as the Interagency Monitoring of Protected Visual Environments (IMPROVE), Chemical Speciation Network

(CSN/STN), and Clean Air Status and Trends Network (CASTNET) in the United States, Campaign on Atmospheric Aerosol

Research network of China (CARE-China), National Air Quality Monitoring Programme (NAMP) in India, and AirBase and50

the EMEP (European Monitoring and Evaluation Programme) networks in the European Union, with some of the earliest

measurements from the 1980s.

We investigate the possibility of using machine learning techniques to obtain CCN number concentrations from these mea-

surements. Machine learning is a statistical learning branch of artificial intelligence where computers learn without being

explicitly programmed to generalise from knowledge acquired by being trained on a huge number of specific scenarios. The55
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development and use of machine learning to develop predictive models has been burgeoning over the last couple of decades,

with recent applications in the atmospheric sciences such as in atmospheric new particle formation (e.g., Joutsensaari et al.,

2018; Zaidan et al., 2018), mixing-state (e.g., Christopoulos et al., 2018; Hughes et al., 2018), air quality (e.g., Huttunen et al.,

2016; Grange et al., 2018), remote-sensing (e.g., Fuchs et al., 2018; Mauceri et al., 2019; Okamura et al., 2017), and other

aspects (e.g., Dou and Yang, 2018; Jin et al., 2019). These and other studies show the power of machine learning as a tool60

to account for the high non-linearities in the associations between atmospheric states and compositions towards predictive

modeling.

The goal of the present study is to explore the possibility of deriving the number concentrations of CCN at 0.4% super-

saturation ([CCN0.4]) through more ubiquitous measurements of atmospheric state and composition. For this, we develop a

Random Forest Regression Model (RFRM). The machine learning model is trained on 30 years’ (1989–2018) simulations from65

a chemical transport model incorporating a size-resolved particle microphysics model. The expectation is that the RFRM is

able to learn the associations between atmospheric state and composition predictors and the [CCN0.4] (outcome).

The remainder of this paper is organised as follows: Section 2 details the data, techniques, and statistical performance metrics

used in this study; Section 3 details the development of the RFRM, validation of its performance, and evaluation with empirical

data; Section 4.1 summarises the major findings of this study; and Section 4.2 discusses some of the implications of this work70

and the avenues it opens up.

2 Data and methods

2.1 GEOS-Chem-APM model (GCAPM)

GEOS-Chem is a global 3D chemical transport model (CTM) driven by assimilated meteorological observations from the

Goddard Earth Observing System (GEOS) of the NASA Global Modeling and Assimilation Office (GMAO). Several research75

groups develop and use this model, which contains numerous state-of-the-art modules treating emissions (van Donkelaar et al.,

2008; Keller et al., 2014) and various chemical and aerosol processes (e.g., Bey et al., 2001; Evans and Jacob, 2005; Martin

et al., 2003; Murray et al., 2012; Park, 2004; Pye and Seinfeld, 2010) for solving a variety of atmospheric composition research

problems. The ISORROPIA II scheme (Fountoukis and Nenes, 2007) is used to calculate the thermodynamic equilibrium of in-

organic aerosols. Secondary organic aerosol formation and aging are based on the mechanisms developed by Pye and Seinfeld80

(2010) and Yu (2011). MEGAN v2.1 (Model of Emissions of Gases and Aerosols from Nature; Guenther et al. (2012)) im-

plements biogenic emissions and GFED4 (Global Fire Emissions Database; Giglio et al. (2013)) implements biomass burning

emissions in GEOS-Chem.

The present study uses GEOS-Chem version 10-01 with the implementation of the Advanced Particle Microphysics (APM)

package (Yu and Luo, 2009), henceforth referred to as GCAPM. The APM model has the following features of relevance85

towards accurate simulation of CCN number concentrations: (1) 40 bins to represent secondary particles with high size resolu-

tion for the size range important for growth of nucleated particles to CCN sizes (Yu and Luo, 2009) (2) state-of-the-art Ternary

Ion mediated Nucleation (TIMN) mechanism (Yu et al., 2018) and temperature-dependent organic nucleation parameterisation
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(Yu et al., 2017); (3) calculation of H2SO4 condensation and the successive oxidation aging of secondary organic gases (SOG)

and explicit kinetic condensation of low volatile SOG onto particles (Yu, 2011); (4) contributions of nitrate and ammonium90

via equilibrium uptake and semi-volatile organics through partitioning to particle growth considered (Yu, 2011). CCN number

concentrations simulated by GCAPM has previously been shown to agree well with measurements (Yu and Luo, 2009; Yu,

2011; Yu et al., 2013).

The horizontal resolution of GCAPM in this study is 2°× 2.5°, with 47 vertical layers (14 layers from surface to 2 km above

the surface). The period of global simulation is 30-years from 1989–2018. For 47 sites spread across the globe, co-located95

GCAPM data is output at the half-hourly time-step for all model layers in the troposphere. In the present application, we use

those at 6 selected vertical heights: surface, ∼
:
≈1 km, ∼

:
≈2 km, ∼

::
≈4 km, ∼

::
≈6 km, and ∼

:
≈8 km.

2.2 Random Forest Regression Modeling (RFRM)

There are various machine learning techniques: Linear Regression, Logistic Regression, Decision Trees, Support Vector

Machines, Naive Bayesian Classifier, k- Nearest Neighbors, K-Means clustering, Random Forest, Dimensionality Reduction,100

and Gradient Boosting are the most commonly developed and applied. These techniques can be broadly categorised into (a)

Supervised Learning (b) Unsupervised Learning, and (c) Reinforcement Learning.

In this
:
In

:::
the

::::::
present

:
study, we

:::::
choose

::
to
:
use the Random Forest due to

::::
(RF)

::::::::
technique

::::::::::::::
(Breiman, 2001)

::::
from

:::
the

::::
large

:::::
suite

::
of

:::::::
machine

:::::::
learning

::::::::::
techniques,

:::
for

:::
the

:::::::::
following

:::::::
reasons:

:::
(a)

:
our objective of predicting

:::::::::
(regressing)

:
values of [CCN0.4],

their
:::
(b)

:::
the ease-of-physical-interpretability ,

:
of
::::

RF
::::::
models,

:::
(c)

:
ease-of-implementation, and

::
(d)

:
the ability to tune the

:::
this105

supervised machine learning,
::::::
which

::
is

:::::::
learning

::
by

:::::::
example.

A Random Forest
::::::::::::::
(Breiman, 2001) is an ensemble of decision trees. A decision tree

::::::::::::::::::
(Breiman et al., 1984) is a supervised

machine learning algorithm that recursively splits the data into subsets based on the input variables that best split the data into

homogeneous sets. This is a top-down ‘greedy’ approach called recursive binary splitting. Decision trees are easy to visualise,

are not influenced by missing data or outliers, and are non-parametric. They can, however, overfit on the data. Random Forest110

modeling is an ensemble technique of growing numerous decision trees from subsets (bags) of the training data and then using

all the decision trees to make an aggregated (typically mean) prediction. This approach corrects for the overfitting of single

decision trees. Additionally, the bootstrap aggregating (bagging)
:::::::::::::::::::::
(bagging; Breiman, 1996) allows for model validation during

training, by evaluating each component tree of the Random Forest with the out-of-bag training examples (training data that

was not subsetted in growing the decision tree). Random Forest models are advantageous due to the component decision trees115

being able to resolve complex non-linear relationships between predictor variables regardless of their inter-dependencies or

cross-correlations and the outcome to be predicted. Further, they are relatively easier to visualise and interpret as compared to

black-box neural network or deep learning methods. For the purpose of predictions, Random Forest models are one of the most

accurate machine learning models with the ability to be trained fast due to the parallelisability of the growth of decision trees.

For these reasons, Random Forest is our chosen machine learning tool.120
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In this study, we use
::
We

:::::
utilise

:
a fast implementation (Wright and Ziegler, 2017) of Random Forest models (Breiman, 2001)

in R (R Core Team, 2020) trained on the above detailed GCAPM modeled [CCN0.4]
::::::
detailed

:::
in

::::::
Section

:::
2.1. Further details of

model development and applications are in section
::::::
Section 3.1.
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2.3 Statistical estimators of model performance

In this study, we use the Kendall rank correlation coefficient (τ ) and Mean Fractional Bias (MFB) as statistical estimators of125

correlation and deviation, respectively. These statistical parameters are more robust (as discussed later in this section) than

the conventionally used Pearson product-moment correlation coefficient (r) and Mean Normalised Error (MNE) (or similar

parameters).

Pearson product-moment correlation coefficient (r) is:

r =

n∑
i=1

(Cm
i −Cm)(Co

i −Co)√∑n
i=1(Cm

i −Cm)2
√∑n

i=1(Co
i −Co)2

130

and Kendall rank correlation coefficient (τ ):

τ =

∑n
i=2(sign(Cm

i −Cm
i−1))(sign(Co

i −Co
i−1))√(

n
2

)
− 1

2

∑n
i=1 t

m
i (tmi − 1)

√(
n
2

)
− 1

2

∑n
i=1 t

o
i (toi − 1)

where n is the sample size, C is the value, t is the number of ties in the ith group of ties, and [ ]m denotes modeled and [ ]o

denotes observed values.

As noted in Nair et al. (2019):135

In the use of Pearson’s r are the following assumptions: (1) continuous measurements with pairwise complete

observations for the two samples being compared (2) absence of outliers (3) Gaussian distribution of values (4)

linearity between the two distributions, with minimal and homogenous variation about the linear fit (homoscedas-

ticity).

Kendall’s τ is a nonparametric rank correlation coefficient that is not constrained by the assumptions in the use140

of Pearson’s r. This parameter is also intuitive and simpler to interpret due to (a) the maximum possible value of

+1 indicative of complete concordance and the minimum possible value of−1 indicative of complete discordance

and (b) the ratio of concordance to discordance being (1 + τ)/(1− τ) (Kendall, 1970; Noether, 1981).

Mean Normalised Error (MNE) and Mean Fractional Bias (MFB) are defined as:

MNE =
1

n

n∑
i=1

∣∣∣∣Cm
i −Co

i

Co
i

∣∣∣∣ and MFB =
1

n

n∑
i=1

(Cm
i −Co

i )

(
Cm

i +Co
i

2 )
145

where n is the sample size, C is the value, [ ]m denotes modeled and [ ]o denotes observed values, and i is the ith of their n

pairs.

