



- 1 Measurement Report:
- 2 Size distributions of inorganic and organic components in particulate matter from
- 3 a megacity in northern China: dependence upon seasons and pollution levels
- 4
- 5 Yingze Tian<sup>\*,a</sup>, Yinchang Feng<sup>a</sup>, Yongli Liang<sup>a</sup>, Yixuan Li<sup>a</sup>, Qianqian Xue<sup>a</sup>, Zongbo
- 6 Shi<sup>b</sup>, Jingsha Xu<sup>b</sup>, Roy M. Harrison<sup>\*,b†</sup>
- 7 a State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution
- 8 Prevention and Control, College of Environmental Science and Engineering, Nankai University,
- 9 Tianjin, 300071, China
- 10 <sup>b</sup> School of Geography Earth and Environmental Science, University of Birmingham, Birmingham,
- 11 B15 2TT, UK
- 12
- 13 Correspondence to: Roy M. Harrison (r.m.harrison@bham.ac.uk), Yingze Tian
- 14 (tianyingze@hotmail.com)
- <sup>†</sup>Also at: Department of Environmental Sciences / Center of Excellence in Environmental Studies, King
   Abdulaziz University, PO Box 80203, Jeddah, 21589, Saudi Arabia
- 17
- 18





#### 19 Abstract:

20 Size distributions of inorganic and organic components in particulate matter (PM) provide critical information on its sources, fate and pollution processes. Here, ions, 21 elements, carbon fractions, n-alkanes, polycyclic aromatic hydrocarbons (PAHs), 22 23 hopanes and steranes in size-resolved (9 stages) PM were analyzed during one year in a typical northern Chinese industrial megacity (Tianjin). We found that the 24 25 concentrations of organic carbon fraction OC3, NO<sub>3</sub><sup>-</sup> (or SO<sub>4</sub><sup>2-</sup>) and the sum of crustal 26 elements were the highest in the pseudo-ultrafine ( $<0.43 \mu m$ ), fine (0.41-2.1  $\mu m$ ) and 27 coarse (>2.1 µm) modes, respectively. The diagnostic ratios of organic components consistently suggest that the traffic influence was stronger during summer and coal 28 combustion during winter. Nitrate and high molecular weight PAHs were concentrated 29 in the fine mode during winter, while nitrate and low molecular weight PAHs showed 30 31 bimodal distributions especially during summer due to repartitioning. Long-chain nalkanes showed a peak in the coarse mode during spring and summer, indicating a 32 relatively stronger vegetation source and resuspended dust. Furthermore, we found a 33 34 major difference in the size distribution of aerosol components during heavy pollution episodes (PM<sub>10</sub>>233 µg m<sup>-3</sup>) in different seasons: in spring, OC fractions, 4- and 5-ring 35 PAHs, hopanes and C18-C33 n-alkanes were enhanced at 1.1-3.3 µm, implying that 36 they may arise from local combustion sources which emit relatively large particles; in 37 summer PM mass, SO<sub>4</sub><sup>2-</sup>, NH<sub>4</sub><sup>+</sup>, Al, and C26-C33 *n*-alkanes were enhanced mainly in 38 the coarse mode, peaking at 5.8-9.0 µm, indicating a large contribution from 39 resuspended dust or heterogeneous reactions on dusts; in the winter and autumn, NO<sub>3</sub><sup>-</sup> 40





| 41 | was significantly enhanced followed by SO42-, NH4+, OC and EC with their peaks                 |
|----|------------------------------------------------------------------------------------------------|
| 42 | shifting from 0.43-0.65 $\mu m$ to 0.65-2.1 $\mu m,$ indicating strong atmospheric processing. |
| 43 | These results reveal that the size distributions of inorganic and organic aerosol              |
| 44 | components are dependent on the seasons and pollution levels as a result of the differing      |
| 45 | sources and physicochemical processes.                                                         |
| 46 |                                                                                                |

47

#### 48 1 Introduction

49 Atmospheric particulate matter (PM) negatively affects human health and visibility, influences global climate change and nutrient cycles within ecosystems (Burnett et al., 50 2014; Wang et al., 2014; Zhang et al., 2017). Properties and effects of PM depend on 51 52 their chemical composition and particle sizes (Seinfeld and Pandis, 1998; Kanakidou et al., 2005; Kompalli et al., 2020). PM cover a wide range of sizes from a few nanometers 53 to several hundreds of micrometers, and is composed of a complex mixture of inorganic 54 substances (such as water-soluble ions, elements, and elemental carbon) and hundreds 55 56 of organic compounds. Several studies have shown that the size distribution of chemical components can provide evidence for examining the sources and formation pathways 57 (Guo et al., 2014; Yao et al., 2018; Hilario et al., 2020). 58

Non-polar organic compounds in PM, such as n-alkanes, polycyclic aromatic
hydrocarbons (PAHs), hopanes and steranes, can provide specific information to
identify PM sources (Oros and Simoneit, 2000; Wang et al., 2009; Han et al., 2018).
PAHs are mainly emitted from anthropogenic activities, such as biomass burning, coal





| 63 | combustion, oil combustion and industrial processes (Mastral et al., 1996; Liu et al.,       |
|----|----------------------------------------------------------------------------------------------|
| 64 | 2012). Hopanes and steranes are abundant in coal, crude oils and the lubricant oil           |
| 65 | fraction, and are often found in traffic exhaust and coal combustion emissions (Oros         |
| 66 | and Simoneit, 2000). n-Alkanes can arise from both natural and anthropogenic activities,     |
| 67 | including abrasion products from vegetation leaf surfaces (characterized by the              |
| 68 | predominance of > C29 odd n-alkanes) and fossil fuel combustion (Han et al., 2018).          |
| 69 | Although these organic compounds are assumed to be relatively stable and nonreactive         |
| 70 | (Feng et al., 2006; Ma et al., 2011), they can undergo complex physical and chemical         |
| 71 | changes, like photochemical oxidation and gas-particle partitioning (Robinson et al.,        |
| 72 | 2006; Han et al., 2018). The size distributions of the organic compounds are strongly        |
| 73 | associated with their sources, physical behavior and chemical reactions. Several studies     |
| 74 | on size distributions of PM chemical components have been conducted for ions,                |
| 75 | elements, and carbon fractions (Dillner et al., 2006; Huang et al., 2016; Tian et al., 2016; |
| 76 | Hilario et al., 2020), and for some organic compounds (Wang et al., 2009; Han et al.,        |
| 77 | 2018; Xu et al., 2020). These studies indicated that the size distributions of the inorganic |
| 78 | or organic components may vary with season and degree of pollution, so characterizing        |
| 79 | the variations is valuable for understanding their sources and fate. However, the            |
| 80 | combined analysis of seasonal variations of inorganic and organic components based           |
| 81 | on whole year sampling has rarely been conducted.                                            |
| 02 | Severe atmospheric PM pollution has been a recurring problem affecting developing            |

Severe atmospheric PM pollution has been a recurring problem affecting developing
countries (Cheng et al., 2016; Zou et al., 2017). As one of the world's fastest-developing
economic zones, the Jing-Jin-Ji economic circle in China has experienced severe and





long-lasting haze episodes (Guo et al., 2014; Long et al., 2019). The "Jin" is Tianjin, a 85 86 megacity with a population of 15.6 million. With gross industrial production ranking third among all Chinese provinces (TMSB, 2017), Tianjin is a typical industrial city. 87 Various anthropogenic emissions, including industrial emissions, coal combustion, 88 89 vehicle exhaust and resuspended dust, significantly contribute in this region. Additionally, the chemical and physical characteristics of PM are complex during 90 91 different seasons. High reactivity due to relative humidity (RH) during winter has been 92 reported (Cheng et al., 2016), and strong dust and sea salt emissions during spring and 93 summer can increase the surfaces needed for heterogeneous reactions. The factors that influence heavy pollution in different seasons remain unclear due to their complexity 94 (Cheng et al., 2016; Yao et al., 2018). The variation of size-resolved inorganic and 95 organic chemical component size distributions during periods of heavy pollution in 96 97 different seasons can throw light on the mechanisms of PM pollution (Tian et al., 2016; Xu et al., 2020). 98

In this study, we conducted a comprehensive study of water-soluble ions, elements, 99 100 carbon fractions, n-alkanes, PAHs, hopanes and steranes in size-resolved PM (9 stages) samples collected from May 2018 to April 2019 in Tianjin, China. The goal of this study 101 is to (1) determine size-resolved chemical composition, including inorganic and organic 102 components, (2) characterize seasonal variations of size distribution of inorganic and 103 104 organic markers, (3) explore the mechanisms of PM pollution during different seasons through investigating the changes in composition as well as size distribution. The 105 results of this work will help researchers better understand the sources, physical process 106





- and chemical mechanisms of PM pollution during different seasons, which is crucial 107 108 for evaluating the effects of PM on human health, visibility and regional radiative forcing, and for developing control strategies. 109 110 111 2 Methods and materials 2.1 Study area and sampling 112 113 Tianjin is located at 116°43'E~118°04'E, 38°34'N~40°15'N, in the northern part of 114 the North China Plain. It covers an area of 11947 km<sup>2</sup>, near the Capital of China (Beijing) 115 and bordering on the Bohai Sea. The population is 15.6 million. As a municipality directly under the Central Government and one of the first coastal open cities, Tianjin 116
- the North China Plain. It covers an area of 11947 km<sup>2</sup>, near the Capital of China (Beijing) and bordering on the Bohai Sea. The population is 15.6 million. As a municipality directly under the Central Government and one of the first coastal open cities, Tianjin is a typical industrial city and a major manufacturing base for some industrial products, whose gross industrial production ranks third among all Chinese provinces (TMSB, 2017). The industries include petroleum and chemical, modern metallurgy, aerospace, automobile and equipment manufacturing, amongst others. More than 20 million tons of coal is consumed by industries and residential heating every year. The civil motor vehicle fleet in Tianjin is about 2.8 million. The Tianjin Port is the largest comprehensive port in northern China and a major port for foreign trade.

