1 A Two-Component Parameterization of Marine Ice Nucleating

Particles Based on Seawater Biology and Sea Spray Aerosol Measurements in the Mediterranean Sea

Jonathan V. Trueblood¹, Alesia Nicosia¹, Anja Engel², Birthe Zäncker², Matteo Rinaldi³, Evelyn Freney¹,
 Melilotus Thyssen⁴, Ingrid Obernosterer⁵, Julie Dinasquet^{5,6}, Franco Belosi³, Antonio Tovar-Sánchez⁷,
 Araceli Rodriguez-Romero⁷, Gianni Santachiara³, Cécile Guieu⁵, and Karine Sellegri¹

- ⁴Mediterranean Institute of Oceanography, 163 avenue de Luminy, Marseille, France
- ¹¹ ⁵ CNRS, Sorbonne Université, Laboratoire d'Océanographie de Villefranche, UMR7093, Villefranche-sur-Mer
- ⁶ Marine Biology Research Division, Scripps Institution of Oceanography, 92037 La Jolla, US
- ⁷ Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia (ICMAN-CSIC), 07190 Puerto
 Real, Spain
- 15 Correspondence to: K.Sellegri@opgc.cnrs.fr

16 Abstract. Ice nucleating particles (INP) have a large impact on the climate-relevant properties of clouds over the oceans. Studies have shown that sea spray aerosols (SSA), produced upon bursting of bubbles at the ocean surface, can be an important 17 18 source of marine INP, particularly during periods of enhanced biological productivity. Recent mesocosm experiments using 19 natural seawater spiked with nutrients have revealed that marine INP are derived from two separate classes of organic matter 20 in SSA. Despite this finding, existing parameterizations for marine INP abundance are based solely on single variables such 21 as SSA organic carbon (OC) or SSA surface area, which may mask specific trends in the separate classes of INP. The goal of 22 this paper is to improve the understanding of the connection between ocean biology and marine INP abundance by reporting 23 results from a field study and proposing a new parameterization of marine INP that accounts for the two associated classes of 24 organic matter. The PEACETIME cruise took place from May 10 to June 10, 2017 in the Mediterranean Sea. Throughout the cruise, INP concentrations in the surface microlayer (INPSML) and in SSA (INPSSA) produced using a plunging aquarium 25 26 apparatus were continuously monitored while surface seawater (SSW) and SML biological properties were measured in 27 parallel. The organic content of artificially generated SSA was also evaluated. INP_{SML} concentrations were found to be lower 28 than those reported in the literature, presumably due to the oligotrophic nature of the Mediterranean Sea. A dust wet deposition 29 event that occurred during the cruise increased the INP concentrations measured in the SML by an order of magnitude, in line 30 with increases of iron in the SML and bacterial abundances. Increases of INP_{SSA} were not observed until after a delay of three 31 days compared to increases in the SML, and are likely a result of a strong influence of bulk SSW INP for the temperatures investigated (T=-18°C for SSA, T=-15°C for SSW). Results confirmed that INP_{SSA} are divided into two classes depending on 32 their associated organic matter. Here we find that warm (T \geq -22°C) INP_{SSA} concentrations are correlated with water soluble 33 organic matter (WSOC) in the SSA, but also to SSW parameters (POC_{SSW} and INP_{SSW-16C}) while cold INP_{SSA} (T < -22°C) are 34 35 correlated with SSA water-insoluble organic carbon (WIOC), and SML dissolved organic carbon (DOC) concentrations. A relationship was also found between cold INP_{SSA} and SSW nano- and micro-phytoplankton cell abundances, indicating that 36 37 these species might be a source of water insoluble organic matter with surfactant properties and specific IN activities. Guided by these results, we formulated and tested multiple parameterizations for the abundance of INP in marine SSA, including a 38 39 single component model based on POCssw and a two-component model based on SSA WIOC and OC. We also altered a previous model based on OC_{SSA} content to account for oligotrophy of the Mediterranean Sea. We then compared this 40 41 formulation with the previous models. This new parameterization should improve attempts to incorporate marine INP 42 emissions into numerical models.