As noted in Nair et al. (2019):

In the use of MNE, it is assumed that observed values are true values and not just estimates. MNE can easily

blow up to ∞ when observed values are very small. Further, positive bias is weighted more than negative bias.150

Related parameters such as Normalised Mean Bias and Error (NMB and NME) also suffer from these deficiencies.

6



Mean Fractional Bias (MFB) is not limited by the issues in the use of MNE. As a measure of deviation, Mean

Fractional Bias (MFB), ranging from [−2,+2], is symmetric about 0 and also not skewed by extreme differences

in the compared values.

The following quantitative ranges are provided (arbitrarily) to qualitatively describe the degree of correlation: (1) Poor155

agreement: τ ≤ 0.2, (2) Fair agreement: 0.2< τ ≤ 0.4, (3) Moderate agreement: 0.4< τ ≤ 0.6, (4) Good agreement: 0.6<

τ ≤ 0.8), and (5) Excellent agreement: 0.8< τ ≤ 1.0. Additionally, it is defined (arbitrarily; factor of 1.86 deviation) that there

is good agreement between derived and expectated values when the MFB is within [−0.6,+0.6].

Statistical analyses are performed using R: a freely available language and environment for statistical computing and graphics

(R Core Team, 2020) and with the aid of the ‘Kendall’(McLeod, 2011) and ‘pcaPP’(Filzmoser et al., 2018) packages.160

2.4 Observational data

For validation of the developed RFRM, we use in situ measurements of atmospheric state and composition as inputs to the

RFRM and compare the output [CCN0.4] with its measurements. The U.S. Department of Energy’s (DOE) Atmospheric

Radiation Measurement (ARM) Southern Great Plains (SGP) Central Facility located in Lamont, Oklahoma (36◦36′18′′ N,

97◦29′6′′ W, 318 m; Fig. 1) was established with the mission statement of “provid[ing] the climate research community165

with strategically located in situ and remote-sensing observatories designed to improve the understanding and representation,

in climate and earth system models, of clouds and aerosols as well as their interactions and coupling with the EarthΓÇÖs

surface.” We use data from this facility, which has the longest record of [CCN0.4] at the hourly resolution.

2.4.1 [CCN0.4] measurements

[CCN0.4] measurements at this SGP site have been made from 2007–present using a Cloud Condensation Nuclei Particle170

Counter (CCNc) developed by Roberts and Nenes (2005) with technical details in Uin (2016). The CCNc is a continuous-

flow thermal-gradient diffusion chamber for measuring aerosols that can act as CCN. To measure these, aerosol is drawn

into a column, where well-controlled and quasi-uniform centerline supersaturation created. Through software controls, the

temperature gradient and flow rate are modified to vary (0.1–3%) supersaturations and obtain CCN spectra. Water vapor

condenses on CCN in the sampled air to form droplets, just as cloud drops form in the atmosphere; these activated droplets are175

counted and sized by an Optical Particle Counter (OPC).

We integrate the quality-checked data (Shi and Flynn, 2007; Smith et al., 2011a, b; Hageman et al., 2017) made publicly

available through ARM from co-located instruments at the SGP site to form a long-term record of [CCN0.4] as in Fig. 2 and

for later analysis and validation of the RFRM.
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Figure 1. The ARM SGP site in Lamont, Oklahoma, U.S.A with marked locations of the instruments. The
:::::
Legend

::
—

::::::::::
Meteorology:

::::::::::
temperature

:::::
and

:::::::
relative

::::::::
humidity

::::::::::::
measurements

::::::
from

::::
the

::::::
ARM

:::::::
Surface

:::::::::::
Meteorology

::::::::
Systems

:::::::
(MET)

::::::::::::::::::::::::::::::::::::::
(Holdridge and Kyrouac, 1993; Chen and Xie, 1994).

:::::::
ACSM:

::::::::
Aerodyne

::::::
Aerosol

::::::::
Chemical

::::::::
Speciation

:::::::
Monitor

::::::::::::
(Ng et al., 2011)

:
.
:
[SO2]

:
:

::::::::::
concentrations

::
of
:
SO2 :::::::

measured
::
by

::
the

:::::
ARM

::::::
Aerosol

::::::::
Observing

::::::
System

:::::::::::::::::::::
(AOS; Hageman et al., 1996)

:
.
:::::
CCNc:

:::::
Cloud

::::::::::
Condensation

::::::
Nuclei

:::::
Particle

:::::::
Counter

::::::
(CCNc)

:::::::::::::::::::::::::::::::::::::::::::::::::
(Shi and Flynn, 2007; Smith et al., 2011a, b; Hageman et al., 2017).

::::
This

:
image is adapted from satellite imagery

© 2020 Maxar Technologies, USDA Farm Service Agency obtained through the Google Maps Static API.

Figure 2. Hourly [CCN0.4] measurements at Lamont, Oklahoma from 2007–2020. The orange circles show the data for [CCN0.4] measured

here. The purple circles show the data for [CCN0.4] derived from [CCN0.2–0.6] according to the method described in Section 2.4.2.
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Table 1. Evaluation metrics of the Random Forest models developed to derive [CCN0.4] from other supersaturations.

RF–Model IQR(MFB) τ

rf_2356 0.05 0.93

rf_235 0.06 0.92

rf_256 0.08 0.91

rf_236 0.09 0.91

rf_356 0.10 0.90

rf_25 0.11 0.88

rf_26 0.11 0.89

rf_35 0.11 0.88

rf_56 0.11 0.89

rf_36 0.15 0.87

rf_23 0.25 0.74

2.4.2 Filling the [CCN0.4] measurement gaps180

The temporal range of available observations for [CCN0.4] at the SGP site is 2007-05-19 17:00:00 to 2020-01-29 23:00:00.

For this period of 111319 hours, there is only ∼ 42%
::::::
≈ 42% data completeness. To improve the data coverage, we examine

the possibility of using [CCN] for other reported supersaturation ratios (0.2− 0.6%).

In a sneak preview of the efficacy of Random Forest for regression, we train Random Forest models that output [CCN0.4]

from [CCN0.2–0.6]. These models are listed in Table 1, with the notation rf_n, where n denotes the supersaturations used185

as input (for instance, rf_356 indicates [CCN0.3], [CCN0.5], and [CCN0.6] were used as inputs to derive [CCN0.4]). The

approach works exceptionally well and shows the potential for application with other datasets to fill in such gaps as well as to

perform sanity checks on available data. As reported in Table 1, there is high correlation (Kendall’s τ ) and minimal deviation

(interquartile range of mean fractional bias (IQR(MFB)) between Random Forest derived [CCN0.4] and measured [CCN0.4],

when simultaneous data for [CCN0.4] is available.190

Using this approach, we fill in the missing observations and improve data completeness from 42%→ 66%, a 54% increase

:::::::::::::::
≈ 42% →≈ 66%,

:::
an

:::::::
increase

::
of

::::::
≈ 54%, for [CCN0.4] during this period (see Fig. 2).
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2.4.3 Atmospheric state and composition measurements

Meteorological data is sourced from the ARM Surface Meteorology Systems (MET) (Holdridge and Kyrouac, 1993) with

technical details in Ritsche (2011). We use the ARM Best Estimate Data Products (ARMBEATM; Chen and Xie (1994))195

derived from (Holdridge and Kyrouac, 1993) when available (1994–2016).

Trace gas concentrations are obtained from the ARM Aerosol Observing System (AOS; Hageman et al. (1996)) with tech-

nical details in Jefferson (2011). Unfortunately, at the SGP site, measurements (Springston, 2012) are available only for [SO2]

from 2016–present. To compensate for this, we use data from the United States Environmental Protection Agency (EPA) Air

Quality System (AQS) made publicly available at https://www.epa.gov/air-data from monitors in the vicinity (< 100 km) of the200

SGP site.

Real-time aerosol mass loadings and their chemical composition measurements have been made from 2010–present using

an Aerodyne Aerosol Chemical Speciation Monitor (ACSM; Ng et al. (2011)) with technical details in (Watson, 2017). We use

the aerosol chemical speciation data (Watson et al., 2018; Kulkarni, 2019; Behrens et al., 1990), which is publicly available

through ARM.205

:::
For

::::::::::::::::
observation–model

:::::::::::
simultaneity,

::
all

::::
data

:::::::::::
(atmospheric

:::::
state,

:::::::::::
composition,

::::
and [

:::::::
CCN0.4]

:
)
:::
are

:::::::::
integrated

::
to

:::
the

::::::
hourly

::::::::
resolution

::::
with

::::
their

:::::::::
geometric

:::::
mean.

:

3 Results and Discussion

3.1 RFRM: training, testing, and optimising

The GEOS-Chem-APM (GCAPM) output for 47 sites across the globe, for 6 selected vertical levels from surface to ∼ 8
:::
≈ 8210

km, and for 30 years (1989–2018) at the half-hour time-step (∼
::
≈150 million rows, i.e. sets of predictors and [CCN0.4]) is con-

sidered in training the random forest regression model (RFRM). The predictors of importance in controlling [CCN0.4] are listed

in Table 2. The RFRM is trained on a subset of this data. First, the ARM SGP site is ignored, which will be discussed separately

:
;
:::
this

::
is

::
to

::::::::
establish

:
a
::::::::::

completely
::::::::::
independent

:::::::
analysis

:
with available observational data in a later section

::::::
Section

::::
3.2.2. The

remaining
:::::::
GCAPM data for 46 sites and 6 vertical levels each are partitioned into training (∼

::
≈101 million rows) and testing215

sets (∼
:
≈44 million rows) in a 7:3 ratio. Due to the large number of training and testing examples, these sets are reduced to a

1% random subset; it is ensured to be representative, with almost identical statistical properties, of the training datasets (Fig. 3).

Once the data has been selected to train the RFRM, we tune the parameters of the
::::::::::::::
hyperparameters,

:::::
which

:::::::
govern

:::
the

::::::
training

:::
of

:::
the

:::::::
machine

::::::::
learning model. The default implementation of Wright and Ziegler (2017) comes with reasonable

(balancing speed and accuracy) choices for the
::::
these.

