
Response to comment from Reviewer #1 

“1. Why the latitudinal bands of 30-50 are left out? It covers a considerably large area, and may 
be more subjective to the horizontal mixing than the polar region. Even it may be messy and 
don’t show an as good consistency among forcing agents and across models as the polar regions 
or the tropical region, it still worth reporting. Furthermore, the 50S-90S may not be a good 
representation of the Southern Hemisphere extratropics. This is because many models suffer a 
too strong southern polar vortex and hence the simulated southern polar stratosphere is too 
isolated. This can be hinted from Fig. 4a and Fig. S4, where a clear barrier is seen near 60S.” 

We first note that the response of DSWVslow to surface temperature as a function of latitude is 
plotted in Fig. 5a of the submitted manuscript. We also reported the regression slope of DSWVfast 
vs cold point temperature fast response in Fig. 5b of the submitted manuscript. 

However, to more clearly answer the reviewer’s question, Figure R1 below shows the 
equilibrium DSWVslow and DSWVfast and their contribution to the total equilibrium DSWV for 
water vapor averaged at 200 hPa 30°N-50°N and 30°S-50°S. In Figure R2 below, we also show 
the slope of DSWVslow annual mean time series vs surface temperature time series for water 
vapor averaged at 200 hPa 30°N-50°N and 30°S-50°S. We will include both of these figures in 
the supplement. The results in the 30-50 degree latitude band show larger magnitudes compared 
to the results in the 50-90 degree latitude band. However, our major conclusions remain the 
same: The slow response plays a dominant role and contributes to close to 100% of the total 
response for most perturbations; The sensitivity shows general agreement across different 
perturbations. 

 

 

Figure R1: Same as Figure 1 in the submitted paper, but for 200 hPa 30°N-50°N (a-d) and 200 
hPa 30°S-50°S (e-h). 



 

Figure R2: Same as Figure 3, but for 200 hPa 30°N-50°N (a) and 200 hPa 30°S-50°S (b). 

 

“2. The regression method to get the equilibrium water vapor response seems to be 
unnecessarily complicate, especially the results are not too different from the simple average of 
the last 30 years. The authors first fit the radiative flux and water vapor time series with an 
exponential function, then regress the last 30 years of the fitted function. All these fitting and 
regression have potential introduce artificial biases and uncertainties. Recent studies also show 
that the ECS from the Gregory method may not be a good estimate of the true ECS (e.g. Winton 
et al. 2020). In addition, without a sufficiently long simulation, one can not validate whether the 
“equilibrium” from the regression is the true equilibrium. It makes more sense to me to simply 
use the average of the last 30 years while acknowledging that the models have not fully reached 
the equilibrium.” 

We initially did approximate equilibrium ∆SWV using averages of the last 30 years of the runs.  
However, we analyzed one model that was run for 2600 years and found that the last 30 years of 
a 100- or 150-year run significantly underestimated the equilibrium. Thus, we developed the 
method that we presently use in the paper to better produce equilibrium estimates and validated it 
in the 2600-year model run, which is close to its equilibrium climate state.  

We will include more details of this validation in the revised manuscript. Our method gave 
results in reasonable agreement with the climate model at equilibrium: “We analyzed runs of the 
fully coupled Max Planck Institute Earth System Model version 1.1 (MPI-ESM1.1) (Maher et 
al., 2019), which has a transient climate response and an effective climate sensitivity near the 



middle of the CMIP5 ensemble range (Adams and Dessler, 2019; Dessler, 2020). It includes a 
2000-year preindustrial control run and a 2614-year abruptly quadrupled CO2 run. The values of 
∆SWV averaged over the last 30 years of the 4xCO2 run relative to the control run are 4.60 ppmv 
in the TLS, 22.40 ppmv in the NH LMS, and 9.69 ppmv in the SH LMS. We expect this to be 
close to equilibrium ∆SWV because the trend in global average surface temperature over the last 
500 years of the 4xCO2 run is 0.02 K per century. We use the regression method to estimate the 
equilibrium DSWV using MPI-ESM1.1 water vapor mixing ratio time series over the first 100 
years and obtain estimates of 4.38 ppmv in the TLS, 20.01 ppmv in the NH LMS, and 9.07 ppmv 
in the SH LMS; these yield differences of 0.22 ppmv in the TLS, 2.39 ppmv in the NH LMS, and 
0.62 ppmv in the SH LMS. Thus, our method underestimates the true equilibrium value by 5% in 
the TLS, 11% in the NH LMS, and 6% in the SH LMS.” 

