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Abstract. Cirrus cloud radiative effects are largely affected by ice microphysical properties, including ice water content 

(IWC), ice crystal number concentration (Ni) and mean diameter (Di). These characteristics vary significantly due to 

thermodynamic, dynamical and aerosol conditions. In this work, a global-scale observation dataset is used to examine 10 

regional variations of cirrus cloud microphysical properties, as well as several key controlling factors, i.e., temperature, 

relative humidity with respect to ice (RHi), vertical velocity (w), and aerosol number concentrations (Na). Results are 

compared with simulations from the National Center for Atmospheric Research (NCAR) Community Atmosphere Model 

version 6 (CAM6). The differences between simulations and observations are found to vary with latitude and temperature. 

Specifically, simulations are found to underestimate IWC by a factor of 5–30 in all regions. Simulated Ni is overestimated in 15 

most regions except Northern Hemisphere midlatitude and polar regions. Simulated Di is underestimated, especially for 

warmer conditions (-50ºC to -40ºC) and higher Na, possibly due to less effective ice particle growth/sedimentation and 

weaker aerosol indirect effects, respectively. For RHi effects, the frequency and magnitude of ice supersaturation is 

underestimated in simulations for clear-sky conditions, and the simulated IWC and Ni show maximum values at 80% RHi 

instead of 110% as observed. For w effects, both observations and simulations show variances of w (σw) decreasing from 20 

tropics to polar regions, but simulations show much higher σw for in-cloud condition than clear-sky condition. These findings 

provide an observation-based guideline for improving simulated ice microphysical properties and their relationships with key 

controlling factors at various geographical locations. 

1 Introduction 

Cirrus clouds represent one of the most ubiquitous cloud types with an estimated global coverage of approximately 20% to 25 

40% (Mace and Wrenn, 2013; Sassen et al., 2008). According to the fifth assessment of the United Nations 

Intergovernmental Panel on Climate Change (IPCC) report (Boucher et al., 2013), the largest uncertainty in estimating future 

climate change stems from clouds and aerosols. Unlike most other cloud types, cirrus clouds may produce a net positive or 

negative radiative forcing depending on their microphysical properties (Stephens and Webster, 1981; Zhang et al., 1999), 

which are affected by meteorological conditions and aerosol distributions. Tan et al. (2016) showed that the radiative effects 30 
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of misrepresenting the prerequisite condition of cirrus clouds – ice supersaturation (ISS, where relative humidity with respect 

to ice (RHi) > 100%) – can lead to an average bias of +2.49 W/m2 at the top of the atmosphere. Other modelling studies 

found large differences in the net cloud radiative forcing depending on the fraction of activated ice nucleating particles 

(INPs) and the nucleation mechanisms (i.e., homogeneous and heterogeneous nucleation) through which the clouds form 

(Liu et al., 2012; Storelvmo and Herger, 2014). The large uncertainties in cirrus cloud radiative forcing illustrate the need for 35 

further study on cirrus cloud microphysical properties as well as their controlling factors in various geographical locations.  

Ideally, a comprehensive quantification of cirrus cloud microphysical properties globally based on high-resolution, in situ 

observations would mitigate many uncertainties. However, challenges remain in field measurements to achieve such spatial 

coverage. Previously, efforts have been made to understand cirrus cloud properties based on their geographical locations. 

Diao et al. (2014b) performed a hemispheric comparison of in situ cirrus evolution and found little difference in the clear-sky 40 

ISS frequency as well as the proportion of each evolution phase between the Northern and Southern Hemispheres (NH and 

SH, respectively). Another study investigated the ice water content (IWC) and snowfall rates for tropical, midlatitude, and 

Arctic cirrus clouds using in situ observations and found a geographical dependence of IWC (Heymsfield et al., 2017). Wolf 

et al. (2018) used balloon-based in situ observations to analyze microphysical properties of Arctic ice clouds and found 

differences in particle size distributions (PSDs) depending on the cloud origin. Krämer et al. (2016, 2020) developed a cirrus 45 

cloud climatology, focusing on tropical and midlatitude cirrus clouds, and showed that cloud thickness is larger at lower 

altitudes, and thus producing a more negative radiative forcing. Moving from north to south using lidar-based observations 

from two research cruises starting from Leipzig, Germany, one to Punta Arenas, Chile and the other one to Stellenbosch, 

South Africa, Kanitz et al. (2011) observed a decrease in the efficiency of heterogeneous nucleation in the SH, which could 

be a result of fewer INPs. This hemispheric difference in aerosol indirect effects is consistent with significantly higher 50 

aerosol number concentrations in the NH (Minikin et al., 2003).  

Regional and hemispheric variations of cirrus microphysical properties are produced by various controlling factors, such as 

thermodynamics (i.e., temperature and RHi), dynamics (e.g., vertical velocity) and aerosols (e.g., number concentration and 

composition). The effects of temperature have been extensively studied from in situ observations (Heymsfield et al., 2017; 

Luebke et al., 2013, 2016; Schiller et al., 2008), showing an increase of IWC towards warmer temperatures. A number of 55 

studies focused on distributions of RHi have found that in-cloud RHi occurs most frequently at or near 100% (Jensen et al., 

2001; Krämer et al., 2009). Another study by Diao et al. (2017) found that using different RHi thresholds (e.g., 108% to 

130%) for ice nucleation in simulations can influence IWC and ice crystal number concentrations (Ni) in convective cirrus. 

