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Abstract. The ability to monitor and understand natural and anthropogenic variability in atmospheric carbon dioxide (CO2) is

a growing need of many stakeholders across the world. Systems that assimilate satellite observations, given their short latency

and dense spatial coverage, into high-resolution global models are valuable, if not essential, tools for addressing this need. A

notable drawback of modern assimilation systems is the long latency of many vital input datasets, e.g., inventories, in situ mea-

surements, and reprocessed remote-sensing data can trail the current date by months to years. This paper describes techniques5

for calibrating surface fluxes derived from satellite observations of the Earth’s surface to be consistent with constraints from

inventories and in situ CO2 datasets. The techniques are applicable in both short-term forecasts and retrospective simulations,

thus taking advantage of the coverage and short latency of satellite data while reproducing the major features of long-term

inventory and in situ records. Our approach begins with a standard collection of diagnostic fluxes which incorporate a variety

of remote-sensing driver data, viz. vegetation indices, fire radiative power, and nighttime lights. We then apply an empirical10

sink to calibrate the diagnostic fluxes to match given atmospheric and oceanic growth rates for each year. This step removes

coherent, systematic flux errors that produce biases in CO2 which mask the signals an assimilation system hopes to capture.

Depending on the simulation mode, the empirical sink uses different choices of atmospheric growth rates: estimates based on

observations in retrospective mode and projections based on seasonal forecasts of sea surface temperature in forecasting mode.

The retrospective fluxes, when used in simulations with NASA’s Goddard Earth Observing System (GEOS), reproduce marine15

boundary layer measurements with comparable skill to those using fluxes from a modern inversion system. The forecasted

fluxes show promising accuracy in their application to the analysis of changes in the carbon cycle as they occur.

Copyright statement. The author’s copyright for this publication is transferred to the National Aeronautics and Space Administration.

1 Introduction

As the number and kind of space-based carbon dioxide (CO2) measurements continue to grow, so too do the capabilities of20

modeling and data assimilation systems which support carbon monitoring. An eventual goal of these systems is the verification

of international climate agreements (Ciais et al., 2015; Peters et al., 2017; Pinty et al., 2017; 2019). However, verification
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would require the additional ability to distinguish the signal in atmospheric CO2 due to changes in anthropogenic emissions

from that due to inter-annual variability in biospheric fluxes, transport, and other natural processes. While this functionality

matures, there are many other applications that do not require attribution, but do require near real-time (NRT) latencies (i.e., less25

than a few days), horizontal resolutions finer than several hundred kilometers, and extensive spatial coverage. These include

short-term forecasts for field campaigns, identification of times and places of interest for satellite instruments with controllable

pointing, (e.g., the Orbiting Carbon Observatory 3),
:::::::
boundary

:::::::::
conditions

:::
for

:::::::
regional

:::::::
models,

:
and the production of a priori

profiles and/or evaluation datasets for retrieval algorithms. Furthermore, high-resolution, global atmospheric CO2 monitoring

systems with forecasting and assimilation capabilities enable the study of carbon cycle phenomena as they occur, e.g., the30

impact of the recent coronavirus pandemic, and complement other existing and forthcoming remote-sensing observations of

soil moisture, evapotranspiration, and terrestrial biomass (see Stavros et al., 2017 for examples).

The modeling and assimilation system under development at NASA Goddard Space Flight Center (GSFC), coordinated by

the Global Modeling and Assimilation Office (GMAO), incorporates an extensive array of satellite observations and Earth

system models to estimate carbon fluxes, atmospheric mixing ratios, and their uncertainties (Ott et al., 2015). The “baseline”35

configuration of this system features a collection of diagnostic surface fluxes derived from remotely-sensed surface properties,

e.g., terrestrial biospheric exchange from vegetation indices (Randerson et al., 1996), NRT biomass burning from fire radiative

power (Darmenov and da Silva, 2015), and disaggregations of fossil fuel inventories from nighttime lights (Oda and Maksyutov,

2011). High-resolution estimates of atmospheric CO2 follow from transport simulations with the Goddard Earth Observing

System (GEOS) general circulation model, which can reproduce the meteorology of an atmospheric analysis, e.g., the Modern-40

Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2; Gelaro et al., 2017) with high fidelity (Orbe

et al., 2017).

This system is currently being extended to assimilate a collection of CO2 datasets (Tangborn et al., 2013; Eldering et al.,

2017) including retrievals of column averages from the Greenhouse Gases Observing Satellite (GOSAT; Kuze et al., 2009),

Orbiting Carbon Observatory 2 (OCO-2; Crisp et al., 2004), and the ground-based Total Carbon Column Observing Network45

(TCCON; Wunch et al., 2011) along with in situ data from the multi-agency collection of data provided in NOAA’s Observation

Package (ObsPack; Masarie et al., 2014). The assimilation step has the benefit of synthesizing heterogeneous measurement

types, “gap filling” data when and where they are unavailable, and drawing model simulations closer to observed values. In

particular, assimilation systems have the potential to correct for errors in the surface flux inputs associated with outstanding

questions about how to 1) reconcile bottom-up global budgets derived from inventories and biospheric models with top-down50

budgets derived from atmospheric measurements (Le Quéré et al., 2018), 2) partition the surface sink between the Tropics

and Extratropics (Schimel et al., 2015), and 3) reproduce the response to inter-annual variability in meteorology, for example

the impact of El Niño on terrestrial (Liu et al., 2017) and oceanic (Chatterjee et al., 2017) fluxes and drought on semi-arid

ecosystems (Poulter et al., 2014). A comprehensive description of current and planned space-based observations of CO2,

along with the scientific questions they hope to address, is available in the report of Crisp et al. (2018).55

As the first step in the development of the CO2 assimilation system, we calibrate the a priori, baseline diagnostic fluxes

to satisfy constraints from inventories and in situ measurements. This step reduces the errors of model simulations before
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assimilating satellite data, thus increasing the ability of the system to capture other signals of interest in the observations (Dee,

2005). For example, in any given year, estimates of global net biospheric exchange (NBE) from the TRENDY ensemble of

terrestrial biosphere models (Sitch et al., 2015) have a range of roughly 4 petagrams of carbon (Pg C). Transported through60

the atmosphere, this produces a 2 ppm spread in CO2, which is twice the size of the atmospheric growth rate perturbation

of the 2015–2016 El Niño. In addition, an under/over-estimation of NBE leads to an under/over-prediction of the seasonal

cycle amplitude of both surface and column-average mixing ratios (Yang et al., 2007; Keppel-Aleks et al., 2012). Among flux

inversion systems that ingest in situ data, e.g., those analyzed by Gaubert et al. (2019), the spread in NBE is usually much

smaller, about 0.25 Pg C. Nevertheless, flux inversions typically achieve this agreement through their reliance on long-term65

data records and transport simulations, and can trail the current data
:::
date

:
by a year or more. Our goal is to achieve a similar

error reduction without the resulting latency, allowing the subsequent assimilation of satellite CO2 data to focus on regional and

seasonal errors rather than global budgeting errors.
:::
For

::::
now,

:::
we

:::
are

::::::
willing

::
to

:::::
accept

::::
that

:::
the

::::::::
empirical

::::
sink

::::
adds

:
a
::::::::::
biophysical

:::::::::::
inconsistency

:::
into

::::
our

::::::
system,

:::
but

:::::
hope

::
to

:::::
better

::::::
address

::::
this

::
in

:::
the

:::::
future.

