
Response to comment from Reviewer #2 

General comments 

1. “The paper largely focuses on interpreting the multi-model responses. While this is of course 
useful, it stops short of relating the new understanding to any real-world changes in SWV... How 
much does this work help in understanding past and possible future SWV changes?” 

“In particular, note there has been some discussion of how the PDRMIP BC perturbations 
compare to observations (Allan et al, https://doi.org/10.1038/s41612-019-0073-9)...” 

We will add a new figure and associated discussion to the paper. Figure R1 below (it will be 
assigned a different number in the revised manuscript) shows an analysis similar to that shown in 
Fig. 6 of Hodnebrog et al. (2019). We estimate historical ∆SWV in the TLS between 1980-2010 
by multiplying the multi-model multi-experiment mean sensitivity of the TLS ∆SWVslow to 
surface temperature change by the historical surface temperature change to estimate the slow 
component of the historical ∆SWV. We multiply the multi-model mean TLS ∆SWVfast/ERF by 
the historical radiative forcing for each selected PDRMIP experiment and sum it up to estimate 
the fast component of the historical ∆SWV. The fast component of the historical ∆SWV 
contributed by each historical forcing agent is shown in Fig. R1b below. The historical surface 
temperature change and radiative forcing data used in this analysis are listed in Table R1 below. 

This calculation suggests that forcing since 1980 has increased TLS SWV by 0.51±0.16 ppmv 
(Fig. 1a). 64% of this is due to the fast response, mainly from black carbon. 36% is due to the 
slow response, although this is probably an overestimate because our sensitivity values are for 
long-term.  

We have also evaluated the SWV sensitivity and SWV fast response over 35°N-45°N between 
100-80 hPa to re-compute the 1980-2010 SWV change using the same method, which is 
0.65±0.20 ppmv. This value shows reasonable agreement with the SWV increase measured by 
Hurst et al. (2011) of 0.71±0.26 ppmv over Boulder between 16-18 km over 1980-2010, 
although one must not read too much into the comparison to mid-latitude measurements.  

Dessler et al. (2014) and Hegglin et al. (2014) argue that there is not a detectible trend over this 
period. Such a conclusion is not inconsistent with ours because any actual trend estimate has to 
contend with short-term interannual variability (i.e, like that from the QBO and Brewer-Dobson 
Circulation variability), which can mask a small trend. Our estimate of the trend is for long-term 
(100 year-run) and therefore internal variability has a small impact. 

For the fast component of the estimated historical ∆SWV, radiative forcing by BC plays the 
dominant role (Fig. R1b below). As pointed out by the reviewer, the radiative effect by BC in the 
PDRMIP is different from that shown in models using observationally constrained aerosol 
forcing, which may overestimate the heating in the UTLS region (Allen et al., 2019). However, 
Allen et al. (2019) also noted that uncertainties exist in their observationally constrained aerosol 
forcing. There are also uncertainties in the historical BC forcing listed in IPCC AR5 (Myhre et 
al. 2013). These bring in uncertainties in the fast component of the estimated historical ∆SWV 



by PDRMIP. These clearly merit more discussions in the future. We’ll add this discussion about 
limitations and uncertainties of our PDRMIP estimates in the Summary and Discussion section. 

Table R1: Historical global average surface temperature change and radiative forcing (RF) by 
Greenhouse gases (GHGs) and halocarbons over 1980-2010. 

GMSTa (K) 0.506 
Total ∆SWV (ppmv) 0.51 
∆SWVslow (ppmv) 0.18 
∆SWVfast (ppmv) 0.32 

 
Forcing 
agents 

RF (Wm-2) ∆SWVfast by each forcing agent (ppmv) 