In addition, the spatial scales of ice supersaturated regions can vary from the micro- to mesoscales, largely depending on the 

spatial variability of water vapor (Diao et al., 2014a). The distributions of vertical velocity have been investigated in 60 

different types of cirrus clouds, such as in ridge-crest cirrus, frontal cirrus and anvil cirrus (Muhlbauer et al., 2014a, 2014b). 

Stronger updrafts are found to be associated with higher occurrence frequency of ISS inside anvil and convective cirrus 

(D’Alessandro et al., 2017). Regarding the effects of aerosols, Cziczo et al. (2013) and Cziczo and Froyd (2014) investigated 

ice crystal residuals from in situ observations and discovered that the majority of midlatitude cirrus clouds form via 
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heterogeneous nucleation on mineral dust and metallic particles. Anthropogenic aerosols, such as secondary organic 65 

aerosols, were found to be less effective INPs compared with mineral dust (Prenni et al., 2009). Based on remote sensing 

data, Zhao et al. (2018, 2019) showed that the correlations between ice crystal sizes and aerosol optical depth can be either 

positive or negative depending on the meteorological conditions in convective clouds. Chylek et al. (2006) showed an 

increase in ice crystal size during the more polluted winter months compared with cleaner summer months over the eastern 

Indian Ocean. Using a global-scale dataset of multiple flight campaigns, Patnaude and Diao (2020) isolated individual 70 

effects on cirrus clouds from temperature, RHi, vertical velocity (w) and aerosol number concentrations (Na). They found 

that when Na is 3 – 10 times higher than average conditions, it shows strong positive correlations with cirrus microphysical 

properties such as IWC, Ni and number-weighted mean diameter (Di). These aerosol indirect effects are also susceptible to 

whether or not thermodynamic and dynamical conditions are controlled, demonstrating the importance of conducting a 

comprehensive analysis of various key controlling factors altogether.  75 

More recently, in situ observations have been used to evaluate and improve cirrus cloud parameterizations in global climate 

models (GCMs). Two types of simulations have been frequently used for model evaluation, i.e., free-running (Eidhammer et 

al., 2014, 2017; Wang and Penner, 2010; Zhang et al., 2013) and nudged (D’Alessandro et al., 2019; Kooperman et al., 2012; 

Wu et al., 2017) simulations. For free-running simulations, a comparison on statistical distributions of ice microphysical 

properties is often used for model validation (e.g., Penner et al., 2009). The nudged simulation would nudge certain 80 

meteorological conditions towards reanalysis data, such as horizontal wind and temperature (e.g., D’Alessandro et al., 2019; 

Wu et al., 2017). These nudged simulations can also be output to similar location and time as those of the aircraft 

observations. Given the importance and limited understanding of how aerosols interact with cirrus clouds, much attention 

has been dedicated to the parameterization of aerosol indirect effects (Kärcher and Lohmann, 2002, 2003; Kuebbeler et al., 

2014; Wang et al., 2014). Shi et al. (2015) added the effects of pre-existing ice into the Community Atmosphere Model 85 

Version 5 (CAM5) and found a decrease in Ni due to the reduction of homogeneous nucleation frequency. Other studies also 

investigated the effect of updraft velocity on simulated Ni and aerosol indirect effects (Zhou et al., 2016; Penner et al., 

2018). 

This study aims to bridge the knowledge gap on how cirrus clouds vary depending on geographical locations and 

environmental conditions by using a comprehensive in situ observation dataset that includes seven U.S. National Science 90 

Foundation (NSF) flight campaigns. Observations were collected onboard the NSF/National Center for Atmospheric 

Research (NCAR) Gulfstream-V (G-V) research aircraft. Descriptions of the seven flight campaigns, instrumentations, 

model configurations of the NCAR Community Atmosphere Model version 6 (CAM6) are provided in Section 2. Both 

observations and simulations are used to examine the regional variations in the statistical distributions of cirrus 

microphysical properties, including IWC, Ni and Di (Section 3). Impacts of several key controlling factors, i.e., temperature, 95 

RHi, w and Na, are examined in Section 4. Discussions on observation-based findings and model evaluation results are 

included in Section 5. 
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2 Data and Methods 

2.1 In situ observations and instrumentations 

In this study, in situ airborne observations at 1 Hz are provided by instruments onboard the NSF High-Performance 100 

Instrumented Airborne Platform for Environmental Research (HIAPER) G-V research aircraft. A comprehensive global 

dataset is compiled based on seven major flight campaigns funded by the NSF, including START08 (Pan et al., 2010), 

HIPPO deployments 2–5 (Wofsy et al., 2011), PREDICT (Montgomery et al., 2012), TORERO (Volkamer et al., 2015), 

DC3 (Barth et al., 2015), CONTRAST (Pan et al., 2017), and ORCAS (Stephens et al., 2018). Table 1 provides a detailed 

summary of the seven flight campaigns, including location, duration of flights, total flight hours of all temperatures, and 105 

flight hours for in-cloud and clear-sky conditions at temperatures ≤ -40ºC only. Maps comparing the flight tracks of in situ 

observations and collocated CAM6-nudg data are shown in Figure 1. 