:

This paper presents a collection of surface fluxes having both retrospective and forecasting modes that reproduce background70

CO2 measurements with comparable skill to a modern flux inversion system. The collection includes an additional, empirically

derived land sink to our baseline flux collection to ensure that global flux totals are consistent with observed atmospheric CO2

growth rates. Empirical adjustments of this kind date back at least to the work of Tans et al. (1990), who showed that their

simulations recreated the North-South gradient of CO2 when they increased terrestrial uptake in the Northern Hemisphere

Extratropics. Later, Chevallier et al. (2009) tuned their fluxes to match observed atmospheric growth rates, Keppel-Aleks75

et al. (2012) adjusted Northern Hemisphere mid-latitude uptake to improve their simulated seasonal cycle amplitude, and

Agustí-Panareda et al. (2016) derived an adjustment to fluxes from their prognostic model (i.e., one which does not ingest

satellite vegetation data) based on comparisons to a flux inversion system. The method described here is an extension to that

of Chevallier et al. (2009), while sharing some features of each of the previously cited works. In retrospective mode, it applies

an atmospheric growth rate based on in situ observations in the marine boundary layer (MBL; Dlugokencky and Tans, 2016b).80

In forecasting mode, when many of the diagnostic flux products and observationally constrained growth rates are unavailable,

the fluxes use extrapolation and a method for predicting the growth rate based on sea surface temperature forecasts (Jones and

Cox, 2005; Betts et al., 2016). It differs from previous works in its functional form and its application to fluxes diagnosed from

satellite measurements instead of those from a prognostic model.

In the work that follows, the construction of the empirical sink is detailed in Section 2. The evaluation of the fluxes against85

other products and comparisons of transported mixing ratios to in situ measurements is presented in Section 3. In particular,

we compare GEOS simulations using the calibrated fluxes and using fluxes from an inversion system to MBL measurements

and show the difference in skill is negligible. These findings and their potential scientific impact are summarized in Section 4.
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2 The LoFI flux collection

The Low-order Flux Inversion (LoFI) is a collection of carbon fluxes driven by remote-sensing data calibrated to reproduce90

given atmospheric and oceanic growth rates. We use the term “low-order” to distinguish it from a modern flux inversion system.

To demonstrate the impact of the empirical sink, we also consider a “baseline” flux collection similar to that used in Ott et

al. (2015) with the empirical land sink removed. All products in both the LoFI and baseline collections are conservatively

regridded to the 0.5◦ × 0.625◦ dateline and pole centered grid used by GEOS for many applications including the MERRA-

2 reanalysis, which is used for the meteorological inputs needed by the fluxes. All fluxes have a daily timestep, except the95

land biosphere which has a 3-hourly timestep to resolve the diurnal cycle. In retrospective mode, the LoFI collection trails

the current date by up to a year. It forecasts fluxes for the current and next year using the approach described in Section 2.1.

As a rough metric of truth/plausibility, we compare both collections to widely-used ensembles of terrestrial biospheric, ocean

biogeochemical models, and flux inversions. These choices and the components of the LoFI fluxes are detailed below and

summarized in Table 1.100

The LoFI flux collection consists of the following six components:

Net Ecosystem Exchange (NEE) — An implementation of the Carnegie Ames Stanford Approach (CASA; Randerson et

al., 1996) and Global Fire Emissions Dataset version 3 (GFED 3; van der Werf et al., 2003; 2010) referred to here

as CASA-GFED 3. CASA-GFED 3 uses satellite-based measurements of land cover and vegetation changes along with

meteorology from MERRA-2 to constrain carbon stocks and fluxes, viz. net primary productivity (NPP), which is de-105

termined from measurements of normalized difference vegetation index (NDVI; Pinzon and Tucker, 2014), and biomass

burning, which is determined from Moderate Resolution Imaging Spectrometer (MODIS) burned area estimates (Giglio

et al., 2010). This version is available on a 0.5 degree grid with a monthly timestep. More details about our particular

implementation and its use in GEOS are available in Ott et al. (2015).

Biofuel — CASA-GFED 3 also produces an estimate of the anthropogenic burning of harvested wood (van der Werf et al.,110

2010), which we refer to here as biofuel. The emissions have no seasonality and are calculated as the population density

times national per capita fuel consumption estimates while being constrained by the total available coarse woody debris

at each model time step.

Biomass burning — The Quick Fire Emissions Dataset (QFED; Darmenov and da Silva, 2015), an NRT product, which

determines emissions based on MODIS fire radiative power (FRP) estimates using a technique similar to the Global115

Fire Assimilation System (GFAS; Kaiser et al., 2012). QFED is produced on a 0.1 degree grid for every day with a

climatological diurnal cycle applied.

Fossil fuel combustion — The Open-source Data Inventory for Anthropogenic CO2 (ODIAC; Oda and Maksyutov, 2011,

2015; Oda et al., 2018). ODIAC is a global, monthly, high-resolution (1 km× 1 km) fossil fuel CO2 gridded emission

data product based on the disaggregation of country-level fossil fuel CO2 emission estimates using a global power plant120

database and satellite observations of nighttime lights. It is updated on an annual basis upon the availability of updated
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global fuel statistical data(Oda et al. , 2018).
:
. This work uses the 2016 version which covers 2000–2015. For all but

the two most recent years (here, 2014 and 2015), ODIAC uses global and country estimates from the Carbon Dioxide

Information and Analysis Center (CDIAC; Boden et al., 2018). Estimates ,
:::::
while

::::::::
estimates

:
for the two most recent years

are projected using BP’s Statistical Review of World Energy 2016.
::::
2016

::::
(Oda

::
et

:::
al.,

::::::
2018).125

Ocean exchange — An extension to the monthly climatology of Takahashi et al. (2009) that restores inter-annual variability.

This approach reapplies the global mean climatological growth rate estimate of 1.5 µatm/yr of the partial pressure of

CO2 in seawater (pCOsw
2 ) that Takahasi et al. (2009) use to derive their climatology. For the partial pressure in the

atmosphere (pCOatm
2 ), we use weekly values of zonal-mean surface CO2 from the NOAA MBL reference (Masarie and

Tans, 1995; Dlugokencky and Tans, 2016a) for the partial pressure of CO2 in the atmosphere (pCOatm
2 ). Given the two130

partial pressures, estimates of the surface flux follow from the expression (Wanninkhof, 2014)

F = kCU2
10(pCOsw

2 −pCOatm
2 ),

where k is a constant, U10 is the 10-meter wind speed, and C is the fractional sea-ice coverage. To complete the flux

calculation, we use daily, observationally-constrained estimates of U10 and C from MERRA-2. This approach has been

used by a number of previous studies and is derived from one of the ocean priors in the NOAA CarbonTracker System135

(see footnote b, Table 1). More information is available in Sections 3.1 & A3.

Empirical land sink — An additional, empirical sink following the “poor man’s inversion” approach of Chevallier et al. (2009)

that constrains the global atmospheric growth rate of the combined LoFI flux package. The empirical sink decreases het-

erotrophic respiration (HR) in months where the 2-meter air temperature (T ), meant as a rough proxy for soil temperature,

increases from the previous month. This is designed to concentrate the correction to the Northern Extratropics during140

the spring and summer, where the neutral biosphere assumption of CASA is thought to be most problematic (discussed

in Section 3.2). For the m-th month of each year, the
:
at

:::::
every

:::::
point

::
on

:::
the

:::::::
surface,

:::
the sink Sm has the form

Sm = α ·∆+Tm ·HRm, (1)

∆+Tm = max(Tm−Tm−1,0),

where ∆+Tm denotes the temperature increase from the previous month, and α is a
:::::::
constant scaling factor computed145

such that the total fluxes
:::::
global

::::
total

:::::
fluxes

:::
for

:::
the

::::
year match a specified atmospheric growth rate. In retrospective years

(those preceding the current), we use growth rates derived from the NOAA MBL reference (Dlugokencky and Tans,

2016b), and in NRT years (the current and following) we use projections based on seasonal forecasts of sea surface

temperature described in Section 2.1. For more information about the construction and evaluation of the empirical sink,

see Sections 3.2 & A3.150

This separation assumes that, added together, biomass burning and biofuel emissions account for emissions from both natu-

rally occurring wildfires and burning due to gross land-use/land-cover change. Furthermore, emissions from ethanol, biodiesel,
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Table 1. The components of our fluxes and the different ensembles used for evaluation.