::::::
Based

::
on

::::::::
literature

::::::
review

:::::::::::::::::::::::::::::::::::
(Probst et al., 2019, and references therein)

::
as220

:::
well

:::
as

:::
our

::::::::::
preliminary

::::::::::
examination

::
of

:::::::
RFRMs

::::
with

:::::::
varying

::::::::::::::
hyperparameters,

:::
we

:::::::
identify

:::
the

::::::::
following

::
as

::::
most

:::::::::
important

::
to

:::::::::
optimize—

::::::::::
numtrees: number of trees in the forest(numtrees), ,

::::::
mtry: the minimum number of variables to consider for each

split(mtry), and
:
,
:::
and

::::::::::::::
min.node.size: the minimum node size(min.node.size), i.e. the minimum size of homogeneous data to

prevent overfitting. These defaults
:::
By

:::::
setting

:::
the

::::::::
minimum

:::::::
number

::
of

:::::::
training

::::::::
examples

::
in

::
the

:::::::
terminal

::::::
nodes

::
of

::
the

::::::::::
component

10
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Table 2. Selected atmospheric state and composition variables as RFRM predictors for [CCN0.4].

Meteorological

Temperature Precipitation RH Solar Radiation

Chemical Species

[NOx] [NH3] [OH] [Isoprene]

[SO2] [O3] [Monoterpene]

PM2.5 Speciated Mass Fraction

SO4 NO3 NH4 BC

POC SOA Dust Salt

0.00

0.25

0.50

0.75

1.00

10 0 10 1 10 2 10 3 10 4

[CCN0.4] (# cm−3)

S
ca

le
d 

D
en

si
ty

% sampled of the training set

100% 10% 1% 0.1%

Figure 3. Scaled Gaussian kernel density estimate for [CCN0.4] for the training set (dark purple) and each of its subsets (10%: light purple;

1%: light orange; 0.1%: dark orange). The distributions are almost identical. A 1% randomly sampled subset is used to train the RFRM.

::::
trees

::
of

:::
the

::::
RF,

:::
the

:::::::::
individual

:::
tree

:::::
depth

::
is
::::::::::

controlled,
:::::
which

::::::
further

::::::::
mitigates

::::
the

:::::::::
overfitting

::::::::
associated

:::::
with

:::::::
decision

::::
tree225

:::::::::
algorithms

::::::::
(discussed

:::
in

::::::
Section

::::
2.2).

::::
The

::::::
default

:::::::::::::
hyperparameter

::::::
values

::
in

::::::::::::::::::::::
Wright and Ziegler (2017) are: numtrees = 500,

mtry = rounded-down square root of the number of variables, and min.node.size = 5. We verify if these hyperparameter

choices are optimal by performing a grid-search of the hyperparameters and training multiple Random Forest models and not

just examining their performance with the training set, but also additionally with the test set.
::
By

:::::::::
evaluating

:::
the

:::::::
RFRMs

::::
with

::
the

::::
test

:::
set

::::
(data

::::
that

:::
the

:::::::
machine

:::::::
learning

::::::::
algorithm

::::
was

:::
not

:::::::
exposed

::
to

::::::
during

::
its

::::::::
training),

:::::::::
additional

::::::::
mitigation

:::
of

:::::::
possible230

::::::::
overfitting

::
is

::::::::
achieved.

:
Figs. 4 & 5 show the results of this exercise.
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Figure 4. RFRM evaluation through OOB error (green), R2 (orange), and IQR(MFB) (purple) with varying hyperparameters. The hyperpa-

rameters are (from top to bottom): numtrees, mtry, and min.node.size. Default hyperparameters for each trained model are: numtrees

= 500, mtry = 4, and min.node.size = 5, also shown with the vertical black dotted lines when the corresponding default parameter
::::
value

has been varied.

Fig. 4 has 9 panels; from top to bottom:

– the top 3 are for varying number of trees in the Random Forest: numtrees from 1 (a single decision tree) to 1800,

through the default choice of 500 (marked with vertical black dotted line);

– the middle 3 are for varying number of variables considered at each split point: mtry from 1 to 19, through the default235

choice of 4 (marked with vertical black dotted line); and

– the bottom 3 are for varying minimum size of the terminal nodes: min.node.size from 1 to 10, through the default

choice of 5 (marked with vertical black dotted line).

from left to right:

– the left 3 (green) show the overall out-of-bag error, i.e. the mean square error for the entire Random Forest computed240

using the complement of the bootstrapped data used to train each tree;

– the middle 3 (orange) show the R2 values indicating the explained variance by the Random Forest; and

12



– the right 3 (purple) show the interquartile range of the mean fractional bias of the Random Forest model when applied

to the test set.

A single decision tree (left-most point in each of the top 3 panels of Fig. 4) is able to explain the variance (R2 ≈ 0.81)245

in [CCN0.4] through the predictors’ and has an interquartile range in the MFB (which has a median of ∼ 0.004
:::::::
≈ 0.004: not

pictured as the symmetry of MFB means the median → 0) of 0.41, which corresponds to a deviation of ∼±20%
:::::::
≈±20%.

However, this is drastically improved when moving beyond a simple decision tree to even a small ensemble of 30 trees (R2 ≈
0.91; IQR(MFB) ≈ 0.27), which plateaus (within a range of ±0.0005) after ∼

:
≈500 trees. The out-of-bag (OOB) error shows

a similar trend. Growing a Random Forest of 500 trees with a min.node.size of 5, we see the effect of varying mtry in the250

middle 3 panels. Instead, keeping the mtry fixed at the default value of 4: the rounded down square root of the 19 predictor

variables, the Random Forest performance metrics with varying min.node.size are shown in the bottom 3 panels. Fig. 4 thus

shows the possibility of improving the Random Forest derivation of [CCN0.4] by changing the default choices of Wright and

Ziegler (2017) for this specific work. It must be kept in mind that a reasonable cutoff, beyond which there is imperceptible gain

in performance at increased computational cost, should be considered.255

The results shown in Fig. 4 motivate a zoomed-in hyperparameter grid search to choose the optimal (accurate and fast)

RFRM. Fig. 5 shows this for the best performing Random Forest models with numtrees ranging from 600 to 1400, mtry

from 6 to 18, and min.node.size from 3 to 6. While there is variability, it must be noted that the y-axes range over 2%, 0.2%,

and 2% of the values of OOB error, R2, and IQR(MFB), respectively. While, indeed, considering a larger (numtrees) forest

is beneficial, considering the cost-to-benefit ratio, the hyperparameters we choose are a maximum number of 800 trees in the260

forest, 12 (mtry) variables are randomly chosen at each split, minimum node size of 3 as the only control on tree depth, and

the splitting rule is the minimisation of variance. With these parameters
:::::::::::::
hyperparameters, the Random Forest has IQR(MFB),

R2, and OOB error of ∼ 100.34%, ∼ 99.93%, and ∼ 100.56%
::::::::::
≈ 100.34%,

:::::::::
≈ 99.93%,

::::
and

:::::::::
≈ 100.56%

:
of the best-performing

model for each parameter
:::::::::::::
hyperparameter, respectively.
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Figure 5. RFRM evaluation through OOB error (top), R2 (middle), and IQR(MFB) (bottom) with varying hyperparameters selected from

the best balanced (accuracy and computational expense) ranges in Fig. 4.

3.2 What the model learns265

We train the optimised RFRM using the 19 predictors listed in Table 2 as predictors of [CCN0.4]; these are: 8 fractions

of PM2.5
:::::
PM2.5:

(ammonium, sulfate, nitrate, secondary organic aerosol (SOA), black carbon (BC), primary organic carbon

(POC), dust, and salt), 7 gaseous species (nitrogen oxides (NOx), ammonia (NH3), ozone (O3), sulfur dioxide (SO2), hydroxyl

radical (OH), isoprene, and monoterpene), and 4 meteorological variables (temperature, relative humidity (RH), precipitation,

and solar radiation).270

Fig. 6 shows the importance of each predictor in determining the CCN0.4 number concentration in the above-trained RFRM.

This importance measure is obtained by randomly permuting values of each predictor to break the association with CCN0.4.

Also, the model is fed a pseudo-predictor of randomly generated white noise, labelled ‘Random’ in Fig. 6. Most important are

component mass fractions of PM2.5
:::::
PM2.5, especially its inorganic fraction (ammonium, sulfate, and nitrate), [SO2], the other

PM2.5
:::::
PM2.5:

fractions excluding the salt and dust fractions, [NOx], and [NH3]. The ‘Random’ predictor is least important;275

contributing imperceptibly to the [CCN0.4] prediction.

To quantify the importance of each of the 19 predictors, we do the following: (1) RF-Blind
:::::::::::
RFRM-Blind: train RFRMs

without considering one variable at a time and (2) RF-Random
:::::::::::::
RFRM-Random: randomise each predictor variable and input

into RFRM-AllVars
::
the

::::::
RFRM. These exercises will provide a more robust, as well as more intuitive measure of the importance

of each predictor by analyzing and comparing the deviation in predicted [CCN0.4] compared to the baseline optimised RFRM280

(hereafter, RFRM-AllVars). Table 3 shows the median ± median-absolute-deviation of mean fractional bias (MFB) for each

such trained RF-Blind and RF-Random
:::::::::::
RFRM-Blind

:::
and

::::::::::::::
RFRM-Random

:
evaluated with the test dataset, with the values for

the baseline RF-AllVars
::::::::::::
RFRM-AllVars

:
at the bottom. For the MFB, its median-absolute-deviation (and even IQR(MFB)) is a

14
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Figure 6. Importance (in decreasing order) of each predictor in the RFRM derivation of [CCN0.4].

stronger indicator of the performance than the median, due to the symmetry of MFB. Examining the median-absolute-deviation

of the MFB, the ‘Blind’ approach shows that the ammonium (PM2.5
:::::
PM2.5NH4), sulfate (PM2.5

:::::
PM2.5SO4), and secondary285

organic (PM2.5
:::::
PM2.5SOA) fractions of PM2.5

:::::
PM2.5:

are most important (in increasing order) in determining [CCN0.4]. The

‘Blind’ approach may however underestimate the importance of a predictor due to possible correlations with other predictors,

as seen in Fig. 7. These cross-correlations could mean the implicit participation of a predictor despite its absence in training the

RFRM. To overcome this limitation, in the ‘Random’ approach, the trained RFRM-AllVars is then input randomised predictors

(one at a time) from the testing dataset. This breaks the association of each predictor with the outcome ([CCN0.4]) as well as290

with other predictors. The resulting change (if any) in the RFRM-AllVars would show the importance of the specific predictor.