For this study, ice particle measurements are provided by the Fast 2-Dimensional Cloud particle imaging probe (Fast-2DC) 

with a 64-diode laser array for a range of 25 µm – 1600 µm. Larger particles can be reconstructed up to 3200 µm. The mass-

Dimensional relationship of Brown and Francis (1995) is used to calculate IWC for the Fast-2DC probe, which was 110 

previously used in other studies of the Fast-2DC probe onboard the NSF G-V aircraft (Diao et al., 2014a, 2014b, 2015). 

Number-weighted mean diameter (Di) is calculated by summing up the size of particles in each bin using the bin center, and 

then dividing it by the total number of particles. In order to mitigate the shattering effect, particles < 62.5 µm (i.e., first two 

bins) are excluded in the Fast-2DC measurements when calculating IWC, Ni and Di. The Rosemount temperature probe was 

used for temperature measurements, which has an accuracy and precision of ~ ±0.3 K and 0.01 K, respectively. All analyses 115 

are restricted to temperatures £ -40°C, in order to exclude the presence of supercooled liquid droplets in this study. 

Laboratory calibrated and quality-controlled water vapor data were collected using the Vertical Cavity Surface Emitting 

Laser (VCSEL) hygrometer (Zondlo et al., 2010), with an accuracy of ~6% and precision of £ 1%. Both temperature and 

water vapor are used at 1-Hz resolution for this analysis. Aerosol measurements were collected from the Ultra-High 

Sensitivity Aerosol Spectrometer (UHSAS), which uses 100 logarithmically spaced bins ranging from 0.06 – 1 µm. RHi is 120 

calculated using saturation vapor pressure with respect to ice from Murphy and Koop (2005). The combined RHi 

uncertainties from the measurements of temperature and water vapor range from 6.9% at -40ºC to 7.8% at -78ºC. 

Measurements are separated by cloud condition whereas in-cloud condition is defined by the presence of at least one ice 

crystal from the Fast 2-DC probe (Ni > 0 L-1). The same in-cloud definition has been used by several previous studies 

(D’Alessandro et al., 2017; Diao et al., 2014a, 2014b, 2015, 2017; Tan et al., 2016), and all other samples are defined as 125 

clear sky. For regional variation analysis, data are binned by six latitudinal regions in the two hemispheres, that is, NH polar 

(60ºN – 90ºN), SH polar (60ºS – 90ºS), NH midlatitude (30ºN – 60ºN), SH midlatitude (30ºS – 60ºS), NH tropics (0º – 

30ºN), and SH tropics (0º – 30ºS).  

The vertical profiles of observed in-cloud temperature, clear-sky potential temperature (Θ), and their correlations are shown 

in Figure 2. The observations sampled temperatures from -78ºC to -40ºC and altitudes from 5 – 15 km, while a previous 130 
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study of Krämer et al. (2020) sampled -91ºC to -30ºC and 5 – 19 km (their Figure 2). The lowest temperatures are found in 

the tropical regions and at the highest altitudes, whereas polar regions show more observations at lower altitudes that satisfy 

temperature ≤ -40ºC. Distributions of cirrus cloud properties (i.e., IWC, Ni, Di), in-cloud and clear-sky RHi, and clear-sky 

water vapor mixing ratio for the observation dataset are shown in Figure 3. Di increases with decreasing altitudes, IWC 

slightly increases with decreasing altitudes, and Ni is almost independent of altitudes. Clear-sky RHi and water vapor mixing 135 

ratio both increase with decreasing altitudes, while in-cloud RHi is centered around 100% and shows smaller dependency on 

altitudes. Compared with Figure 3 in Krämer et al. (2020), 48% of their ice particle samples have Di < 40 μm, which is 

below the size cut-off used in this study. The higher Di in this study also leads to lower range of Ni (0.01 – 1000 L-1) and 

higher range of IWC (10-5 – 10 g m-3) compared with that previous study (i.e., Ni from 0.1 – 105 L-1 and IWC from 10-7 – 

1 g m-3).  140 

2.2 Climate model description and experiment design 

This study uses model simulations based on the NCAR CAM6 model. Compared with its previous version – the CAM5 

model, CAM6 implemented a new scheme, the Clouds Layers Unified by Binomials (CLUBB) for representations of 

boundary layer turbulence, shallow convection and cloud macrophysics (Bogenschutz et al., 2013). CLUBB is a higher-order 

turbulence closure scheme that calculates prognostic higher-moments based on joint probability density function (PDFs) for 145 

vertical velocity, temperature, and moisture (Golaz et al., 2002). An improved bulk two-moment cloud microphysics scheme 

has been implemented (Gettelman and Morrison, 2015) that replaces diagnostic treatment of rain and snow with prognostic 

treatment of all hydrometeors (i.e., rain, snow, graupel, hail). This is coupled with a 4-mode aerosol model (MAM4) (Liu et 

al., 2016) for simulations of aerosols and aerosol-cloud interactions. It allows ice crystals to form via homogeneous freezing 

of sulfate aerosols and heterogeneous nucleation of dust particles (Liu et al., 2007; Liu and Penner, 2005). Finally, the deep 150 

convection scheme (Zhang and McFarlane, 1995) has been tuned to include sensitivity to convection inhibition.  

Results from in situ observations are compared with two types of CAM6 simulations, nudged and free-running simulations. 