Name Type References

LoFI flux components

CASA-GFED 3 NEE & biofuel van der Werf et al. (2003; 2010)a

QFED Biomass burning Darmenov and da Silva (2015)

ODIAC Fossil fuel Oda et al. (2018)b

LoFI Takahashi Ocean Section 3.1c

LoFI Land sink Empirical NEE adj. Section 3.2d

Top-down ensemble

CarbonTracker 2016 & 2017 NBE & Ocean Peters et al. (2007)e

CarbonTracker Europe 2016 NBE & Ocean Peters et al. (2007)f

CAMS v17r1 NBE & Ocean Chevallier et al. (2011)

Jena CarboScope v4.1 S93 & S04 NBE & Ocean Rödenbeck et al. (2003)

Bottom-up ensemble

GCP 2018 (TRENDY V7) NBE Sitch et al. (2015)g

GCP 2018 Ocean Le Quéré et al. (2018)h

a Implementation in GEOS described by Ott et al. (2015).
b Available at http://db.cger.nies.go.jp/dataset/ODIAC/.
c See https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/CT2017_doc.pdf for a more detailed description of a nearly

identical approach used as an ocean prior in the NOAA CarbonTracker flux inversion system.
d See Chevallier et al. (2009) and Agustí-Panareda et al. (2016) for examples of similar approaches.
e Updates documented at http://carbontracker.noaa.gov.
f Updates documented by van der Laan-Luijkx et al. (2017).
g Updates documented by Le Quéré et al. (2018).
h Global, annual totals only.

and other short-cycle fuels used for transportation are potentially underestimated since they are not included in the ODIAC

fossil fuel and CASA-GFED 3 biofuel emissions, yet the sink
::::::
removal

:::
of

::::::
carbon due to the corn and soybean harvest in the

Midwestern United States is included in CASA-GFED 3 (derived from USDA National Agricultural Statistics Service data155

for 2005). Excluding the lateral transport of significant amounts of carbon over continental scales, we do not expect these

assumptions to have a noticeable effect on the comparisons to follow since they consider only NBE, the sum of these factors
::
all

:::
land

::::::
fluxes

:::::
except

:::::
fossil

::::
fuel

::::::::
emissions, and not their individual contributions

::
the

:::::::::
individual

:::::
terms.

2.1 Forecasting fluxes

A number of products used in the above fluxes are unavailable until a few months to years following the end of a given year.160

In particular, the fossil fuel inventory data used by ODIAC and NOAA MBL growth rate require data collection and analysis
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that must necessarily trail real time. Simulations during the current year, in particular NRT runs, are thus only possible with

some type of extrapolation and/or statistical model applied to past values. For all flux components except biomass burning

and the empirical sink, we produce estimates during NRT years by first extrapolating a linear fit through the retrospective

values for each point and each month. This choice allows different regions and different seasons to have different trend lines.165

While more complex choices are possible, this is meant as a simple first step as we work to reduce the latency of our baseline

satellite-derived flux products.

The primary motivation for using QFED biomass burning instead of GFED was QFED’s ability to produce NRT estimates.

This ability is particularly important for biomass burning emissions whose inter-annual variability is comparable in magnitude

to its annual mean and seasonal cycle amplitude and is much greater than its long-term trend. While the removal of terrestrial170

carbon by QFED fires does not match the corresponding fire loss in CASA carbon stocks, QFED emissions are calibrated to

GFED (Darmenov and da Silva, 2015), resulting in a difference that is minor compared to that of the empirical sink (see the

Supplementary Section A3).

For the empirical sink, we switch from using an atmospheric growth rate derived from in situ data in retrospective years to

a linear functional fit to seasonal SST anomalies and anthropogenic emissions (Jones and Cox, 2005; Betts et al., 2016). This175

approach estimates the growth rate of CO2 in ppm, ∆CO2 as

∆CO2 = 0.069 + 0.442N + 0.205E, (2)

whereN is the average of SST anomalies in the Niño 3.4 region
::::
(5◦N

::
to
:::::
5◦S,

::::::
170◦W

::
to

:::::::
120◦W)

:
from October of the previous

year to September of the current year in units of degrees Kelvin, and E is the
:::::
global

:
total anthropogenic emissions from fossil

fuels and net land-use/land-cover change in units of Pg C. For the SST anomalies, we use the Reynolds analysis (Reynolds et180

al., 2007) until the last month it is available and fill in the remaining months with SST forecasts from the GEOS Subseasonal

to Seasonal (S2S) forecast system (Molod et al., 2020), and for the anthropogenic emissions we use extrapolated totals from

the Global Carbon Project (GCP) 2018 budget.

The coefficient 0.205 multiplying the anthropogenic term in the growth rate forecast (Equation 2) represents a constant

airborne fraction of 0.44 when converted using a factor of 2.124 Pg/ppm, roughly in line with the findings of Raupach et185

al. (2014). Historical data records tend to show that the long-term trend in the airborne fraction is insignificant compared to its

inter-annual variability (Knorr 2009; Ballantyne et al., 2012), but there is some indication of significant multi-decadal trends,

including the possibility of a recent decrease (Keenan et al., 2016).

3 Flux and transport simulation analysis

Our primary method for evaluating the LoFI flux package, along with the baseline fluxes, are comparisons to the ensembles190

of bottom-up terrestrial biosphere and ocean biogeochemistry models and top-down flux inversions outlined in Table 1 and

described in more detail in the Supplemental Section A2. It is important to note that the bottom-up ensembles and top-down

ensemble are not directly comparable: riverine input of carbon from the terrestrial biosphere to the ocean causes the top-down
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ensemble to infer a greater terrestrial sink and smaller oceanic sink than the biospheric model ensemble (Le Quéré et al.,

2018). Jacobson et al. (2007) used fluxes from a global erosion model (Amiotte Suchet and Probst, 1995; Ludwig et al., 1996)195

to estimate a riverine contribution of 0.45±0.18 Pg C (all uncertainties reported here are 1σ). Recently, Resplandy et al. (2018)

showed that relationships between ocean heat and carbon transport to derive an estimate of 0.78± 0.20 Pg C. Since there is so

much uncertainty about this discrepancy, in particular about its distribution in time and space, we do not make any corrections

to the ensemble ranges used in the comparisons, and this choice should be kept in mind in the interpretation of the following

results. In any case, the most appropriate ensemble for our purposes is the top-down ensemble, while the bottom-up ensembles200

indicate a greater range of plausibility.

There are a number of other possible flux evaluation metrics, each with different limitations. For example, fluxes can be

measured directly from towers with eddy covariance techniques (Dabberdt et al., 1993), but the spatial footprint of a flux

tower is typically much smaller than ten kilometers (Raczka et al., 2013), and upscaling flux tower data to a global, gridded

product has thus far been unable to produce reliable global NBE budgets (Jung et al., 2011). Eddy covariance measurements205

from aircraft (Desjardins et al., 1989), e.g., NASA’s Carbon Airborne Flux Experiment (CARAFE; Wolfe et al., 2018), are

representative of much longer horizontal length scales than towers, but the currently available campaign data are sparse in space

and time. As shown in Section 3.3, another choice is to transport our fluxes through the atmosphere with the GEOS general

circulation model (GCM) and compare the simulated CO2 mixing ratios with atmospheric observations. While this evaluation

is able to test the ability of the fluxes to reproduce large-scale, long-term signals, it is susceptible to the misinterpretation of a210

transport error as a flux error.

3.1 Ocean exchange

Over the past few decades, global pCOsw
2 has increased by roughly 1.5 µatm/yr, yet with considerable regional differences

(Takahashi et al., 2009). At the same time, pCOatm
2 has increased at an even greater pace, driving an increasing ocean sink.

Deviations from these trends are predominantly limited to the Tropical Pacific, where the El Nin̈
:
ño, Southern Oscillation215

(ENSO) is the dominant driver of interannual variability (Rödenbeck et al., 2015), and the Southern Ocean, where the net

ocean sink switched from increasing to decreasing in the early 1990s and switched back in the early 2000s (Landschützer et

al., 2015).