The PM samples were collected by an Andersen air sampler (Andersen Series E-0162, USA) with 9-stage size ranges of >9.0, 9.0-5.8, 5.8-4.7, 4.7-3.3, 3.3-2.1, 2.1-1.1, 1.1-0.65, 0.65-0.43, and < 0.43  $\mu$ m. Quartz-fibre filters (81 mm in diameter) were used. The sampling period was from May 2018 to April 2019, involving spring (May in 2018, and March and April in 2019), summer (June and August in 2018), autumn (1





| 129 | September to 15 November 2018) and winter (15 November 2018 to 15 March 2019,                   |
|-----|-------------------------------------------------------------------------------------------------|
| 130 | when coal was consumed for residential heating). The sampling was conducted for 47              |
| 131 | h during spring and summer, and for 23 h during autumn and winter, and was stopped              |
| 132 | during rainy days. Overall, 153 sets of successfully size-resolved samples (total 1377          |
| 133 | fraction samples) were obtained. Additionally, the $PM_{2.5}$ and $PM_{10}$ mass concentrations |
| 134 | were continuously monitored by a Beta Particulate Monitor (BPM-200, Focused                     |
| 135 | Photonics, China) at the sampling site. The correlation plots between $PM_{2.1}$ and $PM_{10}$  |
| 136 | mass concentrations sampled by the Andersen sampler (PM-measured) vs                            |
| 137 | corresponding means of continuous $PM_{2.5}$ and $PM_{10}$ concentrations monitored by the      |
| 138 | BPM (PM-monitored) were showed in Figure S1. High correlations (0.86 and 0.82)                  |
| 139 | were observed.                                                                                  |

140 To explore the mechanisms of heavy pollution, the heavy pollution was defined as the days with PM<sub>10</sub> concentrations higher than the 3rd quartile of all the samples, which 141 was 233  $\mu$ g m<sup>-3</sup>. 142

143

#### 144 2.2 Chemical analysis of ions, elements and carbon fractions

In this work, 7 ions, 17 elements, 7 carbon fractions, 18 PAHs, 2 cholestane, 7 hopane 145 and 24 n-alkanes were analyzed on each size range. For ion analyses, including Na<sup>+</sup>, 146 K<sup>+,</sup> Ca<sup>2+</sup>, NH<sub>4</sub><sup>+</sup>, Cl<sup>-</sup>, NO<sub>3</sub><sup>-</sup> and SO<sub>4</sub> <sup>2-</sup>, one eighth of each quartz filter was cut. The 147 sample was placed in a centrifuge tube which had been ultrasonically cleaned and dried, 148 before addition of 8 ml of distilled deionized water, then placed in an ultrasonic bath 149 for 20 minutes. The sonicated centrifuge tube was refrigerated for 24 hours. The clear 150





| 151 | liquid in the middle of the centrifuge tube was withdrawn with a needle tube, filtered            |
|-----|---------------------------------------------------------------------------------------------------|
| 152 | through two 0.2 $\mu m$ filters, and injected into the sample bottle. Lastly the extraction       |
| 153 | liquid was analyzed to determine the cation and anion concentrations with a Thermo                |
| 154 | ICS900 Ion Chromatograph (Thermo Electron). For the elemental analysis, 17 elements               |
| 155 | (Al, Ca, Ti, K, Mg, Na, V, Fe, Cu, Zn, Mn, Pb, As, Cd, Co, Cr, Ni) were analyzed by               |
| 156 | inductively coupled plasma-mass spectrometry (ICP-AES) (IRIS Intrepid II, Thermo                  |
| 157 | Electron). We cut one eighth of each quartz filter into portions and extracted elements           |
| 158 | into acid solution (HNO <sub>3</sub> : HCl: $H_2O_2 = 1$ : 3: 1) using a microwave digester (PyNN |
| 159 | Corporation). Carbon fractions were analyzed by a thermal/optical carbon aerosol                  |
| 160 | analyzer (DRI 2001A, Atmoslytic Inc.), which gives OC1, OC2, OC3, OC4, OP, EC1,                   |
| 161 | EC2, EC3 fractions. The instrument is based on heating and releasing organic carbon               |
| 162 | and elemental carbon at different temperatures, and uses He-Ne laser to allow                     |
| 163 | quantification of the pyrolytic (OP) fraction. The IMPROVE-A thermal/optical                      |
| 164 | reflectance (TOR) protocol was used (Chow et al., 1993) with 140°, 280°, 480°, 580°,              |
| 165 | 740°, and 840°C to divide the carbon fractions.                                                   |

166

### 167 2.3 Chemical analysis of organic components

168 Organic compounds in half of total sample filters were analyzed by gas 169 chromatography-mass spectrometry (GC-MS). The full names and corresponding 170 abbreviations of organic compounds were summarized in Table 1.

171

172 For extraction, the filters were cut into portions and put into tubes. Then 10 ml of

Table 1





| 173 | dichloromethane (DCM) and 10 ml of n-hexane (1:1, v:v) were added into each tube                       |
|-----|--------------------------------------------------------------------------------------------------------|
| 174 | which was then put in an ultrasonic bath at 30 °C for 15 minutes. The solution was                     |
| 175 | filtered with a silica column to clean up the extract. The silica column was eluted with               |
| 176 | 20 ml of DCM/hexane (1:1) and the extract was collected. After reduction to less than                  |
| 177 | 5 ml (about 2 or 3 ml) by rotary evaporator, the extract was solvent-exchanged to n-                   |
| 178 | hexane. Finally, the volume was reduced to 1 ml. Calibrations of PAHs, hopanes,                        |
| 179 | steranes and n-alkanes were used to test chromatographic conditions before analysing                   |
| 180 | samples. A DB-5MS fused-silica capillary column (30 m $\times$ 0.25 mm, 0.25 mm film                   |
| 181 | thickness, Agilent Technology) was used in the GC separation procedure. The carrier                    |
| 182 | gas was pure helium (purity of 99.99% or more) at a constant flow rate of 1.0 mL min <sup>-</sup>      |
| 183 | <sup>1</sup> . For PAHs, hopanes and steranes, inlet and transfer line temperatures were set to 230 °C |
| 184 | and 280 °C respectively. EI mode was used and the ionization energy level was 70eV.                    |
| 185 | For n-alkane analysis, inlet and transfer line temperatures were set to 300 °C.                        |

186

## 187 **2.4 Quality assurance and quality control (QA/QC)**

Throughout the whole process, much attention was given to ensure quality assurance and control. All samples were collected by one instrument and analyzed by the same methods. When it rained, we stopped the sampling campaign. The air flow rate was corrected by a flowmeter before each sampling period. Before use, the quartz filters were baked in an oven at 400-500 °C to eliminate any organic matter that may exist on the filters. All the filters were equilibrated at room temperature for 48 h in desiccators before weighting. Each filter was weighted by a sensitive microbalance with balance





sensitivity  $\pm 0.010$  mg. The quartz filters were kept in aluminum foil bags before and after sampling until analysis, and stored at -4 °C. The samples were analyzed within 30 days.

Field and laboratory blanks were measured to correct the corresponding data. 198 199 Standard reference materials were analyzed with the same procedure every day and the 200 recovered values for all the target components showed low relative standard deviations. 201 Additionally, the first sample of every ten samples was re-examined with the precision 202 found to be within 10%. The recoveries were 79-106% for elements, and 96-110% for 203 ions. For carbon fractions, a system stability test (three-peak detection) is required 204 before and after detecting samples and the relative standard deviation should not exceed 5%. For organic compounds, all extractions were conducted two times so that the 205 samples were extracted adequately, with the tubes sealed by foil and ice added to the 206 207 ultrasonic bath. The internal standards (naphthalene-d8, acenaphthene-d10, phenanthrene-d10, chrysene-d12, and perylene-d12; hexamethylbenzene; n-208 tetracosane-d50) were used for the samples to qualify actual volumes of the target 209 210 compounds present. The calibration curves were strongly linear. The recoveries of most organic compounds ranged from 70%-130%, except for Nap, Any, Ana, C10, and C11 211 with recoveries below 50%. 212

213

#### 214 2.5 Diagnostic ratios

Diagnostic ratios were used to identify the sources. The Ant/(Ant+Phe) ratio for
PAHs is used to differentiate petroleum origins or pyrogenic sources, and IPY/BghiP





217 is for different fossil fuels. The ratio of  $C29\alpha\beta/C30\alpha\beta$  for hopane can also be used to

218 judge fossil fuels. The homohopane index C34[S/(S+R)] can distinguish fuel maturity,

219 which is defined as:

220 
$$C34[S/(S+R)] = \frac{C34\alpha\beta S}{C34\alpha\beta S+C34\alpha\beta R}$$
(1)

For n-alkanes, the carbon preference index (CPI) can reflect the comparison between natural and anthropogenic contributions, which is defined as the ratio of the total concentration of odd n-alkanes to that of even n-alkanes:

224 
$$CPI = \frac{\sum_{i=5}^{16} c_{2i+1}}{\sum_{i=5}^{16} c_{2i}}$$
(2)

where i is the carbon number. Due to that plant wax n-alkanes show strong odd carbon
number predominance, biogenic n-alkanes should have CPI values greater than unity,
whereas anthropogenic n-alkanes should have CPI values close to unity (Han et al.,
2018).

