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Abstract. Snow is the most reflective natural surface on Earth and consequently plays 1 

an important role in Earth’s climate. Light-absorbing particles (LAPs) deposited on the 2 

snow surface can effectively decrease snow albedo, resulting in positive radiative 3 

forcing. In this study, we used remote sensing data from NASA’s Moderate Resolution 4 

Imaging Spectroradiometer (MODIS) and the Snow, Ice, and Aerosol Radiative 5 

(SNICAR) model to quantify the reduction in snow albedo due to LAPs, before 6 

validating and correcting the data against in-situ observations. We then incorporated 7 

these corrected albedo-reduction data in the Santa Barbara DISORT Atmospheric 8 

Radiative Transfer (SBDART) model to estimate Northern Hemisphere radiative 9 

forcing except for midlatitude mountains in December-May for the period 2003–2018. 10 

Our analysis reveals an average corrected reduction in snow albedo (∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠 ) 11 

of ~0.021 under all-sky conditions, with daily radiative forcing (𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠 ) values 12 

of ~2.9 W m–2, over land areas with complete or near-complete snow cover and with 13 

little or no vegetation above the snow in Northern Hemisphere. We also observed 14 

significant spatial variations in ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠  and 𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦

𝐿𝐴𝑃𝑠 , with the lowest 15 

respective values (~0.016 and ~2.6 W m–2) occurring in the Arctic and the highest 16 

(~0.11 and ~12 W m–2) in northeastern China. From MODIS retrievals, we determined 17 

that the LAP content of snow accounts for 84% and 70% of the spatial variability in 18 

albedo reduction and radiative forcing, respectively. We also compared retrieved 19 

radiative forcing values with those of earlier studies, including local-scale observations, 20 

remote-sensing retrievals, and model-based estimates. Ultimately, estimates of 21 

radiative forcing based on satellite-retrieved data are shown to represent true conditions 22 
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on both regional and global scales. 1 

1. Introduction 2 

Seasonal snow cover affects 30% of Earth’s land surface and exerts a cooling influence 3 

on global climate through its direct interaction with the surface radiances budget 4 

(Painter et al., 1998; Flanner et al., 2011). However, snow surface darkening due to 5 

light-absorbing particles (LAPs) such as black carbon (BC), organic carbon (OC), dust, 6 

and algae, can significantly alter the reflective properties of snow (Warren, 1982, 1984; 7 

Hadley and Kirchstetter, 2012). When deposited on the snow surface, LAPs increase 8 

the absorption of solar radiation (Painter et al., 2012a; Liou et al., 2014; Dang et al., 9 

2017), thereby reducing the snow albedo (Warren and Brandt, 2008; Kaspari et al., 10 

2014). As a result, radiative forcing of LAPs in snow (RFLS) plays a critical role in 11 

snow-cover decline on both regional and global scales (Warren and Wiscombe, 1980), 12 

perturbing the climate system and impacting hydrological cycles (Qian et al., 2011). 13 

One of the primary LAPs, BC, is derived from the incomplete combustion of fossil 14 

fuels and biomass (Bond et al., 2013; Dang et al., 2015) and is second only to CO2 in 15 

its contribution to climate forcing (Hansen and Nazarenko, 2004; Ramanathan and 16 

Carmichael, 2008; Bond et al., 2013). Yet, despite considerable efforts to measure the 17 

BC content of Northern Hemisphere snow and ice (Doherty et al., 2010, 2014; Huang 18 

et al., 2011; Ye et al., 2012; Wang et al., 2013b, 2017), the inherent challenges presented 19 

by a temporospatially variable snow cover mean our understanding of LAPs in snow is 20 

far from complete. As a result, persistent uncertainties remain in regional and global-21 
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scale RFLS estimates based on field measurements (Zhao et al., 2014).  1 

Several previous investigations have utilized numerical models to estimate RFLS, 2 

including that of Hansen and Nazarenko (2004), who concluded that BC in snow and 3 

ice exerts a positive climate forcing throughout the Northern Hemisphere of +0.3 W m–4 

2, or explaining approximately one quarter of observed global warming. More recently, 5 

Flanner et al. (2007) employed an aerosol/chemical-transport general-circulation model, 6 

coupled with the Snow, Ice, and Aerosol Radiative (SNICAR) model (Flanner et al., 7 

2007; 2009), to estimate globally averaged radiative forcing values of +0.054 (range 8 

0.007–0.13) and +0.049 (0.007–0.12) W m–2 for a strong (1998) and weak (2001) boreal 9 

fire year, respectively. Using the Weather Research and Forecasting (WRF) model 10 

(Skamarock et al., 2008) coupled with a chemistry component (Chem) (Grell et al., 11 

2005) and SNICAR modeling, Zhao et al. (2014) demonstrated that RFLS over northern 12 

China in January–February 2010 was ~10 W m–2. However, despite their potentially 13 

valuable contribution, climate models contain significant uncertainties in 14 

representations of LAP emissions, transport, deposition, and post-depositional 15 

processes that can propagate into simulations of LAP concentrations and their climate 16 

forcing (Qian et al., 2015; Lee et al., 2016). Zhao et al. (2014) also confirmed that, 17 

relative to observational data, modeled LAPs and radiative forcing estimates exhibit 18 

biases that are difficult to explain and quantify. These shortcomings underscore the need 19 

for a refined approach to estimating real-time RFLS that minimizes the mismatch 20 

between field observations and model simulations. 21 
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In addition to modeling, remote sensing has been used to assess the physical 1 

characteristics of snow cover (Nolin and Dozier, 1993, 2000; Painter et al., 2009, 2012a, 2 

2013; Miller et al., 2016). Nolin and Dozier (2000), for example, retrieved grain-size 3 

data from satellite-derived reflectance at near-infrared (NIR) wavelengths, following 4 

the rationale that snow-grain size, in conjunction with solar zenith angle, dictates the 5 

path-length of penetrating photons (Wiscombe and Warren, 1980) and thus influences 6 

albedo in the NIR. Similarly, recent studies have attempted to employ satellite-derived 7 

snow albedo at visible (VIS) wavelengths to retrieve RFLS data (Seidel et al., 2016; Pu 8 

et al., 2019). Briefly, this retrieval method exploits the imaginary component of the 9 

complex refractive index for ice (K𝑖𝑐𝑒 ), which is very low at VIS wavelengths and 10 

results in the extremely high VIS albedo for pure snow. In contrast, the imaginary 11 

component of the complex refractive index for LAPs (K𝐿𝐴𝑃𝑠) at VIS wavelengths is 12 

orders of magnitude greater, resulting in the reduction in VIS snow albedo (Wiscombe 13 

and Warren, 1980). Moreover, albedo variability at VIS wavelengths is dominated by 14 

even minor concentrations of LAPs (Brandt et al., 2011; Painter et al., 2012b).  15 

Painter et al. (2012a) employed surface-reflectance data provided by NASA’s Moderate 16 

Resolution Imaging Spectroradiometer (MODIS) for the Upper Colorado River Basin 17 

and Hindu Kush-Himalaya (HKH) to make the first quantitative, remote-sensing-based 18 

retrievals of instantaneous surface radiative forcing (RF) due to LAPs. Relative to the 19 

Western Energy Balance of Snow (WEBS) network (Painter et al., 2007), that study 20 

established that MODIS-derived radiative forcing exhibits a positive bias at lower RF 21 
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values and a slightly negative bias at higher values. A more recent study by Seidel et al. 1 

(2016) used remote sensing to constrain instantaneous melt-season RFLS values of 20–2 

200 W m–2 for the Sierra Nevada and Rocky Mountains, while Pu et al. (2019) reported 3 

MODIS-derived values of 22–65 W m–2 for northern China in January–February 4 

(regional average ~45 W m–2). Acknowledging this demonstrated efficacy of remote 5 

sensing retrievals for establishing RFLS on regional scales, we note this approach has 6 

so far not captured spatial variability in RFLS on a global scale. 7 

In this study, we employed MODIS data to determine the reduction in Northern 8 

Hemisphere snow albedo due to LAPs. Retrievals were validated and corrected 9 

according to ground-based snow observations, after which spatial variability in albedo 10 

reduction and radiative forcing over mapped snow-covered area in Northern 11 

Hemisphere were assessed quantitatively. Finally, we compared our satellite-derived 12 

radiative forcing values with the modeling results of CESM2 (Eyring et al., 2016; 13 

Danabasoglu et al., 2020). Despite the persistence of non-negligible uncertainties and 14 

biases, our satellite-based retrievals constitute the first hemisphere-scale assessment of 15 

RFLS and provide valuable information for improving climate model simulations. 16 

2. Data 17 

2.1. Remote-sensing data 18 

To investigate the impact of LAPs on snow albedo, we utilized the following MODIS 19 

data sets: surface albedo (MCD43C3; 0.05° × 0.05° resolution), snow cover 20 

(MYD10C1; 0.05° × 0.05° resolution), land cover type (MCD12C1; 0.05° × 0.05° 21 
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resolution), and atmospheric parameters (MYD08_D3; 1° × 1° resolution). Each data 1 

set corresponds to December-May for the period 2003–2018 (https://earthdata.nasa.gov, 2 

last access: 20 January 2019). MCD43C3 is the daily combined MODIS output derived 3 

from both the Terra and Aqua satellites, and provides black-sky albedo (directional 4 

hemispherical reflectance, DHF) and white-sky albedo (bi-hemispherical reflectance, 5 