RF-Random
:::::::::::::
RFRM-Random

:
for each predictor shows that all predictors (except solar radiation) are important, with the most

important being PM2.5SOA, PM2.5
:::::::::
PM2.5SOA,

::::::
PM2.5SO4, and PM2.5

:::::
PM2.5NH4.

Table 3 thus shows the importance of each predictor towards determining [CCN0.4] in decreasing order, which complements

the results in Fig. 6 . Fig. 6
:::
that shows the out-of-bag increase in mean square error upon permutation of a specific predictor.295

We modify the approach in Wright and Ziegler (2017) (a) to leverage the advantages of the Mean Fractional Bias (MFB); (b)

to account for any implicit correlations between the data used to train (bagged) and evaluate (out-of-bag) the RFRM by using

the unseen testing dataset; and (c) to dissociate the effects of cross-correlations between predictors. The results of this modified

evaluation of the RFRM are in Table 3. These exercises to probe into the working of the RFRM show that all of the predictors

were deemed necessary to capture [CCN0.4] magnitude and variability. The most important predictors are the PM2.5
:::::
PM2.5300

speciated components, gases including [SO2], [O3], and [NOx], and temperature and relative humidity.
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Table 3. Mean fractional bias (MFB) of each Random Forest Regression Model (RFRM). RF-Blind
:::::::::
RFRM-Blind

:
refers to the RFRM

trained ignoring the particular predictor. RF-Random
::::::::::::
RFRM-Random refers to the randomisation of the particular predictor before input into

RF-AllVars
:::::::::::
RFRM-AllVars. RF-AllVars

:::::::::::
RFRM-AllVars

:
(at the bottom of the table) is the baseline model where no variable is omitted/ran-

domised. Values are median ± median-absolute-deviation of MFB.

Predictor RF-Blind
:::::::::::
RFRM-Blind RF-Random

::::::::::::
RFRM-Random

PM2.5
:::::
PM2.5SOA 0.056± 0.261 0.120± 0.888

PM2.5
::::
PM2.5SO4 0.051± 0.238 0.133± 0.493

PM2.5
::::

PM2.5NH4 0.044± 0.214 0.079± 0.345

Temperature 0.050± 0.221 0.109± 0.333

[SO2] 0.049± 0.215 0.059± 0.296

PM2.5
:::::
PM2.5BC 0.044± 0.211 0.094± 0.263

PM2.5
:::::
PM2.5SALT 0.044± 0.224 0.054± 0.256

PM2.5
:::::
PM2.5POC 0.044± 0.211 0.082± 0.246

[O3] 0.044± 0.212 0.056± 0.239

[NOx] 0.043± 0.209 0.058± 0.223

PM2.5
:::::
PM2.5NO3 0.044± 0.208 0.059± 0.223

PM2.5
:::::
PM2.5DUST 0.044± 0.211 0.056± 0.221

Relative Humidity 0.040± 0.208 0.047± 0.221

[NH3] 0.046± 0.209 0.052± 0.218

[Monoterpene] 0.045± 0.209 0.048± 0.213

[Isoprene] 0.044± 0.209 0.046± 0.211

[OH] 0.044± 0.208 0.048± 0.211

Precipitation 0.044± 0.209 0.046± 0.210

Solar Radiation 0.044± 0.208 0.045± 0.209

RF-AllVars
::::::::::::
RFRM-AllVars

:
0.044± 0.209

16



Solar Radiation
Precipitation

Temperature
Relative Humidity

[SO2]
[NH3]

[OH]
[NOx]

[O3]
[Isoprene]

[Monoterpene]
PM2.5SO4

PM2.5NO3

PM2.5NH4

PM2.5SOA
PM2.5BC
PM2.5POC

PM2.5SALT
PM2.5DUST

[CCN0.4]

Kendall's tau:
 −1.0            −0.5               0.0               0.5                1.0

Figure 7. Kendall rank correlation (τ ) for the 19 predictors and [CCN0.4] in the RFRM training dataset (∼ 101
:::::
≈ 101 million rows). The

boxes show corresponding τ value according to color-scale. Boxes are divided vertically to represent τ for each selected model height:

surface, ∼
:
≈1 km, ∼

:
≈2 km, ∼

::
≈4 km, ∼

:
≈6 km, and ∼

::
≈8 km.
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Figure 8. Binned scatterplot of RFRM versus GCAPM simulated [CCN0.4]. Color bar shows the counts of points in each hexagonal bin.

Bins with low counts (< 1% of maximum count: ∼ 3%
::::
≈ 3%

:
of the data) are shaded grey. The lines indicate MFB of 0 (black; perfect

agreement), +1 (darker red), −1 (darker blue), +0.6 (lighter red), and −0.6 (lighter blue).

3.2.1 Comparison with GCAPM [CCN0.4]

We examine the RFRM in further detail with the subset of data excluded for testing, i.e. for the sites that RF-AllVars

::::::::::::
RFRM-AllVars

:
has not been exposed to during its training. Fig. 8 (a) shows RF-AllVars

:::::::::::::
RFRM-AllVars derived [CCN0.4]

against that simulated by GCAPM for all of the testing dataset. RF-AllVars
::::::::::::
RFRM-AllVars

:
predicted [CCN0.4] values are305

highly correlated with expected values from GCAPM, with a correlation of τ ≈ 0.88 and highest density along the dashed

black line in Fig. 8 (a) denoting MFB = 0 or complete agreement. The dashed blue and red lines denote −1<MFB <+1;

∼ 99.69%
:::::::::::::::
−1<MFB<+1;

::::::::
≈ 99.69%

:
of the values are within this factor of 3× deviation. The dotted lighter blue and red

lines denote −0.6<MFB <+0.6; ∼ 96.33%
::::::::::::::::::
−0.6<MFB<+0.6;

:::::::::
≈ 96.33% of the values are within this range of good

agreement between derived and expected [CCN0.4] values.310

Overall, the RFRM is able to derive [CCN0.4] with a median (median-absolute-deviation) MFB of 4.4(21)%. A com-

parison to expected [CCN0.4] values from GCAPM in Fig. 9 (a) by means of the MFB shows the robustness of RF-AllVars

::::::::::::
RFRM-AllVars

:
in greater detail. The highest density of MFBs is on or around 0, reiterating how well RF-AllVars

::::::::::::
RFRM-AllVars

predictions of [CCN0.4] compares to GCAPM simulated values.

Fig. 8 (a) is faceted by height in Fig. 8 (b). Across the various heights, with varied [CCN0.4] ranges, RF-AllVars
::::::::::::
RFRM-AllVars315

performs robustly with |MFB|< 2. Its robustness across varied [CCN0.4] ranges is further shown in Fig. 9 (b), where Fig. 9 (a)

is faceted by the deciles of the GCAPM simulated [CCN0.4]. RF-AllVars
::::::::::::
RFRM-AllVars

:
performs well over 4 orders of

magnitude of [CCN0.4] from 100 to 2.7× 104 cm−3.
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Figure 9. Mean fractional bias (MFB) of RFRM derived [CCN0.4] compared to expected values from GCAPM in the testing dataset (441756

values). Histogram shows the counts of the pairs by MFB. The lines indicate perfect agreement (black), MFB of +1 (dashed red), and MFB

of −1 (dashed blue). The dotted lines indicate MFB of +0.6 (dotted red) and −0.6 (dotted blue).

3.2.2 Comparisons for the SGP site

We also examine the temporal trends of [CCN0.4] for the SGP site (the surface 2×2.5◦ model gridbox), which was completely320

excluded from the RFRM training. Fig. 10 shows the weekly-aggregated time series from 1989–2018 for (a) GCAPM simulated

and (b) RFRM-AllVars derived [CCN0.4]. Also shown in Fig. 10
:
(d) is the comparison, using MFB, of the derived [CCN0.4]

of RFRM-AllVars versus the GCAPM [CCN0.4] values. The RFRM performs well, being able to capture weekly variations

with good correlation (τ ≈ 0.68) and low deviation (∼ 99.87%
::::::::
≈ 99.87% within the good agreement range of |MFB|< 0.6).

::::::
RFRM

:::::::::::
application:

:::::::::
Measured

:::::::::
predictors

::
as

:::::
input325

As detailed in Section 2.4, there are numerous observations of atmospheric state and composition for the SGP site that can be

utilised to validate the RFRM with empirical data. In an ideal situation, continuous, long-term, high quality measurements for

all the inputs to the RFRM (the predictor variables listed in Table 2) would have aided in this analysis. However, due to the

sparsity and absence of measurements of certain predictors, we are limited to the available factors listed in Table 4. These are

shown in Fig. 11, with the speciated PM2.5
:::::
PM2.5:

predictors in Fig. 11
:
(a), the trace gas measurements in Fig. 11

:
(b), and the330

meteorological variables in Fig. 11 (c).

Thus, with a reduction from 19→ 9 predictor variables, we retrain the RFRM to use only these as inputs to derive [CCN0.4].

The RFRM optimisation is carried out as described in Sec. 2.2; the RFRM parameters
:::::::::::::
hyperparameters are numtrees= 1000,

mtry = 3, andmin.node.size= 3 and uses the 9 predictors listed in Table 4 to derive [CCN0.4]. This retrained RFRM (hence-

forth, RF-ShortVars
::::::::::::::
RFRM-ShortVars) is evaluated using the testing dataset; with median (median-absolute-deviation) MFB335

deteriorating from 0.044(0.209)→−0.184(0.382), 96.33→ 80.30% of the derived [CCN0.4] values in the good agreement
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Figure 10. Time series (weekly-aggregated) for the surface 2× 2.5◦ GCAPM gridbox containing the SGP site: (a) GCAPM simulated, (b)

RFRM-AllVars, and (c) RFRM-ShortVars derived [CCN0.4]; and the Mean Fractional Bias (MFB) of the RFRM with (b) AllVars and (e)

ShortVars. Dotted lines show the good agreement range of |MFB|< 0.6.

range, and correlation reducing from τ ≈ 0.88→ 0.79. While RFRM-ShortVars is less robust compared to RFRM-AllVars, the

statistical estimators of model performance are still high for RFRM-ShortVars.

Specifically for the SGP site, Fig. 10 (c) & (e) show the weekly-aggregated RFRM-ShortVars derived [CCN0.4] and its

comparison with the GCAPM [CCN0.4] values, respectively. RFRM-ShortVars performs well, being able to capture these340

variations with good correlation (τ ≈ 0.66) and low deviation (∼ 98.72%
::::::::
≈ 98.72%

:
within the good agreement range).