By imposing observed trends in pCOsw
2 and pCOatm

2 , our ocean exchange fluxes produce a sink that is generally consistent

with the inversion ensemble and GCP 2018 ocean biogeochemical model ensemble (Figures 1 and A1), again with the provision220

that the biogeochemical model ensemble does not include outgassing due to riverine input. Averaged over 2000–2010, our mean

ocean sink is 1.55 Pg C. This is consistent with annual budgets based on atmospheric measurements of a combination of of O2

and CO2 called atmospheric potential oxygen (APO; Stephens et al., 1998): Keeling and Manning (2014) estimate an ocean

sink of 2.50± 0.60 Pg C for 2000–2010, which reduces to 1.72± 0.60 Pg C after removing 0.78 Pg C to account for riverine

input (see discussion above). The pCOsw
2 based products of Landschützer et al. (2016) and Rödenbeck et al. (2014), which225

do not require a riverine adjustment, produce sinks of 1.37 and 1.74 Pg C (averages from GCP 2018; Le Quéré et al., 2018),

also in line with our budgets (several more comparable estimates are available in Jacobson et al., 2007). Even during the strong
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ENSO of 2015–2016, the constant growth in pCOsw
2 that we impose is able to reproduce a global sink within the ranges of the

top-down and bottom-up ensembles (Figure 1). While linear growth is not appropriate for simulations of several decades, over

which pCOsw
2 increases exponentially (Raupach et al., 2014), it is sufficient for our 15-year study period and something we230

hope to address in future developments.
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Global ocean flux:  Annual averages
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LOFI
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GCP 2018

Figure 1. Global annual totals of LoFI ocean exchange fluxes (solid blue; identical to baseline) for 2003–2017. Min-to-max ranges of the

inversion ensemble (dark grey) and GCP 2018 ocean biogeochemical model ensemble (light grey) are provided for comparison.

3.2 The empirical land sink

In comparison to the flux inversion ensemble and the TRENDY Version 7, Simulation 3 (Sitch et al., 2015) ensemble of

dynamical global vegetation models (DGVMs), the baseline fluxes consistently underestimate NBE—the sum the sum of

NEE, biofuels, and biomass burning—by over 3 Pg C (see Figure 2a and Table 2). This is due to the assumption of a neutral235

biosphere in CASA-GFED, which thus has no long-term net sink. In the Northern Hemisphere, this assumption causes CASA

to systematically underpredict seasonal cycle amplitudes in comparison to measurements from flux towers (Carvalhais et al.,

2008) and a combination of aircraft and ground-based remote-sensing retrievals (Yang et al., 2007). This effect is seen in the

diagnostic fluxes as an underprediction of the global sink strength in March through July (Figure 2) limited primarily to the

Northern Extratropics (Figure 3, first column). In contrast, including the empirical sink in the LoFI fluxes moves its annual240

totals and seasonal cycle significantly closer to the ranges of the comparison ensembles.

Increasingly, modern flux inversions tend to predict a persistent, net sink in the Northern Extratropics (NE), with the Tropics

and Southern Extratropics (T+SE) in near balance with considerably more inter-annual variability than the NE (Gaubert et al.,

2019). Stephens et al. (2007) first showed that inversions with neutral T+SE fluxes compared better to profiles of in situ aircraft

data than inversions with a significant T+SE source. Inversions from the Regional Carbon Cycle Assessment and Processes245

(RECCAP; Canadell et al., 2011) intercomparison also showed a clear separation between neutral and source T+SE budgets,
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(a) Global NBE:  Annual averages
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Figure 2. Global total NBE from fluxes excluding (baseline; dash-dot red) and including (LoFI; solid blue) the empirical sink: (a) annual

averages and (b) the seasonal cycle climatology for 2003–2015. Min-to-max ranges of the inversion ensemble (dark grey) and TRENDY V7

ensemble (light grey) are provided for comparison.

with the difference being due to the decision to average observational data over month-long intervals (Peylin et al., 2013).

For the RECCAP inversions that used data varying within the month, Peylin et al. (2013) found a sink over 2001–2004 of

1.85±0.25 Pg C in the NE and −0.34±0.27 Pg C in the T+SE. The agreement has become even stronger across more modern

inversion systems, with those covering 2004–2014 finding a NE sink of 2.17± 0.36 Pg C and 0.06± 0.11 Pg C in the T+SE250

(Gaubert et al., 2019). Over this same time period, the LoFI fluxes have a NE sink of 2.50 Pg C and a T+SE sink of −0.41

Pg C, suggesting possibly a slight overestimation of the T+SE source, yet still within a reasonable range of uncertainty (see

Table 2 for comparable ranges from the TRENDY and inversion ensembles).

Table 2. Comparison of 2004–2014 NBE budgets over the Northern Extratropics (NE) and Tropics and Southern Extratropics (T+SE).

Product NE (Pg C) T+SE (Pg C)

Baseline 0.07 −1.24

LoFI 2.50 −0.41

Inversionsa 2.27± 0.36 −0.10± 0.28

TRENDY V7a,b 1.27± 0.65 0.00± 0.48

a Ranges are the 2004–2014 average of the 1σ uncertainties across

all products.
b Requires adjustment for riverine export, e.g., 0.78 Pg C added to

the NE budget.

The net terrestrial sink found by inversions has been shown to be consistent with growth in temperate and boreal terrestrial

ecosystems driven primarily by carbon fertilization and forest regrowth (Schimel et al., 2015; Fernández-Martinez et al., 2019)255
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Figure 3. Climatologies (2003–2015) of NBE from the fluxes excluding (baseline) and including (LoFI) the empirical sink. The first row

depicts annual averages and each subsequent row depicts averages over different seasons. In the left column, zonal mean NBE from the

baseline fluxes (dash-dot red) and LoFI fluxes (solid blue) are plotted along with the ranges of the inversion ensemble (dark grey) and the

TRENDY V7 ensemble (light grey); while the middle and right columns show maps of the LoFI fluxes (middle) and the magnitude of the

empirical sink (right), i.e., the difference between the LoFI and baseline fluxes. Note that the scale of the annual average plots is three times

smaller than that of the seasonal average plots.
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with the possibility of an additional contribution from agriculture (Zeng et al., 2014). Notably, the forest inventory analysis

of Pan et al. (2011) estimated a 2000–2007 sink of 1.28± 0.17 Pg C in boreal and temperate forests (mostly in the NE) and

−0.08± 1.17 Pg C in tropical forests. Further evidence for a persistent NE sink and a weak sink or source in the T+SE can be

found in estimates of aboveground biomass change derived from vegetation optical depth (VOD; Liu et al., 2015), a product

of remotely-sensed microwave radiation, and DGVM simulations constrained with forest demography data (Pugh et al., 2019),260

the Global Forest Age Database (GFAD; Poulter et al., 2019). In particular, Pugh et al. (2019) find a significant sink in the

Eastern United States, which is produced by our empirical sink as well (Figure 3, third row, third column). These studies do

differ with Pan et al. (2011) in important ways, including the attribution of a greater percentage of the net tropical sink to gains

in shrublands and savannas than to forest regrowth (Liu et al., 2015) and estimating a significantly smaller tropical regrowth

sink (Pugh et al., 2019).265

Taken together, the findings described above suggest an empirical sink proportional to the CO2 growth rate (e.g., driven by

carbon fertilization) and monthly temperature increase (e.g., focused to the extratropical growing season). The choice of the

last remaining factor in Equation 1, heterotrophic respiration (HR) over, for example, Net Primary Production (NPP), requires

further investigation. Since boreal forests allocate a much greater percentage of biomass below ground than tropical forests do

(Pan et al., 2011), it seems more suitable to focus the correction on HR rather than NPP. Furthermore, the NDVI driver data of270

CASA tends to put a strong, observationally-driven constraint on NPP. In any case, adjustments to HR or NPP are both likely

to drive the long-term, hemispheric and seasonal corrections we look for in the empirical sink.

Even after adding the empirical sink, the LoFI fluxes have some discrepancies with the comparison ensembles worth noting.