BHF) at local solar noon for bands 1–7 (band 1, 620–670 nm; band 2, 841–876 nm; 6 

band 3, 459–479 nm; band 4, 545–565 nm; band 5, 1230–1250 nm; band 6, 1628–1652 7 

nm; band 7, 2105–2155 nm), as well as values for quality control, local noon solar 8 

zenith angle, and associated parameters. MCD43C3 observations are weighted to 9 

estimate albedo on the 9th day of each 16-day period and have been corrected for the 10 

influence of local slope and aspect, atmospheric gases, and aerosols.  11 

Snow-cover data are provided daily by MYD10C1 as a report of the snow-cover 12 

fraction (SCF), derived from the Normalized Difference Snow Index (NDSI). 13 

MCD12C1 provides a spatially aggregated and reprojected land-cover type, which is 14 

derived from the supervised classification of MODIS reflectance data, while MODIS 15 

MYD08_D3 reports values of solar azimuth angle. 16 

Average-daily solar radiances and cloud fraction were obtained from NASA’s Clouds 17 

and the Earth’s Radiant Energy System (CERES: https://ceres.larc.nasa.gov, last access: 18 

12 April 2019), part of the Earth Observing System comprising the Aqua, Terra, and S-19 

NPP satellites. CERES provides instantaneous measurements of solar radiances, which 20 

are then converted to average-daily flux by angular dependence and empirical diurnal 21 

https://earthdata.nasa.gov/
https://ceres.larc.nasa.gov/
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albedo modeling as the satellite passes through the point of descent (Doelling et al., 1 

2013; Su et al., 2015; Loeb et al., 2018). We used the total downward shortwave flux 2 

and cloud fraction at the surface, provided by the “CERES Single Scanner Footprint 3 

1.08 (SSF1deg)” product, to estimate average-daily RFLS under all-sky conditions. 4 

Shuttle Radar Topography Mission (SRTM) digital elevation data are provided by the 5 

US Geological Survey (https://www.usgs.gov/, last access: 9 December 2018) to adjust 6 

slope- and aspect-induced changes of surface solar irradiance in complex terrain. The 7 

spatial resolution of SRTM data for the Northern Hemisphere is 30 m. 8 

2.2. Snow depth data 9 

Estimates of snow depth were obtained from the European Centre for Medium-Range 10 

Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) 11 

(https://www.ecmwf.int, last access: 15 January 2019). ERA-Interim is a new 12 

generation of reanalysis based on a 12-hourly and 4-dimensional variational data 13 

assimilation (4D-Var) covering the period 1979–present. ERA-Interim performs better 14 

in model physics frameworks, data quality control, and background error criteria than 15 

previous versions (Berrisford et al., 2011; Brun et al., 2013). In this study, we used 16 

snow-water equivalent (SWE) data for December-May covering the period 2003–2018. 17 

These data were generated by forecast models and updated according to a Cressman 18 

analysis of snow observations (Drusch et al., 2004; Dee et al., 2011). We note that the 19 

previous occurrence of false snow-free patches, arising from application of Cressman 20 

analysis in regions of sparse ground control, has been mitigated by ECMWF upgrades 21 

https://www.usgs.gov/
https://www.ecmwf.int/


9 

 

(Dee et al., 2011). Finally, SWE is converted to snow depth by assuming that average 1 

December-May snow density is ~300 kg m–3, consistent with snow-depth estimates by 2 

the Canadian Meteorological Centre (CMC) (Sturm et al., 1995; Brown and Mote, 3 

2009). 4 

2.3. In-situ measurements of LAPs in snow 5 

To correct the satellite retrievals, we collected a comprehensive set of in-situ 6 

measurements of BC concentrations from the field campaigns in the Arctic in spring of 7 

2005-2009 (Doherty et al., 2010), North America in January-March of 2013 (Doherty 8 

et al., 2014), Northern China in January-February of 2010, 2012 and 2014 (Ye et al., 9 

2012; Wang et al., 2013; Wang et al., 2017). The BC concentrations are measured by 10 

the two-sphere integrating-sandwich (TSI) spectrophotometer in the Arctic, North 11 

America, and Northern China (Grenfell et al., 2011; Wang et al., 2020). Briefly, TSI 12 

produces a diffuse radiation field when the white light illumination is transmitted into 13 

an integrating sphere; then the diffuse radiation passes through the filter and is detected 14 

by a spectrometer. The TSI technique acquires the light attenuation spectrum due to the 15 

LAPs loaded on the sample filter (Grenfell et al., 2011). Then, the light attenuation 16 

spectrum of the sample filter is transformed into an equivalent BC mass (unit: g cm-2) 17 

loading by comparing against the standard filters. The equivalent BC has been defined 18 

by Doherty et al. (2010) which briefly as the amount of BC in the snow accounted for 19 

the wavelength-integrated total light absorption in the wavelengths of 300-750 nm by 20 

all particulate constituents. In this study, we used 𝐵𝐶𝑒𝑞𝑢𝑖𝑣 for all LAPs to calculate the 21 
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in-situ snow albedo reduction and radiative forcing (Fig. S3). 1 

2.4. Climate model simulations 2 

We compared our remotely sensed retrievals of daily-average RFLS for the 2003–2014 3 

study period with simulated results derived from CESM2 (https://esgf-node.llnl.gov/, 4 

last access: 15 July 2019). In this study, we employed simulations of snow BC 5 

concentrations derived from the CESM2 historical experiments, in conjunction with 6 

ERA-Interim SWE, MODIS-retrieved snow grain-size, and CERES total downward 7 

shortwave flux data under all-sky condition, to model daily-average RFLS for the study 8 

period. Simulations were performed using the Snow, Ice, and Aerosol Radiative 9 

(SNICAR) and Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) 10 

models, and the model output was compared with satellite-based retrievals. 11 

3. Methods 12 

3.1. Radiative transfer model 13 

In this study, we used the Santa Barbara DISORT Atmospheric Radiative Transfer 14 

(SBDART) model to calculate spectral surface solar irradiance. Constituting one of the 15 

most widely applied models for calculating the atmospheric radiative transfer at Earth’s 16 

surface, under both clear- and cloudy-sky conditions (Ricchiazzi et al., 1998), SBDART 17 

combines a low-resolution atmospheric transmission model, Discrete Ordinate 18 

Radiative Transfer (DISORT) module, and Mie scattering output for the scattering of 19 

light by ice crystals and water droplets (Stamnes et al., 1988; Fu et al., 2017). Radiative 20 

transfer equations for a vertically inhomogeneous, non-isothermal, plane-parallel 21 

https://esgf-node.llnl.gov/
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atmosphere are integrated numerically using the DISORT module. SBDART comprises 1 

multiple standard atmospheric profiles, cloud models, basic surface types, as well as 2 

vertical distribution models for aerosols and gas absorption, and enables users to specify 3 

these input parameters in real values. In our study, the subarctic and midlatitude winter 4 

standard atmospheric condition are assumed as well as the tropospheric and 5 

stratospheric background aerosols are archived in SBDART (Tanre, D. et al., 1990). 6 

According to Dang et al. (2017), the cloud optical depth in high-latitude and mid-7 

latitude was assumed as 11 and 20 under cloudy-sky condition, respectively. The 8 

spectral irradiance from SBDART is only used for integrating the spectral MODIS 9 

albedo to achieve broadband albedo, thus the uncertainty of solar irradiance from the 10 

assumed atmospheric properties has limited influence on the retrieval of radiative 11 

forcing (see Section 3.2). Average incident direct and diffuse solar spectra for 12 

December-May under clear/cloudy sky are shown in Fig. S1. 13 

The Snow, Ice, and Aerosol Radiative (SNICAR) model is a two-stream multiple 14 

scattering radiative transfer model (Flanner et al., 2007, 2009) that has been used widely 15 

both to simulate the albedo, transmission, and vertical absorptivity of LAP-16 

contaminated snowpack and to estimate RFLS (Painter et al., 2012a; Bryan et al., 2013; 17 

Miller et al., 2016). SNICAR employs the theory proposed by Wiscombe and Warren 18 

(1980) and Toon et al. (1989). Specifically, snow is considered to be composed of 19 

aggregated ice grains with optical effective radii (𝑅𝑒𝑓𝑓 ) of 50–1500 μm, lognormal 20 

distribution, and spherical grain shape. SNICAR also accounts for the incident radiation 21 
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at the surface and its spectral distribution, solar zenith angle, snow depth and density, 1 

snow layer number, and the type and concentration of LAPs in the snowpack. The 2 

model’s ability to provide realistic simulations of snow albedo has been verified by 3 

several previous studies (Hadley and Kirchstetter, 2012; Meinander et al., 2013; Zhong 4 

et al., 2017; Wang et al., 2017). 5 

3.2. Retrieval of quantitative snow properties from remote sensing 6 

The variability of spectral snow albedo depends on the LAP content, grain size, grain 7 

shape, and depth of the snowpack, in addition to solar zenith angle. As shown in Fig. 8 

1a, the deposition of BC (as representative of LAPs generally) serves to decrease the 9 

albedo of snow significantly, particularly in the ultraviolet (UV) and VIS wavelengths, 10 

which account for approximately half of all direct solar irradiance and the majority of 11 

diffuse solar irradiance (Fig. S1). In contrast, the impact of BC on albedo is 12 

considerably smaller in NIR wavelengths and can be negligible at >~1150 nm. Snow 13 

depth plays a similar role to LAP content and primarily affects albedo in UV and VIS 14 

wavelengths (Fig. 1b).  15 

Although snow albedo decreases with snow depth, previous studies have tended to 16 

assume a semi-infinite snowpack for which albedo is independent of depth. As a 17 

consequence, the role of LAPs in albedo reduction has been overestimated for those 18 

areas where the snowpack is thin (Warren, 2013). In this study, we incorporated ERA-19 