⁷ ¹ Université Clermont Auvergne, CNRS, Laboratoire de Météorologie Physique (LaMP) F-63000 Clermont-Ferrand, France

² GEOMAR, Helmholtz Centre for Ocean Research Kiel, 24105 Kiel, Germany

⁹ ³ Institute of Atmospheric Sciences and Climate, National Research Council, 40129 Bologna, Italy

43 1 Introduction

Ice nucleating particles are a subset of aerosol particles that are required for the heterogeneous nucleation of ice particles in the atmosphere. While extremely rare (Rogers et al., 1998), INP greatly control the ice content of clouds, which is crucial to a range of climate-relevant characteristics including precipitation onset, lifetime, and radiative forcing (Verheggen et al., 2007). Despite their importance, the knowledge of INP sources and concentrations, particularly in marine regions, remains low as evidenced by the large uncertainties in modelled radiative properties of clouds (McCoy et al., 2015; McCoy et al., 2016; Franklin et al., 2013).

50 While the ice nucleating (IN) ability of marine SSA particles is less efficient than their terrestrial counterparts (DeMott et 51 al., 2016), modelling studies have shown that marine INP are of particular importance in part due to the lack of other INP sources in such remote regions (Burrows et al., 2013; Vergara-Temprado et al., 2017). For this reason, recent studies have 52 53 been conducted to better understand which SSA particles contribute to the marine INP population as well as the relationship 54 between SSA emission and ecosystem productivity. Results from these studies suggest that the IN ability of SSA is linked to 55 the biological productivity of source waters, with higher productivity leading to greater IN activity (DeMott et al., 2016; Bigg, 56 1973; Schnell and Vali, 1976). For example, it has been shown that both the cell surface and organic exudate of the marine 57 diatom Thalassiosira pseudonana can promote freezing at conditions relevant to mixed-phase clouds (Knopf et al., 2011; 58 Wilson et al., 2015). More recently, mesocosm studies on phytoplankton blooms using two separate in-lab SSA-generation 59 techniques have furthered the understanding of the connection between ocean biology and the IN activity of SSA (McCluskey 60 et al., 2017). In-depth chemical analysis of the artificially generated SSA during this set of experiments has revealed marine 61 INP may be related to two classes of organic matter: a regularly occurring surface-active molecule type related to DOC and 62 long-chain fatty acids, and an episodic heat-labile microbially-derived type (McCluskey et al., 2018a).

63 As the understanding of the connection between ocean biology and marine INP has improved, parameterizations for 64 predicting marine INP abundance using readily available ocean parameters have been proposed. Wilson and co-authors 65 (Wilson et al., 2015) identified a temperature-dependent relationship between TOC and ice nucleating entities (INE) number concentrations in the SML from samples collected in the North Atlantic and Arctic ocean basins. They then extended this 66 67 relationship from the ocean to the atmosphere to predict the abundance of INP in SSA based on model estimates of marine 68 organic carbon aerosol concentrations. The parameterization was tested for the first time on field measurements of marine 69 aerosol over the North Atlantic at Mace Head and was found to overestimate INP abundance in pristine marine aerosol by a 70 factor of 4 to 100 at -15°C and -20°C (McCluskey et al., 2018b). In the same study, a new parameterization based on SSA 71 surface area and temperature was proposed (McCluskey et al., 2018b). However, this parameterization did not incorporate the 72 recently observed heat labile organic INPs. Most recently, this parameterization was compared with observations of INP over 73 the Southern Ocean, showing reasonable agreement between predictions and observations at -25°C (McCluskey et al., 2019).