229 Contributions from natural wax n-alkanes (WNA%) and petrogenic n-alkanes 230 (PNA%) can directly present the origins. The negative value of  $[C_{i^-} (C_{i^-1} + C_{i^+1})/2]$ 

should be replaced by zero.

232 WNA% = 
$$\frac{\sum_{i=10}^{32} [C_i - (C_{i-1} + C_{i+1})/2]}{\sum_{n=10}^{33} C_n}$$
 (3)

233 
$$PNA\% = 100\% - WNA\%$$
 (4)

234

### 235 3 Results and discussion

#### 236 **3.1 Size distribution of PM mass concentrations**

237 Figure 1 describes the size distribution of PM mass concentrations in spring, summer,

autumn and winter. The average concentrations of PM were the greatest during winter,





| 239 | followed by spring, autumn and summer at most sizes. The size distribution of the PM      |
|-----|-------------------------------------------------------------------------------------------|
| 240 | mass concentrations was bimodal, with one peak at 0.43-0.65 $\mu m$ (fine mode) and the   |
| 241 | other at 4.7-5.8 $\mu$ m (coarse mode). Particles at small sizes may be mainly influenced |
| 242 | by secondary formation and anthropogenic sources (such as vehicle emissions, coal         |
| 243 | combustion, industrial emissions, etc.), while particles at large sizes may be more       |
| 244 | associated with natural sources, resuspended dust (such as road dust, construction dust,  |
| 245 | mechanical abrasion processes, etc.) and industrial emissions (Hilario et al., 2020). In  |
| 246 | this work, the peaks in the coarse mode were very strong during spring due to the         |
| 247 | influences of resuspended dust and natural sources. The enhancement of PM in the fine     |
| 248 | mode during winter is associated with unfavorable meteorological conditions for the       |
| 249 | dispersion of fine particles, and increased emissions from coal combustion for heating    |
| 250 | (Cheng et al., 2016; Tian et al., 2016). The broader peak in the fine mode during winter  |
| 251 | should be noted.                                                                          |

252

### Figure 1

To explore the causes of heavy pollution, size distributions of PM during the heavy 253 pollution days were compared with less polluted days (all the rest of the days). 254 255 According to the temporal variations of the size-segregated particle concentrations in 256 Figure S1, most heavy pollution cases occurred in winter and there were only a few 257 days in other seasons. Figure 1 also describes the size distribution of particle mass concentrations for less polluted days and heavy pollution days during four seasons. PM 258 concentrations in the fine mode increased during heavy pollution in all of the seasons. 259 It was also found in several previous studies that fine particles significantly 260





| 261 | accumulated during the haze pollution period (Wang et al., 2014; Tian et al., 2016). In      |
|-----|----------------------------------------------------------------------------------------------|
| 262 | spring, the peak in the coarse mode was weaker during heavy pollution than during less       |
| 263 | polluted days, while the concentrations in the coarse mode significantly increased           |
| 264 | during summer heavy pollution. Thus, the spring heavy pollution may be associated            |
| 265 | with sources or processes that engender small particles (like combustion, secondary          |
| 266 | formation, etc.), while summer heavy pollution was strongly linked with large particle       |
| 267 | sources (like resuspended dust, dust storms, etc.). During winter and autumn, it is          |
| 268 | interesting to find that peaks in the fine mode shifted to a larger size, from 0.43-0.65     |
| 269 | $\mu m$ during less polluted days to 0.65-1.1 $\mu m$ during heavy pollution. This result is |
| 270 | consistent with the previous studies, which showed that the peak mass concentration of       |
| 271 | fine mode particles shifted to larger sizes during heavily polluted days (Tian et al., 2016; |
| 272 | Guo et al., 2014). The causes and mechanisms of heavy pollution will be further              |
| 273 | explored according to the variations of inorganic and organic components.                    |

274

## 275 **3.2 Size-resolved chemical compositions and diagnostic ratios**

276 Correlations among size-segregated chemical composition (percentages of 4 ions, 17 277 elements and 7 carbon fractions accounting for PM concentrations) have been 278 calculated and are summarized in Table S1(a). It is noticeable to find that the 279 compositions were similar in each mode (size< $0.43 \mu m$  considered as the pseudo-280 ultrafine mode; 0.43-0.65, 0.65-1.1 and 1.1-2.1  $\mu m$  as the fine mode; and 2.1-3.3 3.3-281 4.7, 4.7-5.8, 5.8-9.0 and >9.0  $\mu m$  in the coarse mode), while they showed relatively 282 high differences between different modes. Additionally, the correlations among size-





| 283 | segregated composition of organic compounds (percentages of 18 PAHs, 2 cholestane,        |
|-----|-------------------------------------------------------------------------------------------|
| 284 | 7 hopane and 24 n-alkanes accounting for PM concentrations) showed similar trends         |
| 285 | (Table S1(b)), indicating that both main component composition and organic                |
| 286 | composition were similar in each mode. Thus, the sizes were aggregated into three         |
| 287 | modes to investigate the size-segregated compositions: coarse (>2.1 $\mu$ m), fine (0.43- |
| 288 | 2.1 $\mu$ m), and pseudo-ultrafine (< 0.43 $\mu$ m) modes.                                |

289 3.2.1 Size-segregated main species

290 Concentrations of chemical species in the pseudo-ultrafine, fine and coarse modes 291 during the four seasons are shown in Figure 2. The composition of main species were 292 similar during spring, autumn and winter: in the pseudo-ultrafine mode, the primary component was organic carbon fraction OC3 (2.4, 2.0 and 3.2 µg m<sup>-3</sup> during spring, 293 autumn and winter, respectively); in the fine mode, the primary component was NO<sub>3</sub><sup>-</sup> 294 (8.0, 12.7 and 15.1  $\mu$ g m<sup>-3</sup>, respectively); and in the coarse mode, the CE (crustal 295 elements, defined as sum of Al, Ca, Fe and Ti) was highest with concentrations of 17.2, 296 16.0 and 20.2 µg m<sup>-3</sup>. During summer, the highest components were SO4<sup>2-</sup> in the 297 pseudo-ultrafine (1.6 µg m<sup>-3</sup>) and fine modes (8.2 µg m<sup>-3</sup>), and CE in the coarse mode 298 (14.8 µg m<sup>-3</sup>). The sums of OC fractions were higher than other components in most 299 modes and seasons. NO3<sup>-</sup>, SO4<sup>2-</sup> and OC are mainly from secondary formation, 300 combustion sources and industrial emissions, and crustal elements are linked with 301 302 resuspended dust (except during dust storm periods).

The concentration of  $SO_4^{2-}$  is the highest among all measured species in the fine mode during summer, while  $NO_3^-$  was the primary component during other seasons.





| 305 | During summer, photochemical processes can be more efficient. However, due to the                   |
|-----|-----------------------------------------------------------------------------------------------------|
| 306 | thermodynamic instability of ammonium nitrate, it may decompose under high                          |
| 307 | temperature (Hasheminassab et al., 2014). It is interesting to find that the NO <sub>3</sub> -      |
| 308 | concentration in the coarse mode was higher during summer (5.7 $\mu g \ m^{\text{-}3})$ than during |
| 309 | other seasons, which may result from the deposition of nitric acid vapour upon coarse               |
| 310 | particle surfaces.                                                                                  |

311

#### Figure 2

#### 312 **3.2.2 Size-segregated organic compounds and diagnostic ratios**

313 PAHs arise mainly from anthropogenic sources. According to the concentrations of organic compounds in Figure 2, the concentrations of  $\sum_{18}$  PAHs (summed 314 concentrations of 18 PAHs) were 22, 19, 31 and 49 ng m<sup>-3</sup> during spring, summer, 315 autumn and winter, respectively. The 5 and 6-ring PAHs (mainly BbF, BeP, BaP, DBA, 316 317 IPY and BghiP) showed higher concentrations than other PAHs during all four seasons (Figure S2a). High molecular weight PAHs are emitted under a high temperature 318 condition as from vehicles and they are more stable in the particle phase. It is interesting 319 320 to observe an obvious increase of 4-ring PAHs in the fine mode during winter, which may be caused by coal combustion for residential heating, and the low wintertime 321 temperature favouring partition into the condensed phase. Tianjin is a typical city in 322 northern China with considerable coal burning for house heating during winter, which 323 324 emits more 4-ring PAHs (Zhang et al., 2017). Moreover, some low-molecular-weight PAHs can be emitted by volatilization and low to moderate temperature combustion, 325 such as during coking (Khalili et al., 1995), biomass combustion (Zhang et al., 2008) 326





and residential utilization of electricity or gas for heating and cooking (Yadav et al.,
2018). Thus, the results suggest that vehicle exhaust, coal combustion, industrial
emission and biomass burning had mixed effects on the atmospheric PAH pollution,
and that coal burning was one of major sources of PAHs in northern China, especially
during winter.