Interim SWE data in our SNICAR model simulations to correct for the snow-depth 20 

overestimation effect. In contrast, snow grain-size and solar zenith angle influence the 21 
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snow albedo chiefly in NIR wavelengths (Fig. 1c, d). Specifically, albedo tends to 1 

decrease with increasing snow grain-size and declining solar zenith angle. In this study, 2 

we derived quantitative snow parameters (grain size, albedo reduction, and RFLS) from 3 

MODIS data in conjunction with the SNICAR and SBDART models. The specific 4 

workflow for retrieving RFLS from satellite data is shown in Fig. 2. 5 

3.2.1. Retrieval of blue-sky albedo 6 

MCD43 provides black-sky and white-sky albedo, which are defined as albedo in the 7 

absence of diffuse and direct competent of solar irradiance. Accordingly, the actual 8 

spectral albedo for a land surface at wavelength 𝜆  (also called blue-sky albedo: 9 

α𝑀𝑂𝐷𝐼𝑆,𝜆
𝑏𝑙𝑢𝑒−𝑐𝑙𝑒𝑎𝑟) under clear-sky condition can be calculated as follows: 10 

α𝑀𝑂𝐷𝐼𝑆,𝜆
𝑏𝑙𝑢𝑒−𝑐𝑙𝑒𝑎𝑟 = 𝑓𝑑𝑖𝑓,𝜆

𝑐𝑙𝑒𝑎𝑟 ∙ 𝛼𝑀𝑂𝐷𝐼𝑆,𝜆
𝑤ℎ𝑖𝑡𝑒−𝑠𝑘𝑦

+ (1 −  𝑓𝑑𝑖𝑓,𝜆
𝑐𝑙𝑒𝑎𝑟) ∙ α𝑀𝑂𝐷𝐼𝑆,𝜆

𝑏𝑙𝑎𝑐𝑘−𝑠𝑘𝑦
  (1) 11 

where 𝛼𝑀𝑂𝐷𝐼𝑆,𝜆
𝑤ℎ𝑖𝑡𝑒−𝑠𝑘𝑦

  and 𝛼𝑀𝑂𝐷𝐼𝑆,𝜆
𝑏𝑙𝑎𝑐𝑘−𝑠𝑘𝑦

  are MODIS-derived values for white-sky and 12 

black-sky albedo, respectively, and 𝑓𝑑𝑖𝑓,𝜆
𝑐𝑙𝑒𝑎𝑟 is the ratio of diffuse irradiance to the total 13 

solar irradiance under clear-sky (Lewis and Barnsley, 1994). The latter is calculated as 14 

follows: 15 

𝑓𝑑𝑖𝑓,𝜆
𝑐𝑙𝑒𝑎𝑟 = 

𝐸𝑑𝑖𝑓
𝑐𝑙𝑒𝑎𝑟(𝜆; 𝜑)

𝐸𝑑𝑖𝑓
𝑐𝑙𝑒𝑎𝑟(𝜆; 𝜑) + 𝐸𝑑𝑖𝑟

𝑐𝑙𝑒𝑎𝑟(𝜆; 𝜑)∙𝑐𝑜𝑠𝛽
           (2) 16 

where 𝜑  is latitude, and 𝐸𝑑𝑖𝑓
𝑐𝑙𝑒𝑎𝑟(𝜆;  𝜑)  denote the diffuse spectral irradiance on a 17 

horizontal surface and 𝐸𝑑𝑖𝑟
𝑐𝑙𝑒𝑎𝑟(𝜆;  𝜑) denote the direct spectral irradiance on a surface 18 

perpendicular to the sun, derived from the SBDART model under clear-sky condition. 𝛽 19 

represents local solar zenith angle, which is obtained using the topographic correction 20 
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method (Teillet et al., 1982; Negi and Kokhanovsky, 2011): 1 

cos 𝛽  =  cos 𝜃0 cos 𝜃𝑇 + sin 𝜃0 sin 𝜃𝑇 cos(𝜙0 − 𝜙𝑇)       (3) 2 

for which 𝜃0 represents the solar zenith angle for a horizontal surface, 𝜙0 is the solar 3 

azimuth angle, and 𝜃𝑇  and 𝜙𝑇  denote slope inclination and aspect, respectively. 4 

Similarly, we can derive the blue-sky albedo for cloudy-sky condition (α𝑀𝑂𝐷𝐼𝑆,𝜆
𝑏𝑙𝑢𝑒−𝑐𝑙𝑜𝑢𝑑𝑦

). 5 

Then, we used cloud fraction (𝑓𝑐𝑙𝑜𝑢𝑑 ) from CERES to weight clear-sky albedo and 6 

cloudy-sky albedo to obtain actual all-sky albedo (α𝑀𝑂𝐷𝐼𝑆,𝜆
𝑎𝑙𝑙 ): 7 

𝛼𝑀𝑂𝐷𝐼𝑆,𝜆
𝑎𝑙𝑙 = 𝑓𝑐𝑙𝑜𝑢𝑑 ∙ α𝑀𝑂𝐷𝐼𝑆,𝜆

𝑏𝑙𝑢𝑒−𝑐𝑙𝑜𝑢𝑑𝑦
+ (1 − 𝑓𝑐𝑙𝑜𝑢𝑑) ∙ α𝑀𝑂𝐷𝐼𝑆,𝜆

𝑏𝑙𝑢𝑒−𝑐𝑙𝑒𝑎𝑟     (4) 8 

3.2.2. Retrieval of snow cover and albedo values 9 

As shown in Fig. 2, the snow-covered area is mapped according to the actual all-sky 10 

albedo (𝛼𝑀𝑂𝐷𝐼𝑆,𝜆
𝑎𝑙𝑙  ) in band 4 (band center ~555 nm) and the Normalized Difference 11 

Snow Index (NDSI), both of which are required to exceed 0.6 (Negi and Kokhanovsky, 12 

2011). According to the MODIS Snow Products Collection 6 User Guide 13 

(http://nsidc.org/data), the Fractional Snow Cover (𝐹𝑆𝐶) can be calculated as follows:  14 

𝐹𝑆𝐶 =  −0.01 +  1.45 ∙ NDSI         (5) 15 

Accordingly, the identified snow-covered area (ISCA) has an 𝐹𝑆𝐶 value of >86% but 16 

not always 100%. Therefore, the MODIS-derived albedo for a particular ISCA is a 17 

combination of values representing both snow and the snow-free underlying surface. 18 

Following Pu et al. (2019), the snow albedo (𝛼𝑠𝑛𝑜𝑤,𝜆
𝑎𝑙𝑙 ) can be distinguished from the 19 

mixed albedo by the equation: 20 
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𝛼𝑀𝑂𝐷𝐼𝑆,𝜆
𝑎𝑙𝑙 =  

𝐸𝑎𝑙𝑙−𝑠𝑘𝑦,𝜆 ∙ 𝐹𝑆𝐶 ∙ 𝛼𝑠𝑛𝑜𝑤,𝜆
𝑎𝑙𝑙  +  𝐸𝑎𝑙𝑙−𝑠𝑘𝑦,𝜆 ∙ (1 −  𝐹𝑆𝐶) ∙ 𝛼𝑢𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔,𝜆

𝐸𝑎𝑙𝑙−𝑠𝑘𝑦,𝜆
 1 

=  𝐹𝑆𝐶 ∙ 𝛼𝑠𝑛𝑜𝑤,𝜆
𝑎𝑙𝑙  +  (1 −  𝐹𝑆𝐶) ∙ 𝛼𝑢𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔,𝜆     (6) 2 

𝛼𝑠𝑛𝑜𝑤,𝜆
𝑎𝑙𝑙  =  

𝛼𝑀𝑂𝐷𝐼𝑆,𝜆
𝑎𝑙𝑙 − (1 − 𝐹𝑆𝐶)∙𝛼𝑢𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔,𝜆

𝐹𝑆𝐶
        (7) 3 

where 𝐸𝑎𝑙𝑙−𝑠𝑘𝑦,𝜆 is total solar irradiance under all-sky condition, a linear combination 4 

of direct/diffuse component of solar irradiance under clear-sky and cloudy-sky using 5 

similar strategy via Eq. (1)-(4). 𝛼𝑢𝑛𝑑𝑒𝑟𝑙𝑦𝑖𝑛𝑔,𝜆 represents the albedo of the underlying 6 

surface and was obtained from Siegmund and Menz (2005). As depicted in Fig. 3b, 7 

vegetation and bare soil are the main types of underlying surface in the ISCA. 8 

3.2.3. Retrieval of snow grain size 9 

The snow optical-equivalent grain size (𝑅𝑒𝑓𝑓) is retrieved by fitting SNICAR-simulated 10 

snow albedo to MODIS-derived snow albedo at 1240 nm (the central wavelength of 11 

MODIS band 5), following the protocol of Nolin and Dozier (2000). This retrieval 12 

method is not influenced by liquid water and water vapor and has been employed 13 

widely in previous studies (e.g., Painter et al., 2013; Seidel et al, 2016). Both Nolin and 14 