Using measurements of the 9 predictor variables at the SGP site for 2010–2020, we use the developed RF-ShortVars

::::::::::::::
RFRM-ShortVars to derive [CCN0.4]. Compared to [CCN0.4] measurements, the RFRM performs well, with τ ≈ 0.36 and ∼ 67% with |MFB|< 0.6.

Apart from the expected deteriorated performance
::::::::::::::::::::::::::::::::
τ ≈ 0.36 and ≈ 67% with |MFB|< 0.6.

:::
We

::::
note

::::
that

:::::
filling

:::
the

:::::::::::
measurement

::::
gaps

:::
(per

:::::::
Section

:::::
2.4.2)

:::::
could

::::::::
contribute

::
to

:::
this

::::::::
observed

:::::::
decrease

::
in

::::::
RFRM

::::::::::
performance

:::::
(from

:::::::::::::
RFRM-AllVars

::
→

::::::::::::::::
RFRM-ShortVars).345

::::::::
However,

:::
this

::::::::::
contribution

::
is

::::::::
minimal:

::::
when

:::::::::
comparing

:::
the

:::::::::::::::::::::
RFRM-ShortVars-derived

:
[
:::::::
CCN0.4]

::::
with

:::::::::::
measurements

:::::::::
excluding

::
the

:::::::
filled-in

:
[
::::::
CCN0.4],

::::::::
Kendall’s

::
τ
:::::::::
correlation

::::::::
increased

:::::
from

:::::::::::
0.36→ 0.42,

:::
and

::::::::::
percentage

:::::
within

:::
the

::::::::::::::
good-agreement

:::::
range
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Table 4. RFRM predictors for [CCN0.4] as listed in Table 2. Italicised text shows those predictors determined (in Section 3.2) to not strongly

impact RFRM prediction of [CCN0.4]. Strike-through text shows the absence of their hourly measurements.

Meteorological

Temperature Precipitation RH Solar Radiation

Chemical Species

[NOx] ���[NH3] ���[OH] ��
���[Isoprene]

[SO2] [O3] (((
((([Monoterpene]

PM2.5 Speciated Mass Fraction

SO4 NO3 NH4 ��BC

POC† SOA† ��Dust ���Salt*

Note: † Measurements for PM2.5 POC and SOA are reported as PM2.5

OC (total organic carbon). * For PM2.5 Salt, PM2.5 Chloride measurements

are available, but subject to a large percent of missing data.
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Figure 11. Time series (daily-aggregated) for predictors at the ARM SGP site: (a) PM2.5
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::::
from

::::::::::::::::
67.02%→ 69.34%,

::::
with

:::
the

::::::
sample

::::
size

:
n
::::::::
reducing

::::
from

::::::::::::::::
39,811→ 29,047.

:::
The

::::::::::
deteriorated

:::::::::::
performance

:
is
::::::
mainly

:
due

to the reduction of necessary predictors to the available ones,
:
; the uncertainties associated with the measurements themselves

may compound this. Regardless, the variability from diurnal to decadal scales are captured by the RFRM (top-left panel in350

Fig. 12
::
(a)) when compared to the measurements (bottom-left panel in Fig. 12

:::
(a)) of [CCN0.4]. For reference, in Fig. 12

:::
(a)

the top-right and bottom-right panels are the same as in Fig. 10 (c) & (a), respectively, but for this period of measurements.

:::::::::::
Performance

:::::::::::
comparison

::
of

::::::
RFRM

::::
and

::::::::
GCAPM

:::
Fig.

:::
12

:::
(b)

::::::::
compares

::::::::
GCAPM

:::
and

:::::::
RFRM

::::::::::
performance

:::
in

:::::::::
quantifying

:
[
::::::
CCN0.4]

::
for

::::
SGP

:::::
with

::::::
respect

::
to

:::
its

::::::::::::
measurements

:::::::::::
corresponding

:::
to

:::
Fig.

:::
12

:::
(a).

::
In

:::
the

::::::::
left-hand

:::::
panel,

::::::::
GCAPM

::::::::
simulated

:
[
:::::::
CCN0.4]

:::::
shows

:::
fair

::::::::::
correlation

::::::::
(τ ≈ 0.27)

:::::
with

::::
SGP355

:::::::::::
measurements

::::
and

::::
65%

:::::
within

:::
the

::::::::::::::
good-agreement

:::::
range.

::::
The

::::::
general

::::::::
tendency

::
is

::::::::::::
overestimation

:::::::::::::::::::
(median MFB≈ 0.25),

::::
seen

::
as

:::::
higher

:::::::
density

:::::
above

:::
the

:::::::
perfect

::::::::
agreement

::::
line

:::::::
(dashed

::::::
black).

:::::::::::::::
RFRM-ShortVars

::::::
derives

:
[
::::::
CCN0.4]

:::
(Fig.

:::
12

::::
(b):

::::::
center)

::
to

:
a
::::::
greater

::::::
degree

::
of

:::::::::
agreement

::::
than

:::::::
GCAPM

:::::
does,

::::
with

:::::::::::::::::::::::::::::::::
τ ≈ 0.37 and ≈ 75% with |MFB|< 0.6

:::
and

:::::::::::::::::::
median MFB≈−0.04

::::::::
indicating

:
a
:::::
slight

::::::::
tendency

::
to

::::::::::::
underestimate.

:

:
It
::
is

::
to

:::
be

::::::
recalled

::::
that

:::
the

:::::::
GCAPM

:
[
::::::
CCN0.4]

::
is

::::
more

::::::::
reflective

::
of

:::::::
regional

::::::::::
tendencies,

:::::::::
simulating [

:::::::
CCN0.4]

::
for

::
a

:::::::
2× 2.5◦360

::::::
gridbox

::::::
around

:::
the

::::
SGP

::::
site.

:::
The

::::::
RFRM

::
is

::::::
trained

::
on

::::::::
GCAPM,

:::::
from

:::::
where

:::
the

::::::::::
associations

::::
were

::::::
learned

::::::::
between

::::::::::
atmospheric

::::
state

:::
and

:::::::::::
composition

::::::::
variables

:::
and

:
[
::::::
CCN0.4]

:
,
::::
thus

::::::::
implicitly

::::::::
imbibing

:::
the

:::::
effect

:::
of

:::::::
physical

::::
and

::::::::
chemical

::::::::
processes

::::
that

::::::
control

::::::
particle

:::::::
number

:::::::::::::
concentrations.

::::
That

::::::::::::::::::::::
RFRM-ShortVars-derived [

::::::
CCN0.4]

:
is
:::::::::::::::::
better-representative

::
is

::
a

::::::::::::
demonstration

:::
that

:::::
these

::::::::
processes

::::
are

::::::::::::::
well-represented

::::::
within

::::::::
GCAPM.

::::::::::
Leveraging

:::
this

::::::
aspect

:::
as

::::
well

::
as

::::::::
utilising

::::::::
localised

:::::::::
conditions

:::::
(actual

:::::::::::::
measurements)

:::
of

::::::::::
atmospheric

::::
state

::::
and

:::::::::::
composition,

:::
the

::::::
RFRM

::::::::
performs

:::::::::::
significantly

:::::
better

::::
than

::::::::
GCAPM.

::::::
These365

:::::
results

::::
and

:::
the

::::::
ability

::
to

::::::
capture

:::
the

:::::::::
variability

::
of

:
[
::::::
CCN0.4]

:::::
across

:::::::
temporal

::::::
scales

::::::::::
demonstrate

:::
the

:::::::::
derivation

::
of

:
[
:::::::
CCN0.4]

::::::
through

:::
the

:::::
more

:::::::::
commonly

::::::::
available

::::::::::::
measurements

:::
of

:::::::::::
meteorology,

::::::::::
atmospheric

::::::::
chemical

::::::
species

:::::::::
including

::::::::
speciation

:::
of

::::::::
particulate

::::::
matter.

:

:::
The

:::::::::
right-hand

:::::
panel

::
of

::::
Fig.

:::
12

:::
(b)

::::::
shows

::::
how

::::::::::::::
RFRM-ShortVars

::::::::
performs

:::::
when

:::::
using

::::::::
GCAPM

:::::::::
simulated

:::::
values

:::
of

:::
the

::::
input

::::::::
predictor

::::::::
variables.

::::::::::::::::::::::::::::::
τ ≈ 0.24 and 71% with |MFB|< 0.6

::::::::
indicates

:::
that

:::
the

:::::::
RFRM

:::::
model

:::::::::::
performance

::
is

::::::::::
comparable

::
to370

:::::::
GCAPM

:::
for

:::
the

::::
SGP

:::
site

::
in

::::::::
alignment

::::
with

::::
our

::::::::::
observations

::
in

::::::
Section

:::::
3.2.1.

::::
This

::
is
::::::::::
encouraging

:::::::
towards

::::::
further

:::::::::::
development

::
of

:::
this

::::::::
machine

:::::::
learning

::::::::
approach

:::
for

::::::::
potential

:::::::::
application

::
in

:::::
Earth

:::::::
system

::::::
models

:::::::
(ESMs).

::::
The

::::::::
Random

:::::
Forest

:::::::::
technique

::::::::
discussed

::::
here

:::
has

::::
two

:::
key

:::::::
virtues:

:::
(1)

:::
its

::::::::::::
computational

::::::::::
advantages

::
as

::::::::
discussed

:::
in

::::::
Section

::::
2.2

:::
and

:::
(2)

:::
its

:::::::
learning

:::::
from

:
a
::::::::::::::::
state-of-the-science

::::::::
chemical

::::::::
transport

::::::
model

:::::::
coupled

::::
with

:::::::::::
size-resolved

::::::::::::
microphysics.

:::
In

::::::
ESMs,

:::::
where

::::
the

:::::::
demand

:::
for

:::::::::::
computational

:::::::::
efficiency

::::::
results

::
in

:::::
using

:::::::::
simplified

::::
bulk

::::::::::::
microphysical

:::::::::
treatment,

:::
the

:::::::
RFRM

:::
can

:::::::
provide

:
a
:::::

more
::::::::

accurate375

:::::::::::
representation

:::
of

::::::
particle

::::::::
numbers,

:::::::::
especially

::::
those

::::
that

:::::::
mediate

:::::::::::
aerosol-cloud

:::::::::::
interactions,

:::::
while

::::::::
remaining

::::::::::::::
computationally

:::::::
efficient.