In particular, the LoFI fluxes predict a sink from 0◦S to 15◦S during JJA(Figure 3, fourth row), ,
:
while the comparison

ensembles predict neutral fluxes
::::::
(Figure

:::
3,

:::
first

::::::::
column,

:::::
fourth

::::
row

:::::::::
difference

::::::::
between

::::
blue

::::
line

:::
and

:::::
grey

:::::::
shading). The275

opposite difference, although less noticeable, is present during DJF (Figure 3,
:::
first,

:::::::
column,

:
second row). It is unclear, however,

how accurate either ensemble is in this case: the inversions are hindered by the limitation of in situ data and uncertainties in

transport over this latitude band, while the biospheric models are potentially hindered by inaccuracies in meteorological driver

data and deficiencies in the representation of disturbance (Molina et al., 2015; van der Laan-Luijkx et al., 2015).
::::
This

::::::::
approach

:::
may

:::::::::::
overestimate

:::
the

:::
net

::::
sink

::::
over

::
the

::::::::::
Midwestern

::::::
United

::::::
States,

:::::
where

:::
our

:::::::
version

::
of

::::::::::::
CASA-GFED

:
3
::::::
already

:::::::
includes

::
a
::::
corn280

:::
and

:::::::
soybean

:::::::
harvest.

::::::::::::
Understanding

:::
the

:::::::::
interaction

::
of

:::::
these

:::
two

::::::::::
adjustments

::
is

:::
the

::::::
subject

::
of

:::::::
ongoing

::::::
work.

3.3 Transport simulations

Ultimately, a major goal of this effort is to develop a realistic collection of fluxes that improves the ability of transport sim-

ulations to reproduce measurements and support retrospective and NRT studies. As a test of this skill, we transport the LoFI

fluxes through the atmosphere with the GEOS GCM and compare the results to in situ measurements from NOAA MBL sites285

available in NOAA ObsPack GlobalView+ v4.2.2 (Masarie et al., 2014; Cooperative Global Atmospheric Data Integration

Project, 2019). We do the same with NOAA’s CarbonTracker 2016 (CT2016; Peters et al., 2007, with updates documented at

http://carbontracker.noaa.gov) fluxes
::
for

:::
all

::::::::::
components, which functions as a benchmark of the ability of the GEOS GCM to

reproduce NOAA MBL measurements when using fluxes from a modern inversion system.
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All transport simulations are run using the Heracles 4.0 GEOS GCM version on a 0.5◦ × 0.625◦ regular latitude-longitude290

grid with 72 vertical levels, a timestep of 15 minutes, and output instantaneous fields every 3 hours. The run uses the GEOS

replay approach to reproduce the effect of the meteorological data assimilation system without having to rerun it (see Orbe et

al., 2017 for the most up to date description). In this configuration, the large scale circulation, temperature, and moisture are

constrained by analysis fields every six hours, while physical processes such as convection, turbulence, and radiative transfer

are recalculated at a high temporal resolution. This computationally efficient framework provides the ability to simulate realistic295

meteorology with a tight coupling between fine scale atmospheric transport processes and trace gas emissions. For the analyzed

meteorology, we use MERRA-2, resulting in a transport simulation sharing many of the properties of that used by Ott et

al. (2015).

The evaluation of the two model runs (one with LoFI fluxes, the other with CT2016 fluxes) against the NOAA MBL surface

sites is shown in Figure 4. Neither of the runs is clearly superior. This suggests that, at least in terms of aggregate statistics300

over multiple years, the empirical sink is able to reproduce a correction to the baseline, diagnostic fluxes with a similar skill

as running a formal inversion system based on MBL data. Moreover, at
:::::
While

:::
our

::::::::
approach

::::
may

::::::
degrade

:::
the

::::
skill

:::
of

:::::::
CT2016

::
by

:::::
using

::
a

:::::::
different

::::::::
transport

::::::
model,

::::
and

::::
may

::::
also

:::::::
improve

::
it

::
by

:::::::
running

:::
at

:
a
::::::
higher

:::::::::
resolution,

:::
our

:::::::::
calculated

::::::::::
differences

::
are

:::::::::
consistent

::::
with

:::::
those

::
in

:::
the

:::::::::
evaluation

::
in

:::
the

:::::::
CT2016

:::::::::::::
documentation.

:::
At this level of agreement with the surface sites, it

is difficult to say if errors from the
::::::::::
atmospheric transport or any single component of the surface fluxes dominate the errors305

from another
::::
LoFI

::::::
fluxes

::::::::
dominate

::
all

:::::
other

::::::
sources

::
of
:::::

error. Further refinement of any single component then runs the risk of

confusing errors in one component with those from another.

3.4 Growth rate forecasts

At the start of 2016, the LoFI fluxes switch from retrospective mode to NRT. While it would be possible to extend retrospective

mode to 2018 at the time of writing, we pick 2016 as an interesting test case where we must forecast a growth rate during a310

strong El Niño. In practice, NRT runs are limited to two years since the flux products in the LoFI collection have at most a

two year latency. For 2016 and 2017, Equation 2 predicts growth rates of 2.93 ppm and 2.63 ppm, while the current NOAA

MBL reference values are 2.85 ppm and 2.15 ppm. These small differences do not appear to significantly impact the ability

of NRT LoFI model runs to reproduce in situ measurements at Mauna Loa (Figure 5)—while there is a notable error near the

start of 2016, it is comparable in size to errors during the 2010–2011 El Niño and all errors after 2016 stay below 1 ppm in315

magnitude. This suggests that mis-representations of the spatial and temporal variability of El Niño may have a greater impact

on our ability to represent the Mauna Loa data record than errors in the growth rate forecast.

4 Conclusions

This paper presented an adjustment to a diagnostic collection of surface fluxes designed to calibrate its sink strength to ob-

servations. In each year, we adjusted the magnitude of the sink so that the fluxes match the global atmospheric and oceanic320

growth rates. Among the inversion ensemble, the spread in estimated growth rates is quite small, usually less than 0.25 Pg C.
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Figure 4. Box-and-whisker plots of observation minus forecast (OMF) statistics for 2003–2015 from model simulations using CT2016 fluxes

(green) and using LoFI fluxes (blue). The comparison sites are all of the stations from the marine boundary layer collection and are ordered

by latitude along the y-axis. For each site, the circular target denotes the median, the solid box denotes the range between the 25th and 75th

percentiles, whiskers denote a range of roughly 99 percent of the data, and boxes denote values outside this range.
:::

Grey
::::
bars

::
on

:::
the

::::
right

::::::
indicate,

::::
from

:::
top

::
to

:::::
bottom,

:::
the

:::::::
Northern

:::::::::
Extratropics

:::::
(north

::
of

::::::
23◦N),

:::::
Tropics

:::::::
(between

:::::
23◦N

:::
and

:::::
23◦S,

:::
and

:::::::
Southern

:::::::::
Extratropics

:::::
(south

:
of
::::::
23◦S).
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Figure 5. Time series comparisons of model simulations using CT2016 fluxes (green) and using LoFI fluxes (blue) to observations (black) at

the Mauna Loa observatory. The left panel depicts all samples, while the right is a 3-month mean of the observation minus model differences.

The solid black line at 2016 indicates the switch from retrospective to NRT modes in the LoFI fluxes.

On the other hand, the spread in growth rates among biospheric models can be 4 Pg C or more. In a transport simulation, a

4 Pg C error in surface fluxes will produce a roughly 2 ppm response in atmospheric mixing ratios. Errors of this magnitude

are greater than the signal of many of the anomalies a monitoring system would hope to capture. The 2015–2016 El Niño, for

example, produced an anomaly of only about 1 ppm in the global growth rate. An accurate reproduction of the global growth325

rate is thus an essential first step in the development of a modeling and assimilation system that can reproduce the response of

atmospheric mixing ratios to anomalies in the carbon cycle.