Dozier (2000) and Pu et al. (2019) reported that the retrieved 𝑅𝑒𝑓𝑓 compares favorably 15 

with ground-based measurements of snow grain size. In this study, we chose to exclude 16 

the ISCA, where MODIS-derived snow albedo at 1240 nm is <0.3, to avoid 17 

misrepresenting 𝑅𝑒𝑓𝑓 (Tedesco et al., 2007). 18 

3.2.4. Retrieval of snow albedo reduction and RFLS 19 

The spectrally integrated reduction in snow albedo due to LAPs (∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑛𝑜𝑜𝑛
𝐿𝐴𝑃𝑠  ) is 20 
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estimated for local-noon and all-sky conditions, using solar irradiance and the 1 

difference between MODIS-derived spectral snow albedo (𝛼𝑠𝑛𝑜𝑤,𝜆
𝑎𝑙𝑙 ) and simulated pure 2 

snow albedo (𝛼𝑠𝑛𝑜𝑤,𝜆
𝑚𝑑𝑙 ). Because MODIS provides only four VIS bands, we fitted snow 3 

albedo data obtained via MODIS to a continuous 300–2500 nm spectrum (𝛼𝑠𝑛𝑜𝑤,𝜆
𝑀𝑂𝐷𝐼𝑆 , with 4 

a 10 nm interval) following the method provided by Pu et al. (2019). Thereafter, the 5 

broadband albedo reduction due to LAPs retrieved from MODIS (∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑛𝑜𝑜𝑛
𝐿𝐴𝑃𝑠 ) can 6 

be calculated as follows: 7 

∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑛𝑜𝑜𝑛
𝐿𝐴𝑃𝑠  =  

∑ (𝛼𝑠𝑛𝑜𝑤,𝜆
𝑚𝑑𝑙  −𝛼𝑠𝑛𝑜𝑤,𝜆

𝑀𝑂𝐷𝐼𝑆)𝜆 = 2500𝑛𝑚
𝜆 = 300𝑛𝑚  ⋅ 𝐸𝑎𝑙𝑙−𝑠𝑘𝑦,𝜆 ⋅ ∆𝜆

∑ 𝐸𝑎𝑙𝑙−𝑠𝑘𝑦,𝜆 ⋅ ∆𝜆𝜆 = 2500𝑛𝑚
𝜆 = 300𝑛𝑚

     (8) 8 

where 𝛼𝑠𝑛𝑜𝑤,𝜆
𝑚𝑑𝑙  is the pure snow albedo simulated by SNICAR using MODIS-derived 9 

𝑅𝑒𝑓𝑓  and ERA-Interim snow depth data, 𝛼𝑠𝑛𝑜𝑤,𝜆
𝑀𝑂𝐷𝐼𝑆   is the continuous snow albedo 10 

derived from MODIS retrievals, and ∆𝜆 is 10 nm.  11 

Following Miller et al. (2016), we assumed that the properties for snow and LAPs 12 

remain invariable throughout the day. Based on calculated 𝛼𝑠𝑛𝑜𝑤,𝜆
𝑚𝑑𝑙   and 𝛼𝑠𝑛𝑜𝑤,𝜆

𝑀𝑂𝐷𝐼𝑆   at 13 

noon, the diurnal variation of pure and polluted snow albedo can be simulated by 14 

SNICAR from sunrise to sunset. Then, daily-average snow albedo reduction 15 

(∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠 ) can be derived by integrating the diurnal snow albedo reduction, which 16 

is weighted by simultaneous solar irradiance from SBDART. Similarly, we used 17 

measurements of LAPs in contaminated snow to calculate the  18 

in-situ reduction in snow albedo (∆𝛼𝑖𝑛−𝑠𝑖𝑡𝑢,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠  ). To derive a correction factor for 19 

MODIS retrievals, we applied a similar validation strategy to that of Zhu et al. (2017): 20 



17 

 

c =  
1

𝑛
∑ (

∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠

∆𝛼𝑖𝑛−𝑠𝑖𝑡𝑢,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠 )𝑛

𝑖 = 1            (9) 1 

where c  is the correction factor for ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠   and n  is the number of the 2 

respective in-situ measurements. Accordingly, the corrected albedo reduction 3 

(∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠 ) is calculated as follows: 4 

∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠  =  

1

𝑐
 ∙  ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦

𝐿𝐴𝑃𝑠         (10) 5 

The daily-average, spectrally integrated RFLS (𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠 ) is calculated for all-sky 6 

conditions as follows: 7 

𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠  =  ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

𝐿𝐴𝑃𝑠  ⋅  𝑆𝑊𝑎𝑙𝑙−𝑠𝑘𝑦 (11) 8 

where 𝑆𝑊𝑎𝑙𝑙−𝑠𝑘𝑦  represent the average-daily total downward shortwave fluxes, 9 

obtained from CERES under all-sky conditions.  10 

3.2.5. Attribution of spatial variability in snow albedo reductions and radiative 11 

forcing 12 

As demonstrated above, reductions in snow albedo and RFLS are dependent primarily 13 

on LAP content, 𝑅𝑒𝑓𝑓, snow depth (𝑆𝐷), solar zenith angle, surface topography, and 14 

solar irradiance, the latter three of which can be categorized as the geographic factor 15 

(𝐺). We used an impurity index (𝐼𝐿𝐴𝑃𝑠) to represent the LAP content of the snowpack 16 

(Di Mauro et al., 2015; Pu et al., 2019), following the equation: 17 

𝐼𝐿𝐴𝑃𝑠  =  
ln (𝛼𝑠𝑛𝑜𝑤,𝑏𝑎𝑛𝑑4

𝑎𝑙𝑙 )

ln (𝛼𝑠𝑛𝑜𝑤,𝑏𝑎𝑛𝑑5
𝑎𝑙𝑙 )

           (12) 18 

where 𝛼𝑠𝑛𝑜𝑤,𝑏𝑎𝑛𝑑4
𝑎𝑙𝑙  and 𝛼𝑠𝑛𝑜𝑤,𝑏𝑎𝑛𝑑5

𝑎𝑙𝑙  are the MODIS-derived snow albedo values for 19 

bands 4 and 5, respectively. We then calculated ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠  as follows: 20 
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∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠  =  𝑓(𝐼𝐿𝐴𝑃𝑠, 𝑅𝑒𝑓𝑓 , 𝑆𝐷, 𝐺)       (13) 1 

The spatial variability in snow albedo reduction due to 𝐼𝐿𝐴𝑃𝑠 can be expressed as 2 

∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠 (𝐼𝐿𝐴𝑃𝑠)  =  𝑓(𝐼𝐿𝐴𝑃𝑠, 𝑅𝑒𝑓𝑓

̅̅ ̅̅ ̅̅ , 𝑆𝐷̅̅ ̅̅ , 𝐺̅)     (14) 3 

where 𝑅𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ , 𝑆𝐷̅̅ ̅̅  , 𝐺̅  indicate spatial-mean values of 𝑅𝑒𝑓𝑓, 𝑆𝐷,  and 𝐺,  with 𝐺̅ 4 

requiring spatially constant values for the solar zenith angle, surface topography, and 5 

solar irradiance parameters. The following three equations were applied in a similar 6 

manner: 7 

∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠 (𝑅𝑒𝑓𝑓)  =  𝑓(𝐼𝐿𝐴𝑃𝑠

̅̅ ̅̅ ̅̅ , 𝑅𝑒𝑓𝑓, 𝑆𝐷̅̅ ̅̅ , 𝐺̅)     (15) 8 

∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠 (𝑆𝐷)  =  𝑓(𝐼𝐿𝐴𝑃𝑠

̅̅ ̅̅ ̅̅ , 𝑅𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ , 𝑆𝐷, 𝐺̅)     (16) 9 

∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠 (𝐺)  =  𝑓(𝐼𝐿𝐴𝑃𝑠

̅̅ ̅̅ ̅̅ , 𝑅𝑒𝑓𝑓
̅̅ ̅̅ ̅̅ , 𝑆𝐷̅̅ ̅̅ , 𝐺)      (17) 10 

We then fitted ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠  through multiple linear regression: 11 

∆𝛼𝑀𝑂𝐷𝐼𝑆
𝐿𝐴𝑃𝑠,𝑓𝑖𝑡

 =  𝑎 ∙ ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠 (𝐼𝐿𝐴𝑃𝑠)  +  𝑏∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

𝐿𝐴𝑃𝑠 (𝑅𝑒𝑓𝑓)  +  𝑐 ∙12 

                          ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠 (𝑆𝐷) +  𝑑 ∙ ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

𝐿𝐴𝑃𝑠 (𝐺)          (18) 13 

where ∆𝛼𝑀𝑂𝐷𝐼𝑆
𝐿𝐴𝑃𝑠,𝑓𝑖𝑡

 is the fitted snow albedo reduction and a, b, c, and d denote the 14 

regression coefficients. Figure S3a illustrates how ∆𝛼𝑀𝑂𝐷𝐼𝑆
𝐿𝐴𝑃𝑠,𝑓𝑖𝑡

 can explain 99% of the 15 

variance in ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠  . Therefore, the attribution of spatial variance in 16 

∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠  can be replaced with ∆𝛼𝑀𝑂𝐷𝐼𝑆

𝐿𝐴𝑃𝑠,𝑓𝑖𝑡
, enabling Eq. (18) to be written as 17 

follows: 18 

∆𝛼𝑀𝑂𝐷𝐼𝑆
𝐿𝐴𝑃𝑠,𝑓𝑖𝑡

 −  ∆𝛼𝑀𝑂𝐷𝐼𝑆
𝐿𝐴𝑃𝑠,𝑓𝑖𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

 =  𝑎 ∙ (∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠 (𝐼𝐿𝐴𝑃𝑠)  −19 
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 ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠 (𝐼𝐿𝐴𝑃𝑠)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  +  𝑏 ∙ (∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

𝐿𝐴𝑃𝑠 (𝑅𝑒𝑓𝑓)  −1 

 ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠 (𝑅𝑒𝑓𝑓)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  +  𝑐 ∙ (∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

𝐿𝐴𝑃𝑠 (𝑆𝐷) −2 

∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠 (𝑆𝐷)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  +  𝑑 ∙ (∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑

𝐿𝐴𝑃𝑠 (𝐺)  −  ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠 (𝐺)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) (19) 3 

where ∆𝛼𝑀𝑂𝐷𝐼𝑆
𝐿𝐴𝑃𝑠,𝑓𝑖𝑡

 −  ∆𝛼𝑀𝑂𝐷𝐼𝑆
𝐿𝐴𝑃𝑠,𝑓𝑖𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

  is the snow albedo reduction anomaly 4 

(∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑎𝑛𝑜𝑚𝑎𝑙𝑦
𝐿𝐴𝑃𝑠,𝑓𝑖𝑡

). Then, Eq. (19) can be written as 5 

∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑎𝑛𝑜𝑚𝑎𝑙𝑦
𝐿𝐴𝑃𝑠,𝑓𝑖𝑡

 =   𝑎 ∙ ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑,𝑎𝑛𝑜𝑚𝑎𝑙𝑦
𝐿𝐴𝑃𝑠 (𝐼𝐿𝐴𝑃𝑠)  +  𝑏 ∙6 

∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑,𝑎𝑛𝑜𝑚𝑎𝑙𝑦
𝐿𝐴𝑃𝑠 (𝑅𝑒𝑓𝑓)  +   𝑐 ∙ ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑,𝑎𝑛𝑜𝑚𝑎𝑙𝑦

𝐿𝐴𝑃𝑠 (𝑆𝐷) +  𝑑 ∙7 

∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑,𝑎𝑛𝑜𝑚𝑎𝑙𝑦
𝐿𝐴𝑃𝑠 (𝐺).                                       (20) 8 

According to Huang and Yi (1991) and Pu et al. (2019), the fractional contribution of 9 

LAP content to the variability in snow albedo reduction (𝑅∆𝛼
𝐿𝐴𝑃𝑠) can be calculated as: 10 

𝑅∆𝛼
𝐿𝐴𝑃𝑠  =  

1

𝑚
∑

(𝑎∙∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑,𝑎𝑛𝑜𝑚𝑎𝑙𝑦
𝐿𝐴𝑃𝑠 (𝐼𝐿𝐴𝑃𝑠)𝑗)

2

𝐾𝑗

𝑚
𝑗 = 1      (21) 11 

𝐾𝑗 =  (𝑎 ∙ ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑,𝑎𝑛𝑜𝑚𝑎𝑙𝑦
𝐿𝐴𝑃𝑠 (𝐼𝐿𝐴𝑃𝑠)𝑗)

2
 +  (𝑏 ∙12 

∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑,𝑎𝑛𝑜𝑚𝑎𝑙𝑦
𝐿𝐴𝑃𝑠 (𝑅𝑒𝑓𝑓)

𝑗
)

2

 +  (𝑐 ∙  ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑,𝑎𝑛𝑜𝑚𝑎𝑙𝑦
𝐿𝐴𝑃𝑠 (𝑆𝐷)𝑗)

2
 +13 

 (𝑑 ∙ ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑,𝑎𝑛𝑜𝑚𝑎𝑙𝑦
𝐿𝐴𝑃𝑠 (𝐺)𝑗)

2
          (22) 14 

where m denotes the length of the data set. Values for 𝑅
∆𝛼

𝑅𝑒𝑓𝑓
, 𝑅∆𝛼

𝑆𝐷, and 𝑅∆𝛼
𝐺  can be 15 

derived in the same way. Similarly, we can obtain the fractional contribution for daily 16 

radiative forcing (𝑅𝑅𝐹
𝐿𝐴𝑃𝑠, 𝑅𝑅𝐹

𝑅𝑒𝑓𝑓
, 𝑅𝑅𝐹

𝑆𝐷, and 𝑅𝑅𝐹
𝐺 ). 17 

4. Results 18 

4.1. Study area 19 
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Figure 3a depicts the ISCA employed in this study. Most are located in Eurasia, North 1 

America and the Arctic, which are dominated by grassland, shrublands and bare-soil 2 

surfaces (Fig. 3b). Several mid–high-latitude regions that typically support a deep 3 

snowpack, including southern Russia, western Europe, and eastern US, are not 4 

identified by MODIS as ISCA due to the broad distributions of forest in those areas 5 

(Fig. 3b). This pattern is supported by Bond et al. (2006), who demonstrated that, under 6 

such vegetated conditions, LAPs in snow exert a relatively minor influence on radiative 7 

forcing. On the other hand, the snowpack over midlatitude mountains at such a coarse 8 

resolution (0.05° × 0.05°) is too low to identify. In addition, midlatitude mountains are 9 

characterized as complex terrain, which will lead to high biases in radiative forcing 10 

retrieval at the coarse resolution in spite of topographic correction. Therefore, we didn’t 11 

report the results over midlatitude mountains in this study.  12 

As illustrated in Fig. 3a, ISCA can be separated into four general regions according to 13 

geographical distribution and pollution conditions (Fig. S2a, b): northeastern China 14 

(NEC), Eurasia (EUA), North America (NA), and the Arctic. The following analysis of 15 

snow albedo reduction and RFLS only concerns ISCA and the results mainly represent 16 

winter for midlatitudes (because spring is mostly snow-free) and spring for the Arctic 17 

(because albedos cannot be derived during polar night). 18 

4.2. Global characteristics 19 

Previous studies have highlighted the dominant role of BC in light absorption by snow 20 

(Wang et al., 2013b; Dang et al., 2017). The spatial distribution of BC emissions density 21 
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for the Northern Hemisphere in December-May is shown in Fig. S2a. Emissions density 1 

exhibits a strong spatial inhomogeneity, ranging from <10–1 to >104 g km–2 month–1 2 

over ISCA. The highest values occur in NEC, where the emissions are considerably 3 

higher than EUA and NA, and the lowest values occur in the Arctic. The wet and dry 4 

deposition of BC constitute the primary mechanisms for BC accumulation in snow. As 5 

shown in Fig. S2b, the distribution of BC deposition (i.e., the sum of dry and wet 6 

deposition) is similar to BC emissions density, with the highest and lowest regional 7 

averages corresponding to NEC and the Arctic, respectively. Together, these data 8 

indicate that the NEC snowpack is heavily polluted, and thus snow albedo reduction is 9 

likely to be highest, while the Arctic snowpack is the least contaminated. 10 

In addition to LAP content, the physical properties of the snowpack, such as depth and 11 

grain size, also impact snow albedo (Fig. 1). As depicted in Fig. 4a, the average 12 

snowpack in EUA (0.15 m thick) is thinner than in both NA (0.24 m) and NEC (0.19 13 

m), implying a greater impact of snow depth on snow albedo and radiative forcing in 14 

EUA. The greatest snow depths occur in the Arctic (>1 m) and can be considered semi-15 

infinite, meaning that the impact of depth on albedo and radiative forcing is negligible. 16 

Figure 4b shows the spatial distribution of MODIS-derived snow grain radius (𝑅𝑒𝑓𝑓). 17 

In contrast to BC emissions density, BC deposition, and snow depth, 𝑅𝑒𝑓𝑓 exhibits 18 

minor spatial variability, with regional average values for NEC, EUA, NA, and the 19 

Arctic of 237 μm, 227 μm, 237 μm, and 215 μm, respectably. These values align with 20 

the findings of several previous studies (Painter et al., 2013; Seidel et al, 2016; Pu et 21 
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al., 2019) and imply that the contribution of 𝑅𝑒𝑓𝑓 to spatial variability in snow albedo 1 

reduction and radiative forcing is negligible. 2 

According to Eq. (11), local solar radiation is an important factor for determining RFLS. 3 

Figure 4c depicts the December-May averaged total downward surface shortwave flux 4 

under all-sky conditions. Average solar radiative flux values for EUA and NA are 5 

comparable to one another but high relative to NEC, which lies at a generally higher 6 

latitude (>40°). The lowest values occur in the Arctic due to that region’s extreme 7 

latitude. The Arctic goes through the polar night during winter, so that the radiative 8 

effect of LAPs in the Arctic mainly appears in spring. Figure S2d shows the March-9 

May averaged downward surface shortwave flux. As can be seen that the values in the 10 

Arctic in March-May are higher than those in midlatitudes in December-February 11 

(Figure S2c). We note that snow albedo reduction and radiative forcing are only 12 

calculated over the period when snow-covered area was mapped, which implies that the 13 

RFLS will be higher in the Arctic than midlatitudes for the same snow albedo reduction. 14 

4.3. Corrections based on in-situ observations 15 

Albedo reduction calculated using in-situ observed LAPs (∆𝛼𝑖𝑛−𝑠𝑖𝑡𝑢,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠 ) were used to 16 

quantitatively correct MODIS retrievals through comparison with MODIS-retrieved 17 

snow albedo reduction (∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠 ). Figure S4 displays scatterplots of the ratios of 18 

∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠   to ∆𝛼𝑖𝑛−𝑠𝑖𝑡𝑢,𝑑𝑎𝑖𝑙𝑦

𝐿𝐴𝑃𝑠   (𝑟𝑖𝑛−𝑠𝑖𝑡𝑢
𝑀𝑂𝐷𝐼𝑆  ) for each sampling sites (Ye et al., 2012; 19 

Wang et al., 2013b, 2017; Doherty et al., 2010; 2014). Briefly, for NA, EUA, and the 20 

Arctic where the snowpack is relatively clean, the values for 𝑟𝑖𝑛−𝑠𝑖𝑡𝑢
𝑀𝑂𝐷𝐼𝑆  mostly range 21 
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between 2 and 10. In contrast, the heavily polluted snowpack in NEC returns 𝑟𝑖𝑛−𝑠𝑖𝑡𝑢
𝑀𝑂𝐷𝐼𝑆  1 

values ranging from 0.5 to 2.5, indicating a negative correlation between the biases of 2 

∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠  and snow contamination, and thus supporting the findings of previous 3 

studies (Painter et al., 2012a; Pu et al., 2019). To improve the quality of MODIS 4 

retrievals, we developed the correction factors for different regions. According to Eq. 5 