:

::::::
RFRM

:::::::
trained

:::::
using

:::::::::::::
measurements

Development of the machine learning model generally requires a large number of training examples, however, we also inves-

tigate the possibility of developing an RFRM with the measurement data alone. The RFRM optimisation is carried out as de-380

scribed in Sec. 2.2; this RFRM trained on actual measurements at SGP has numtrees= 1000,mtry = 3, andmin.node.size=
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(a) [CCN0.4] time series for the SGP site

Figure 12.
::
(a) Time series (daily-aggregated) for [CCN0.4] derived by RF-ShortVars

:::::::::::::
RFRM-ShortVars

:
(top two

:::
top

:::
two) and ORF

(middle two
:::::
middle

:::
two), compared to SGP measured (bottom-left

::::::::
bottom-left) and GCAPM-simulated (bottom-right

:::::::::
bottom-right).

::
(b)

:::::::::
Performance

:::::::::
comparison

::
of

:::
the

:::::
models

::
in
:::::::::
quantifying

:
[
::::::
CCN0.4]

:::::::
compared

::
to
::
its

::::::::
measured

:::::
values

::
for

:::
the

::::
SGP

:::::
site—

::
left

:
:
:::::::
GCAPM,

:::::
centre

:
:

:::::::::::::
RFRM-ShortVars

:::
with

:::::::::::
measurements

::
of
::::::::
predictors

::
as

:::::
input,

:::
and

::::
right:

::::::::::::::
RFRM-ShortVars

:::
with

:::::::::::::::
GCAPM-simulated

::::::::
predictors

::
as

::::
input.

::::
The

:::::::
summary

:::::::::
performance

::::::
metrics

:::
are

::
τ :

::::::::
Kendall’s

::::
rank

::::::::
correlation

::::::::
coefficient

:::
and

::::::::
%-Agree:

:::
the

:::::::::
percentage

::
of

::::::
pairwise

:::::::::::::::
model–observation

:::::::
compared

:::::
values

:::::
within

:::
the

::::::::::::
good-agreement

::::
range

::::::
defined

::
as

:::::::::::::::::
−0.6<MFB<+0.6.

5. Compared to the RFRM trained on GCAPM simulated data (∼
::
≈150 million training examples), such an RFRM has only
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Figure 13. Mean fractional bias (MFB) of the random forest derived [CCN0.4] compared to expected values. Lefthand panels: comparison

with measured [CCN0.4]. Righthand panels: comparison with GCAPM simulated [CCN0.4]. The histograms show the pairwise counts (total

is inset top-left in each panel) by MFB. The lines indicate MFB of 0 (black), +1 (dashed red), −1 (dashed blue), +0.6 (dotted red), and

−0.6 (dotted blue). The percentage of RFRM derived values in good (|MFB|< 0.6) and fair (|MFB|< 1) agreement are shown close to the

+0.6 and +1.0 MFB lines, respectively.

∼
:
≈34,000 training examples for the SGP site. We train such an RFRM, henceforth denoted as ORF (observation-based random

forest regression model), and examine its performance.

In comparison with SGP measured [CCN0.4], ORF shows correlation of τ ≈ 0.53 and good agreement with ∼ 81.22%385

::::::::
≈ 81.22%

:
of its derived [CCN0.4] values. The time series (daily-aggregated) of ORF-derived [CCN0.4] is shown in Fig. 12

::
(a),

with measured predictors as input to the RFRM in the middle-left panel and GCAPM predictors as input to the RFRM in the

middle-right panel. In Fig. 13 (b) ORF-derived [CCN0.4] is compared to hourly measurements. ORF appears to perform better

than RF-ShortVars
::::::::::::::
RFRM-ShortVars from the summary statistics. However, it is unable to capture the range of variations in

magnitude (middle-left panel in Fig. 12
:::
(a)). Similar results are observed (Fig. 13

:
(d) and Fig. 12

:::
(a) middle-right) when ORF is390

applied to GCAPM simulated data. This exercise of developing an observation-based RFRM is, however, not technically justi-

fiable due to the small number of training examples and applicability to only the SGP site. Regardless, this exercise provides in-

sight into whether considering only 9 out of the 19 required predictor variables is sufficient for RF-ShortVars
::::::::::::::
RFRM-ShortVars,

examination of which suggests the affirmative.
::::::
Further,

:::
this

:::::::
exercise

::
is
::::::::
insightful

::
in
::::::::::::
demonstrating

:::
the

:::::::::::
unlikelihood

::
of

:::::::
missing

:::
any

::::::::
important

::::::::
predictor

:::
in

:::
the

:::::::
RFRM,

::::::::
providing

:::
an

:::::::::
additional

:::::
check

:::
on

:::
the

::::::::::
importance

::
of

:::
the

:::::::
RFRM

:::::::::
predictors,

::::
and

:::
the395

:::::::
potential

:::::
utility

:::
of

:::
this

::::::::
machine

:::::::
learning

::::::::
approach

:::::
being

:::::::
trained

:::::::
directly,

:::::::
without

:
a
::::::::::::::::
physicochemically

::::::::
informed

::::::
model,

:::
on

::::::::::
atmospheric

::::
state

:::
and

:::::::::::
composition

::::::::::::
measurements

::
to

:::::
derive

:
[
:::::::
CCN0.4].

:
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4 Conclusions

4.1 Summary

We develop a Random Forest Regression Model (RFRM) to predict the number concentrations of cloud condensation nuclei at400

0.4% supersaturation ([CCN0.4]) from atmospheric state and composition variables. This RFRM, trained on 30-year simula-

tions by a chemical transport model (GEOS-Chem) with a detailed microphysics scheme (APM), is able to predict [CCN0.4]

values. The RFRM learns that the PM2.5
:::::
PM2.5:

fractions (except salt and dust) and gases such as SO2 and NOx are the

most important determinants of [CCN0.4]. The RFRM is robust in its derivation of [CCN0.4], with median (median-absolute-

deviation) mean fractional bias of 4.4(21)% with 96.33% of the derived values within the good agreement range (|MFB|< 0.6)405

and strong correlation of Kendall’s τ ≈ 0.88 for various locations around the globe, at various altitudes in the troposphere, and

across a varied range of [CCN0.4] magnitudes. We also demonstrate application of this technique for deriving [CCN0.4] from

measurements of [CCN] at other supersaturations. For a location in the Southern Great Plains region of the United States, using

real measurements as input to the RFRM demonstrates its applicability. To use the measurement data as input to the RFRM

required its tweaking to account for unavailable measurements for certain predictors. The truncated RFRM performs robustly410

despite these adjustments: median (median-absolute-deviation) mean fractional bias (MFB) of −18(38)% with 80.30% of the

derived [CCN0.4] in good agreement and strong correlation of Kendall’s τ ≈ 0.79. Specifically for the ARM SGP site, using

measured predictors as input to the RFRM and comparison with measured [CCN0.4], the median (median-absolute-deviation)

mean fractional bias (MFB) is −6(61)% with 67.02% of the derived [CCN0.4] in good agreement and Kendall’s correlation

coefficient τ ≈ 0.36.415

4.2 Further discussion and outlook

There are a number of limitations in the application of the present study to augment empirical measurements of [CCN]. These

are as follows:

– The RFRM is trained on GCAPM, with the assumption that the physical and chemical processes that relate the ‘pre-

dictor’ variables to the [CCN0.4] outcome are accurate. Previous studies show that GCAPM performs reasonably when420

compared to observations, but uncertainties in both model and observation may contribute to uncertainties in the RFRM

derivation.

– Co-located and simultaneous (with [CCN0.4] measurements) measurements of the required ‘predictor’ variables were

available only for certain predictors. We had to retrain the RFRM to account for these constraints, which sacrificed its

accuracy in deriving [CCN0.4]. Other issues with measurements arise from the limitations of their accuracy, precision,425

and detection limits. Further sources of error are the utilisation of ‘predictor’ measurements from nearby (but not co-

located) monitors to fill in significant gaps in the required data for the SGP site.

– Random Forest was the machine learning tool of choice due to its parallelisability and high degree of accuracy. There

are, however, other tools such as XGBoost (a choice for many winners of machine learning competitions) or regression
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neural networks. These, among others, could offer improved [CCN0.4] derivation. A cursory examination for the present430

study, however, showed no significant improvement at the cost of much higher computational expense.

– To overcome some of the gaps in the [CCN0.4] measurement data from the SGP site, we proposed and implemented a

derivation of [CCN0.4] from [CCN] measurements at other supersaturations using the Random Forest technique. While

this derivation was confirmed to be exceptionally good, this is an approximation.

– Development of an observation-based RFRM is presented in this study. However, it can be significantly improved with435

more observations for the SGP site, and generalisable if trained with observations from numerous other sites. This was

presently not possible.

Despite the caveats associated with this work, this proof-of-concept shows promise for wide-ranging development and

deployment. This machine learning approach can provide improved representation of cloud condensation nuclei numbers:

– in locations where their direct measurements are limited, but measurements of other atmospheric state and composition440

variables are available. Typically, since measurements of PM2.5
:::::
PM2.5 speciation, trace gases, and meteorology are

easier than those of [CCN0.4], there are longer and more widely (spatially) distributed in situ measurement records,

especially through air quality monitoring networks. The developed RFRM can derive [CCN0.4] from these ubiquitous

measurements to complement [CCN0.4] measurements when available and fill in the gaps in their absence.

– in earth system models:445

– by providing a more accurate alternative to bulk microphysical parameterisations

– by providing a computationally less intensive alternative to explicit bin-resolving microphysics models

This work is an initial step towards fast and accurate derivation of [CCN0.4], in the absence of their measurements, con-

strained by empirical data for other measurements of atmospheric state and composition. This work demonstrates the possible

applications of machine learning tools in handling the complex, non-linear, ordinal, and large amounts of data in the atmo-450

spheric sciences.

.

Code and data availability. Data for training the RFRM are generated by GEOS-Chem, a grass-roots open-access model available at http:

//acmg.seas.harvard.edu/geos/, last accessed on 20/05/2020. Model training and analysis of predictions in this study are though the free

software environment for statistical computing and graphics: R (https://www.r-project.org/) and facilitated mainly by the ‘ranger’ package455

(https://cran.r-project.org/web/packages/ranger/index.html). Data were obtained from the Atmospheric Radiation Measurement (ARM) user

facility, a U.S. Department of Energy (DOE) Office of Science User Facility managed by the Biological and Environmental Research pro-

gram, which is publicly available at the ARM Discovery Data Portal at https://www.archive.arm.gov/discovery/, last accessed on 20/05/2020

and the EPA AirData Portal at https://www.epa.gov/air-data/, last accessed on 20/05/2020.