Additionally, diagnostic ratios of organic compounds are may be indicative of 332 333 sources, so the ratios in size-resolved PM during each season and their ranges for 334 sources are summarized in Table 2. The Ant/(Ant+Phe) ratios were greater than 0.1, 335 confirming an influence from pyrogenic emissions (Han et al., 2018). The IPY/BghiP ranged from 0.66 to 2.51, indicating mixed effects of vehicle emissions and coal 336 combustion (Grimmer et al., 1983). The IPY/BghiP values were lower in the pseudo-337 ultrafine fraction, implying that vehicle emissions impact was stronger in the pseudo-338 ultrafine than in other modes. Enhancement of IPY/BghiP ratios during autumn and 339 winter indicates that PAHs derived from coal combustion increased, consistent with the 340 results of 4-ring PAH variations. Due to the low concentrations of organic compounds, 341 342 the diagnostic ratios are subject to uncertainty, especially for the seasons and modes with lower concentrations. 343

344

#### Table 2

Hopanes and steranes are often used to determine the fuel maturity (Oros and Simoneit, 2000). As shown in Figure 2, the total concentrations of 2 steranes and 7 hopanes ranged from 1 to 5 ng m<sup>-3</sup> for the pseudo-ultrafine mode, from 4 to 25 ng m<sup>-3</sup> for fine mode and from 3 to 27 ng m<sup>-3</sup> for the coarse mode. The maximum occurred in





| 349 | winter and the minimum occurred in summer. The $17\alpha(H),\!21\beta(H)\!-\!30\text{-norhopane}$               |
|-----|-----------------------------------------------------------------------------------------------------------------|
| 350 | (C29a\beta) and 17a(H),21\beta(H)-30-hopane (C30a\beta) showed the highest levels of the                        |
| 351 | hopanes and steranes during four seasons in all modes, as shown in Figure S2b. The                              |
| 352 | C30 $\alpha\beta$ mass concentration was higher than C29 $\alpha\beta$ during spring, summer and autumn,        |
| 353 | while the contrary occurred during winter. C34 $\alpha\beta$ S and C34 $\alpha\beta$ R concentrations were      |
| 354 | significantly enhanced during autumn and winter in the fine and coarse modes.                                   |
| 355 | The molecular composition of hopanes are further assessed by their mass ratios. As                              |
| 356 | shown in Table 2, diagnostic ratios of C29 $\alpha\beta$ /C30 $\alpha\beta$ indicate a strong traffic influence |
| 357 | during summer (C29 $\alpha\beta$ /C30 $\alpha\beta$ =0.59-0.69) and a strong coal combustion contribution       |
| 358 | during winter (ratio=1.32-1.38). The hopane C34[S/(S+R)] ratio, which is an indicator                           |
| 359 | of the maturity of combusted fossil fuel, ranged from 0.27 to 0.75. Hopane $[S/(S+R)]$                          |
| 360 | ratios increase with increasing fuel maturity. When the level of the R isomer is much                           |
| 361 | higher than the concentration of the S isomer, PM is mainly influenced by emissions                             |
| 362 | from coal combustion, while the similar concentrations of R and S isomer indicate                               |
| 363 | traffic emissions. It was reported that the homohopane index $[S/(S+R)]$ for coal smoke                         |
| 364 | samples increases with coal rank (lignite 0.05; brown coal 0.09; sub-bituminous coal                            |
| 365 | 0.20; bituminous coal 0.35) (Oros and Simoneit, 2000). The C34[S/(S+R)] ratios in this                          |
| 366 | study were more indicative of coal burning during autumn and winter. And we notice                              |
| 367 | that the C34[S/(S+R)] values were generally in the order of pseudo-ultrafine mode $>$                           |
| 368 | fine mode > coarse mode, indicating that the maturity of the fossil fuel decreased with                         |
| 369 | the increase of particle size. Obvious low values of $C34[S/(S+R)]$ in the coarse mode                          |
| 370 | during winter may indicate an influence of combustion of immature coals.                                        |





| 371 | n-Alkanes are mainly emitted in vehicle emissions, coal combustion, tire-wear                 |
|-----|-----------------------------------------------------------------------------------------------|
| 372 | particles and particulate abrasion products from leaf epicuticular waxes, and it has been     |
| 373 | reported that they have unique signatures for different sources (Han et al., 2018). N-        |
| 374 | alkanes were the most abundant organic compounds, with the total concentrations               |
| 375 | ranging from 2187 during summer to 4452 ng m <sup>-3</sup> during winter (Figure 2). As shown |
| 376 | in Figure S2 and Table 2, the values of the carbon number of the most abundant n-             |
| 377 | alkane (Cmax) in this study were C23 in the fine mode and C31 in the coarse mode              |
| 378 | during spring and summer, and were generally C28 in all modes during autumn and               |
| 379 | winter. Cmax represents the carbon number of the most abundant n-alkane, which is             |
| 380 | regarded as an important indicator of biogenic inputs. C23 has been reported as               |
| 381 | indicative of vehicle emissions (Lyu et al., 2017). C31 mainly comes from a vegetation        |
| 382 | source (plant wax) and tire-wear source which can be caused by resuspended dust (Han          |
| 383 | et al., 2018). Thus, the Cmax values in this work suggest a strong fuel combustion            |
| 384 | influence in the fine mode, and contributions of vegetation sources and resuspended           |
| 385 | dust in the coarse mode during spring and summer. During autumn and winter, the               |
| 386 | Cmax=28 was considered to come from local emissions, especially coal combustion               |
| 387 | (Han et al., 2018).                                                                           |
| 388 | The CPI (carbon preference index) ranged from 0.73 to 1.48, suggesting a                      |

The CPI (carbon preference index) ranged from 0.73 to 1.48, suggesting a predominant contribution from anthropogenic sources (Han et al., 2018). WNA% and PNA% provide a direct insight that above 75% of n-alkanes were originated from anthropogenic sources. CPI and WNA% consistently demonstrate that n-alkanes were mainly contributed by anthropogenic activities, and the natural source was higher in the





- 393 coarse mode during spring and summer, consistent with the interpretation of other ratios
- 394 above.
- 395
- 396 **3.3 Seasonality of size distributions**

### 397 3.3.1 Size distributions of main components

The size distributions of main chemical species (ions, elements and carbon fractions) 398 during spring, summer, autumn and winter are shown in Figure 3a. NO<sub>3</sub><sup>-</sup>, SO<sub>4</sub><sup>2-</sup> and 399 400  $NH_4^+$  mass concentrations were abundant in the fine mode, which exhibited maxima at 0.43-0.65 or 0.65-1.1  $\mu$ m during most seasons, except for SO<sub>4</sub><sup>2-</sup> in winter (1.1-2.1  $\mu$ m) 401 and  $NO_3^-$  in summer (3.3-4.7  $\mu$ m). Except for primary sources, the fine mode  $NO_3^-$  and 402 SO<sub>4</sub><sup>2-</sup> can be formed from the gaseous and aqueous phase reactions, and the coarse 403 mode  $NO_3^-$  and  $NH_4^+$  can origin from repartitioning and heterogeneous reactions with 404 405 sea salt and crustal dust (Liu et al., 2017). A strong peak of  $NO_3^-$  was observed at 3.3-5.8  $\mu$ m during summer. Due to the thermodynamic instability, fine mode NH<sub>4</sub>NO<sub>3</sub> can 406 be dissociated into vapour at high ambient temperatures and then shifted onto coarse 407 408 particles by the condensation, reaction, dissolution or coagulation. During spring and summer, the weak peaks of NH4<sup>+</sup> in the coarse mode may partly derive from suspended 409 soil containing fertilizer. The size distributions of Cl showed obvious seasonal 410 variations, which strongly peaked in the fine mode during winter and autumn 411 412 corresponding to emissions of HCl from combustion sources which can form semivolatile ammonium chloride (Pio and Harrison, 1987); and peaked in the coarse mode 413 during summer because of sea salt. 414





| 415 | Figure 3                                                                                       |
|-----|------------------------------------------------------------------------------------------------|
| 416 | Carbon fractions generally exhibited typical bimodal distributions with peaks in fine          |
| 417 | and coarse modes. The levels of OC2, OC4 and EC1 in the fine mode and those of OC3             |
| 418 | in both fine and coarse modes were significantly enhanced during winter. The OC                |
| 419 | fractions and EC1 primarily come from coal combustion, vehicle exhaust, and biomass            |
| 420 | burning, while EC2 and EC3 mainly originate from diesel and oil combustion (Kim and            |
| 421 | Hopke, 2004; Shi et al., 2016). Thus, the enhancement of these carbon fractions in the         |
| 422 | fine mode during winter is strongly linked with coal combustion for residential heating.       |
| 423 | The OC3 in the coarse mode may be influenced by complex emissions and reactions. It            |
| 424 | has been shown that PM emissions in northern China are complex during winter (Tian             |
| 425 | et al., 2016), like scattered (area source) coal combustion. Shi et al. (2020) indicated       |
| 426 | that scattered coal is the largest source of ambient volatile organic compounds during         |
| 427 | the heating season in Beijing, which are important precursors for secondary organic            |
| 428 | carbon (SOC). Thus, SOC generation may be another reason for OC enhancement in                 |
| 429 | both fine and coarse modes. Photochemical reactions may be generally weak during               |
| 430 | winter, but high precursor concentrations, high humidity and high PM concentrations            |
| 431 | during winter may enhance the aqueous phase and heterogeneous reactions.                       |
| 432 | The crustal elements (Al, Ca, Fe, Ti, etc.) were primarily concentrated in the coarse          |
| 433 | mode at 4.7-5.8 or 5.8-9.0 $\mu\text{m}.$ The high wind speed during spring can facilitate the |
| 434 | resuspension of dust (such as road dust, soil dust) into the atmosphere and result in the      |