74 Despite the recent progress made in the understanding of marine INP, there remains much room for improvement. To 75 date, previous parameterizations have only been tested in the two field studies mentioned in the previous paragraph, 76 underscoring the need for more real-world observations. Furthermore, the field studies conducted so far have taken place in 77 regions of the ocean where biological productivity is high (i.e., North Atlantic and Southern Ocean). As modelling work has 78 shown that the link between ocean biology and SSA organic content properties in oligotrophic waters differs from those in 79 highly productive regions (Burrows et al., 2014) there is need for more measurements in waters with low primary productivity. 80 Finally, despite the finding that marine INP may exist as two separate populations, no model has yet been proposed to account 81 for this.

This paper addresses the current gaps in the knowledge of marine INP by 1) testing existing parameterizations of INP on a new set of field measurements by extending the current inventory of field measurements beyond eutrophic waters to more oligotrophic regions for the first time 2) improving the understanding of how INP in the SML and SSA are linked to both

- 85 seawater biological and SSA organic properties and 3) proposing a new parameterization based on the two-component nature
- 86 of INP. Here we present results from the ProcEss studies at the Air-sEa Interface after dust deposition in the Mediterranean
- 87 Sea (PEACETIME) cruise. The cruise took place in the central and western Mediterranean Sea from May 10 June 10, 2017.
- 88 Observations of INP concentrations both in the SML and SSA were compared with a suite of surface seawater, surface
- 89 microlayer, and SSA properties to better determine how INP concentrations related to biology.

90 2 Methods

In the frame of the PEACETIME project (<u>http://peacetime-project.org/</u>), an oceanographic campaign took place aboard the French research vessel (R/V) 'Pourquoi Pas?' between May 10-June 10, 2017 with the purpose of investigating the processes that occur at the air-sea interface in the Mediterranean Sea. The cruise started in La Seyne, France and travelled in a clockwise fashion between 35° to 42° latitude and 0° to 20° longitude. The observations and process studies performed on board both in the whole water column and the atmosphere are described elsewhere (Freney et al., 2020). Here, we focus on the measurements conducted to describe the SML, SSW, and aerosol properties.

97 **2.1 Surface Seawater (SSW)**

98 SSW properties presented here were obtained from sampling at depths of 20 cm and 5 m. First, 21 parameters including 99 various chemical properties, microbial assemblages, hydrological properties, and optical properties were monitored using the 100 ship's underway system that continuously collected seawater at 5 m under the ship using a large peristaltic pump (Verder VF40 101 with EPDM hose). These measurements included counts of specific microbial classes (e.g., Synechococcus, Prochlorococcus, 102 picoeukaryotes, nanoeukaryotes, microphytoplankton, high phycoerythin containing cells, coccolithophores, cryptophytes), as 103 well as seawater biovolume, chlorophyll-a (chl-a), and POC concentrations. Chl-a was determined from the particulate 104 absorption spectrum line-height at 676 nm after adjusting to PEACETIME chl-a from high performance liquid chromatography 105 (HPLC). POC was estimated from the particulate attenuation at 660 nm using an empirical relationship specific to 106 PEACETIME (POC = 1405.1 x $c_p(660)$ – 52.4). For enumeration of phytoplankton cells, an automated Cytosense flow 107 cytometer (Cytobuoy, NL) operating at a time resolution of one-hour was connected to the continuous underway seawater 108 system. Particles were carried in a laminar flow filtered seawater sheath fluid and subsequently detected with forward scatter 109 and sideward scatter as well as fluorescence in the red (FLR > 652 nm) and orange (FLO 552-652 nm). Distinction between 110 highly concentrated picophytoplankton and cyanobacteria groups and lower concentrated nano- and microphytoplankton was 111 accomplished using two trigger levels (trigger level FLR 7.34 mV, sampling speed of 4 mm³ s⁻¹ analysing 0.65 ± 0.18 cm³ and 112 trigger level FLR 14.87 mV at a speed of 8 mm³ s⁻¹ analysing 3.57 ± 0.97 cm³).