CO2b 0.715 0.007 
CH4c 0.055 0.008 
BCd 0.3 0.286 
CFC-12e 0.068 0.015 
CFC-11f 0.015 0.004 
N2Og 0.042 0.004 

a: We used NOAA Merged Land Ocean Global Surface Temperature Analysis (NOAAGlobalTemp) V5 (Zhang et  
al. 2020) to compute the global surface temperature change. We use values averaged over 2005-2015 minus that 
averaged over 1975-1985. 
b, c, e, f, and g: We compute the RFs using the formulae listed in Table 3 of Myhre et al. (1998). These formulae 
were also used to compute RFs of CO2, CH4, and N2O in IPCC reports (Myhre et al. 2013).  
b, c, and g: Concentrations of GHGs were used to compute RFs. We use the CO2, CH4, and N2O samples collected 
in glass flasks at Cold Bay, Alaska, United States (CBA) from the ERSL GML website (Dlugokencky et al. 2020). 
For CO2, concentrations averaged over 2005-2015 and averaged over 1978-1985 are used. For CH4, concentrations 
averaged over 2005-2015 and averaged over 1983-1985 are used. For N2O, concentration averaged over 2005-2015 
was used, and 310 ppb (The IPCC 1990 and 1992 assessments) was used as a substitute for 1980 concentrations due 
to lack of data. 
e-f: Concentrations of CFC-12 and CFC-11 were used to compute RFs. We use CFC-12 and CFC-11 data from 
combined stations from the NOAA/ESRL Global Monitoring Division. Concentrations averaged over 2005-2015 
and averaged over 1977-1985 are used. 
d: We use 0.4 Wm-2, the BC RF between 1750-2011 reported in IPCC AR5, minus 0.1 Wm-2, the BC RF between 
1750-1993 reported in 1995 IPCC report (See Table 3 of Myhre et al. 2013). Note uncertainties for the IPCC AR5 
BC RF is 0.05 to 0.8 Wm-2, and uncertainties for the 1995 IPCC BC RF is 0.03 to 0.3Wm-2. 
 



 

Figure R1: (a) 1980-2010 TLS (30°S-30°N, 70 hPa) SWV change estimated using PDRMIP 
results. See texts above for method description. The uncertainty for the PDRMIP estimated SWV 
change is the sum of the uncertainty in the slow component and the uncertainty in the fast 
component. (b) The fast component of the PDRMIP-estimated 1980-2010 SWV change 
contributed by each historical forcing agent.  

 

2. “As noted in the specific comments, I feel that there is inadequate recognition that some of the 
results presented here are also presented, either explicitly or implicitly, in some earlier papers 
from the PDRMIP group – this is particularly so for the ERFs where no reference to, or 
comparison with, those earlier results, is given.” 

Thanks for pointing this out. We’ll add references to related results from earlier PDRMIP studies 
in the revised paper. Please see the responses to specific comments below related to previous 
PDRMIP studies: 

“47-48: There	is	a	slight	overlap	between	this	submitted	paper	and	the	paper	published	in	ACP	by	the	
core	PDRMIP	team	–	Hodnebrog	et	al:	https://doi.org/10.5194/acp-19-12887-2019,	which	is	not	cited	
here…” 

We will reference results from Hodnebrog et al. (2019) in the revised paper. 

 

“129: I think it is necessary that a comparison of ERFs (and the associated feedback parameter) 
with Richardson et al. (including for the CFCs and N2O in their supplement) is presented both to 
confirm they are in reasonable agreement and also to make clear that the ERFs derived here are 
not original work with the PDRMIP output.” 

We will add a statement making it clear that we are not the first to calculate ERFs with PDRMIP 
output. Table R2 (below) compares multi-model mean ERF with those listed in Richardson et al. 



(2019); clearly, this comparison shows good agreement. In the revised manuscript, we will add 
this table comparing our values to Richardson’s to the supplementary material. 

The ERF in the submitted manuscript is computed using the same method as the “ERFsst” in 
Richardson et al. (2019), so we directly compare multi-model mean values with their ERFsst.  

Table R2: Comparison of multi-model mean values with Richardson et al. (2019). In the parentheses, we list 95% 
confidence intervals obtained from Monte Carlo samples as described in Section 2.2 of the submitted manuscript for 
experiments that are performed by 6 or more models.  