We will also produce estimates using the last 30 years, and we will add those to a table in the 
supplementary material. 

 

“3. It may be worth pointing out how the PDRMIP model ensembles relate to the CMIP5 
ensembles. From Fig. 2b, it seems that all of these models except HadGEM3 are on the weaker 
side of the CMIP5 ECS estimation range. I am also surprised to see that these models do not 
show an more distinct efficacy among different forcing agents (Hansen et al. 2005).” 

The PDRMIP models are a subset of the CMIP5 models. The PDRMIP multi-model average 
ECS we estimated is 3.6 K, which is 10% larger than the whole CMIP5 ensemble (3.3 K) 
(Zelinka et al. 2020). We will add a statement to the revised manuscript comparing the PDRMIP 
models’ ECS to that in the CMIP5 ensemble. 

As far as forcing efficacy goes, Hansenet al. (2005) also pointed out that efficacies depend on the 
method of which radiative forcing is defined. A more recent paper by Richardson et al. (2019) 
(which we already referenced in the submitted manuscript) using PDRMIP data showed that 
forcing efficacies calculated from effective radiative forcing have values close to one. Our results 
are in good agreement with that paper. 

 

“4. The authors relate the slow response to the surface temperature and relate the fast response 
to the cold point temperature. I believe the slow response would also be regulated by the cold 
point temperature. It may be interesting to show that if the relationship between the stratospheric 
water vapor and the cold point temperature holds from the fast adjustment to the slow 
response.” 

It certainly may be the case that the slow response is mediated by TTL temperatures, but by no 
means is that certain. Dessler et al. (2016) showed that, in two climate models, at least, a 
significant fraction of the long-term trend (and slow response) was due to increases in convective 
moistening, which bypasses the TTL cool trap. 



We have done analyses testing whether the PDRMIP models and experiments show agreement 
for the relation between DSWVslow vs the CPT slow response (Figure R3). Results from the 
models and experiments show good agreement. The slope is 0.72 ppmv/K, which is larger than 
the slope obtained from the fast response. Nevertheless, correlation does not prove causality and 
this result could arise from either TTL control or if convective moistening also correlates with 
the CPT slow response, or some combination. We will add a sentence to the paper describing this 
analysis. 

 

Figure R3: Same as Figure 6a of the submitted manuscript, but for TLS SWV slow response vs 
the CPT slow response.  

 

“5. While Fig. 3 shows a consistent relationship between stratospheric water vapor and global 
mean surface temperature across various forcing, the temperature sensitivity does not seem to be 
so consistent in Fig. S4. Much more stratospheric moistening is seen in response to the solar 
forcing than others given the same surface temperature warming. This discrepancy needs to be 
resolved.” 

We list the regression slope values in Table R4 below. These values are the same as we have 
shown in Fig. 3 of the submitted manuscript. It may not be clear in Fig. 3 of the submitted 
manuscript, but it is clear in Table R4 below that the sensitivities are indeed larger in some 
experiments, such as the 2%Solar experiment. This is the same for slopes computed using the 
two different units – ppmv/K and %/K (listed in the parentheses).  

We will add Table R4 to the supplement of the revised manuscript. 

Table R4: Regression slope of DSWVslow annual mean time series vs surface temperature change 
annual mean time series for all perturbations and models. The unit of the values is ppmv/K. The 
unit of the values in parentheses is %/K. 