Simulations are based on a finite-volume dynamical core (Lin, 2004) with a horizontal resolution of 0.9º×1.25º and 32 

vertical levels. All simulations are conducted using prescribed sea-surface temperature and present-day aerosol emissions 

and include a 6-month spin-up time. CAM6 nudged simulations are nudged spatially and temporally with meteorological 155 

data (i.e., 2-D horizontal wind and temperature) from the Modern-Era Retrospective Analysis for Research and Applications 

version 2 (MERRA2) (Gelaro et al., 2017), and collocated with aircraft flight tracks in space and time. A nudged simulation 

was conducted for each campaign independently and was combined into one data set (hereafter named “CAM6-nudg”) to 

compare with observations. One free-running simulation was conducted for the duration of all flight campaigns from July 

2008 to February 2016. To reduce the size of model output when comparing with observations, a total of 24 instantaneous 160 

output from the free-running simulation are combined into one data set (“CAM6-free” hereafter), which includes 00 and 12 

UTC for the first day of each month in 2010. Additional sensitivity tests on different model output from the free-running 
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simulation show very minor differences in the statistical distributions of cirrus microphysical properties and the correlations 

with their controlling factors when selecting different years, seasons, and days in a month.  

In-cloud conditions in simulations are defined by concurring conditions of IWC > 10-5 g m-3 and Ni > 10-2 L-1, which are the 165 

lower limits from observations. In addition, analysis of simulated cirrus clouds is restricted to similar pressure ranges as 

those measured in the seven campaigns. An additional constraint on cloud fraction > 10-5 was applied to CAM6-free to 

exclude extremely low values. A summary of the ranges of meteorological conditions and ice microphysical properties for in 

situ and simulation data is shown in Table 2. Simulated ice and snow are restricted to > 62.5 µm based on the size cut-off of 

the Fast-2DC probe. Note that due to the ice crystal size constraint, some thin cirrus may not be detected. IWC, Ni and Di 170 

values are re-calculated by combining snow and ice for their mass and number concentrations based on a similar method 

from Eidhammer et al. (2014), which also combined snow and ice to compare with in situ data. In addition, simulated 

aerosols number concentrations are further categorized by diameters > 500 nm and > 100 nm (i.e., Na500 and Na100, 

respectively), by summing the size-restricted concentrations of the Aitken, accumulation and coarse aerosol modes. 

Previously, field experiments found that Na500 correlates well with INP number concentrations (DeMott et al., 2010). Even 175 

though that correlation was only determined based on observations warmer than -36ºC, the separation of Na500 and Na100 can 

help to examine the effects of larger and smaller aerosols in this work.  

3 Regional variations of cirrus cloud characteristics 

3.1 Cirrus cloud microphysical properties with respect to temperature 

Three cirrus cloud microphysical properties, IWC, Ni and Di are examined in relation to temperature at six latitudinal 180 

regions (Figure 4). The observations of IWC and Ni in the NH indicate clear latitudinal differences with the highest values 

occurring in the midlatitudes, followed by tropics, then polar regions for temperatures between -40ºC and -60ºC, while for 

colder temperatures the NH tropical region shows the highest IWC. In the SH, the highest IWC and Ni occur in the tropics, 

followed by the polar regions and midlatitudes. Comparing the two hemispheres, IWC and Ni show significant reductions by 

~1 order of magnitude from NH midlatitude to SH midlatitude (Figure 5). The IWC, Ni and Di are relatively similar between 185 

NH and SH tropical regions, while IWC and Di are higher in the SH polar region than NH polar regions.  

CAM6-nudg data show similar trend of average IWC, Ni and Di with respect to temperature as seen in observations, that is, 

the average IWC increases with increasing temperature consistent with previous observational studies (Krämer et al., 2016; 

Luebke et al., 2013; Schiller et al., 2008), average Ni shows no clear trend with temperature, and average Di increases with 

increasing temperature. Differing from observations, CAM6 produces the highest IWC and Ni in the tropical regions, 190 

followed by midlatitudes then polar regions for both hemispheres. The simulated Di also shows little difference between 

hemispheres and latitudes. Overall, the major problem of the simulation is the underestimation of average IWC by a factor of 

2 – 10, which leads to the underestimation of average Di by a factor of 1.2 – 2. The comparison of Ni shows relatively better 

results, with the simulated average Ni being higher than observations in the tropics at -55ºC to -40ºC and in SH extratropical 
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regions, but lower than observations in the NH midlatitude. This result indicates “too many” and “too small” simulated ice in 195 

most regions, except for “too few” and “too small” simulated ice in the NH midlatitude. The larger differences in average Di 

occur in the temperatures closer to -40ºC, which indicates possible misrepresentation of ice particle growth and 

sedimentation into the relatively warmer regions in the model parameterization. 

A previous study by Righi et al. (2020) evaluated the ice microphysical properties in EMAC-MADE3 aerosol–climate model 

(i.e., ECHAM/MESSy Atmospheric Chemistry-Modal Aerosol Dynamics model for Europe adapted for global applications, 200 

3rd generation) by comparing with in situ observations of multiple aircraft field campaigns from 75ºN to 25ºS (Krämer et al., 

2009, 2016, 2020). That study showed low biases of simulated Di at 190 – 243 K, low biases of simulated IWC at 205 – 235 

K, as well as high biases of simulated Ni above 225 K, which are generally in the same direction as the biases we found in 

CAM6 model. Note that Righi et al. (2020) implemented different cloud microphysics parameterizations compared with the 

CAM6 model, including a two-moment cloud microphysics scheme of Kuebbeler et al. (2014) and the ice nucleation 205 

parameterization for cirrus clouds (T < 238.15 K) from Kärcher et al. (2006) which account for both homogeneous and 

heterogeneous nucleation and the competition between the two mechanisms. More future intercomparison studies of these 

models are warranted to examine the reasons behind the similar biases. 