 2xCO2 3xCH4 2%Solar 10xBC 5xSO4 10xCFC-
12 

10xCFC-
11 

3xN2O 5xO3 10xBCS
LT 

ERFsst 
(Wm-2) 
from 
Richardson 
et al. 
(2019) 

3.71±0.3
0 

1.15±0.2
5 

4.17±0.1
3 

1.18
±0.75 

-
3.71±1.9
4 

1.39 
(1.21 to 
1.54) 

1.19 
(1.17 to 
1.21) 

1.60 
(1.23 to 
2.14) 

3.47 
(2.45 to 
4.49) 

1.10 

ERF (Wm-

2) 
3.75 
(3.58 to 
3.92) 

1.20 
(1.02 to 
1.38) 

4.23 
(4.15 to 
4.33) 

1.21 
(0.68 to 
1.93) 

-3.68 (-
5.28 to -
2.63) 

1.35 1.17 1.80 3.45 1.21 

 

Specific comments 

“14: This conclusion is specific to the TLS” 

Yes, we agree with this, although the cold point temperature does have some influence in the 
lowermost SWV(Dessler et al., 1995). But the control is not as strong as that in the TLS (see Fig. 
6b-c in submitted manuscript) and the lowermost SWV is controlled by multiple factors. We’ll 
edit the text in the revised manuscript to make sure there is no confusion. 

 

“16: “becomes weaker at higher altitudes and at higher latitudes below 150 hPa.” This is a bit 
ambiguous. Does this means heights at pressures below 150 hPa or heights below the height of 
the 150 hPa surface. These would have opposite meanings.” 

It means altitudes below the 150 hPa surface. We’ll edit the text in the revised manuscript to 
avoid confusion. 

 

“57: Presumably the 3xCH4 experiments have no resulting change in SWV due to the oxidation 
of additional methane?” 

Yes, indirect chemical effects are not included in the 3xCH4 experiment. We will add a sentence 
saying this to the revised manuscript. 

 



“90 and many other places: There are repeated statements that there is no surface temperature 
response in the fixed SST runs, but this is not correct, with implications for the definition of 
ERF.” 

Yes, the reviewer is correct that land surface temperatures can respond to the forcing. We’ll edit 
the text in the revised manuscript and make sure there is no confusion. 

 

“139: tend to be larger” Isn’t it clearly larger? 

Yes, the reviewer is correct.  We’ll edit this text in the revised manuscript. 

 

“*148 and throughout: Rather little is said about intermodel differences. For example, on 
HADGEM3, more discussion of its apparent outlier status on some plots seems necessary. The 
text says it is “likely connected” to the larger surface warming, but it seems the climate 
sensitivity is about double the multi-model average but the slow SW response is around a factor 
of 4 larger. Is that because the TTL temperature change is 4 times higher (per unit ERF)?” 

To answer the question about the HadGEM3 model, Figure R2 below shows the equilibrium 
slow response of TTL temperature (∆Tslow) per unit ERF. The HadGEM3 ∆Tslow/ERF is between 
2.64-3.97 times the multi-model mean ∆Tslow/ERF for experiments 2xCO2, 3xCH4, 2%Solar, 
10xBC, and 10xCFC-12. Figure R3 below shows the vertical profile of tropical atmospheric 
temperature slow response (∆Tslow) for 2xCO2. All models show a maximum warming in the 
upper troposphere. Since the surface warming in HadGEM3 is larger than all other models, its 
upper tropospheric warming is also largest. Longwave radiation emitted from the upper 
troposphere warms the TTL level (Lin et al., 2017), so the larger upper tropospheric warming in 
HadGEM3 also results in larger TTL heating than other models. The relationship between 
surface warming and TTL warming is not linear. 

That said, we cannot conclusively identify a cause given the information archived. So we will 
remove the claim that the difference is likely connected to surface warming and add a sentence 
saying more work on the causes of these differences is warranted. 

 

“Another example is that apparently half the models have a slow SW response to BC of the 
opposite sign (Fig 1a) to the multi-model mean. Is there any obvious reason why? As far as I can 
see BC causes a warming in all models.” 