113 The second set of SSW measurements were made on seawater collected at ~20 cm depth from a pneumatic boat that was 114 periodically deployed at a distance of 2 km from the R/V to avoid contamination. The SSW was manually collected using acid 115 cleaned borosilicate bottles. From these discrete samples, microbial composition and cell abundance of the SSW was monitored 116 as described in a companion paper (Tovar-Sanchez et al., 2019). Measurements included heterotrophic bacteria counts, high 117 nucleic acid and low nucleic acid bacteria (HNA and LNA bacteria, respectively), total non-cyanobacteria like cells (NCBL), 118 cyanobacteria like cells (CBL), and total phytoplankton concentration (NCBL+CBL). These were further segregated into size 119 classes of small, medium, and large which roughly correspond to the pico-, nano-, and micro- size classifications from the 120 underway measurements. Trace metals (i.e., Cd, Co, Cu, Fe, Ni, Mo, V, Zn, Pb) were analysed by inductively coupled plasma 121 mass spectrometry, although here we only report on Fe. Finally DOC and marine gel-like particles, including abundance of 122 transparent exopolymer particles (TEP) and Coomassie stainable particles (CSP) were also measured as described in literature 123 (Engel, 2009).

124 2.2 Surface Microlayer

At the same time SSW samples were manually collected on the pneumatic boat, SML samples were also collected using a glass plate sampling method which has been previously described in the literature (Tovar-Sanchez et al., 2019). The glass plate was cleaned overnight with acid and rinsed with ultrapure Milli-Q water. Roughly 100 dips of the glass were conducted to collect 500 mL of SML water into 0.5 L acid cleaned low-density polyethylene plastic bottles. The samples were then acidified on board to pH<2 with ultrapure-grade hydrochloric acid in a class-100 HEPA laminar flow hood. The same measurements done for the SSW samples (see above, Section 2.1) were then made on the SML samples. Enrichment factor was calculated for relevant properties as the ratio of SML to SSW:

 $EF = \frac{SML}{SSW}$

In addition to biological measurements, concentrations of immersion freezing mode INP in SML samples (and a small number of SSW samples, n=4) were measured between May 22 - June 7 using an offline method described previously (Stopelli et al., 2014). Briefly, prior to acidification of the SML samples, additional aliquots were separated and stored in Corning Falcon 15 mL conical tubes and frozen at -20°C until analysis. Before INP measurement, each aliquot was gradually defrosted and distributed into an array of 26 Eppendorf tubes filled up to 200 μ L. The array was then immersed inside an LED based Ice Nuclei Detection Apparatus (LINDA) and the number of ice nucleating particles per liter (INP/L) of SML water was following the method described in Stopelli et al. (2014) which was originally formulated by Vali (1971):

140

$$\frac{INP}{volume} = \frac{\ln(N_{total}) - \ln(N_{unfrozen})}{V_{tube}}$$

141 where N_{total} is the total number of tubes, $N_{unfrozen}$ the total number of unfrozen tubes, and V_{tube} the volume of sample in 142 each tube. The number of unfrozen tubes is calculated by first blank correcting the number of frozen tubes, and then subtracting 143 that value from the total number of tubes. We calculated uncertainty as the binomial proportion confidence interval (95%) 144 using the Wilson score interval. Samples were not corrected for salinity in this study.

145 2.3 Artificially Generated Sea Spray Aerosol

146 Sea spray aerosols were generated using a sea spray generation apparatus which has been described previously (Schwier 147 et al., 2015; Schwier et al., 2017). The characteristics of the setup were selected to mimic Fuentes et al. (2010). These 148 parameters (water flow rates, plunging water depth, etc.) have been shown to mimic well nascent SSA. The apparatus consists 149 of a 10 L glass tank with a plunging jet system. A continuous flow of seawater collected at 5 m depth using the ship's underway 150 seawater circulating system (described above) was supplied to the apparatus. Particle free air was passed perpendicular to the 151 water surface at a height of 1 cm to send a constant airflow across the surface of the water. Aerosols were then either dried 152 with a 1 m long silica dryer for online instrumentation (see Section 2.3.3), with a 30 cm silica gel dryer cascade impactor 153 sampling with subsequent chemical analysis, or were sampled directly from the sea spray generator onto filters for INP 154 analysis.