3.2 RHi and σw distributions for in-cloud and clear-sky conditions 

Regional distributions of RHi for clear-sky and in-cloud conditions are shown for observations (Figure 6) and simulations 210 

(Figure 7). Observations show RHi magnitudes ranging from < 5% up to ~180% in both clear-sky and in-cloud conditions, 

and mostly locate below the homogeneous freezing line except for the NH tropical region. A few samples exceed liquid 

saturation line but are within the measurement uncertainties of RHi. This result agrees with the RHi distributions based on 

previous midlatitudinal observations (Cziczo et al., 2013). For clear-sky conditions, the majority of the observed and 

simulated RHi values are below 100%, while the CAM6-nudg data show fewer RHi exceeding ice saturation. For in-cloud 215 

conditions, both observations and simulations show that RHi frequently occur within ~20% of ice saturation, consistent with 

previous observation and modeling studies (Diao et al., 2014a, 2017; D’Alessandro et al., 2017, 2019; Krämer et al., 2009), 

while almost no simulated RHi data exceed the homogeneous freezing threshold. The higher RHi observed in the NH 

tropical region was also observed by Krämer et al. (2009). Such feature can be explained by the competition between higher 

updrafts seen in the tropics and the depletion of water vapor from newly nucleated ice particles as discussed in Kärcher and 220 

Lohmann (2002). For the polar regions, in-cloud RHi is skewed towards ISS in both observations and simulations, indicating 

less effective water vapor depletion likely due to lower Ni values (Figure 5 f).  

Regional distributions of the variance of w (σw) for in situ observations and CAM6 nudged simulations are shown in Figures 

8 and 9, respectively. σw in the observations is calculated as the variance of w within each 200 seconds of data, which 

corresponds to a horizontal scale of ~46 km, similar to the horizontal grid scale of the CAM6 simulations. The σw in 225 

simulations is based on the “wsub” variable, which is calculated from the square root of turbulent kinetic energy (TKE) 

(Gettelman et al., 2010). Observed σw shows the highest values in the tropical and midlatitude regions reaching up to ~3 m/s, 
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while the polar regions show updrafts up to ~1 m/s. A similar decreasing trend of maximum σw is seen in the simulations 

from the lower to higher latitudes. The observations show similar σw maximum values between clear-sky and in-cloud 

conditions, while the simulations show much higher maximum σw for in-cloud conditions in the tropics (1 m/s), midlatitude 230 

(1 m/s) and polar regions (0.5 m/s), compared with those values in clear sky (i.e., 0.25, 0.25 and 0.1 m/s, respectively). This 

result suggests that the model has as stronger dependence on higher σw for cirrus cloud formation compared with 

observations. 

4 Individual impacts of key controlling factors on cirrus clouds 

4.1 Probability density functions of temperature, RHi and σw 235 

PDFs of temperature, RHi and σw are shown in Figure 10. The PDFs are normalized by the total number of samples of both 

clear-sky and in-cloud conditions. The observations are located mostly around -68ºC to -40ºC, and the simulations show 

similar temperature distributions. For the PDFs of RHi, the observations and simulations all show peak position at 100% for 

in-cloud condition. However, a secondary peak is shown in simulations at 80% RHi, which is likely due to the parameter of 

RHimin for ice cloud fraction calculation being set at 80% for representing variance of humidity in a grid box (more details on 240 

RHimin are described in Gettelman et al. (2010)). In addition, the maximum RHi values are 170% and 180% for in-cloud and 

clear-sky conditions in the observations, while the CAM-nudg simulations show lower values at 160% and 150%, 

respectively. The CAM-free data show higher maximum RHi values than CAM-nudg data, likely due to additional data from 

tropical regions at temperatures below -70ºC (Figure 10 c). When using a lower size cut-off (1 μm) of ice particles for the 

simulation data, the number of in-cloud samples increases (supplementary Figure S1). However, negligible differences are 245 

seen in the PDFs of temperature, RHi and σw for the two simulations between Figures 10 and S1. Specifically, the steeper 

decrease of probability for RHi > 100% is consistently shown in the simulations regardless of the ice particle size range. 

PDFs of σw show consistent results to Figures 8 and 9, with simulations showing much higher maximum σw for in-cloud 

conditions than clear-sky conditions compared with the observations. The lower maximum values of σw in simulations are 

most likely a result of model missing representations of gravity waves from topography, fronts, and convection, and only 250 

including σw from turbulence. 

4.2 Effects of RHi and σw on ice microphysics 

The relationships between ice microphysical properties and RHi are examined in Figure 11. For the observations, the 

maximum IWC and Ni occur slightly above ice saturation at 110% RHi, while the maximum Di occur at 130% RHi. The 

average IWC and Ni increase 1.5 orders of magnitude from 40% to 110% RHi, and decreases 0.5 order of magnitude (i.e., a 255 

factor of 3) from 110% to 130% RHi. The maximum IWC and Ni do not occur at the highest RHi most likely due to the 

consumption of water vapor by ice deposition. High Di values at lower RHi (~30%) are likely a result of sedimenting large 
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ice crystals, which has been previously observed by Diao et al. (2013) when investigating the evolutionary phases of cirrus 

clouds.  