Figure R4 below shows the vertical profile of tropical temperature slow (a) and fast (b) responses 
per unit ERF for the 10xBC experiment. The 10xBC does cause a warming at the surface and in 
the troposphere due to a positive TOA ERF in all models. In the TTL and lower stratosphere 
(LS), however, the heating is mainly caused by the fast adjustment (Fig. R4b below). The slow 



temperature response in the TTL is the residual of the total response minus the fast adjustment, 
which is negative or close to zero (Fig. R4a below).  

It is therefore our contention that some of these negative values are artifacts of the method we 
use to estimate equilibrium response. Support for this comes from Fig. 3 of the paper. The values 
in this figure come from regressions of ∆SWVslow vs. ∆Ts in the BC runs. This method does not 
require differencing two large numbers, so we feel it is more robust. It shows that most models 
have a positive response of SWV due to BC-induced warming. For those models that produce 
negative slopes for ∆SWVslow vs. ∆Ts in the BC runs, there is large uncertainty in the regression, 
because the surface temperature change in those models are small. We will note this in the 
revised manuscript. 

 

Figure R2: Equilibrium slow response of TTL temperature (100 hPa, averaged between 30°N-
30°S) per ERF for all models and perturbations. 

 



 

Figure R3: Vertical profile of atmospheric temperature equilibrium slow response normalized by 
ERF (K×(Wm-2)-1) for 2xCO2. Temperature is averaged over 30°N-30°S.  

 

Figure R4: Profiles of equilibrium slow (a) and fast (b) temperature response for the 10xBC 
experiment, normalized by ERF (K×(Wm-2)-1), and averaged over 30°N-30°S. The color coding 
indicates results from different models.  

 

“One thing I miss from this study, and encourage the authors to look at if they have the resource, 
is the degree to which the model’s background climatology of stratospheric water vapor or TTL 
temperature could explain some of the intermodel differences.” 



We have investigated the SWV in the fixed SST baseline simulations. Based on our analyses, the 
baseline climatology SWV does not explain the inter-model differences in the responses to 
forcing agents. As an example, Fig. R5 below shows the TLS SWV slow response (first row) and 
TTL temperature slow response (second row) vs. the baseline TLS SWV climatology and 
baseline TTL temperature climatology. We omitted 3xN2O, 5xO3, and 10xBCSLT, because 
fewer than three models performed these experiments. There is no correlation between the SWV 
and temperature slow responses and the baseline climatology. In particular, HadGEM3 produces 
extremely large slow responses for most experiments, however, in Fig. R5 below, its baseline 
SWV and temperature climatology is not the largest among the models. 

 

 

Figure R5: Top row: The TLS SWV slow response (ppmv) vs. the baseline TLS SWV 
climatology (ppmv). Bottom row: The TTL temperature slow response (K) (100 hPa, averaged 
over 30°N-30°S) vs. the baseline TTL temperature climatology (K) (100 hPa, averaged over 
30°N-30°S). The baseline climatology is obtained from the fixed SST simulations averaged over 
the last 10 years. 

 

“156: Is this linear regression done once across all simulations and all perturbations. If not, I 
am unclear which perturbations have been used for the regression.” 

We regressed the annual mean ∆SWVslow time series vs the annual mean ∆Ts for each 
perturbation and model separately. We showed the scatter plot for each perturbation and model 
in Figs. S1-3 of the submitted manuscript and showed the slopes of the regression done for each 
perturbation and model in Fig. 3 of the submitted manuscript. 

 



“159: This is a relatively short paper and I wondered whether the supplementary figures could 
be brought into the main text?” 

It remains our opinion that the key figures are included in the paper. Thus, in order to keep the 
take-home message concise, we have left the content of the supplement unchanged.  

 

“171-172: This repeats a point already made at 141-142.” 

We’ll edit the text in the revised manuscript to make sure there is no such repetition. 