155 2.3.1 Offline PM1 Filter Analysis

Aerosol particles were also sampled onto PM1 quartz fiber filters mounted on a 4-stage cascade impactor (10 LPM) on a daily basis (24-hour duration). Samples were then extracted in Milli-Q water by sonication for 30 minutes for the analysis of water-soluble components. Main inorganic ion abundance (i.e., $SO4^{2-}$, $NO3^{-}$, $NH4^{+}$, Na^{+} , Cl^{-} , K^{+} , Mg^{2+} , Ca^{2+}) was analysed via ion chromatography. An IonPac CS16 3x 250 mm Dionex separation column with gradient methanesulfonic acid elution was used for cations, while an IonPac AS11 2 x 250 mm Dionex column with gradient potassium hydroxide elution was used for anions. Water soluble organic carbon (WSOC) and water insoluble organic carbon (WIOC) were also determined. WSOC was measured after water extraction using a high-temperature catalytic oxidation instrument (Shimadzu; TOC 5000 A). Total

- 163 organic carbon (which we now refer to as OC), was measured using a Multi N/C 2100 elemental analyzer (Analytik Jena,
- 164 Germany) with a furnace solids module. The analysis was performed on an 8 mm diameter filter punch, pre-treated with 40
- 165 μ L of H₃PO₄ (20% v/v) to remove contributions from inorganic carbon. WIOC was determined as the difference between OC
- and WSOC. Finally, we calculated organic mass fraction of SSA (OMSS) by taking the ratio of OM/(OM+SeaSalt), where
- 167 OM is the sum of WSOM and WIOM, calculated as WSOM = WSOC x 1.8 and WIOM = WIOC * 1.4 and SeaSalt is the sum
- 168 of inorganic ion abundance as determined above.

169 2.3.2 INP

170 INP concentrations were determined from filter-based samples of total suspended particles over a 24-hour duration daily 171 or from the average of two filters (day and night). The volume sampled on each filter averaged $8.95 \times 10^3 \pm 2.26$ m³ of air. The 172 concentration of INP in the SSA was determined for the condensation freezing mode using a Dynamic Filter Processing 173 Chamber (DFPC), which has been used in multiple previous studies and found to agree well with other INP monitoring 174 instruments (DeMott et al., 2018; Hiranuma et al., 2019; McCluskey et al., 2018b). A full description of the instrument can be 175 found in the literature (DeMott et al., 2018). Briefly, bulk SSA formed using the plunging aquarium apparatus were impacted 176 onto 47 mm nitrocellulose filters which were then placed on a metal plate coated with a smooth surface of Vaseline. Air entered 177 the chamber and was sent through a cooling coil allowing it to become saturated with respect to water. Different 178 supersaturations with respect to ice and liquid water can be obtained by controlling the temperatures of the filter and the air 179 flowing across the filter. Filter air temperature combinations were set three different ways, all resulting in a supersaturation 180 with respect to liquid water of 1.02. The filter temperatures were -18, -22, and -25°C (-15.9, -19.6, and -22.3°C for air 181 temperature). Under these conditions, condensation freezing is expected to be the dominant freezing mode for INP. It has been 182 reported (Vali et al., 2015) that condensation freezing and immersion freezing are not distinguishable from one another. Filters 183 were processed inside the DFPC for 15 minutes and monitored for formation of ice crystals upon activation of INPs. Based on 184 sampling time and flow rate, the number of INP/volume were calculated. We report an uncertainty of $\pm 30\%$ based on previous 185 reports of the DFPC (DeMott et al., 2018).