For the empirical sink, we chose a functional form that was the product of the monthly increase in temperature and the

heterotrophic respiration. This choice was motivated by the timing and structure of the differences of the bottom-up fluxes with

the inversion ensemble, which were the greatest in April through July in the extra-tropics. This is by no means the only possible330

form for the empirical sink, but it is simple and manages to bring the fluxes into close agreement with the inversions. The net

result is to adjust the NBE of the baseline fluxes, which on average are neutral the Extratropics and Tropics, into calibrated

fluxes with an average sink strength of 2 Pg C in the Northern Extratropics and zero elsewhere. Since these totals include NEE

and land use change emissions, this does not contradict the possibility of a net sink in NEE and an offsetting land use change

source in the Tropics.335

Using the fluxes calibrated with the empirical sink in transport simulations reproduced atmospheric measurements with the

same skill as transport simulations using one of the fluxes in the inversion ensemble. In particular, the annual total errors at a

collection of sites in the marine boundary layer of the transport simulations with the calibrated fluxes were consistently less

than a ppm, with the true value falling within a quartile of the differences. Globally, the errors are on the order of a few tenths of

a ppm. The empirical sink thus enables the study of carbon cycle anomalies, like the 2015–2016 El Niño, whose perturbation340

to atmospheric mixing ratios is just a couple ppm.
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There are several benefits to using this approach to calibrate a system’s surface fluxes. In comparison to a flux inversion

system, it is exceedingly simple to implement. It is also less susceptible to errors due to the particular transport model, data

selection, and error covariance models. For example, constraining the global growth rate alone requires few, if any, assumptions

about atmospheric transport or decorrelation times and lengths. When used in simulations or as a prior in an assimilation345

system, this approach significantly reduces biases due to mis-specification of the growth rate. Failing to remove such a bias

before assimilating data limits the ability of the assimilation system to account for other signals of interest in the observations

(Dee, 2005), e.g., synoptic-scale variations due to passing weather systems, regional and seasonal anomalies due to drought,

and changes in anthropogenic emissions.

Since observational estimates of the global growth rate are currently only available at the end of each year, using the empirical350

sink developed here in an NRT atmospheric monitoring system requires a prediction of the global growth rate. We projected

growth rates in 2016 and 2017 based on forecasts and analyses of SST (Jones and Cox, 2005; Betts et al., 2016). The values of

2.93 and 2.63 ppm were reasonable estimates of the values measured in the MBL of 2.85 and 2.15 ppm which are unavailable

until a few months after the year’s end. The predicted CO2 mixing ratios showed comparable skill in reproducing in situ

observations. Combined with the future ability to assimilate satellite retrievals of CO2 lagging real time by just a few days, we355

expect to be able to monitor and predict growth rates in NRT.

Data availability. The LoFI fluxes are available upon request from the corresponding author. NOAA CarbonTracker, CarbonTracker Europe,

and the CAMS flux inversions are all publicly available from their institutions websites. All other data products used in this work (viz., the

TRENDY ensemble and the Jena CarboScope flux inversion) must be obtained from the respective project leads.

Appendix A: Supplementary material360

A1 The downscaling algorithm

Because of the rectifier effect, if a model transport simulation hopes to reproduce the observed latitudinal gradient, it must

use surface fluxes with a diurnal cycle (Denning et al., 1995). To resolve the diurnal cycle of the fluxes, we first downscale

the monthly LoFI fluxes to daily using the the algorithm described below. We stop at daily for all fluxes other than terrestrial

NEE, which is the difference of ecosystem respiration (ER) and GPP. Daily terrestrial ER and GPP are downscaled to 3-hourly365

following the approach of Olsen and Randerson (2004) with the slight modification of starting from daily instead of monthly

fluxes. This approach is quite similar to the downscaling approach used by NOAA’s CarbonTracker system. It has the advantage

of avoiding the noticeable discontinuities at monthly boundaries that are present in the monthly to 3-hourly downscaling, but

the disadvantage of possibly missing synoptic scale disturbances that occur over multiple days since the downscaling from

monthly to daily uses interpolation.370

When necessary, fluxes
:::::
Fluxes

:
are downscaled to a higher resolution either spatially or temporally by finding the smoothest

interpolant that preserves the averages at the original, coarser resolution. This interpolant is found by minimizing a quadratic
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cost function subject to a linear constraint. The quadratic cost function is the square of the discrete approximation to the

Laplacian of the downscaled field. When interpolating in space, we use the spherical Laplacian, which takes the shrinking

distance between grid boxes near the poles into account. The linear constraint is that the averages of the downscaled field at375

the coarser resolution be the original values. It is imposed using Lagrange multiplier, which transforms the problem into an

unconstrained quadratic optimization problem on a higher-dimensional space.
::::
This

::::::::
approach

::
is

::::
used

::
to

:::::::::
downscale

::::::::
monthly

::::
NEE

::
to

:::::
daily

::
as

::::::::
described

::::::
above

:::
and

::
is
:::::::

applied
::::
and

::
to

:::::::::
downscale

:::::
ocean

:
pCOsw

2 ::::
from

:::
its

:::::
native

::::::::
4◦ × 5◦

:::::
spatial

::::
grid

:::
to

:::
the

::::::::::::
0.5◦ × 0.625◦

:::
grid

:::
of

:::::::::
MERRA-2.

:

A2 The evaluation ensembles: further details380

We evaluate our fluxes using a top-down ensemble of modern flux inversion systems and bottom-up ensembles of terrestrial

biosphere and ocean biogeochemical models. The flux inversion ensemble consists of the 2016 and 2017 versions of NOAA

CarbonTracker (CT2016 and CT2017; Peters et al., 2007, with updates documented at http://carbontracker.noaa.gov), Carbon-

Tracker Europe (CTE) version 2016 (van der Laan-Luijkx et al., 2017), Copernicus Atmospheric Monitoring Service (CAMS)

version 17r1 (Chevallier et al., 2011), and the S93 and S04 runs of Jena-CarboScope (JCS) version 4.1 (Rödenbeck et al.,385

2003). The bottom-up model ensembles are the same as those used in the Global Carbon Project, 2018 (GCP 2018; Le Quéré

et al., 2018): the terrestrial model ensemble is all TRENDY Version 7, Simulation 3 (Sitch et al., 2015) dynamical global

vegetation models except LPJ-GUESS, which did not submit monthly results, and the ocean model ensemble is the collection

of global annual ocean exchange totals reported in GCP 2018. While comparison to these ensembles is not a true validation of

our fluxes, and is susceptible to uncertainties in lateral exchanges between the land and ocean, we do expect it to indicate when390

and where our surface flux product is an outlier compared to other estimates. In particular, we use the ensembles to identify

coherent, systematic surface flux errors over wide zonal bands and multiple months.

The ensemble comparisons only consider net biospheric exchange (NBE), the sum of net ecosystem exchange (NEE),

biomass burning emissions, and all other emissions not due to the combustion of fossil fuels. For the inversion ensemble,

we compute NBE by subtracting a common fossil fuel product, which we use in our diagnostic fluxes, from the total surface395

flux. No distinction is made here between changes in NEE and biomass burning due to natural effects or to anthropogenic activ-

ities such as land use change. To avoid issues associated with statistics on small sample sizes or bias due to over representation

of certain model configurations, we use only the range of the minimum and maximum values over each ensemble.

A3 LoFI ocean and land fluxes: further details

Figure A1 shows the differences of the LoFI ocean fluxes with the inversion ensemble. In general, the LoFI fluxes are within400

the range of values from the inversions.

The main motivation behind replacing GFED in CASA-GFED with QFED is to avoid having to extrapolate biomass burning

emissions in the forward processing product. Unlike other flux components, we do not expect the construction of a month-by-

month linear climatology to have much skill for biomass burning. Rather than switching from GFED to QFED in the switch

from reanalysis to forward processing fluxes, we chose to use QFED at all times. This prevents the introduction of a jump in405
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the fluxes and allows a more direct comparison of averages, but has the downside of introducing a biomass burning component

that is not in balance with the carbon stocks of CASA. In any case, as is shown in Figures A2 and A3, the difference between

QFED and GFED biomass burning emissions is quite small at almost every time and place. The only noticeable difference is

that the baseline fluxes are slightly lower in the Amazon and Congo rain forests during JJA. Still, this difference is minor in

comparison to the empirical sink.410

Figure A1. Climatologies (2003–2015) of ocean exchange from the LoFI fluxes. The first row represents annual averages and each subsequent

row represents averages over different seasons. The left column depicts zonal means from the LoFI fluxes (dash-dot red) and the ranges of

zonal means from the inversion ensemble (dark grey); and the right column shows seasonal gridded maps of the diagnostic fluxes.
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Figure A2. Global total NBE from the fluxes using GFED (solid purple) and QFED (dash-dot red) biomass burning: (a) annual averages

and (b) the seasonal cycle climatology for 2003–2015. Min-to-max ranges of the inversion ensemble (dark grey) and TRENDY V7 ensemble

(light grey) are provided for comparisons.
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Figure A3. Climatologies (2003–2015) of NBE from the fluxes using GFED (solid purple) and QFED (dash-dot red) biomass burning and

the LoFI fluxes (solid blue) for comparison. The first row represents the annual total and each subsequent row represents a different season.