In contrast to observations, both CAM6-nudg and CAM6-free simulations show a primary peak of average IWC and Ni at 260 

80% RHi and a secondary peak at 100% RHi, with a local minimum at 90% RHi. The peak at RHi 80% is likely produced by 

the RHimin parameter reflecting sub-grid scale RHi variance as mentioned above (Gettelman et al., 2010). Smaller increases 

in IWC and Ni are shown in the simulations (i.e., 0.5 order of magnitude) compared with observations as RHi increases from 

40% to 100%. Increases of average IWC and Ni are seen in the simulations as RHi increases from 110% to 140%, differing 

from the decreasing trend seen in the observations. The simulations may underestimate water vapor depletion rate since the 265 

average IWC and Ni in the simulations are lower than the observations by 0.5 order of magnitude at 110% – 140% RHi. For 

Di - RHi correlations, both simulations show similar results to the observations, with the maximum Di around 130% RHi 

and some large ice particles in the subsaturated conditions. The large variability of observed ice microphysical properties is 

also significantly underestimated in the model for ISS conditions. Standard deviations are 0.5 – 1 order of magnitude lower 

for IWC and Ni and a factor of 2 lower for Di compared with observations.  270 

Comparing the correlations with σw (Figure 12), the simulations show increasing IWC and Ni with higher σw, which agree 

with observations. The simulated Di is relatively constant with increasing σw, which differs from the observed positive 

correlation between Di and σw. This positive Di - σw correlation is likely due to the growth of ice particles as cirrus clouds 

evolve with continuous updrafts that supply excess water vapor above ice saturation, which was previously discussed in a 

cirrus cloud evolution analysis (Diao et al., 2013). The simulations may overlook this positive correlation due to several 275 

reasons, such as the lack of temporal resolution to resolve cirrus evolution in the growth phase, the lack of vertical velocity 

sub-grid variabilities (as discussed in Zhou et al. (2016)), and a dry bias (i.e., lower RHi) in the model (as discussed in Wu et 

al. (2017)). 

4.3 Aerosol indirect effects 

The effects of larger and smaller aerosols (i.e., Na500 and Na100) on ice microphysical properties are further examined for 280 

observations and CAM6-nudg data (Figure 13). Cloud fraction is calculated in each temperature – Na bin by normalizing the 

number of in-cloud samples with the total number of samples in that bin. For three cirrus microphysical properties (i.e., 

IWC, Ni and Di), positive correlations are seen in observations with respect to Na500 and Na100. In addition, higher Na500 

(>10 cm-3) and Na100 (>100 cm-3) values are associated with significant increases in cloud fraction. At -70ºC to -60ºC, higher 

IWC, Ni and cloud fraction are seen when Na500 is observed, with positive correlations of IWC and Ni with respect to Na500. 285 

This finding indicates that larger aerosols provide an effective pathway of ice particle formation for colder conditions. The 

higher IWC and Ni are only shown in much higher Na100 (>100 cm-3) between -70ºC and -60ºC, demonstrating that larger 

aerosols facilitate ice formation more effectively than smaller aerosols at this temperature range, possibly due to the 

activation of larger aerosols as INPs for heterogeneous nucleation.  
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The CAM6-nudg simulation shows increasing average IWC, average Ni and cloud fraction with increasing Na500, consistent 290 

with the observations. But at temperatures below -60ºC, simulated IWC and Ni do not show a sudden increase when Na500 

exists as shown in the observations. The simulated Di slightly decreases with increasing Na500, differing from the increasing 

trend seen in observations. For aerosol indirect effect analysis based on Na100, the comparison results are similar to Na500, 

that is, CAM-nudg simulation is able to represent positive correlations of Ni and cloud fraction with respect to Na100, but 

underestimates the average IWC, underestimates Ni below -60ºC, and misses positive correlations between Di and Na100. 295 

5 Discussion and conclusions 

In this study, we investigate the statistical distributions of cirrus cloud microphysical properties (i.e., IWC, Ni, and Di) as 

well as several key controlling factors (i.e., temperature, RHi, σw and Na) using a comprehensive in situ observational 

dataset and GCM simulations. Regional variations of cirrus cloud microphysical properties are examined for six latitudinal 

regions in two hemispheres. Two types of CAM6 simulations are evaluated, i.e., nudged and free-running simulations.  300 

Regarding the regional variations at warmer conditions (i.e., -55ºC to -40ºC), the highest and lowest IWC values were 

observed in NH midlatitude and SH midlatitude, respectively, while the polar regions show the lowest Ni and highest Di 

(Figures 4 and 5). The hemispheric differences between NH and SH midlatitudes indicate a possible role of anthropogenic 

aerosols in controlling ice microphysical properties. The tropical regions show the highest IWC and Ni at temperatures 

below -55ºC possibly due to convection anvils with the droplet freezing from down below or homogeneous nucleation in 305 

gravity waves generated by convection. This feature is corroborated by the fact that tropical regions show the highest RHi 

values for both clear-sky and in-cloud conditions (Figure 6), while the midlatitude and polar regions show fewer samples 

exceeding the homogeneous nucleation threshold. The higher RHi values in tropics are likely contributed by higher updrafts 