186 2.3.3 Size Distribution Measurements

187 Particle size distribution and number concentrations of aerosols generated with the plunging apparatus were 188 monitored using a custom-made differential mobility particle sizer (DMPS) preceded by a 1-micron size-cut impactor and X-189 ray neutralizer (TSI Inc.). Total counts from the DMPS system were checked using a condensation particle counter (CPC, 190 TSI3010). Using the DMPS, a total of 25 size bins ranging between 10-500 nm (dry particle electrical mobility diameter) were 191 scanned over a 10-minute time period. We then averaged the size distributions across each DFPC sampling period. Comparison 192 of the total CPC-based SSA number concentration to the SSA number concentration derived from the DMPS revealed near 193 unity, indicating nearly all of the particle number concentrations were were captured by the DMPS. While studies typically 194 present INP concentrations normalized by total SSA surface area, this was not possible in our experiment as the size 195 distribution of supermicron particles was not monitored. However, in the supporting information, we do present a theoretical 196 surface area normalized INP_{SSA} calculation for comparison with other studies. The theoretical distribution was based on in-197 situ particle number concentration measurements at Mace Head and open-ocean eddy correlation flux measurements from the 198 Eastern Atlantic (Table S1) (Ovadnevaite et al., 2014), with the resulting surface area distribution shown in Figure S1.

3 Results

200 3.1 INP in the Seawater and SSA

201 Ice nucleating particle characteristics were determined for the SSW, SML, and SSA. Figure 1a shows the concentration 202 of INP in the SML (INP_{SML}) at two different temperatures (-12°C, -15°C) and in the SSW (INP_{SSW}) at -15°C as determined 203 using the LINDA instrument. An initial increase of INP_{SML} occurred on May 24 (1.8x10³ INP/L at T=-15°C) relative to May 204 22 which was then followed by a further increase on June 4 (1.1x10⁴ INP/L at T=-15°C). The enhancement on June 4 occurred 205 on the same day as a dust deposition event which led to an enrichment of iron in the SML relative to the underlying water (see 206 Section 3.2). While only four SSW samples were analysed for INP concentrations, they exhibited similar concentrations and 207 trends to those seen in the SML, with an observed maximum on June 4 (2.4×10^3 INP/L at T=-15.0°C). Based on these four 208 samples, no significant enrichment of INP was observed in the SML compared to SSW, except during the dust deposition 209 event when the SML concentration was enriched by a factor 4.5.

210 Figure 1b shows the concentration of ice nucleating particles in SSA (INPssA) normalized by SSA particle concentration 211 for particles with diameters between 0.1 and 0.5 µm at three different temperatures as observed by the DFPC. It should be 212 noted that INP_{SSA} measurements were conducted at colder temperatures than for the INP_{SML} measurements due to differences 213 between the LINDA and DFPC instruments. In general, the highest concentrations of INP_{SSA} were observed at the beginning 214 of the voyage, with an initial value of 4.0x10⁻⁹ INP_{SSA-25C}/SSA observed on May 13, increasing to a maximum observed value 215 of 1.3x10⁻⁸ INPssa,-25C/SSA on May 20. After May 20, a considerable drop in INPssa,-25C concentrations was observed. 216 Concentrations remained low, albeit with slight fluctuations, before increasing again to 5.2x10⁻⁹ INP ssA.-25c/SSA on June 7. It 217 is also worth noting that the highest concentrations of INP active at -18°C (INP_{SSA,-18C}/SSA) were observed on this day. The 218 increase of INP concentrations around the time of the dust deposition event in early June is similar to the trend observed for 219 seawater INP, albeit with a lag of at least one day (no observations of INP_{SSA} were made on June 6).