(10), the correction factors for NEC, EUA, NA, Canadian Arctic, Russian Arctic and 6 

Greenland are 1.6, 4.1, 4.1, 4.4, 5.4 and 6.0, respectively. Hereafter, our analyses are 7 

based on the corrected MODIS retrievals.  8 

Figure 5 compares the corrected MODIS retrievals to measurement-based results, and 9 

the mean absolute error (MAE), root mean square error (RMSE) and correlation 10 

coefficient of ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠   relative to ∆𝛼𝑖𝑛−𝑠𝑖𝑡𝑢,𝑑𝑎𝑖𝑙𝑦

𝐿𝐴𝑃𝑠   are given in Table S1. 11 

Together, these results imply that the corrected MODIS retrievals are plausible. 12 

Nevertheless, we note that the correction used in this study is spatially rough due to the 13 

low density of in-situ measurements, thus that both the uncertainty and bias are non-14 

negligible. To address this issue, we presented further discussion about the accuracy of 15 

radiative forcing retrievals (see Sect. 4.5). We also conducted a comprehensive series 16 

of comparisons between the MODIS-derived retrievals and values provided via surface 17 

measurements, model simulations, and remote sensing (see Sect. 5). We concluded that 18 

further field-based measurements of snow albedo are required to improve the quality of 19 

satellite retrievals. 20 

4.4. Spatial distributions of snow albedo reduction and radiative forcing  21 
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Figure 6a shows the spatial distributions of MODIS-based albedo reduction and daily 1 

radiative forcing, and statistics are shown in Figure 6b and Table 1. On average, 2 

∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠 ，and 𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦

𝐿𝐴𝑃𝑠  provide respective values of 0.021 and 2.9 W 3 

m–2 for Northern Hemisphere ISCA. The highest ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠  occurs in NEC, 4 

where the regional average of ~0.11 exceeds those of EUA (~0.031) and NA (~0.027) 5 

by a factor of ~3-4. This feature reflects the relatively high rate of emissions over NEC, 6 

which results in the highest level of BC deposition over ISCA (Fig. S2a, b). In contrast, 7 

being located far from major sources of pollution, the relatively clean Arctic snowpack 8 

returns the lowest ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠   (~0.016) of the entire Northern Hemisphere. 9 

Consistent with snow albedo reduction, the highest regional-average daily radiative 10 

forcing (𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠  ) occurs in NEC, with values of ~12 W m–2, and the lowest 11 

regional average occurs in the Arctic, with values of ~2.6 W m–2. Regional-average 12 

radiative forcing for NA and EUA are both intermediate, with values of ~3.1 W m–2 and 13 

~3.5 W m–2, respectively.  14 

On a regional level, NEC ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠  falls primarily within the range ~0.077–15 

0.14, and intra-regional variability is relatively small due to pervasive heavy pollution 16 

(Fig. S2). Compared to snow albedo reduction, the radiative forcing for NEC exhibits 17 

a slightly greater spatial variability due to latitude-dependent differences in the flux of 18 

surface solar radiances, ranging from ~7.2 W m–2 to ~17 W m–2. In NA, where the 19 

principal ISCA are located in southern Canada, the western US, and Central America 20 

Plains, ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠  and 𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦

𝐿𝐴𝑃𝑠  tend to range between ~0.014-0.046 and 21 
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~1.3-7.0 W m–2, respectively. In EUA, ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠   and 𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦

𝐿𝐴𝑃𝑠   fall 1 

largely within the respective ranges of ~0.017–0.049 and ~1.6–8.4 W m–2. Central Asia 2 

and Mongolia exhibit relatively high values for ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠   (>0.04) and 3 

𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠   (>2 W m–2), while this pattern likely reflects the influence of 4 

anthropogenic BC in addition to natural dust (Pu et al., 2017; Zhou et al., 2019) (Fig. 5 

S2a–b).  6 

In the Arctic, ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠   and 𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦

𝐿𝐴𝑃𝑠   both present quite large intra-7 

regional variabilities from ~0.0028 to ~0.046 and ~0.48 to 6.6 W m–2. Greenland has 8 

the cleanest snow with ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠   and 𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦

𝐿𝐴𝑃𝑠   of ~0.011-0.023 and 9 

~0.40-3.3 W m–2. In Canadian Arctic, ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠   and 𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦

𝐿𝐴𝑃𝑠   are 10 

mainly in a range of ~0.012-0.055 and ~0.59-6.1 W m–2. In addition, the relatively high 11 

values are found around the edge of ISCA over west of Canadian Arctic. The possible 12 

reason is that these areas are suffering from faster snow melting compared with rest of 13 

Canadian Arctic in spring, which is characterized by higher snow grain size (Fig. 4b). 14 

Hence, more LAPs are accumulated in the surface snow resulting in higher snow albedo 15 

reduction. In Russian Arctic,  ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠   and 𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦

𝐿𝐴𝑃𝑠   values increase 16 

with altitude by ~0.012-0.048 and ~1.0-7.3 W m–2. The snow albedo reduction in 17 

eastern Siberia are quite high and comparable with the values in midlatitudes. Moreover, 18 

benefiting from the higher solar radiances in eastern Siberia in Spring (Fig. S2d) than 19 

that in midlatitudes in Winter-Spring (Fig. 4c and Fig. S2c), 𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠  in eastern 20 

Siberia is higher than parts of midlatitudes. Even different from the findings in previous 21 
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modeling studies (e.g. Flanner et al., 2007; 2009), the results seem to be comparable 1 

with the limited ground-based estimates (Fig. S3). The serious biomass burning in 2 

eastern Siberia in Spring may be responsible for such high values (Warneke et al., 2010; 3 

Hegg et al., 2009). Overall, the Arctic spatial pattern of ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠   and 4 

𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠   in our study is consistent with the previous studies based on field 5 

experiments (Dang et al., 2017) and model simulation (Flanner et al., 2007). 6 

Nevertheless, we note that readers should be cautious about our reported high values in 7 

Russian Arctic and more field experiments are necessary for validating the results. 8 

As mentioned above, the assumption of semi-infinite snowpack will trigger an 9 

overestimate for radiative forcing when snow depth is not thick enough. Figure 7 shows 10 

the spatial distribution of the ratio of retrieved radiative forcing using semi-infinite 11 

snow to radiative forcing using ERA-Interim snow depth. As can be seen that semi-12 

infinite snowpack assumption will lead to an overestimate of up to ~25% in midlatitude 13 

areas, where snow depth is thin. In contrast, the influence of snow depth on radiative 14 

forcing is negligible in the Arctic, where snow is thick enough to become semi-infinite 15 

snowpack. These results demonstrated the important impact of snow depth on radiative 16 

forcing retrievals, which must be considered to reduce the overestimate for the 17 

following study.  18 

4.5. Accuracy discussion  19 

In spite of the rigorous processes for radiative forcing retrieval, the uncertainty is still 20 

existed. For example, light-absorbing particles in the atmosphere will reduce the 21 
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accuracy of MODIS surface reflectance retrieval, even though the atmospheric 1 

correction has been conducted. In addition, previous study pointed out a high scatter 2 

when converting NDSI to FSC using Eq. (5), which will induce bias in snow albedo 3 

retrieval (Rittger et al., 2013; Riggs et al., 2016). Furthermore, the method for snow 4 

grain size retrieval is only based on a single MODIS band at 1.24 µm, which could lead 5 

to higher uncertainties. Above all, all of these factors will result in a non-negligible 6 

uncertainty for radiative forcing retrieval, which needs to be further discussed. 7 

To account for this issue, we consider that the accuracy of atmospheric correction is 8 

typically ± (0.005 + 0.05*reflectance) under conditions that AOD is less than 5.0 and 9 

solar zenith angle is less than 75° according to the MODIS Surface Reflectance User’s 10 

Guide (Collection 6, https://modis.gsfc.nasa.gov/data/dataprod/mod09.php). In 11 

addition, the bias for FSC calculation is assumed as 10% according to Riggs et al. 12 

(2016). The bias for snow grain size retrieval is assumed as 30% according to the studies 13 

of Pu et al. (2019) and Wang et al. (2017). Figure 8 shows the overall uncertainty of 14 

radiative forcing retrieval due to all these factors while Figure S6 show the uncertainty 15 

caused by each factor. In general, the upper (lower) bound of the uncertainty falls in a 16 

range of 15%~108% (-106%~-20%), with atmospheric correction and FSC calculation 17 

contributing more to the uncertainty than snow grains size retrieval. The highest 18 

uncertainty occurs in the Arctic while the lowest uncertainty occurs in NEC. 19 

Furthermore, the uncertainty shows a negative correlation with retrieved radiative 20 

forcing. The results indirectly demonstrated the reasonability of different correction 21 
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factors performed in different regions. For example, the value of 1.6 used in NEC 1 

suggests that the correction approach works well for heavily polluted snow, while the 2 

value of 6.0 used in Greenland for relatively clean snow suggests that the method 3 

becomes not accurate enough.  4 

It is worth noting that the uncertainties from these factors could not fully explain the 5 

high correction factor in clean snow. The reason for why the ratio ∆α𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠 /6 

∆α𝑖𝑛−𝑠𝑖𝑡𝑢,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠 to be larger than 1 is mostly like that the effect of snow surface roughness 7 