(indicated by higher σw in Figure 8). These results demonstrate the important roles of these controlling factors on cirrus 

clouds at different latitudinal and temperature ranges. 310 

Evaluating the model simulations of cirrus microphysical properties, different model performance results are seen in 

different regions. For example, simulations underestimated the IWC and Ni in NH midlatitude (Figures 4 and 5), possibly 

due to model dry bias to form ice clouds (as discussed in Wu et al. (2017)) and/or smaller aerosol indirect effects on IWC 

and Ni in the simulations (Figure 13). For RHi distributions, the simulations represent a similar peak position at ice 

saturation for in-cloud RHi PDFs compared with observations but underestimate the frequency and magnitude of ISS for 315 

clear-sky condition. For σw distributions, simulations represent similar regional variations of σw compared with observations, 

with σw decreasing from lower to higher latitudes. However, larger biases are seen in the simulations for the effects of RHi 

and σw on ice microphysical properties, including the simulated average IWC and Ni maximize at 80% RHi instead of 110% 

RHi as observed, and the simulation misses the increasing average Di with increasing σw as observed.  

For aerosol indirect effects, the simulations underestimate IWC, Ni, Di as well as cloud fraction at colder conditions 320 

(< -60ºC) when larger aerosols exist, indicating that the effectiveness of larger aerosols is underestimated at the colder 
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conditions. The observations also show higher Di than simulations by a factor of 3 – 4 at warmer temperatures (-50ºC 

to -40ºC), indicating inefficient ice particle growth and/or sedimentation in the simulations. In addition, the observed IWC, 

Ni and Di show significant increase at higher Na500 (>10 cm-3) and Na100 (>100 cm-3), while simulations do not show such 

significant increase. This result indicates that aerosol indirect effects may be underestimated especially for higher Na values. 325 

Overall, the global-scale observational dataset used in this study provides statistically robust distributions of cirrus cloud 

microphysical properties, which can be used to evaluate the effects of thermodynamics, dynamics and aerosols on cirrus 

clouds in a global climate model. Extending from previous studies that investigated climate model sensitivity to individual 

cirrus cloud controlling factors, i.e., w (Shi and Liu, 2016), RHi (D’Alessandro et al., 2019), water vapor (Wu et al., 2017), 

and aerosols (Wang et al., 2014), this study provides a comprehensive analysis of all factors. In addition, further attention 330 

was given towards evaluating these factors in the simulations based on geographical locations. Even though small ice 

particles (< 62.5 μm) are excluded in this study, correlations between ice microphysical properties and these key controlling 

factors are still clearly seen in the observation dataset. This study underscores the importance of correctly representing the 

thermodynamic, dynamic and aerosol conditions in climate models at various regions, as well as accurately simulating their 

correlations with ice microphysical properties. Failing to do so may result in biases of cirrus cloud microphysical properties 335 

depending on different regions and temperatures, leading to biases in cirrus cloud radiative effects on a global scale. 
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Table 1. Descriptions of seven NSF flight campaigns conducted with the NSF/NCAR G-V research aircraft. 

 

Acronym Field Campaign Time Lat, Lon Region* Flight 
hours 

In-cloud 
hours 

Clear-sky 
hours 

START08 Stratosphere-
Troposphere Analyses 
of Regional Transport 

April – June 2008 26°N – 62°N, 
117°W – 86°W 

NM, NP 84 2 52 

HIPPO HIAPER Pole-to-pole 
Observations 

deployments 2 – 5 

Oct – Nov 2009; 
Mar – Apr 2010; 
Jun – July 2011; 
Aug – Sept 2011 

87°N – 67°S, 
128°E – 90°W 

A 333 7 111 

PREDICT PRE-Depression 
Investigation of Cloud 
Systems in the Tropics 

 
Aug – Sept 2010 

10°N – 28.5°N, 
86°W – 37°W 

NT 105 25 66 

DC3 Deep Convective 
Clouds and Chemistry 

Project 

May – June 2012 25°N – 42°N, 
106°W – 80°W 

NM 144 23 54 

TORERO Tropical Ocean 
tRoposphere Exchange 

of Reactive halogen 
species and 

Oxygenated voc 

Jan – Feb 2012 42°S – 14°N, 
105°W – 70°W 

NT, ST, 
SM 

125 2 52 

CONTRAST CONvective 
TRansport of Active 

Species in the Tropics 

Jan – Feb 2014 20°S – 40°N, 
132°E – 105°W 

NM, NT, 
ST 

116 23 48 

ORCAS The O2/N2 Ratio and 
CO2 Airborne 

Southern Ocean 
(ORCAS) Study 

Jan – Mar 2016 75°S – 18°S, 
91°W – 51°W 

SM, SP 95 1 40 

 

*: N, northern hemisphere; S, southern hemisphere; T, tropics; M, midlatitude; P, polar regions; A, all regions.  575 
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Table 2. Ranges of meteorological conditions and ice microphysical properties for in situ observations, CAM6-nudg and 

CAM6-free data used in this study. 