220 Figure 2 shows the comparison of observed INP concentrations at various temperatures in the SML and SSW with 221 those reported in previous studies. The concentrations we report here are lower than those from Arctic seawater samples 222 reported by Irish et al. (2017; 2019) and from Arctic and North Atlantic seawater samples reported in Wilson et al. (2015). 223 The difference can likely be attributed to the fact that eutrophic Arctic and North Atlantic seawater is more biologically active 224 than the oligotrophic Mediterranean Sea. Our values agree well with those reported by Gong et al. (2020) who calculated INP 225 concentrations in mid-latitude seawater off the coast of Cabo Verde. The authors of that study also posited that the low INP 226 concentrations relative to Irish et al. (2017; 2019) and Wilson et al. (2015) was due to the lower biological activity of the 227 oligotrophic seawater near Cabo Verde. As we did not measure the size distribution of particles larger than 500 nm, we cannot 228 directly compare our INP_{SSA} abundance to values cited in previous studies, where concentrations are typically normalized by 229 SSA surface area which is dominated by supermicron particles. However, we were able to calculate a theoretical surface area 230 distribution for particles between 0.5-10 µm based on previous studies. The resulting surface area normalized INP 231 concentrations and comparison with literature values is shown in the supporting information (Figure S2).

232 **3.2** Correlations between INP and Biogeochemical Conditions

As described in the methods section, various seawater biogeochemical properties were monitored throughout the voyage for the SSW and SML. Plots of selected continuous measurements from the R/V's underway sampling system and discrete measurements from the pneumatic boat of relevant biogeochemical values are found in the supporting information (Figure S3 and Figure S4, respectively). Biogeochemical properties are described in more detail in our companion papers (Freney et al., 2020; Tovar-Sanchez et al., 2019) and seawater gel properties will be discussed in an upcoming paper. Here, we present a broad summary of observed conditions. In general, surface waters were characterized by oligotrophic conditions as expected for the season. Bacteria concentrations ranged between $2x10^5$ and $7x10^5$ cells/mL in the SSW and were greatest at the start and end periods of the voyage. NCBL abundance followed a similar trend and ranged between $4.0x10^2$ - $4.0x10^3$ cells/mL. Observed DOC values ranged between 700-900 µgC/L and POC between 42-80 µgC/L and were within the range of expected values for the oligotrophic Mediterranean (540—860 µgC/L for DOC and 9.6-104 µgC/L for POC)(Pujo-Pay et al., 2011). SSW TEP concentrations ranged between $1.2x10^6$ and $1.1x10^7$ particles/L, with CSP between $5.6x10^6$ and $9.3x10^6$ particles/L, and will be discussed in a future paper.

Enrichment factors (EF) in the SML relative to the SSW remained low with an average of 1.10 for DOC, 1.07 for bacteria, and 1.17 for NCBL. As POC was not measured in the SML, we cannot report its EF. TEP was typically enriched relative to the SSW, with an average EF of 4.5, while CSP EF was on average 2.7. Of importance, the dust deposition event that occurred on June 4 lead to a drastic increase in SML dissolved iron relative to the SSW (EF ~800). This deposition event had important impacts on the biology of the surface seawaters, which is the focus of another paper (Freney et al., 2020). As a result, TEP EF increased to 17, bacteria EF increased to 1.5, and NBCL to 2.4. We next discuss the correlations between INP abundances and biogeochemical properties in the following sections.