- 435 high level of the crustal elements in the coarse mode. K showed a bimodal distribution:
- 436 the peak in the fine mode may be associated with biomass or coal combustion, and that





| 437 | in coarse mode associated with natural sources from soil dust and sea salt. Figure S3                                   |
|-----|-------------------------------------------------------------------------------------------------------------------------|
| 438 | shows the ratios between water-soluble ions and corresponding elements in each size.                                    |
| 439 | Peaks of K <sup>+</sup> /K and Ca <sup>2+</sup> /Ca were generally in the fine mode, indicating that K and Ca           |
| 440 | may be contributed by industrial or combustion sources in the fine mode and strongly                                    |
| 441 | associated with crustal dust in the coarse mode. A strong peak of $\ensuremath{\text{Na}^{+}}\xspace$ /Na in the coarse |
| 442 | mode during summer may indicate impacts of sea salt, consistent in explaining the peak                                  |
| 443 | of Cl <sup>-</sup> in the coarse mode during summer.                                                                    |

#### 444 3.3.2 Size distribution of organic markers

445 Figure 3b describes the size distribution of organic compounds during different seasons. The size distribution varied with seasons and congeners. About 66-79% PAHs 446 were in the pseudo-ultrafine and fine modes, which were higher than the cumulative 447 percentages of hopanes (64-71%) and n-alkanes (56-60%). The sum of 2- and 3-ring 448 PAHs showed a bimodal distribution, while the summed concentrations of 6- and 7-449 ring PAHs was strongly concentrated in the fine mode. High molecular weight PAHs 450 are less volatile and predominantly formed on smaller particles where they condense 451 452 immediately after combustion. However, low molecular weight PAHs are more volatile, so they are easily adsorbed on larger particles as the emissions cool down, or can 453 evaporate from the particle-phase into the air and subsequently adsorb/condense onto 454 pre-existing coarser particle (Offenberg and Baker, 1999). The 4- and 5-ring PAHs were 455 456 found with a unimodal distribution peaking in the fine mode (0.43-1.1 µm) during winter, while they were bimodal during other seasons, due to their repartitioning being 457 enhanced under higher ambient temperatures. 458





| 459 | Most sterane and hopanes detected in this work were observed with a bimodal                                            |
|-----|------------------------------------------------------------------------------------------------------------------------|
| 460 | distribution. It is interesting to observe the enhancement of $17\beta(H), 21\beta(H)$ -hopane                         |
| 461 | (C30 $\beta\beta$ ) and 17 $\alpha$ (H),21 $\beta$ (H)-22R-tetrakishomohopane (C34 $\alpha\beta$ R) in the coarse mode |
| 462 | during winter. C30 $\beta\beta$ and C34 $\alpha\beta$ R have been regarded as markers of less mature coals,            |
| 463 | such as lignite and sub-bituminous coal combustion (Oros and Simoneit, 2000). Thus,                                    |
| 464 | their increase indicates a contribution from immature coal combustion to coarser PM                                    |
| 465 | during winter. For most n-alkanes, a bimodal size distribution was found at 0.43-0.65                                  |
| 466 | or 0.65-1.1 $\mu$ m in the fine mode and 3.3-47 or 4.7-5.8 $\mu$ m in the coarse mode. Total                           |
| 467 | concentrations of C26-C33 showed a strong peak in the coarse mode during spring and                                    |
| 468 | summer, indicating a relatively stronger vegetation source and a resuspended dust                                      |
| 469 | contribution to PM in the coarse mode.                                                                                 |
|     |                                                                                                                        |

470 In previous publications, a bimodal distribution of low molecular weight PAHs and a strong peak in the fine mode of high molecular weight PAHs were reported (Lv et al., 471 2016; Han et al., 2018). The bimodal distribution of most n-alkanes was observed by 472 Wang et al. (2009), Lyu et al. (2017) and Xu et al. (2017). The size distributions of 473 474 hopanes were reported as unimodal in the fine mode (Kleeman et al., 2008; Han et al., 2018), and can be bimodal during summer (Wang et al., 2009). Through comparing 475 these publications with this work, we find that the size distributions of most organic 476 compounds were consistent, but the peaks in the coarse mode are often stronger in this 477 478 work. The difference can be due to variations in their sources, increased fine particle coagulation at high particle concentrations, and organic compound repartitioning. 479 Tianjin is an important heavily populated megacity in northern China, which has large 480





- emissions from industry and traffic, and high resuspended dust due to strong human activities (such as construction and heavy trucks activity). The stronger peaks in the coarse mode, especially during spring and summer, may be linked with the high resuspension of dust from coal combustion, industrial emissions, traffic emissions, construction dust, and mechanical abrasion processes.
- 486

#### 487 **3.4 Size distributions during less polluted and heavy pollution periods**

488 To explore which sizes and which components are significantly enhanced during 489 heavy pollution periods, the enhancement ratios, which are defined as ratios of component concentration during heavy pollution days to that during other days 490 (ER<sub>H/C</sub>=C<sub>H</sub>/C<sub>C</sub>), are calculated and shown in Figure 4. There are different formation 491 mechanisms for heavy pollution episodes during different seasons. During spring heavy 492 493 pollution days, the ER<sub>H/C</sub> of OC3 and OC4 at 1.1-3.3  $\mu$ m were significantly high, along with the enhancement of 4- and 5-ring PAHs (Flt, Pry, BbF, BkF, Bap), hopane and 494 C18-C33 at these sizes. Further, Figure 5 compares the size distributions of species 495 496 which were significantly enhanced during heavy pollution. During the spring heavy pollution, the peaks of the OC3 shifted to 2.1-4.7 µm, and the peaks of 4-ring PAHs, 497 C29αβ-HP, C30αβ-HP and sum of C26-C33 also changed to a larger size. The results 498 imply that this heavy pollution may be caused by local combustion sources which 499 500 emitted relatively larger particles.

501

Figure 4 Figure 5

502





| 503 | The summer heavy pollution was characterized by strong enhancement of SO4 <sup>2-</sup> ,              |
|-----|--------------------------------------------------------------------------------------------------------|
| 504 | $\mathrm{NH_{4}^{+}}$ , Al, EC2 and C26-33 mainly in the coarse mode (Figure 4). The peak of Al in the |
| 505 | coarse mode changed from 4.7-5.8 $\mu m$ for less/average polluted days to 5.8-9.0 $\mu m$ for         |
| 506 | heavy pollution (Figure 5). And $SO_4^{2-}$ , $NH_4^+$ and C26-33 increased in size to 3.3-4.7 and     |
| 507 | $5.8\mathchar`-9.0~\mu m$ respectively. Consistent with the discussion on size distribution of PM mass |
| 508 | concentrations, this heavy pollution may be caused by resuspended dust or long-range                   |
| 509 | transported dust and heterogeneous reactions. Suspended soil containing fertilizer can                 |
| 510 | contribute to alkaline conditions and enhance the heterogeneous reactions on coarse                    |
| 511 | particles (Shen et al., 2011). Additionally, the increases of the low molecular weight                 |
| 512 | PAHs and short chain n-alkanes demonstrate the repartitioning and suspension.                          |
| 513 | Heavy pollution during autumn and winter was strongly associated with significant                      |
| 514 | enhancement of $NO_3^-$ and moderate enhancement of $SO_4^{2-}$ , $NH_4^+$ , OC and EC at most         |
| 515 | sizes especially at 0.65-3.3 $\mu m$ , as shown in Figure 4. $NO_3^-,SO_4{}^{2-},NH_4{}^+,$ and OC can |
| 516 | be from chemical reactions and partly from primary emissions, while EC is from                         |
| 517 | primary emissions. The enhanced EC demonstrates that the meteorological conditions                     |
| 518 | during heavy pollution caused accumulation of particles and precursors. Referring to                   |
| 519 | Figure 5, peaks of $NO_3^-$ , $SO_4^{2-}$ , OC3 and EC1 in the fine mode shifted from 0.43-0.65        |
| 520 | $\mu m$ during less polluted days to 0.65-1.1 or 1.1-2.1 $\mu m$ during heavy pollution. Heavy         |
| 521 | pollution during autumn and winter in northern China is usually characterized by large                 |
| 522 | emissions and specific meteorological condition with a stable boundary layer, weak                     |
| 523 | winds, an increase in temperature, and high relative humidity (RH) (Cheng et al., 2016).               |
| 524 | The meteorological condition was unfavorable for the dispersion of particles and                       |





| 525 | precursors and favours secondary particle formation, hygroscopic growth and stronger          |
|-----|-----------------------------------------------------------------------------------------------|
| 526 | coagulation. Lower temperature, high RH and high precursors increase the formation            |
| 527 | of ammonium nitrate by facilitating the aqueous phase chemical reactions which was            |
| 528 | more likely to occur at 0.65-2.1 µm (Zhang et al., 2013; Tian et al., 2016). In addition,     |
| 529 | as discussed above, the emissions during winter were more complex and emitted                 |
| 530 | coarser EC-containing particles (such as domestic coal combustion), which can rapidly         |
| 531 | accumulate during heavy pollution conditions. The EC at a coarser size can strength the       |
| 532 | reaction at these sizes, because EC could provide sites for adsorption and reaction due       |
| 533 | to its large surface area, and it has the catalytic properties for redox chemistry reactions. |
| 534 | Stronger relationship between black carbon (BC)-containing particles and secondary            |
| 535 | species during more polluted periods were also observed by Wang et al. (2019).                |

536

#### 537 4. Summary and conclusions

A comprehensive study on water-soluble ions, elements, carbon fractions, n-alkanes, PAHs, hopanes and steranes in size-resolved PM samples were conducted during 1 year in a typical northern Chinese industrial megacity. Size distributions of the inorganic and organic components during different seasons and pollution levels were analyzed.