TLS SWV 
 2xCO2 3xCH4 2%SOLAR 10xBC 5xSO4 10xCFC12 10xCFC11 3xN2O 5xO3 10xBCTAU 
CAM4 0.26 

(6.35) 
0.25 
(6.19) 

0.30 (7.27) 0.34 
(8.44) 

0.31 
(7.64) 

0.27 
(6.50) 

nan 0.29 
(7.04) 

nan 0.18 (4.44) 

CAM5 0.36 
(9.74) 

0.26 
(6.98) 

0.36 (9.76) 0.11 
(3.05) 

0.11 
(3.06) 

0.23 
(6.23) 

nan nan nan nan 

HadGEM3 0.92 
(17.89) 

0.64 
(12.47) 

1.01 
(19.64) 

0.54 
(10.48) 

0.40 
(7.86) 

0.70 
(13.56) 

nan nan nan nan 

HadGEM2 0.46 
(9.22) 

0.43 
(8.52) 

0.60 
(11.94) 

1.78 
(35.29) 

0.35 
(6.95) 

0.63 
(12.49) 

0.67 
(13.34) 

0.66 
(13.05) 

nan nan 

CanESM2 0.27 
(10.25) 

-0.01 (-
0.23) 

0.38 
(14.59) 

0.12 
(4.68) 

0.12 
(4.77) 

nan nan nan nan nan 

IPSL-CM5A 0.62 
(26.79) 

0.36 
(15.52) 

0.79 
(33.70) 

0.52 
(22.30) 

0.28 
(11.78) 

nan nan nan nan nan 

MPI-ESM 0.53 
(12.78) 

0.22 
(5.22) 

0.54 
(12.95) 

nan nan nan nan nan nan nan 

GISS 0.28 
(16.28) 

0.16 
(9.05) 

0.31 
(18.17) 

0.25 
(14.80) 

0.20 
(11.73) 

0.18 
(10.23) 

nan nan nan 0.15 (8.53) 

MIROC-
SPRINTARS 

0.08 
(2.61) 

0.11 
(4.07) 

0.14 (5.04) 0.09 
(3.15) 

0.09 
(3.26) 

0.14 
(5.06) 

0.10 
(3.64) 

0.08 
(2.83) 

0.05 
(1.59) 

nan 

ensemble 
average 

0.42 
(12.43) 

0.27 
(7.53) 

0.49 
(14.78) 

0.47 
(12.77) 

0.23 
(7.13) 

0.36 
(9.01) 

0.39 
(8.49) 

0.34 
(7.64) 

0.05 
(1.59) 

0.16 (6.49) 

NH LMS SWV 
 2xCO2 3xCH4 2%SOLAR 10xBC 5xSO4 10xCFC12 10xCFC11 3xN2O 5xO3 10xBCTAU 
CAM4 2.67 

(11.63) 
1.55 
(6.71) 

2.47 
(10.75) 

2.41 
(10.49) 

1.91 
(8.50) 

2.08 
(8.84) 

nan 1.22 
(5.18) 

nan 0.58 (2.44) 

CAM5 1.67 
(7.70) 

-0.26 (-
0.59) 

1.77 (8.28) -0.35 (-
0.75) 

0.90 
(4.35) 

0.30 
(1.85) 

nan nan nan nan 

HadGEM3 4.31 
(27.80) 

3.19 
(20.72) 

5.15 
(33.01) 

3.84 
(24.77) 

1.60 
(10.22) 

3.49 
(22.56) 

nan nan nan nan 

HadGEM2 2.17 
(20.79) 

1.71 
(16.08) 

2.44 
(23.34) 

3.99 
(38.14) 

1.20 
(11.47) 

2.08 
(19.87) 

2.03 
(19.42) 

2.02 
(19.33) 

nan nan 

CanESM2 3.18 
(22.65) 

2.61 
(18.76) 

3.37 
(23.85) 

3.59 
(25.94) 

2.00 
(14.31) 

nan nan nan nan nan 

IPSL-CM5A 2.42 
(16.09) 

1.94 
(13.21) 

2.81 
(18.59) 

2.38 
(15.88) 

1.94 
(13.05) 

nan nan nan nan nan 

MPI-ESM 2.56 
(12.29) 

1.56 
(7.45) 

2.36 
(11.26) 

nan nan nan nan nan nan nan 

GISS 1.19 
(15.55) 

0.72 
(8.90) 

1.12 
(14.45) 

1.05 
(13.67) 

0.73 
(8.84) 

0.76 
(9.06) 

nan nan nan 0.93 
(11.54) 

MIROC-
SPRINTARS 

2.45 
(19.18) 

2.30 
(19.20) 

2.40 
(18.69) 

2.81 
(22.27) 

1.85 
(14.13) 

3.00 
(23.59) 