 

“201: I am sorry if I miss it, but I see very little discussion of stratospheric temperature changes 
in the Jain et al paper. The role of CFCs on the vertical profile of temperature can be seen in 
many papers such as Forster et al. https://doi.org/10.1007/s003820050182 and Forster and 
Joshi 10.1007/s10584-005- 5955-7…” 

In the submitted paper where we discussed the radiative heating in the UTLS by CFCs, we were 
referring to the text in Section 3.3 of Jain et al. (2013), where they stated that “Halocarbons 
absorb predominantly in the window region (750-1250 cm-1), in the linear line limit; therefore in 
the stratosphere they absorb the upwelling radiation from the troposphere and increase the 
heating rate of the stratosphere”. Forster and Joshi (2005) also pointed out that, compared to 
CO2, halocarbons preferentially warm the TTL, rather than the troposphere.  
 
We agree with the reviewer that it is useful to reference papers that explicitly investigated 
vertical temperature profiles forced by CFCs. We’ll add these references in the revised 
manuscript. 
 
 
“*204: This statement on shortwave radiation is strange. There may be a small shortwave effect 
from the reduced reflected flux from the troposphere, but there is a long history of simulations 
that clearly attribute the stratospheric cooling due to increased tropospheric ozone to the 
decreased upwelling thermal infrared radiation. E.g. Ramaswamy and Bowen 
https://doi.org/10.1029/94JD01310, Berntsen et al https://doi.org/10.1029/97JD02226 and the 
Forster et al. paper referred to above.” 
 
Thanks for pointing this out. We’ll edit the text to say, “Increases of tropospheric O3 (5xO3) 
reduce the upwelling longwave radiation, which cools the stratosphere. The longwave radiation 
absorbed heat the TTL region…”.  We will also add references to these papers. 
 
 
 
“206: “Tropospheric O3 is also transported”. As I understand it, ozone is imposed in the models 
and not advected. I don’t know what this sentence means.” 



This is correct: In the 5xO3 experiment, the PDRMIP group used 5 times the tropospheric ozone 
distribution (TROP) in the paper by MacIntosh et al. (2016). We will correct this statement in the 
paper. 

 

“212: “larger than 50%”. CAM5 and MPI-ESM look less than 50%?” 

Yes, this was poorly worded. We have completely re-written the paragraph, so it now read: The 
3xCH4 also includes some models that produce large TLS ΔSWVfast/ERF magnitudes. This is 
likely due to TTL heating by 3xCH4 (Figure 5) due to the shortwave absorption by CH4, which is 
explicitly treated in some models, including CAM5, CanESM2, MPI-ESM, and MIROC-
SPRINTARS (Smith et al., 2018). These models are also the ones that produce the largest TLS 
ΔSWVfast contributions. 

 

 “*248: Returning to General Point#1, the Summary feels a very mechanical repetition of the 
results in the paper without any discussion of the wider implications, remaining uncertainties, or 
possible future avenues/priorities for improving understanding.” 

We will add Fig. R1 and related discussions above in the Discussion and Summary section. We 
will discuss that estimated historical SWV change shows reasonable agreement with existing 
observed SWV record. We’ll also discuss its uncertainties, which include the uncertainties in the 
radiative effect of BC forcing and the lack of long-term observation record of SWV as a 
reference. 

 

 “273: Strictly Fig 5 refers to TLS only” 

We’ll edit the text and make sure there will be no such confusion in the revised manuscript.  

 

“519-520: I think the markers are only reported when there are more than 3 contributing 
models?” 

Yes, the multi-model mean and error bars are shown for perturbations that are performed by 
more than three models. We will mention this in the revised caption. 

 

“46L “responses” -> “responds”” 

We’ll modify the text in the revised manuscript. 



 

“Throughout: This may be common usage, but the paper refers throughout to the ensemble mean 
when other papers would refer to it as the multi-model mean (ensemble could refer to different 
runs from the same model with perturbed initial conditions or physics…” 

Thanks for pointing this out. To avoid confusion, we’ll use multi-mode mean in the revised 
manuscript. 
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