The left column depicts zonal means of the baseline fluxes using GFED and QFED, the range of the inversion ensemble (dark grey), and

range of the TRENDY V7 ensemble (light grey); the middle column depicts the distance of the baseline fluxes using GFED to the range of

the inversion ensemble; and the right column the difference of the baseline fluxes using QFED with those using GFED, i.e., the difference of

QFED with GFED.
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Response to Reviewer 1

This manuscript describes a new system for near real time analysis and forecast of global carbon fluxes. The aim is to allow a

fast analysis of the actual state of the global carbon cycle in support of satellite data evaluation, allow for a rapid response to

newly observed anomalies, prepare for targeted measurement campaigns, provide a reference for extended assimilation of data,430

etc. The first results indicate that the performance that is achieved is comparable to state-of-the-art inversions. In my opinion

this is a rather sobering outcome, putting the inversion community with their feet on the ground about what can be achieved. But

I wonder also if it is fair given the focus on global or long-term mean fluxes in the performance evaluation. Furthermore, it is

unclear whether the presented evaluation addresses the requirements of the system given its objectives. Without a specification

of those requirements from the start it is very hard the judge how well the system is supposed to perform. Currently, the435

implicit assumption seems to be that it shouldn’t perform significantly worse than state-of-the-art inversions and global and

climatological means, however, without further quantification. The structure of the manuscript is a strange mix of method,

results, and discussion. I found myself going backwards and forwards to make sure that I read all the parts necessary to

understand what was done. Furthermore, I didn’t find any clear conclusions in the conclusion section. From this I conclude

that the purpose of the paper is mainly to document the first stage of the NRT data assimilation system, for which a journal like440

GMD would have been more appropriate.

The authors feel this work is well-suited to ACP since the journal has a long history of publishing important new results about

carbon dioxide surface flux inversions. That literature forms the backbone of the findings in our research. As the reviewer notes,

that LoFI performs so well compared to a modern flux inversion is a "sobering outcome, putting the inversion community with

their feet on the ground about what can be achieved." In particular, this paper shows that adding a simple Northern Extratropical445

land sink to our a priori, "baseline" fluxes is enough to reproduce most of the skill of a modern flux inversion. We feel that this

alone is an important scientific finding that would be outside the scope of a journal like GMD despite its impressive collection

of Earth system model development literature.

SPECIFIC COMMENTS

Title: I have difficulty with the word “calibrating” here. The suggestion is made the method calibrates satellite measurements,450

which is really not what is done. Maybe something like “bias-correcting” would solve this problem.

The authors agree that the terminology is the title is imperfect, but feel it is technically appropriate. The use of "bias-

correcting" may suggest to the reader that our correction is constant in time, while in fact it affects the inter-annual variability

of the fluxes as well. In light of these considerations, we do not see a strong justification for changing the title, especially since

keeping the current title allows for greater traceability.455

2 The LoFi flux collection: The structure of this section is unclear to me. I had expected three sections, one for the “retro-

spective mode” on for the “forecasting mode” preceded by everything that is common for these modes. I thought the latter was

the baseline, which confusingly enough is not exactly what it turns out to be (see my next point).
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The first part of the section describes the components of the flux collection, and the second describes what we have to do

differently in NRT. The baseline is simply the LoFI flux collection without the empirical land sink, as is noted in the paper on460

Line 91.

Line 91: If I understand well the baseline still requires the NOAA MBL CO2 measurements for the ocean flux, which would

make it a “retrospective” type analysis. Some explanation is needed of the purpose of the “baseline” other than the notion

that it doesn’t include the empirical land sink. Initially I was assuming that it would be independent of the NOAA MBL CO2

measurements, which apparently is not the case.465

You do understand that correctly. The main purpose of the paper was to evaluate the empirical land sink, so we kept all

other products the same in the baseline package. While it would be interesting to test against an alternative baseline that does

not use NOAA MBL CO2 measurements in any way, testing the importance of the MBL CO2 measurements, especially for

constructing ocean fluxes, was not a primary objective of this paper.

Line 110 “Biofuel” and “Biomass burning”: What prevents double counting when combining these components?470

This is addressed in the paragraph immediately following the description of the components. In the original manuscript it

beings on line 149.

Line 124: “Estimates for the two ... Review of World Energy 2016” How is this done, by country, energy sector, or both?

This is done by country and fuel type. ODIAC, like CDIAC, is a fuel-based (e.g., oil, coal, etc.), not sector-based inventory.

This is part of the ODIAC product that we use as an input and described in great detail in Oda et al. (2018). We’ve slightly475

restructured the two sentences here to make this clearer.

Line 135: “More information is available in Sections 3.1 & A3”: For the method, not really. Those sections point to evaluation

results. In the case of A3 only a single sentence is about the ocean, which could easily have been included in section 3.1.

It could have, but we chose not to. In any case, Section A3 contains Figure A1, which provides more information about the

ocean flux, but is not essential to the main text which is focused on the land sink.480

Line 139: “This is designed ... spring and summer” What is the design? Is equation 1 only applied to the northern extra-

tropics? Per model grid box? What is the spatiotemporal discretization of α? If it is only applied to the northern extra-tropics

than what justifies the assumption that the residual land sink in CASA is fine elsewhere? Further details are needed here.

This correction is applied everywhere and α is a constant. We have added some additional text here to make this clear. The

adjustment "focuses" itself in the Northern Extratropics (NE) because outside of the Spring and Summer there, the term ∆+Tm485

will be very close to zero. That CASA should and can be adjusted in the NE in this way to better agree with inversions is the

subject of this paper.

Line 148: “about the construction and evaluation of the empirical sink, see Sections 3.2 & A3” Fine to put details in A3

(even though I only found information about the ocean and biomass burning there), but evaluation section 3.2 should not deal

with the construction of the empirical land sink.490

The purpose of the evaluation section is to evaluate our fluxes, notably the empirical land sink. So it’s unclear why it

shouldn’t discuss the construction, when and where it does well, etc.
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Line 152: “, yet the sink due to the corn and soybean harvest ...” This suggests that the midwest is the sink accounts for the

global emission of short cycle fuels.

It very well could, but this question is beyond the scope of this paper.495

Line 176: “in the Niño 3.4 region” Either this region needs to be defined, or a reference should be given where this informa-

tion can be found.

We’ve defined the region in the text now.

Line 215: “our ocean exchange fluxes produce a sink that is generally consistent with the inversion ensemble” Whether or

not this result is consistent enough depends on the requirements. I would agree that the average sink is in good agreement,500

however, the trend is not. There is no discussion whether or not this is important, but it seems that a NRT projection or forecast

would quickly divert from the uncertainty range.

The trend is discussed in the last sentence of that same paragraph. For the 15-year period considered in this paper, our global

ocean flux trends do stay within the window of the inversion ensemble. For longer time periods, using a linear pCO2sw of 1.5

muatm/yr is indeed not appropriate. However, since this growth rate is used in the construction of the pCO2sw climatology of505

Takahashi et al. (2009), it’s unclear that simply choosing an exponential growth rate would fix the problem. Since the focus of

this paper is on the land sink, we chose to leave this topic for future investigation.

It’s unclear to the authors why one would expect an NRT projection or forecast to diverge quickly from the uncertainty

range. Recall that the years 2016 and 2017 are forecasts and they fall within that range.

Section 3.2 The empirical land sink: According to the components specified in section 2 this does not include biomass510

burning and biofuel. Yet in the description of this section numbers are provided for NBE. This should be made consistent.

See line 155 from the original text:

NBE = NEE (from CASA) + empirical land sink + biomass burning + biofuel

We’ve made this explicit in the revision.

Line 230: “the sum the sum”515

Noted and corrected.

Line 267: “adjustments to HR or NPP are both ... we look for in the empirical sink.” Given this conclusion from the preceding

discussion, what is it that justifies the current treatment of the empirical land sink?