26

http://acmg.seas.harvard.edu/geos/
http://acmg.seas.harvard.edu/geos/
http://acmg.seas.harvard.edu/geos/
https://www.r-project.org/
https://cran.r-project.org/web/packages/ranger/index.html
https://www.archive.arm.gov/discovery/
https://www.epa.gov/air-data/


Author contributions. The authors contributed equally to this manuscript.460

Competing interests. The authors declare no competing interests.

Acknowledgements. This study was supported by the NSF under grant 1550816, NASA under grant NNX17AG35G, and NYSERDA under

contract 137487. We thank the DOE ARM SGP Research Facility and EPA Air Quality Analysis Group data teams for the operation and

maintenance of instruments, quality checks, and making this measurement data publicly available.

27



References465

Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness, Science, 245, 1227–1230,

https://doi.org/10.1126/science.245.4923.1227, 1989.

Behrens, B., Salwen, C., Springston, S., and Watson, T.: ARM: AOS: aerosol chemical speciation monitor, https://doi.org/10.5439/1046180,

1990.

Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore, A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global470

modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, Journal of Geophysical Research:

Atmospheres, 106, 23 073–23 095, https://doi.org/10.1029/2001JD000807, 2001.

Breiman, L.: Bagging predictors, Machine Learning, 24, 123–140, https://doi.org/10.1007/bf00058655, 1996.

Breiman, L.: Random forests, Machine Learning, 45, 5–32, https://doi.org/10.1023/A:1010933404324, 2001.

Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J.: Classification And Regression Trees, Routledge,475

https://doi.org/10.1201/9781315139470, 1984.

Chen, X. and Xie, S.: ARM: ARMBE: Atmospheric measurements, https://doi.org/10.5439/1095313, 1994.

Christopoulos, C. D., Garimella, S., Zawadowicz, M. A., Möhler, O., and Cziczo, D. J.: A machine learning approach to aerosol classification

for single-particle mass spectrometry, Atmospheric Measurement Techniques, 11, 5687–5699, https://doi.org/10.5194/amt-11-5687-2018,

2018.480

Dou, X. and Yang, Y.: Comprehensive evaluation of machine learning techniques for estimating the responses of carbon fluxes to climatic

forces in different terrestrial ecosystems, Atmosphere, 9, 83, https://doi.org/10.3390/atmos9030083, 2018.

Evans, M. and Jacob, D. J.: Impact of new laboratory studies of N2O5 hydrolysis on global model budgets of tropospheric nitrogen oxides,

ozone, and OH, Geophysical Research Letters, 32, https://doi.org/10.1029/2005GL022469, 2005.

Filzmoser, P., Fritz, H., and Kalcher, K.: pcaPP: Robust PCA by Projection Pursuit, https://CRAN.R-project.org/package=pcaPP, r package485

version 1.9-73, 2018.

Fountoukis, C. and Nenes, A.: ISORROPIA II: a computationally efficient thermodynamic equilibrium model for K+–Ca2+–Mg2+–

NH4+–Na+–SO42−–NO3−–Cl−–H2O aerosols, Atmospheric Chemistry and Physics, 7, 4639–4659, https://doi.org/10.5194/acp-7-

4639-2007, 2007.

Fuchs, J., Cermak, J., and Andersen, H.: Building a cloud in the southeast Atlantic: understanding low-cloud controls based on satellite490

observations with machine learning, Atmospheric Chemistry and Physics, 18, 16 537–16 552, https://doi.org/10.5194/acp-18-16537-2018,

2018.

Giglio, L., Randerson, J. T., and van der Werf, G. R.: Analysis of daily, monthly, and annual burned area using the fourth-generation global

fire emissions database (GFED4), Journal of Geophysical Research: Biogeosciences, 118, 317–328, https://doi.org/10.1002/jgrg.20042,

2013.495

Grange, S. K., Carslaw, D. C., Lewis, A. C., Boleti, E., and Hueglin, C.: Random forest meteorological normalisation models for Swiss

PM10 trend analysis, Atmospheric Chemistry and Physics, 18, 6223–6239, https://doi.org/10.5194/acp-18-6223-2018, 2018.

Guenther, A. B., Jiang, X., Heald, C. L., Sakulyanontvittaya, T., Duhl, T., Emmons, L. K., and Wang, X.: The Model of Emissions of Gases

and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions, Geoscientific

Model Development, 5, 1471–1492, https://doi.org/10.5194/gmd-5-1471-2012, 2012.500

28

https://doi.org/10.1126/science.245.4923.1227
https://doi.org/10.5439/1046180
https://doi.org/10.1029/2001JD000807
https://doi.org/10.1007/bf00058655
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1201/9781315139470
https://doi.org/10.5439/1095313
https://doi.org/10.5194/amt-11-5687-2018
https://doi.org/10.3390/atmos9030083
https://doi.org/10.1029/2005GL022469
https://CRAN.R-project.org/package=pcaPP
https://doi.org/10.5194/acp-7-4639-2007
https://doi.org/10.5194/acp-7-4639-2007
https://doi.org/10.5194/acp-7-4639-2007
https://doi.org/10.5194/acp-18-16537-2018
https://doi.org/10.1002/jgrg.20042
https://doi.org/10.5194/acp-18-6223-2018
https://doi.org/10.5194/gmd-5-1471-2012


Hageman, D., Behrens, B., Smith, S., Uin, J., Salwen, C., Koontz, A., Jefferson, A., Watson, T., Sedlacek, A., Kuang, C.,

Dubey, M., Springston, S., and Senum, G.: ARM: Aerosol Observing System (AOS): aerosol data, 1-min, mentor-QC applied,

https://doi.org/10.5439/1025259, 1996.

Hageman, D., Behrens, B., Smith, S., Uin, J., Salwen, C., Koontz, A., Jefferson, A., Watson, T., Sedlacek, A., Kuang, C., Dubey, M.,

Springston, S., and Senum, G.: ARM: Aerosol Observing System (AOS): cloud condensation nuclei data, https://doi.org/10.5439/1150249,505

2017.

Holdridge, D. and Kyrouac, J.: ARM: ARM-standard Meteorological Instrumentation at Surface, https://doi.org/10.5439/1025220, 1993.

Hoppel, W. A., Frick, G. M., Fitzgerald, J. W., and Wattle, B. J.: A Cloud Chamber Study of the Effect That Nonprecipitating Water Clouds

Have on the Aerosol Size Distribution, Aerosol Science and Technology, 20, 1–30, https://doi.org/10.1080/02786829408959660, 1994.

Hughes, M., Kodros, J., Pierce, J., West, M., and Riemer, N.: Machine Learning to Predict the Global Distribution of Aerosol Mixing State510

Metrics, Atmosphere, 9, 15, https://doi.org/10.3390/atmos9010015, 2018.

Huttunen, J., Kokkola, H., Mielonen, T., Mononen, M. E. J., Lipponen, A., Reunanen, J., Lindfors, A. V., Mikkonen, S., Lehtinen, K. E. J.,

Kouremeti, N., Bais, A., Niska, H., and Arola, A.: Retrieval of aerosol optical depth from surface solar radiation measurements using

machine learning algorithms, non-linear regression and a radiative transfer-based look-up table, Atmospheric Chemistry and Physics, 16,

8181–8191, https://doi.org/10.5194/acp-16-8181-2016, 2016.515

IPCC AR5: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the

Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.

Jefferson, A.: Aerosol Observing System (AOS) Handbook, Tech. rep., DOE Office of Science Atmospheric Radiation Measurement (ARM)

Program, https://doi.org/10.2172/1020729, 2011.

Jin, J., Lin, H. X., Segers, A., Xie, Y., and Heemink, A.: Machine learning for observation bias correction with application to dust storm data520

assimilation, Atmospheric Chemistry and Physics, 19, 10 009–10 026, https://doi.org/10.5194/acp-19-10009-2019, 2019.

Joutsensaari, J., Ozon, M., Nieminen, T., Mikkonen, S., Lähivaara, T., Decesari, S., Facchini, M. C., Laaksonen, A., and Lehtinen,

K. E. J.: Identification of new particle formation events with deep learning, Atmospheric Chemistry and Physics, 18, 9597–9615,

https://doi.org/10.5194/acp-18-9597-2018, 2018.

Keller, C. A., Long, M. S., Yantosca, R. M., Da Silva, A. M., Pawson, S., and Jacob, D. J.: HEMCO v1.0: a versatile, ESMF-compliant com-525

ponent for calculating emissions in atmospheric models, Geoscientific Model Development, 7, 1409–1417, https://doi.org/10.5194/gmd-

7-1409-2014, 2014.

Kendall, M.: Rank Correlation Methods, Theory and applications of rank order-statistics, Griffin, 1970.

Kulkarni, G.: aosacsm.b1, https://doi.org/10.5439/1558768, 2019.

Martin, R. V., Jacob, D. J., Yantosca, R. M., Chin, M., and Ginoux, P.: Global and regional decreases in tropospheric oxidants from photo-530

chemical effects of aerosols, Journal of Geophysical Research: Atmospheres, 108, n/a–n/a, https://doi.org/10.1029/2002jd002622, 2003.

Mauceri, S., Kindel, B., Massie, S., and Pilewskie, P.: Neural network for aerosol retrieval from hyperspectral imagery, Atmospheric Mea-

surement Techniques, 12, 6017–6036, https://doi.org/10.5194/amt-12-6017-2019, 2019.

McLeod, A.: Kendall: Kendall rank correlation and Mann-Kendall trend test, https://CRAN.R-project.org/package=Kendall, r package ver-

sion 2.2, 2011.535

Merikanto, J., Spracklen, D. V., Mann, G. W., Pickering, S. J., and Carslaw, K. S.: Impact of nucleation on global CCN, Atmospheric

Chemistry and Physics, 9, 8601–8616, https://doi.org/10.5194/acp-9-8601-2009, 2009.