(Manninen et al., 2020) and vegetation (Pu et al., 2019). This effect is not accounted 8 

for in SNICAR, probably reduces the derived albedo from MODIS and therefore results 9 

in an overestimation of the albedo reduction attributed to LAPs. Moreover, there are 10 

other potential factors causing errors: (1) MODIS has variably spaced and discrete 11 

spectral bands and thus cannot provide a continuous spectral measurement of 12 

reflectance. This results in a non-negligible uncertainty in retrieving the radiative 13 

forcing by LAPs in snow. (Painter et al., 2012); (2) We use the retrieved radiative 14 

forcing in a pixel size of 0.05° × 0.05° to compare with the in-situ radiative forcing 15 

calculated from the measured 𝐵𝐶𝑒𝑞𝑢𝑖𝑣  concentration with a sample site located 16 

somewhere within the pixel. However, such a comparison may not be representative at 17 

some sites due to the inhomogeneous spatial distribution of LAP contents, which will 18 

influence radiative forcing retrieval; (3) In-situ measurements also have uncertainties, 19 

which may cause a high bias for snow albedo reduction in clean snow. For example, a 20 

10% bias for 50 ng g-1 BC can result in an 8% bias for snow albedo reduction. 21 
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4.6. Attribution to the spatial variability of snow albedo reduction and radiative 1 

forcing  2 

Here, we address the attributions to the spatial variability of snow albedo reduction and 3 

radiative forcing. As discussed in Sect. 3.2.5, the spatial variability in snow albedo 4 

reduction and radiative forcing are largely dependent on LAP content, snow grain radius, 5 

snow depth, and the geographic factor. Figure 9 illustrates the fractional contributions 6 

of each factor within the study regions. For the Northern Hemisphere ISCA as a whole, 7 

LAPs (𝐼𝐿𝐴𝑃𝑠) is the greatest contributor (84.3%) to snow albedo reduction, followed by 8 

𝑆𝐷 (13.7%); 𝑅𝑒𝑓𝑓 and 𝐺 have only a minor influence (1.9% and <1%, respectively) 9 

(Fig. 9a). This result confirms that the concentration of LAPs in the snowpack plays a 10 

fundamental role in spatial variability of snow albedo reduction.  11 

LAPs also constitute the dominant contributors to snow albedo reduction on a regional 12 

scale, accounting for 96.0% of the Arctic signal and 56.7% in EUA and 49.9% in NA, 13 

and are the second largest contributor in NEC (40.3%). The contribution of 𝑆𝐷  is 14 

greatest in NEC (56.3%), with slightly lower values in EUA (40.3%) and NA (48.8%), 15 

reflecting the significant spatial variability in 𝑆𝐷 across these regions. In the Arctic, 16 

the snowpack is sufficiently thick to be considered a homogeneous, semi-infinite 17 

snowpack and thus the contribution of 𝑆𝐷 is negligible. In contrast, 𝑅𝑒𝑓𝑓 makes only 18 

minor contributions in NEC (3.3%), NA (1.3%), EUA (2.8%) and the Arctic (1.4%). 19 

Finally, 𝐺 makes the smallest contribution to snow albedo reduction (<1%), both on 20 

regional and global scales. 21 
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On a hemispheric scale, the greatest contributors to radiative forcing are LAP content 1 

(70.0%) and 𝐺  (22.3%), followed by 𝑆𝐷  (7.6%). As with snow albedo reduction, 2 

𝑅𝑒𝑓𝑓 plays only a minor role. The influence of 𝐺 on spatial variability in radiative 3 

forcing is attributed to the high degree of variability in latitude-dependent solar 4 

radiative fluxes among ISCA. On a regional scale, the respective contributions of LAP 5 

content, 𝐺, and 𝑆𝐷 are also comparable among the four study areas, accounting for 6 

34.1%, 11.1%, and 52.0% of radiative forcing in NEC, 39.2%, 13.9%, and 46.4% in 7 

NA, and 48.0%, 19.3%, and 31.6% in EUA. The Arctic radiative forcing is dominated 8 

by LAPs (85.6%) and 𝐺 (12.7%). 9 

In summary, LAPs play a dominant role in the spatial variability of snow albedo 10 

reduction and radiative forcing. Our results also highlight the significant contribution 11 

of 𝑆𝐷 to snow albedo reduction and 𝐺 to radiative forcing. 12 

4.7. Comparisons with model simulations 13 

To investigate the global distribution and variance of RFLS, previous studies have 14 

tended to rely on Earth system models with minimal cross-checking from in-situ 15 

measurements or remote sensing observations (Qian et al., 2015; Skiles et al., 2018). In 16 

this study, we compared MODIS retrievals with CESM2 to improve our understanding 17 

of the magnitude of RFLS on a global scale.  18 

Employing snow BC concentrations from CESM2, we also calculated December-May 19 

daily radiative forcing (𝑅𝐹𝐶𝐸𝑆𝑀2) for the Northern Hemisphere ISCA during the period 20 
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2003–2014 (Fig. 10a). Statistics are presented in Fig. S7. Briefly, 𝑅𝐹𝐶𝐸𝑆𝑀2 exhibits 1 

strong spatial inhomogeneity, with values ranging from 0.20 W m–2 to 5.6 W m–2. The 2 

highest regional average in 𝑅𝐹𝐶𝐸𝑆𝑀2 occurs in NEC (≥10 W m–2) and the lowest in 3 

the Arctic (≤0.5 W m–2), consistent with 𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠 .  4 

Figure 10b depicts the comparison of 𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠  and 𝑅𝐹𝐶𝐸𝑆𝑀2. In NEC, 𝑅𝐹𝐶𝐸𝑆𝑀2 5 

(15 W m–2) compares well with 𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠   (12 W m–2), with a significant 6 

correlation at the 99% confidence level. For EUA, 𝑅𝐹𝐶𝐸𝑆𝑀2 (3.8 W m–2) is similar to 7 

𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠   (3.5 W m–2). For NA, 𝑅𝐹𝐶𝐸𝑆𝑀2  (1.2 W m–2) is lower than 8 

𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠  (3.1 W m–2) and the spatial correlation between them are poor. In the 9 

Arctic, 𝑅𝐹𝐶𝐸𝑆𝑀2  is correlated with 𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠  at the 99% confidence level. 10 

However, 𝑅𝐹𝐶𝐸𝑆𝑀2 (1.7 W m–2) is lower than 𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠  (2.6 W m–2) by a factor 11 

of 1.5. 12 

Overall, the RFLS derived from our MODIS retrievals and modeling-based estimates 13 

exhibit a same magnitude over the Northern Hemisphere. In NEC, the MODIS- derived 14 

and model-derived estimates show good general agreement, indicating the satisfactory 15 

performance of CESM2 in this heavily polluted region. In EUA, average radiative 16 

forcing values are comparable but the spatial correlation is relatively poor, while 17 

MODIS retrievals for the Arctic are significantly higher than those simulations.  18 

5. Discussion 19 

In recent decades, there has been increasing scientific interest in snow LAPs due to 20 
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their role in the climate system, and numerous studies have attempted to evaluate RFLS. 1 

In addition to making global-scale comparisons between our MODIS retrievals and 2 

model-based estimates, this study collects a comprehensive set of radiative forcing 3 

estimates, based on local-scale observations and remote sensing, to make quantitative 4 

regional- and global-scale comparisons and synthetically evaluate the magnitude of 5 

RFLS (Table 2). This approach also affords the opportunity to examine the MODIS 6 

retrievals used in our study. 7 

Dang et al. (2017) reported RFLS values of 7–18 W m–2, 0.6–1.9 W m–2, and 0.1–0.8 8 

W m–2 for northern China, North America, and the Arctic, respectively, which only 9 

focused on the period of January-March, and therefore are smaller than our retrievals. 10 

In NA, Sterle et al. (2013) estimated a daily-averaged RFLS of ~2.5-40 W m–2 for the 11 

eastern Sierra Nevada in February-May, 2009, while Miller et al. (2016) reported a daily 12 

RFLS of ~35-86 (37-100) W m–2 based on in-situ measurements (remote sensing) in 13 

the San Juan Mountains in May 2010. Both values are higher than our estimate (~3.1 14 

W m–2), potentially due to the significant dust deposition in those areas. 15 

We also collected the average-daily RFLS simulated by regional and/or global climate 16 

models (Table 2). For NEC, Zhao et al. (2014) and Qian et al. (2014) reported values 17 

of 10 W m–2 in January-February and 5–10 W m–2 in April, respectively. In NA, Qian 18 

et al. (2009) provided an estimate of 3–7 W m–2 for the central Rockies and southern 19 

Alberta in March, while Oaida et al. (2015) reported an average RFLS of 16 W m–2 20 

over the western US in spring. Finally, Qian et al. (2014) and Qi et al. (2017) estimated 21 
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RFLS values of <0.3 W m–2 and 0.024–0.39 W m–2 for the Arctic in April, respectively. 1 

We consider our retrievals for NEC to be comparable with these regional model 2 

simulations, despite some disparity. However, we note that our result is significantly 3 

lower than those of previous studies in NA, but higher in the Arctic.  4 

On a global scale, Hansen and Nazarenko (2004) reported the RFLS is 0.3 W m−2, while 5 

Flanner et al. (2007) showed a RFLS of ~0.05 W m–2. For the North Hemisphere as a 6 

whole, Bond et al. (2013) estimated a climate forcing of 0.13 W m−2. Each of these 7 

previous values is significantly lower than our retrieval (~2.9 W m–2). However, those 8 

studies included all areas regardless of snow covered throughout the whole year, while 9 

our results are only for Northern Hemisphere ISCA from December to May.  10 

Overall, we consider our MODIS-based retrievals to be physical realistic on both 11 

regional and global scales, although we note a number of differences between our 12 

results and those generated by different methods. On the other hand, while in-situ 13 

measurements are the most precise, their spatial coverage is restricted by logistical 14 

limitations and the extreme environments involved. Conversely, models can provide 15 

broad perspectives of climatic impacts yet are typically undermined by large uncertainty. 16 

