Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Preprints
https://doi.org/10.5194/acp-2020-502
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-2020-502
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  24 Jun 2020

24 Jun 2020

Review status
This preprint is currently under review for the journal ACP.

How does the UKESM1 climate model produce its cloud-aerosol forcing in the North Atlantic?

Daniel P. Grosvenor1 and Kenneth S. Carslaw2 Daniel P. Grosvenor and Kenneth S. Carslaw
  • 1National Centre for Atmospheric Sciences, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK
  • 2Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK

Abstract. Climate variability in the North Atlantic influences processes such as hurricane activity and droughts. Global model simulations have identified aerosol-cloud interactions (ACIs) as an important driver of sea surface temperature variability via surface aerosol forcing. However, ACIs are a major cause of uncertainty in climate forcing, therefore caution is needed in interpreting the results from coarse resolution, highly parameterized global models.

Here we separate and quantify the components of the surface shortwave effective radiative forcing (ERF) due to aerosol in the atmosphere-only version of the UK Earth System Model (UKESM1) and evaluate the cloud properties and their radiative effects against observations. We focus on a northern region of the North Atlantic (NA) where stratocumulus clouds dominate (denoted the northern NA region) and a southern region where trade cumulus and broken stratocumlus dominate (southern NA region). Aerosol forcing was diagnosed using a pair of simulations in which the meteorology is approximately fixed via nudging to analysis; one simulation has pre-industrial (PI) and one has present-day (PD) aerosol emissions.

Contributions to the surface ERF from changes in cloud fraction (fc), in-cloud liquid water path (LWPic) and droplet number concentration (Nd) were quantified. Over the northern NA region increases in Nd and LWPic dominate the forcing. This is likely because the high fc there precludes further large increases in fc and allows cloud brightening to act over a larger region. Over the southern NA region increases in fc dominate due to the suppression of rain by the additional aerosols. Aerosol-driven increases in macrophysical cloud properties (LWPic and fc) will rely on the response of the boundary layer parameterization, along with input from the cloud microphysics scheme, which are highly uncertain processes.

Model gridboxes with low-altitude clouds present in both the PI and PD dominate the forcing in both regions. In the northern NA the brightening of completely overcast low cloud scenes (100 % cloud cover, likely stratocumlus) contributes the most, whereas in the southern NA the creation of clouds with fc of around 20 % from clear skies in the PI was the largest single contributor, suggesting that trade cumulus clouds are created in response to increases in aerosol. The creation of near-overcast clouds was also important there.

The correct spatial pattern, coverage and properties of clouds are important for determining the magnitude of aerosol forcing so we also assess the realism of the modelled PD clouds against satellite observations. We find that the model reproduces the spatial pattern of all the observed cloud variables well, but that there are biases. The shortwave top-of-the-atmosphere (SWTOA) flux is overestimated by 5.8 % in the northern NA region and 1.7 % in the southern NA, which we attribute mainly to positive biases in low-altitude fc. Nd is too low by −20.6 % in the northern NA and too high by by 21.5 % in the southern NA, but does not contribute greatly to the main SWTOA biases. Cloudy-sky liquid water path mainly shows biases north of Scandinavia that reach up to between 50 and 100 % and dominate the SWTOA bias in that region.

The large contribution to aerosol forcing in the UKESM1 model from highly uncertain macrophysical adjustments suggests that further targeted observations are needed to assess rain formation processes, how they depend on aerosols and the model response to precipitation in order to reduce uncertainty in climate projections.

Daniel P. Grosvenor and Kenneth S. Carslaw

Interactive discussion

Status: final response (author comments only)
Status: final response (author comments only)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Login for Authors/Editors] [Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Daniel P. Grosvenor and Kenneth S. Carslaw

Daniel P. Grosvenor and Kenneth S. Carslaw

Viewed

Total article views: 204 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
146 47 11 204 8 8
  • HTML: 146
  • PDF: 47
  • XML: 11
  • Total: 204
  • BibTeX: 8
  • EndNote: 8
Views and downloads (calculated since 24 Jun 2020)
Cumulative views and downloads (calculated since 24 Jun 2020)

Viewed (geographical distribution)

Total article views: 150 (including HTML, PDF, and XML) Thereof 150 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 21 Oct 2020
Publications Copernicus
Download
Short summary
Particles arising from human activity interact with clouds and affect how much of the Sun's energy is reflected away. Lack of understanding about how to represent this in models leads to large uncertainty in climate predictions. We quantify cloud responses to particles in the latest UK Met Office climate model over the North Atlantic ocean showing that, in contrast to suggestions elsewhere, increases in cloud coverage and thickness are important over large areas.
Particles arising from human activity interact with clouds and affect how much of the Sun's...
Citation
Altmetrics