The size distribution of the PM mass concentrations was bimodal during all four seasons peaking at 0.43-0.65 µm and 4.7-5.8 µm; and the coarse mode peak was large during spring and the fine mode peak was more substantial during winter. Both main component composition and organic composition were similar within each mode, but relatively different for the different modes. The OC3, NO<sub>3</sub><sup>-</sup> and sum of crustal elements





showed the highest concentrations in the pseudo-ultrafine, fine and coarse modes, 547 respectively, except that SO4<sup>2-</sup> became the largest component in the pseudo-ultrafine 548 and fine modes during summer. For organic markers, PAHs,  $C29\alpha\beta/C30\alpha\beta$  and 549 C34[S/S+R] ratios consistently indicate stronger traffic influence during summer and 550 551 increased coal combustion during winter; and imply that the maturity of the fossil fuel source decreased with the increase of particle size. The enhancement of C30 $\beta\beta$  and 552 553 C34aBR in the coarse mode during winter indicate a contribution from immature coal 554 combustion. The profile of n-alkanes suggests a dominant fuel combustion influence in 555 the fine mode, and contributions of a vegetation source and resuspended dust in the coarse mode especially during spring and summer. 556

For the size distributions, NO<sub>3</sub><sup>-</sup>, SO<sub>4</sub><sup>2-</sup> and NH<sub>4</sub><sup>+</sup> concentrations were large in the fine 557 mode during most seasons, while  $SO_4^{2-}$  peaked at 1.1-2.1 µm during winter probably 558 559 due to a large contribution of aqueous phase reactions, and  $NO_3^-$  peaked at 3.3-4.7 µm during summer due to repartitioning. Carbon fractions generally exhibited typical 560 bimodal distributions. The crustal elements (Al, Ca, Fe, Ti, etc.) were primarily 561 562 concentrated in the coarse mode at 4.7-5.8 or 5.8-9.0 µm. Most sterane, hopane and nalkanes were observed to have a bimodal distribution. High molecular weight PAHs 563 were concentrated at small sizes during winter, while low molecular weight PAHs were 564 frequently bimodal due to repartitioning. 565

566 During the spring heavy pollution periods, OC3, OC4, 4- and 5-ring PAHs, hopane 567 and C18-C33 n-alkanes were enhanced at 1.1-3.3  $\mu$ m, and their peaks shifted to a larger 568 diameter, implying that the heavy pollution may be caused by a local combustion source





| 569 | which emitted relatively larger particles. During the summer heavy pollution periods,                      |
|-----|------------------------------------------------------------------------------------------------------------|
| 570 | the PM, $SO_4^{2-}$ , $NH_4^+$ , Al, EC and C26-33 concentrations in the coarse mode                       |
| 571 | significantly increased, and their peaks in the coarse mode changed from 3.3-5.8 $\mu m$                   |
| 572 | for less polluted days to 5.8-9.0 $\mu m$ for heavy pollution days, indicating a high                      |
| 573 | contribution of resuspended dust and/or heterogeneous reactions. During winter and                         |
| 574 | autumn, heavy pollution was strongly associated with significant enhancement of NO3-                       |
| 575 | and moderate increases for $SO_4^{2-}$ , $NH_4^+$ , OC and EC. Peaks of PM, $NO_3^{-}$ , $SO_4^{2-}$ , OC3 |
| 576 | and EC1 in the fine mode shifted from 0.43-0.65 $\mu m$ during less polluted days to 0.65-                 |
| 577 | 1.1 or 1.1-2.1 µm during heavy pollution.                                                                  |
| 578 | The data from this work will be used for quantitative source apportionment, which                          |

579 will be further reported in a subsequent paper.

580

Authors contributions. YZT designed the research and wrote the draft of the manuscript with contributions from all coauthors. RMH designed and reviewed the manuscript. YCF take part in designing the research. ZBS assisted with data analysis and manuscript edit. YLL, YXL and QQX performed sampling and experiments. JSX assisted with data analysis.

586 **Competing interests.** The authors declare that they have no conflict of interest.

587 Acknowledgments. This study is supported by the National Natural Science 588 Foundation of China (21707071), Young Elite Scientists Sponsorship Program by 589 Tianjin, China (TJSQNTJ-2018-04), and China Scholarship Council. RMH, ZS and 590 JSX are supported by Natural Environment Research Council (NE/N007190/1).





### 591

#### 592 **References**

- 593 Burnett, R. T., Pope, C. A., Ezzati, M., Olives, C., Lim, S. S., Mehta, S., Shin, H. H.,
- 594 Singh, G., Hubbell, B., Brauer, M., Anderson, H. R., Smith, K. R., Balmes, J. R.,
- 595 Bruce, N. G., Kan, H., Laden, F., Prüss-Ustün, A., Turner, M. C., Gapstur, S. M.,
- 596 Diver, W. R., Cohen, A.: An integrated risk function for estimating the global burden
- 597 of disease attributable to ambient fine particulate matter exposure, Environ. Health
- 598 Perspect., 122, 397-403, 2014.
- 599 Cheng, Y., Zheng, G., Wei, C., Mu, Q., Zheng, B., Wang, Z., Gao, M., Zhang, Q., He,
- 600 K.B., Carmichael, G., Pöschl, U., and Su, H.: Reactive nitrogen chemistry in aerosol
- 601 water as a source of sulfate during haze events in China, Sci. Adv., e1601530, 2016.
- 602 Chow, J. C., Watson, J. G., Pritchett, L. C., Pierson, W. R., Frazier, C. A., and Purcell,
- 603 R. G.: The DRI thermal/optical reflectance carbon analysis system: Description,
- evaluation and applications in U.S. air quality studies, Atmos. Environ., 27, 1185-
- 605 1201, 1993.
- Dillner, A.M., Schauer, J.J., Zhang, Y., Zeng, L., and Cass, G.R.: Size-resolved
  particulate matter composition in Beijing during pollution and dust events, J.
  Geophys. Res., 111, D05203, doi:10.1029/2005JD006400, 2006.
- 609 Grimmer, G., Jacob, J., and Noujack, K. W.: Profile of the polycyclic aromatic
- 610 hydrocarbons from lubricating oils, Inventory by GC/MS-PAH in environmental
- 611 materials, Part 1, Fresen. Z. Anal. Chem., 314, 13-19, 1983.
- 612 Guo, S., Hu, M., Zamora, M. L., Peng, J., Shang, D., Zheng, J., Du, Z., Wu, Z., Shao,





- 613 M., Zeng, L., Molina, M. J., and Zhang, R.: Elucidating severe urban haze formation
- 614 in China, P. Natl. Acad. Sci. USA, 111, 17373-17378, doi:10.1073/pnas.1419604111,
- 615 2014.
- 616 Han, D., Fu, Q., Gao, S., Li, L., Ma, Y., Qiao, L., Xu, H., Liang, S., Cheng, P., Chen,
- 617 X., Zhou, Y., Yu, J. Z., and Cheng, J. P.: Non-polar organic compounds in autumn
- and winter aerosols in a typical city of eastern China: size distribution and impact of
- 619 gas-particle partitioning on PM2.5 source apportionment, Atmos. Chem. Phys., 18,
- 620 **9375-9391**, 2018.
- 621 Hasheminassab, S., Daher, N., Saffari, A., Wang, D., Ostro, B. D., Sioutas, C.: Spatial
- and temporal variability of sources of ambient fine particulate matter (PM2.5) in
- 623 California, Atmos. Chem. Phys., 12085-12097, 2014.
- 624 Hilario, M. R. A., Cruz, M. T., Cambaliza, M. O. L., Reid, J. S., Xian, P., Simpas, J. B.,
- 625 Lagrosas, N. D., Uy, S. N. Y., Cliff, S., and Zhao, Y.: Investigating size-segregated
- 626 sources of elemental composition of particulate matter in the South China Sea during
- 627 the 2011 Vasco cruise, Atmos. Chem. Phys., 20, 1255-1276, 2020.
- 628 Huang, X., Liu, Z., Zhang, J., Wen, T., Ji, D., and Wang, Y.: Seasonal variation and
- 629 secondary formation of size-segregated aerosol water-soluble inorganic ions during
- pollution episodes in Beijing, Atmos. Res., 168, 70-79, 2016.
- 631 Khalili, N.R., Scheff, P.A., Holsen, T.M.: PAH source fingerprints for coke ovens, diesel
- and gasoline engines, highway tunnels, and wood combustion emissions, Atmos.
- 633 Environ., 29, 533-542, 1995.
- 634 Kim, E., and Hopke, P.K.: Improving source identification of fine particles in a rural