29

https://doi.org/10.5439/1025259
https://doi.org/10.5439/1150249
https://doi.org/10.5439/1025220
https://doi.org/10.1080/02786829408959660
https://doi.org/10.3390/atmos9010015
https://doi.org/10.5194/acp-16-8181-2016
https://doi.org/10.2172/1020729
https://doi.org/10.5194/acp-19-10009-2019
https://doi.org/10.5194/acp-18-9597-2018
https://doi.org/10.5194/gmd-7-1409-2014
https://doi.org/10.5194/gmd-7-1409-2014
https://doi.org/10.5194/gmd-7-1409-2014
https://doi.org/10.5439/1558768
https://doi.org/10.1029/2002jd002622
https://doi.org/10.5194/amt-12-6017-2019
https://CRAN.R-project.org/package=Kendall
https://doi.org/10.5194/acp-9-8601-2009


Murray, L. T., Jacob, D. J., Logan, J. A., Hudman, R. C., and Koshak, W. J.: Optimized regional and interannual variability of light-

ning in a global chemical transport model constrained by LIS/OTD satellite data, Journal of Geophysical Research: Atmospheres, 117,

https://doi.org/10.1029/2012jd017934, 2012.540

Nair, A. A., Yu, F., and Luo, G.: Spatioseasonal Variations of Atmospheric Ammonia Concentrations Over the United

States: Comprehensive Model-Observation Comparison, Journal of Geophysical Research: Atmospheres, 124, 6571–6582,

https://doi.org/10.1029/2018JD030057, 2019.

Ng, N. L., Herndon, S. C., Trimborn, A., Canagaratna, M. R., Croteau, P. L., Onasch, T. B., Sueper, D., Worsnop, D. R., Zhang, Q., Sun, Y. L.,

and Jayne, J. T.: An Aerosol Chemical Speciation Monitor (ACSM) for Routine Monitoring of the Composition and Mass Concentrations545

of Ambient Aerosol, Aerosol Science and Technology, 45, 780–794, https://doi.org/10.1080/02786826.2011.560211, 2011.

Noether, G. E.: Why Kendall Tau?, Teaching Statistics, 3, 41–43, https://doi.org/10.1111/j.1467-9639.1981.tb00422.x, 1981.

Okamura, R., Iwabuchi, H., and Schmidt, K. S.: Feasibility study of multi-pixel retrieval of optical thickness and droplet effective radius

of inhomogeneous clouds using deep learning, Atmospheric Measurement Techniques, 10, 4747–4759, https://doi.org/10.5194/amt-10-

4747-2017, 2017.550

Park, R. J.: Natural and transboundary pollution influences on sulfate-nitrate-ammonium aerosols in the United States: Implications for

policy, Journal of Geophysical Research, 109, https://doi.org/10.1029/2003jd004473, 2004.

Probst, P., Wright, M. N., and Boulesteix, A.-L.: Hyperparameters and tuning strategies for random forest, Wiley Interdisciplinary Reviews:

Data Mining and Knowledge Discovery, 9, https://doi.org/10.1002/widm.1301, 2019.

Pye, H. O. T. and Seinfeld, J. H.: A global perspective on aerosol from low-volatility organic compounds, Atmospheric Chemistry and555

Physics, 10, 4377–4401, https://doi.org/10.5194/acp-10-4377-2010, 2010.

R Core Team: R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria, https:

//www.R-project.org/, 2020.

Ritsche, M.: ARM Surface Meteorology Systems Instrument Handbook, Tech. rep., Office of Scientific and Technical Information (OSTI),

https://doi.org/10.2172/1007926, 2011.560

Roberts, G. C. and Nenes, A.: A Continuous-Flow Streamwise Thermal-Gradient CCN Chamber for Atmospheric Measurements, Aerosol

Science and Technology, 39, 206–221, https://doi.org/10.1080/027868290913988, 2005.

Seinfeld, J. H., Bretherton, C., Carslaw, K. S., Coe, H., DeMott, P. J., Dunlea, E. J., Feingold, G., Ghan, S., Guenther, A. B., Kahn, R., Krau-

cunas, I., Kreidenweis, S. M., Molina, M. J., Nenes, A., Penner, J. E., Prather, K. A., Ramanathan, V., Ramaswamy, V., Rasch, P. J., Ravis-

hankara, A. R., Rosenfeld, D., Stephens, G., and Wood, R.: Improving our fundamental understanding of the role of aerosol-cloud interac-565

tions in the climate system, Proceedings of the National Academy of Sciences, 113, 5781–5790, https://doi.org/10.1073/pnas.1514043113,

2016.

Shi, Y. and Flynn, C.: ARM: Aerosol Observing System (AOS): cloud condensation nuclei data, averaged, https://doi.org/10.5439/1095312,

2007.

Smith, S., Salwen, C., Uin, J., Senum, G., Springston, S., and Jefferson, A.: ARM: AOS: Cloud Condensation Nuclei Counter,570

https://doi.org/10.5439/1256093, 2011a.

Smith, S., Salwen, C., Uin, J., Senum, G., Springston, S., and Jefferson, A.: ARM: AOS: Cloud Condensation Nuclei Counter (Single

Column), averaged, https://doi.org/10.5439/1342133, 2011b.

Springston, S.: ARM: AOS: Sulfur Dioxide Analyzer, https://doi.org/10.5439/1095586, 2012.

30

https://doi.org/10.1029/2012jd017934
https://doi.org/10.1029/2018JD030057
https://doi.org/10.1080/02786826.2011.560211
https://doi.org/10.1111/j.1467-9639.1981.tb00422.x
https://doi.org/10.5194/amt-10-4747-2017
https://doi.org/10.5194/amt-10-4747-2017
https://doi.org/10.5194/amt-10-4747-2017
https://doi.org/10.1029/2003jd004473
https://doi.org/10.1002/widm.1301
https://doi.org/10.5194/acp-10-4377-2010
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.2172/1007926
https://doi.org/10.1080/027868290913988
https://doi.org/10.1073/pnas.1514043113
https://doi.org/10.5439/1095312
https://doi.org/10.5439/1256093
https://doi.org/10.5439/1342133
https://doi.org/10.5439/1095586


Twomey, S. A.: The Influence of Pollution on the Shortwave Albedo of Clouds, Journal of the Atmospheric Sciences, 34, 1149–1152,575

https://doi.org/10.1175/1520-0469(1977)034<1149:TIOPOT>2.0.CO;2, 1977.

Uin, J.: Cloud Condensation Nuclei Particle Counter (CCN) Instrument Handbook, Tech. rep., DOE Office of Science Atmospheric Radiation

Measurement (ARM) Program, https://doi.org/10.2172/1251411, 2016.

van Donkelaar, A., Martin, R. V., Leaitch, W. R., Macdonald, A. M., Walker, T. W., Streets, D. G., Zhang, Q., Dunlea, E. J., Jimenez,

J. L., Dibb, J. E., Huey, L. G., Weber, R., and Andreae, M. O.: Analysis of aircraft and satellite measurements from the Intercontinental580

Chemical Transport Experiment (INTEX-B) to quantify long-range transport of East Asian sulfur to Canada, Atmospheric Chemistry and

Physics, 8, 2999–3014, https://doi.org/10.5194/acp-8-2999-2008, 2008.

Watson, T., , Aiken, A., Zhang, Q., Croteau, P., Onasch, T., Williams, L., and and, C. F.: First ARM Aerosol Chemical Specia-

tion Monitor Users’ Meeting Report, Tech. rep., DOE Office of Science Atmospheric Radiation Measurement (ARM) Program,

https://doi.org/10.2172/1455055, 2018.585

Watson, T. B.: Aerosol Chemical Speciation Monitor (ACSM) Instrument Handbook, Tech. rep., DOE Office of Science Atmospheric Radi-

ation Measurement (ARM) Program, https://doi.org/10.2172/1375336, 2017.

Wright, M. N. and Ziegler, A.: ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R, Journal of

Statistical Software, 77, https://doi.org/10.18637/jss.v077.i01, 2017.

Yu, F.: A secondary organic aerosol formation model considering successive oxidation aging and kinetic condensation of organic compounds:590

global scale implications, Atmospheric Chemistry and Physics, 11, 1083–1099, https://doi.org/10.5194/acp-11-1083-2011, 2011.

Yu, F. and Luo, G.: Simulation of particle size distribution with a global aerosol model: contribution of nucleation to aerosol and CCN

number concentrations, Atmospheric Chemistry and Physics, 9, 7691–7710, https://doi.org/10.5194/acp-9-7691-2009, 2009.

Yu, F., Ma, X., and Luo, G.: Anthropogenic contribution to cloud condensation nuclei and the first aerosol indirect climate effect, Environ-

mental Research Letters, 8, 024 029, https://doi.org/10.1088/1748-9326/8/2/024029, 2013.595

Yu, F., Luo, G., Nadykto, A. B., and Herb, J.: Impact of temperature dependence on the possible contribution of organics to new particle

formation in the atmosphere, Atmospheric Chemistry and Physics, 17, 4997–5005, https://doi.org/10.5194/acp-17-4997-2017, 2017.

Yu, F., Nadykto, A. B., Herb, J., Luo, G., Nazarenko, K. M., and Uvarova, L. A.: H2SO4-H2O-NH3 ternary ion-mediated nucleation

(TIMN): Kinetic-based model and comparison with CLOUD measurements, Atmospheric Chemistry and Physics, 18, 17 451–17 474,

https://doi.org/10.5194/acp-2018-396, 2018.600

Zaidan, M. A., Haapasilta, V., Relan, R., Junninen, H., Aalto, P. P., Kulmala, M., Laurson, L., and Foster, A. S.: Predicting atmospheric

particle formation days by Bayesian classification of the time series features, Tellus B: Chemical and Physical Meteorology, 70, 1–10,

https://doi.org/10.1080/16000889.2018.1530031, 2018.

31

https://doi.org/10.1175/1520-0469(1977)034%3C1149:TIOPOT%3E2.0.CO;2
https://doi.org/10.2172/1251411
https://doi.org/10.5194/acp-8-2999-2008
https://doi.org/10.2172/1455055
https://doi.org/10.2172/1375336
https://doi.org/10.18637/jss.v077.i01
https://doi.org/10.5194/acp-11-1083-2011
https://doi.org/10.5194/acp-9-7691-2009
https://doi.org/10.1088/1748-9326/8/2/024029
https://doi.org/10.5194/acp-17-4997-2017
https://doi.org/10.5194/acp-2018-396
https://doi.org/10.1080/16000889.2018.1530031

	acp-2020-509AC1
	acp-2020-509AC2
	acp-2020-509TC