Therefore, we argue that remote sensing provides a powerful technique, with high 17 

spatial and temporal resolutions, that can bridge the gap between in-situ measurements 18 

and climate models and reduce the uncertainties associated with the latter. Further 19 

retrieval of remote-sensing data, including the use of multiple satellites and sensors, is 20 

therefore warranted to exploit this opportunity fully. We also indicate the fact that parts 21 
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of central EUA and Russian Arctic, however, studies are barely performed but desired. 1 

Finally, we note that in-situ observations remain limited, and more field campaigns are 2 

needed to constrain remote sensing retrievals and modeling simulations. 3 

6. Conclusion 4 

We presented a global-scale evaluation of the daily radiative forcing of LAPs in the 5 

Northern Hemisphere snowpack (RFLS), estimated from remote-sensing data. The 6 

satellite-retrieved RFLS also has implications for expanding the value of limited in-situ 7 

measurements, which can provide valuable information for climate models and help 8 

optimize model simulations. 9 

Based on the corrected snow albedo reduction (∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠  ), we calculated 10 

average-daily RFLS (𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠 ) during December-May for the period 2003–2018. 11 

For the identified snow covered area over Northern Hemisphere as a whole, average 12 

∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠   is ~0.021 and 𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦

𝐿𝐴𝑃𝑠   is ~2.9 W m–2. We also observed 13 

distinct spatial variability in snow albedo reduction and RFLS. The highest regional-14 

average ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠   (~0.11) and 𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦

𝐿𝐴𝑃𝑠   (~12 W m–2) occur in 15 

northeastern China, while the lowest regional averages of ~0.016 and ~2.6 W m–2, 16 

respectively, are observed in the Arctic. Moreover, we indicated that the semi-infinite 17 

assumption could overestimates up to ~25% of RFLS, especially for thin and patchy 18 

snow, such as midlatitudes in Eurasia and NA. In addition, if the ground-based 19 

corrections were not considered, the total uncertainty of RFLS retrievals is in the range 20 

of 15%~108% (-106%~-20%) due to atmospheric correction, snow cover fraction 21 
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calculation and snow grain size retrieval. 1 

Following this assessment, we made quantitative attributions of the spatial variability 2 

in snow albedo reduction and radiative forcing. Our results indicate that the LAP 3 

content is the largest contributor (84.3%) to spatial variance in snow albedo reduction, 4 

followed by snow depth (13.7%), whereas snow grain size (1.9%) and the geographic 5 

factor 𝐺 (<1%) are only minor contributors on a Northern Hemispheric scale. LAP 6 

content and 𝐺  account for 70.0% and 22.3% of the spatial variability of radiative 7 

forcing, respectively, following by 𝑆𝐷 (7.6%) over Northern Hemisphere. 8 

Retrieved RFLS values are compared spatially with the model-derived estimates of the 9 

CESM2. Our results indicate that MODIS retrievals show the same magnitude with 10 

modeled estimates for Northern Hemisphere. However, although the CESM2 perform 11 

well in NEC, there remain large uncertainties in the Arctic. To evaluate and examine 12 

the MODIS retrievals synthetically, we then compared the retrieved RFLS to previously 13 

published estimates, including local-scale observations, remote sensing retrievals, and 14 

regional- and global-scale model simulations. The results of this evaluation suggest that 15 

MODIS retrievals are generally realistic, despite a number of important differences 16 

among the various methods. 17 

Finally, we urge the community to expand the ground-based measurements of the global 18 

snowpack, particularly in those regions currently lacking in-situ observations. Such 19 

development would help further constrain and improve satellite-based retrievals in the 20 

future. We propose that climate models validated by these refined remote sensing 21 
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retrievals should be able to capture the RFLS more accurately, thereby providing more 1 

reliable estimates of the future impacts of global climate change.  2 
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 1 

Figure 1. Variations in spectral snow albedo due to (a) LAP content (ng g–1), (b) snow depth (m), (c) 2 

snow grain size (μm), and (d) solar zenith angle (deg.) while other three parameters are kept constant. 3 
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 1 

Figure 2. Workflow depicting the calculation and validation of radiative forcing of LAPs in snow: 2 

the blue boxes denote the external input data, while the orange boxes are used for calculations in 3 

this study. 4 
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 1 

Figure 3. Spatial distributions of (a) identified snow-covered areas (ISCA) and (b) the different land-2 

cover types, based on MODIS data, for the Northern Hemisphere. ISCA (white) can be separated 3 

into northeastern China (NEC), Eurasia (EUA), North America (NA), and the Arctic. 4 
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  2 

Figure 4. Spatial distributions of 2003-2018 averaged (a) snow depth from ERA-interim, (d) snow grain size retrieved by MODIS, and (c) total downward shortwave 3 

flux at the surface during December-May from CERES.4 
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 2 

Figure 5. Scatterplots of ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠  versus ∆𝛼𝑖𝑛−𝑠𝑖𝑡𝑢,𝑑𝑎𝑖𝑙𝑦

𝐿𝐴𝑃𝑠 . Panels (a)–(f) represent the snow samples collected in Canadian Arctic, Russian Arctic, Greenland, 3 

North America, Northwestern China, and Northeastern China, respectively.  4 
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 2 

Figure 6. Spatial distributions of averaged (a)  ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠  , (b) 𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦

𝐿𝐴𝑃𝑠  and statistics 3 

for regionally averaged (c) ∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠  and (d) 𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦

𝐿𝐴𝑃𝑠  for the Northern Hemisphere 4 

ISCA in December-May during the period 2003–2018. The boxes denote the 25th and 75th quantiles, 5 

and the horizontal lines represent the 50th quantiles (medians), the averages are shown as red dots; 6 

the whiskers denote the 5th and 95th quantiles.  7 
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 1 

Figure 7. The spatial distribution of the ratio of retrieved radiative forcing using semi-infinite snow 2 

to radiative forcing using ERA-Interim snow depth.  3 
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 2 

Figure 8. The overall lower bound and upper bound of the uncertainty range of radiative forcing 3 

retrieval due to atmospheric correction, MODIS-derived snow grain size retrieval and snow cover 4 

fraction calculation.  5 
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 1 

Figure 9. Fractional contributions of LAPs, snow grain size (𝑅𝑒𝑓𝑓), geographic factor (𝐺), and snow 2 

depth (𝑆𝐷) to the spatial variations of (a) snow albedo reduction and (b) daily radiative forcing.  3 
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 1 

Figure 10. (a) Spatial distributions of average-daily radiative forcing (𝑅𝐹𝐶𝐸𝑆𝑀2), based on the 2 

CESM2 soot content of snow in December-May for the period 2003–2014. (b) Scatterplot of 3 

𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠  versus 𝑅𝐹𝐶𝐸𝑆𝑀2. 4 
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Table 1. Statistics for regionally averaged (5th and 95th quantiles) albedo reduction (∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠 ) and daily radiative forcing (𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦

𝐿𝐴𝑃𝑠 , W m-2) 2 

 Northeastern China EUA NA Canadian Arctic Greenland Russian Arctic ISCA over Northern Hemisphere 

Albedo reduction (∆𝛼𝑀𝑂𝐷𝐼𝑆,𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑
𝐿𝐴𝑃𝑠 ) 0.11 (0.077~0.14) 0.031 (0.017~0.049) 0.027 (0.014~0.046) 0.025 (0.012~0.055) 0.016 (0.011~0.023) 0.028 (0.012~0.048) 0.021 (0.0031~0.049) 

Daily radiative forcing (𝑅𝐹𝑀𝑂𝐷𝐼𝑆,𝑑𝑎𝑖𝑙𝑦
𝐿𝐴𝑃𝑠 , W m-2) 12 (7.2~17) 3.5 (1.6~8.4) 3.1 (1.3~7.0) 2.6 (0.59~6.1) 1.3 (0.40~3.3) 3.3 (1.0~7.3) 2.9 (0.54~7.3) 

 3 

 4 
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Table.2 Comparisons of radiative forcing due to LAPs in snow (this study) with observed and model-simulated values from previous studies 3 

Study Region Time period  Method Radiative forcing (W m-2) 

Miller et al. (2016) San Juan Mountains May, 2010 Remote sensing ~37-100 

Sterle et al. (2013) eastern Sierra Nevada Feb to May, 2009 In-situ measurements ~2.5-40 

Miller et al. (2016) San Juan Mountains May, 2010 In-situ measurements 35-86 

Dang et al. (2017) Northern China Jan and Feb, 2010 and 2012 In-situ measurements 7–18 

 North America Jan-Mar, 2013-2014 In-situ measurements 0.6–1.9 

 The Arctic Spring, 2005-2009 In-situ measurements 0.1–0.8 

Hansen and Nazarenko (2004) North Hemisphere  Model simulations 0.3 

Qian et al. (2009) western United States Mar Model simulations ~3-7 

Bond et al. (2013) Global industrial era Model simulations 0.13 

Flanner et al. (2007) Global  Annual 1998 (strong) 

Annual 2001(weak) 

Model simulations 0.054  

0.049  

Qian et al. (2014) Northeastern China Apr Model simulations 5-10 

 North America Apr Model simulations 2-7 



73 

 

 The Arctic Apr Model simulations <0.3 

Zhao et al. (2014) Northeastern China Jan and Feb, 2010 Model simulations 10 

Oaida et al. (2015) western US Spring, 2009-2013 Model simulations 16 

Qi et al. (2017) The Arctic Apr, 2008 Model simulations 0.024-0.39 

This study Northeastern China 

NA 

Canadian Arctic 

Russian Arctic 

Greenland 

Dec-May, 2003-2018 Remote sensing  12 

3.1 

2.6 

3.3 

1.3 

 EUA   3.5 

 1 