 

 In situ observations CAM6-nudg CAM6-free 
T (ºC) -78 – -40 -75 – -40 -89.9 – -40 
P (Pa) 12,389 – 53,137 12,300 – 53,446 12,300 – 53,100 

RHi (%) 0.3 – 175.1 0.0473 – 159.8  0.002 – 257.19 
IWC (g/m3) 0.00004 – 23.31 0.00001 – 32.65 0.00001 – 94.72 

Ni (#/L) 0.039 – 542.15 0.01 – 5,238 0.0243 – 6,066 
Di (µm) 62.5 – 3,200 62.5 – 1,958 66.7 – 2,556 
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Figure 1. Global maps of flight tracks representing the seven campaigns in this study for (a) in situ observations and (b) 580 

CAM6-nudg. Colors denote different campaigns.   

(a) 

(b) 

START08, HIPPO, PREDICT, TORERO, DC3, CONTRAST, ORCAS 
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Figure 2. (a) Vertical profiles of temperature, (b) potential temperature vs. temperature, and (c) vertical profiles of potential 

temperature based on in situ observations at temperatures ≤ -40ºC. Number of samples (N) for 1-Hz observations is shown in 

the figure legend. Colors denote six latitudinal regions.   585 

(a) (b) (c) N = 303704 N = 1526189 N = 1526189 

In-cloud Clear sky Clear sky 
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Figure 3. Latitude and altitude distributions of (a) IWC, (b) Ni, (c) Di, (d) in-cloud RHi, (e) clear-sky RHi, and (f) clear-sky 

water vapor volume mixing ratio at temperatures ≤ -40ºC. Total measurement hours and number of samples for given 

intervals are shown for each variable. Note that the measurement ranges shown in the upper right corner are not the full 

ranges (see Table 2 for the full ranges). 590 
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 

(i) (j) 

(k) (l) 
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Figure 4. Geometric means of (a, b, g and h) IWC and (c, d, i and j) Ni, as well as (e, f, k and l) linear averages of Di at 4 ºC 

temperature intervals between -80 ºC and -40 ºC, compared between in situ observations (first three rows) and CAM6-nudg 

(bottom three rows). Whiskers represent ± one standard deviation. The number of samples for 1-Hz observations at 

temperatures ≤ -40ºC in the northern (southern) hemisphere tropical, midlatitude and polar regions are 173930 (15569), 595 

100615 (3809), and 6704 (2606), respectively. The number of samples for CAM6-nudg data in these regions are 2992408 

(595392), 2082130 (617007) and 523430 (212686), respectively.   
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Figure 5. Geometric means of (a – c) IWC and (d – f) Ni, as well as (g – i) linear averages of Di at 4 ºC temperature 

intervals between -80 ºC and -40 ºC, compared between in situ observations (black lines) and CAM6-nudg (red lines). 600 

Observed and simulated microphysical properties are binned by six latitudinal regions similar to Figure 4, where NH is 

denoted by solid lines, and SH is denoted by dashed lines. Number of samples in this figure is the same as those shown in 

Figure 4 caption.  

(a)  (b)  (c)  

(d)  (e) (f)  

(g)  (h)  (i)  
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Figure 6. Distributions of RHi at various temperatures and geographical locations from in situ observations under (left two 605 

columns) clear-sky and (right two columns) in-cloud conditions. Solid and dashed black lines represent ice and liquid 

saturation, calculated based on saturation vapor pressure with respect to ice and liquid from Murphy and Koop (2005), 

respectively. Dash-dotted line denotes the homogeneous freezing threshold for 0.5 μm aerosols based on Koop et al. (2000). 

Clear sky In-cloud 
(a) (b) (c) (d) 

(e) (f) (g) (h) 

(i) (j) (k) (l) N = 496799   N = 117839 

N = 478869  N = 154017 

N = 100690  N = 52279   
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N = 3730  N = 2531  
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Figure 7. Similar to Figure 6 but for CAM6-nudg data. RHi values for simulations are calculated using simulated specific 610 

humidity and temperature, based on the equation of saturation vapor pressure with respect to ice from Murphy and Koop 

(2005). 

Clear sky In-cloud 
(a) (b) (c) (d) 
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Figure 8. Distributions of σw at various temperatures and geographical locations from in situ observations under (left two 615 

columns) clear-sky and (right two columns) in-cloud conditions. 

In-cloud Clear sky 
(a) (b) (c) (d) 
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Figure 9. Similar to Figure 8 but for the CAM6-nudg data.  

In-cloud Clear sky 
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Figure 10. Probability density functions (PDFs) for (a – c) temperature, (d – f) RHi and (g – i) σw, compared among (left 620 

column) observations, (middle column) CAM6-nudg and (right column) CAM6-free data. 

In situ Obs. CAM6-free 

(a)  (c) 

(d)  (e)  (f)  

(g)  (h)  (i)  

CAM6-nudg 
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N total = 8102952 
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Figure 11. Correlations between RHi and in-cloud IWC, Ni and Di (columns 1 – 3, respectively), compared among (a – c) in 

situ observations, (d – f) CAM6-nudg, and (g – i) CAM6-free data. Black lines and whiskers denote geometric means and 

standard deviations, respectively.   625 
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Figure 12. Similar to Figure 11 but for correlations with σw. 
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Figure 13. Aerosol indirect effects on (a – d) IWC, (e – h) Ni, (i – l) Di, and (m – p) cloud fraction, compared between 

observations and CAM6-nudg data, examined for (left two columns) log10(Na500) and (right two columns) log10(Na100). 630 

Number of samples is shown in the bottom row. Cloud fraction is calculated as the number of in-cloud samples over the total 

number of samples for a given temperature and Na bin. 
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