- 635 northeastern U.S. area utilizing temperature-resolved carbon fractions, J. Geophys.
- 636 Res., 109, D09204, doi:10.1029/2003JD004199, 2004.
- 637 Kleeman, M. J., Riddle, S. G., and Jakober, C. A.: Size distribution of particle-phase
- 638 molecular markers during a severe winter pollution episode, Environ. Sci. Technol.,
- 639 42, 6469-6475, 2008.
- 640 Kompalli, S.K., Babu, S.N.S., Satheesh, S.K., Moorthy, K.K., Das, T., Boopathy, R.,
- Liu, D., Darbyshire, E., Allan, J.D., Brooks, J., Flynn, M.J., and Coe, H.: Seasonal
- 642 contrast in size distributions and mixing state of black carbon and its association with
- 643 PM1.0 chemical composition from the eastern coast of India, Atmos. Chem. Phys.,
- 644 20, 3965-3985, 2020.
- 645 Liu, S., Wang, C., Zhang, S., Liang, J., Chen, F., and Zhao, K.: Formation and
- distribution of polycyclic aromatic hydrocarbons (PAHs) derived from coal seam
- 647 combustion: A case study of the Ulangab lignite from Inner Mongolia, northern
- 648 China, Int. J. Coal Geol., 90-91, 126-134, 2012.
- 649 Long, X., Tie, X., Zhou, J., Dai, W., Li, X., Feng, T., Li, G., Cao, J., and An, Z.: Impact
- of the Green Light Program on haze in the North China Plain, China, Atmos. Chem.
- 651 Phys., 19, 11185-11197, 2019.
- 652 Lv, Y., Li, X., Xu, T. T., Cheng, T. T., Yang, X., Chen, J. M., Iinuma, Y., and Herrmann,
- 653 H.: Size distributions of polycyclic aromatic hydrocarbons in urban atmosphere:
- 654 sorption mechanism and source contributions to respiratory deposition, Atmos.
- 655 Chem. Phys., 16, 2971-2983, 2016.
- 656 Lyu, Y., Xu, T., Yang, X., Chen, J., Cheng, T., and Li, X.: Seasonal contributions to size-





- 657 resolved n-alkanes (C8-C40) in the Shanghai atmosphere from regional
- anthropogenic activities and terrestrial plant waxes, Sci. Total Environ., 579, 1918-
- 659 1928, 2017.
- 660 Liu, Z., Xie, Y., Hu, B., Wen, T., Xin, J., Li, X., and Wang, Y.: Size-resolved aerosol
- 661 water-soluble ions during the summer and winter seasons in Beijing: Formation
- mechanisms of secondary inorganic aerosols, Chemosphere, 183, 119-131, 2017.
- 663 Mastral, A. M., Callen, M., and Murillo, R.: Assessment of PAH emissions as a function
- 664 of coal combustion variables, Fuel, 75, 1533-1536, 1996.
- 665 Offenberg, J. H., and Baker, J. E.: Aerosol size distributions of polycyclic aromatic
- 666 hydrocarbons in urban and over-water atmospheres, Environ. Sci. Technol., 33,
- 667 **3324-3331**, 1999.
- 668 Oros, D.R., and Simoneit, B.R.T.: Identification and emission rates of molecular tracers
- in coal smoke particulate matter, Fuel, 79, 515-536, 2000.
- 670 Pai, S.J., Heald, C.L., Pierce, J.R., Farina, S.C., Marais, E.A., Jimenez, J.L.,
- 671 Campuzano-Jost, P., Nault, B.A., Middlebrook, A.M., Coe, H., Shilling, J.E.,
- 672 Bahreini, R., Dingle, J.H., and Vu, K.: An evaluation of global organic aerosol
- schemes using airborne observations, Atmos. Chem. Phys., 20, 2637-2665, 2020.
- 674 Pio, C.A., and Harrison, R.M.: Vapour pressure of ammonium chloride aerosol: Effect
- of temperature and humidity, Atmos. Environ., 21, 2711-2715, 1987.
- 676 Robinson, A. L., Donahue, N. M., and Rogge, W. F.: Photochemical oxidation and
- 677 changes in molecular composition of organic aerosol in the regional context, J.
- 678 Geophy. Res.-Atmos., 111, 375-402, 2006.





- 679 Rogge, W. F., Hildemann, L. M., Mazurek, M., and Cass, G. R.: Sources of fine organic
- aerosol, 2. Noncatalyst and catalyst-equipped automobiles and heavy-dutyl diesel
- 681 trucks, Environ. Sci. Technol., 27, 636-651, 1993.
- 682 Seinfeld, J. H., and Pandis, S. N.: Atmospheric Chemistry and Physics, John Wiley and
- 683 Sons, New York, 1998.
- 684 Shen, J., Liu, X., Zhang, Y., Fangmeier, A., Goulding, K., Zhang, F.: Atmospheric
- ammonia and particulate ammonium from agricultural sources in the North China
- 686 Plain, Atmos. Environ., 45, 5033-5041, 2011.
- 687 Shi, G. L., Peng, X., Liu, J., Tian, Y. Z., Song, D., Yu, H. F., Feng, Y. C., and Russell,
- 688 A. G.: Quantification of long-term primary and secondary source contributions to

carbonaceous aerosols, Environ. Pollut., 219, 897-905, 2016.

- 690 Tian, S. L., Pan, Y. P., and Wang, Y. S.: Size-resolved source apportionment of
- 691 particulate matter in urban Beijing during haze and non-haze episodes, Atmos. Chem.
- 692 Phys., 16, 1-19, 2016.
- 693 TMSB (Tianjin Municipal Statistics Bureau). Statistic Yearbook of Tianjin 2016. China
- 694 Statistic Publishing House, Beijing (in Chinese), 2017.
- 695 Wang, G., Kawamura, K., Xie, M., Hu, S., Gao, S., Cao, J., An, Z., and Wang, Z.: Size-
- 696 distributions of n-alkanes, PAHs and hopanes and their sources in the urban,
- 697 mountain and marine atmospheres over East Asia, Atmos. Chem. Phys., 9, 8869-
- 698 **8882**, 2009.
- 699 Wang, J., Liu, D., Ge, X., Wu, Y., Shen, F., Chen, M., Zhao, J., Xie, C., Wang, Q., Xu,
- 700 W., Zhang, J., Hu, J., Allan, J., Joshi, R., Fu, P., Coe, H., and Sun, Y.: Characterization





- 701 of black carbon-containing fine particles in Beijing during wintertime, Atmos. Chem.
- 702 Phys., 19, 447–458, 2019.
- 703 Wang, L. T., Wei, Z., Yang, J., Zhang, Y., Zhang, F. F., Su, J., Meng, C. C., and Zhang,
- 704 Q.: The 2013 severe haze over southern Hebei, China: model evaluation, source
- apportionment, and policy implications, Atmos. Chem. Phys., 14, 3151-3173,
- 706 doi:10.5194/acp-14-3151-2014, 2014.
- 707 Wang, Y., Wang, M., Zhang, R., Ghan, S. J., Lin, Y., Hu, J., Pan, B., Levy, M., Jiang, J.
- 708 H., and Molina, M. J.: Assessing the effects of anthropogenic aerosols on Pacific
- storm track using a multiscale global climate model, Proc. Natl. Acad. Sci. USA,
  111(19), 6894-6899, 2014.
- 711 Xu, Q. P., Wang, J. Z., Liu, J. Q., and Peng, S.C.: Particulate Size Distribution and
- 712 Sources Evaluation of n-Alkanes during Long-Term Haze Episode around Chaohu
- 713 Lake, Eastern China, Aerosol Air Qual. Res., 17, 1975-1984, 2017.
- 714 Xu, S., Ren, L., Lang, Y., Hou, S., Ren, H., Wei, L., Wu, L., Deng, J., Hu, W., Pan, X.,
- 715 Sun, Y., Wang, Z., Su, H., Cheng, Y., and Fu, P.: Molecular markers of biomass
- 716 burning and primary biological aerosols in urban Beijing: size distribution and
- seasonal variation, Atmos. Chem. Phys., 20, 3623-3644, 2020.
- 718 Yadav, I.C., Devi, N.L., Li, J., Zhang, G.: Polycyclic aromatic hydrocarbons in house
- 719 dust and surface soil in major urban regions of Nepal: Implication on source
- apportionment and toxicological effect, Sci. Total Environ., 616-617, 223-235, 2018.
- 721 Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H.,
- 722 Mazon, S.B., Ehn, M., Paasonen, P., Sipilä, M., Wang, M., Wang, X., Xiao, S., Chen,