2.42 
(19.15) 

2.20 
(17.99) 

3.36 
(24.67) 

nan 

ensemble 
average 

2.52 
(17.08) 

1.70 
(12.27) 

2.65 
(18.02) 

2.46 
(18.80) 

1.52 
(10.61) 

1.95 
(14.29) 

2.23 
(19.29) 

1.82 
(14.17) 

3.36 
(24.67) 

0.76 (6.99) 

SH LMS SWV 
SH LMS 
SWV 

2xCO2 3xCH4 2%SOLAR 10xBC 5xSO4 10xCFC12 10xCFC11 3xN2O 5xO3 10xBCTAU 

CAM4 1.67 
(11.05) 

1.53 
(10.87) 

1.88 
(12.55) 

0.61 
(4.70) 

0.84 
(5.44) 

1.76 
(11.75) 

nan 1.21 
(8.44) 

nan 0.84 (6.39) 

CAM5 0.87 
(5.60) 

-0.14 
(0.47) 

0.99 (6.22) -0.53 (-
2.24) 

0.34 
(2.68) 

-0.38 (-
1.03) 

nan nan nan nan 

HadGEM3 2.65 
(22.08) 

1.63 
(14.66) 

3.05 
(25.21) 

0.90 
(8.17) 

1.15 
(9.91) 

1.75 
(14.81) 

nan nan nan nan 

HadGEM2 0.93 
(12.88) 

0.61 
(8.59) 

0.94 
(13.33) 

1.08 
(15.47) 

0.58 
(8.10) 

0.63 
(9.15) 

0.60 
(8.67) 

0.78 
(10.96) 

nan nan 

CanESM2 1.24 
(12.11) 

0.64 
(6.68) 

1.36 
(13.02) 

1.50 
(14.70) 

0.85 
(8.19) 

nan nan nan nan nan 

IPSL-CM5A 1.60 
(15.84) 

1.08 
(11.08) 

1.74 
(16.82) 

0.63 
(6.53) 

1.11 
(11.64) 

nan nan nan nan nan 

MPI-ESM 1.34 
(9.87) 

0.80 
(6.12) 

1.45 
(10.76) 

nan nan nan nan nan nan nan 

GISS 0.65 
(11.44) 

-0.09 (-
0.27) 

0.80 
(14.48) 

0.00 
(1.15) 

0.21 
(4.54) 

0.01 
(1.61) 

nan nan nan 0.32 (5.85) 

MIROC-
SPRINTARS 

1.16 
(10.88) 

0.82 
(7.72) 

1.14 
(10.63) 

0.80 
(8.10) 

0.88 
(7.93) 

1.29 
(11.97) 

0.78 
(7.49) 

0.80 
(7.81) 

1.34 
(12.30) 

nan 

ensemble 
average 

1.35 
(12.42) 

0.76 
(7.33) 

1.48 
(13.67) 

0.62 
(7.07) 

0.75 
(7.31) 

0.84 
(8.04) 

0.69 
(8.08) 

0.93 
(9.07) 

1.34 
(12.30) 

0.58 (6.12) 



 

 

“Line 85-86: How does the averaged of fixed SST with baseline atmosphere compare to the 
average of the coupled baseline simulations.” 

For TLS SWV, the difference between fixed SST baseline simulation and coupled baseline 
simulation is on the order of 0.01 – 1 ppmv. For LMS SWV, the difference between fixed SST 
baseline simulation and coupled baseline simulation is on the order of 0.1 – 1 ppmv. 

The results are averaged over the entire period of the baseline simulations for both fixed SST run 
and coupled run. 

 

“Line 96: y=c+abˆx -> y=c+abˆ(-x) 

Line 101: Fig. S1 was not showing what is stated here. It seems the intended Fig. S1 is missing. 

Line 147: Fig. S2-4. -> Fig. S1-3 

Line 167: Fig. S5 -> Fig. S4” 

We have updated these in the manuscript. 

 

“Line 191: Does the long wave effect of the tropospheric ozone also contribute?” 

Yes, the tropospheric ozone has the long wave radiative effect. We are going to edit the text to 
“Increases of tropospheric O3 (5xO3) reduce the upwelling longwave radiation through longwave 
absorption, which cools the stratosphere…” 
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