The preceding discussion emphasizes that CASA, which has a neutral biosphere by design, likely lacks a sink in the North-

ern Extratropics during the Spring and Summer. This is why the empirical sink has the temperature increase term. We then520

multiplied that term by HR instead of NPP, recall NEE = HR - NPP, because we expect NPP to be better constrained by the

CASA methodology.

Line 294: “This suggests that ... diagnostic fluxes with a similar skill as running a formal inversion system based on MBL

data.” I do not agree with this for two reasons: 1) the agreement between CT2016 and NOAA MBL sites would have been much

better when using its native transport model, 2) Table 1 suggests that only MBE and Ocean fluxes from CT2016 are used. If525

these are combined with different anthropogenic fluxes then this would add further inconsistency. It would have been fairer to
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use the CarbonTracker optimized concentrations in this comparison. In particular, because the empirical land sink didn’t suffer

from the same transport inconsistency.

See line 281 of the original manuscript. Our run uses CT2016 fluxes for all components. We have stated this explicitly

in the revision. We have also stated explicitly that the use of a different transport model likely disadvantages CT2016 in the530

comparison, but that the goal of a flux inversion is not to find surface fluxes that are appropriate for only one model. Although

we cannot yet cite it here because it is a work in progress, the OCO-2 Model Intercomparison Project has confirmed that what

we see in this initial evaluation holds in a much broader context: LoFI is comparable in skill with modern in situ inversions

when evaluated against independent in situ data and TCCON retrievals. Those flux inversions were all run with their native

transport models, etc.535

3.4 Growth rate forecast: The authors indicate themselves that they could have extended the retrospective mode until 2018.

It is not clear why this has not been done. It would have significantly strengthened the evaluation of the skill of the NRT mode

(I mean by doing both modes for the 2016 – 2018 time window).

The authors feel that the evaluation is sufficient to support the scientific claims made in the paper.

Line 362: “When necessary, fluxes are downscaled to a higher resolution” It is not clear if this is done, or whether it is only a540

general possibility. It is also unclear which fluxes would require this step. If it is not used in the current setup then I recommend

deleting this part.

It is used to do temporal downscaling from monthly to daily for NEE and spatial downscaling for pCO2sw. We agree that

this was unclear and have adjusted the text accordingly.

Response to Reviewer 2545

Review: Calibrating satellite-driven carbon fluxes for retrospective and near real-time assimilation systems, by Weir et al.

Summary: The authors describe a CO2 surface flux product that operates in retrospective and forecast modes, and can be

provided with short latency. The product is shown to have comparable skill to full flux inversions that take much longer to

calculate. Flux components such as biofuel, biomass burning, fossil fuel, and ocean flux are taken from near real-time or

published datasets. Terrestrial carbon flux is obtained from CASA-GFED; the innovation, or “hook” here is the imposition of550

an empirical land sink that concentrates the terrestrial sink in the northern extratropics during spring and summer, which is

consistent with emerging inversion results (as opposed to placing the sink in the tropics or southern extratropics). This product,

LoFI, is a suitable “prior” for inversion studies, as it has total surface flux (and spatiotemporal distribution of flux) comparable

to optimized fluxes from recent inversion projects.

Review: This is a good paper. It is concise and well-written, and the product it describes has value to the scientific community.555

I’ve had the opportunity to see LOFI results presented in meetings and workshops, and I recognize this value. My formal

recommendation is to accept the manuscript for publication, with minor revisions.

Initially I was a little concerned with the empirical sink, as it seemingly violates some accepted aspects of biophysics.

After some thought, however, I realize that the authors are less concerned with maintaining fidelity to established physical
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relationships than they are with maintaining fidelity with flux inversion results, which do not take the physics into account.560

Inversions just say “here is what we think the flux map looks like”.

Take heterotrophic respiration. There is a rich body of literature that describes how respiration increases with increasing

temperature, and this is the basis for the so-called “Q10” relationships present in just about every model that simulates surface

CO2 flux (CASA as well, I believe). In LoFI, they reduce respiration as temperature increases. As stated previously, I think

this is tolerable because making this assumption produces the flux map that they want. However, I think the authors need to565

acknowledge that this assumption violates accepted biophysical theory.

The authors agree and have tried to better emphasize this in the revised text.

I’m also a little concerned about the strong MAM uptake in the Midwest crop region, shown in the third row of Figure 3.

Yin et al. (2020), in a paper describing carbon uptake delay induced by floods in 2019, show (their Figure 2) show that in

most years crops aren’t even planted until April or May. It’s hard to believe that these regions would show a significant sink570

immediately after plant date.

This is a good find and something we’re working on improving. Newer versions of LoFI actually mask out croplands when

applying the empirical sink because of this exact problem. The version of CASA-GFED 3 that we start with maintains a robust

net crop sink because it, by design, includes a corn and soybean harvest. Getting the empirical land sink to work with harvests

and lateral fluxes will be a major undertaking, but it’s underway. We’ll note this in the revision.575

Again, I’m ok with this as long as the authors acknowledge that they are trying to reproduce the maps suggested by inver-

sions, and not doing so with a strong regard for biophysical processes. I’d like them to find a way to say “Hey, we don’t care

about the biophysics. The inversions tell us this is the pattern we want to have, and this is how we get it.” I think this admission

is important.

We agree and have tried to emphasize this in the revised paper. Our eventual goal would be to do something like this in a580

biophysically consistent way in, for example, CASA. This study was a first step in that direction.

Other than that, I don’t have much to add. Good paper, nice read, valuable product. Good job, wish all my reviews were this

easy.

Specific Comments:

Lines 152-153: The Midwest crop harvest is not a true sink. They don’t take the harvest and bury it deep in the ground. The585

harvest is respired back, from feedlots and from people who eat food made from the harvest. This must be accounted for in

models. What does CASA do about this?

There was some sloppy wording here that we thank the reviewer for pointing out. CASA removes carbon from its above-

ground pools to account for the corn and soybean harvest (so that it does not respire this in the fall). That’s it. Presumably we

should have some lateral flux to deal with exactly the issues that the reviewer raises, but that is an active area of research and590

something we hope to develop further in future versions. We’ve made some small changes to this paragraph to hopefully make

the explanation clearer.

Line 177: Where does the land cover change map come from?
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It’s extrapolated from GCP (see the last sentence of that paragraph). We’ve added "global total" here to try and make it more

clear that we just need a single number, not a spatial map.595

Line 212: I like the umlaut in El Nino.

Just making sure people are still reading. This is fixed now.

Figure 1: It is hard to see LoFI in this plot. Is it directly under baseline? If the lines were thicker and the shading lighter, it

would be easier to see. The scale can be shrunk too.

It’s because it’s identical to the baseline. We’ve made a note of this in the figure caption. We’ve kept the baseline in the ocean600

plots for consistency across plots. An alternative would’ve been to drop it in all plots, but we didn’t find one preferable to the

other and our choice made the figures easier to generate.

Line 230: typo

Fixed.

Lines 269-270: Boy, that discrepancy is really hard to see. Can you give us a number in the sentence describing it?605

We were trying to point out the discrepancies between the blue line and the grey shading, which appear to us to be fairly

visible. We’ve added that to the text to make sure it’s clear.

Figure 4: A line at the equator might be helpful, to show how many stations are in the Northern Hemisphere, and how many

in the south. For those of us that don’t have all the stations memorized yet.

We’ve updated the figure to indicate what hemisphere the sites are in.610

Figure A3: It is really hard to see GFED. I really had to work my old eyes to see the tropical JJA difference.

We agree, but that’s also our goal: we want QFED and GFED to be as close as possible. So the fact that you have to struggle

to see these differences while the differences with and without the empirical sink are so obvious helps us justify using QFED

in place of GFED.

Reference: Yin, Y., Byrne, B., Liu, J., Wennberg, P., Davis, K. J., Magney, T., et al. (2020). Cropland carbon uptake delayed615

and reduced by 2019 Midwest floods. AGU Advances, 1, e2019AV000140. https://doi.org/10.1029/2019AV000140
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