- 723 H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, F., Li, L., Wang, H., Qiao, L., Yang,
- 724 X., Chen, J., Kerminen, V.M., Petäjä, T., Worsnop, D. R., Kulmala, M., and Wang,
- 725 L.: Atmospheric new particle formation from sulfuric acid and amines in a Chinese
- 726 megacity, Science, 361, 278 281, 2018.
- 727 Zhang, Y., Dou, H., Chang, B., Wei, Z., Qiu, W., Liu, S., Liu, W., Tao, S.: Emission of
- 728 polycyclic aromatic hydrocarbons from indoor straw burning and emission inventory
- 729 updating in China, Ann. N. Y. Acad. Sci. 1140, 218-227, 2008.
- 730 Zhang, Y., Chen, J., Yang, H., Li, R., Yu, Q.: Seasonal variation and potential source
- 731 regions of PM 2.5 -bound PAHs in the megacity Beijing, China: impact of regional
- 732 transport, Environ. Pollut., 231, 329-338, 2017.
- 733 Zhang, G., Bi, X., Chan, L. Y., Wang, X., Sheng, G., and Fu, J.: Size-segregated
- chemical characteristics of aerosol during haze in an urban area of the Pearl River
- 735 Delta region, China, Urban Clim., 4, 74-84, doi:10.1016/j.uclim.2013.05.002, 2013.
- 736 Zhang, Q., Jiang, X., Tong, D., Davis, S. J., Zhao, H., Geng, G., Feng, T., Zheng, B.,
- 737 Lu, Z., Streets, D. G., Ni, R., Brauer, M., van Donkelaar, A., Martin, R. V., Huo, H.,
- 738 Liu, Z., Pan, D., Kan, H., Yan, Y., Lin, J., He, K., and Guan, D.: Transboundary health
- impacts of transported global air pollution and international trade, Nature, 30, 543,
- 740 705-709, 2017.
- 741 Zou, Y., Wang, Y., Zhang, Y., Koo, J.K.: Arctic sea ice, Eurasia snow, and extreme
- 742 winter haze in China, Sci. Adv., 3, e1602751, 2017.
- 743





| 744                      | Figure captions                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 745                      |                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| 746<br>747<br>748        | <b>Figure 1</b> Size distribution of particle mass concentrations during spring, summer, autumn and winter for seasonal average, less polluted samples and heavy pollution samples (with PM concentrations higher than the 3rd quartile).                                                                                   |  |  |  |  |  |
| 749<br>750<br>751<br>752 | <b>Figure 2</b> Concentrations of chemical species in the pseudo-ultrafine mode (size<0.43 $\mu$ m), fine mode (0.43-2.1 $\mu$ m) and coarse mode (>2.1 $\mu$ m) during four seasons. CE is crustal elements, defined as sum of Al, Ca, Fe and Ti. Full names and abbreviations of organic compounds are listed in Table 1. |  |  |  |  |  |
| 753<br>754               | <ul><li>Figure 3 a Size distribution of main species during spring, summer, autumn and winter.</li><li>b Size distribution of organic compounds during spring, summer, autumn and winter.</li></ul>                                                                                                                         |  |  |  |  |  |
| 755<br>756<br>757        | <b>Figure 4</b> Concentration enhancement ratios (which is defined as ratios of component concentration during heavy pollution days to that during less polluted days, $ER_{H/C}=C_{H}/C_{C}$ ) of main species and organic compounds in each size during four seasons.                                                     |  |  |  |  |  |
| 758<br>759               | <b>Figure 5</b> Size distribution of main species during heavy pollution and less polluted days for spring, summer, autumn and winter.                                                                                                                                                                                      |  |  |  |  |  |
| 760                      |                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| 761                      |                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |







763

Figure 1 Size distribution of particle mass concentrations during spring, summer, autumn and winter for seasonal average, less polluted samples and heavy pollution samples (with PM concentrations higher than the 3rd quartile).



60





769 Figure 2 Concentrations of chemical species in the pseudo-ultrafine mode (size<0.43

- $~~\mu m),$  fine mode (0.43-2.1  $\mu m)$  and coarse mode (>2.1  $\mu m)$  during four seasons.
- 771 CE is crustal elements, defined as sum of Al, Ca, Fe and Ti.
- Full names and abbreviations of organic compounds are listed in Table 1.
- 773







Figure 3a Size distribution of main species during spring, summer, autumn and winter.







776

Figure 3b Size distribution of organic compounds during spring, summer, autumn andwinter.







780

781Figure 4 Concentration enhancement ratios (which is defined as ratios of component782concentration during heavy pollution days to that during less polluted days,783 $ER_{H/C}=C_H/C_C$ ) of main species and organic compounds in each size during four seasons.







786

Figure 5 Size distribution of main species during heavy pollution and less polluted days 787 788 for spring, summer, autumn and winter.





# 790 **Table 1** Full names and abbreviations of organic compounds.

|                                         | Abbreviatio |                | Abbreviatio |
|-----------------------------------------|-------------|----------------|-------------|
| Full name                               | n           | Full name      | n           |
| PAHs                                    |             | n-alkanes      |             |
| Naphthalene                             | Nap         | n-Decane       | C10         |
| Acenaphthylene                          | Any         | Undecane       | C11         |
| Acenaphthene                            | Ana         | Dodecane       | C12         |
| Fluorene                                | Flu         | Dridecane      | C13         |
| Phenanthrene                            | Phe         | Tetradecane    | C14         |
| Anthracene                              | Ant         | Pentadecane    | C15         |
| Fluoranthene                            | Flt         | Hexadecane     | C16         |
| Pyrene                                  | Pyr         | Heptadecane    | C17         |
| Benz[a]anthracene                       | BaA         | Octadecane     | C18         |
| Chrysene                                | Chr         | Nonadecane     | C19         |
| benzo[b]fluoranthene                    | BbF         | Icosane        | C20         |
| Benzo[k]fluoranthene                    | BkF         | Henicosane     | C21         |
| Benzo[e]pyrene                          | BeP         | Docosane       | C22         |
| Benzo[a]pyrene                          | BaP         | Tricosane      | C23         |
| Dibenzo[a,h]anthracene                  | DBA         | Tetracosane    | C24         |
| Indeo[1,2,3-cd]pyrene                   | IPY         | Pentacosane    | C25         |
| Benzo[g,h,i]perylene                    | BghiP       | Hexacosane     | C26         |
| Coronene                                | Cor         | Heptacosane    | C27         |
| Sterane and hopane                      |             | Octacosane     | C28         |
| ααα (20S)-Cholestane                    | C27αααS     | Nonacosane     | C29         |
| ααα(20R)-Cholestane                     | C27αααR     | Triacontane    | C30         |
| 17a(H)-22,29,30-Trisnorhopane           | C27a        | Hentriacontane | C31         |
| $17\alpha(H), 21\beta(H)-30$ -Norhopane | C29αβ       | Dotriacontane  | C32         |
| $17\alpha(H), 21\beta(H)$ -hopane       | C30αβ       | Tritriacontane | C33         |
| $17\beta(H), 21\alpha(H)$ -hopane       | C30βα       |                |             |
| $17\beta(H), 21\beta(H)$ -hopane        | C30ββ       |                |             |
| 17α(H),21β(H)-22S-                      |             |                |             |
| Tetrakishomohopane                      | C34αβS      |                |             |
| 17α(H),21β(H)-22R-                      |             |                |             |
| Tetrakishomohopane                      | C34αβR      |                |             |





792 Table 2 Diagnostic parameters and isomeric ratios of organic compounds in size-resolved PM during each season.

| spring     | Ant/(Ant+Phe) | IPY/BghiP            | C29αβ/C30αβ                        | C34[S/(S+R)]              | Cmax              | CPI        | WNA% | PNA% |
|------------|---------------|----------------------|------------------------------------|---------------------------|-------------------|------------|------|------|
| ultra      | 0.24          | 0.70                 | 0.78                               | 0.62                      | C23               | 1.33       | 19%  | 81%  |
| fine       | 0.22          | 0.67                 | 0.73                               | 0.51                      | C23               | 1.22       | 18%  | 82%  |
| coarse     | 0.23          | 1.09                 | 0.74                               | 0.63                      | C31               | 1.64       | 24%  | 76%  |
| summer     |               |                      |                                    |                           |                   |            |      |      |
| ultra      | 0.23          | 0.64                 | 0.69                               | 0.49                      | C23               | 0.97       | 18%  | 82%  |
| fine       | 0.27          | 0.57                 | 0.59                               | 0.41                      | C23               | 1.10       | 17%  | 83%  |
| coarse     | 0.28          | 1.17                 | 0.68                               | 0.35                      | C31               | 1.41       | 24%  | 76%  |
| autumn     |               |                      |                                    |                           |                   |            |      |      |
| ultra      | 0.27          | 0.75                 | 0.73                               | 0.48                      | C23               | 0.81       | 18%  | 82%  |
| fine       | 0.25          | 1.64                 | 0.82                               | 0.33                      | C28               | 0.86       | 18%  | 82%  |
| coarse     | 0.23          | 2.51                 | 0.97                               | 0.35                      | C28               | 0.78       | 18%  | 82%  |
| winter     |               |                      |                                    |                           |                   |            |      |      |
| ultra      | 0.24          | 0.87                 | 1.32                               | 0.75                      | C28               | 0.76       | 18%  | 82%  |
| fine       | 0.15          | 1.53                 | 1.33                               | 0.33                      | C28               | 0.83       | 14%  | 86%  |
| coarse     | 0.24          | 1.92                 | 1.38                               | 0.25                      | C28               | 0.86       | 16%  | 84%  |
| volues in  | > 0.1 for     | 0.2, 0.5 and 1.3 for | 0.6-0.7 for gasoline,              | 0.05-0.35.for             | C31 for           | CPI < 2    |      |      |
| values III | pyrogenic     | gasoline, diesel and | 0.4 for diesel <sup>c</sup> , 0.6- | coal, larger              | resuspended dust, | petrogenic |      |      |
| references | sources a     | coal combustions b   | 2.0 for coal <sup>d</sup>          | for vehicles <sup>d</sup> | C23 for vehicle   | sources    |      |      |

793 a Han et al., 2018

794 b Grimmer et al., 1983

795 c Rogge et al., 1993

796 d Oros and Simoneit, 2000

797