253 3.2.1 Correlations Between INP_{SML} Abundance and Seawater Properties

254 Table 1 shows the correlation statistics between INP_{SML-15C} and selected observed seawater properties (SSW and 255 SML), calculated either for all days of the PEACETIME experiment or only for days before the dust deposition event (i.e., 256 days before June 4). Relationships are only listed in Table 1 if they were significant ($p \le .05$) for either all days or pre-dust only 257 days. Figure 3 shows the corresponding scatterplots of INP_{SML,-15C} abundance and SSW properties. We note a statistically 258 significant correlation between INP_{SML-15C} and CSP (r=0.87) as measured from the underway system. When considering only 259 days before the dust deposition event, INP_{SML,-15C} were significantly correlated with HNA bacteria (r=0.83) while the 260 correlation with CSP is no longer statistically significant. INPSML-15C are actually negatively correlated with most of the 261 measured SSW properties either when excluding the dust event (for micro-NCBL_{SSW} and TEP_{SSW}) or due to the dust event (for 262 TOC_{SSW}, DOC_{SSW} and nanoeukaryotes cell abundances). This points to a non-proportional transfer of each species from the 263 bulk seawater to the SML relative to one another. Given the high p-values and weak correlation coefficients, it is likely that 264 INP_{SML} are not strongly driven by the properties of the underlying SSW. Rather, we posit that INP in the SML are dictated by 265 SML properties, as shown in the following paragraph.

266 Figure 4 shows scatterplots of statistically significant relationships between INP_{SML-15C} concentrations and various SML 267 properties. INP_{SML-15C} were most strongly positively correlated with dissolved iron (r=0.99), TEP EF (r=0.95), and bacteria 268 EF (r=0.93). However, these relationships are skewed by the outlier due to the drastic increase in iron observed on June 4 269 (Figure S2a) from the dust deposition event, as described previously. It is difficult to discriminate between the dust and 270 biological impact on the INP_{SML-15C}, as dust is known to have good INP properties while also being capable of fertilizing the 271 surface ocean with dissolved iron, leading to concomitant increases in biological activity. It is also possible that the dust 272 deposition led to increased abundance of terrestrial OC, which would exhibit different INP activity. When considering days 273 before the dust event, INP_{SML-15C} is only significantly correlated with dissolved iron (r=0.91) and TOC in the SML (r=-0.93). 274 We note that while no longer statistically significant for pre-dust days, moderate correlations were still observed between 275 INP_{SML,-15C} and total NCBL (r=0.48), HNA bacteria (r=0.78), and total bacteria (r=0.64). Previous reports examining the 276 correlation between INP and microbial abundance have yielded mixed results. For example, a report of INP in Arctic SML 277 and SSW found no statistically significant relationship between the temperature at which 10% of droplets had frozen and 278 bacteria or phytoplankton abundances in bulk SSW and SML samples (Irish et al., 2017). However, recent mesocosm studies 279 using nutrient-enriched seawater found that INP abundances between -15°C and -25°C in the aerosol phase were positively 280 correlated with aerosolized bacterial abundance (McCluskey et al., 2017).

281 A previous study by Wilson and co-authors presented an INP parameterization (hereafter termed W15) based on a 282 positive relationship between seawater TOC and INP abundance in Arctic, North Pacific, and Atlantic SML and SSW (Wilson 283 et al., 2015). Total organic carbon in the SML (TOC_{SML} µgC/L), derived here as the sum of POC in the SSW (POCssw) and 284 DOC in the SML (DOC_{SML}), was poorly correlated with INP_{SML-15C} (r=0.31, p=0.50). Figure 5 shows the observed INP_{SML}-285 15C/TOC_{SML} ratio (INP per gram of TOC) for various temperatures and days of the experiment compared with the W15 286 parameterization (grey line). Our results show observed INP_{SML}/TOC_{SML} ratios below those expected by the model proposed 287 by W15, indicating the TOC_{SML} in Mediterranean waters is less IN active at these temperatures than predicted by the W15 288 parameterization.

289 In agreement with our findings, a recent study found that the W15 model over-predicted observed INP concentrations 290 in the aerosol phase during two separate mesocosm experiments (McCluskey et al., 2017) by assuming the INP/TOC ratio in 291 the SML was preserved in the aerosol phase. The authors of that study speculated that the overprediction by the W15 model 292 was due to the fact that it does not account for the complex transfer mechanism of organic matter from the SML to the aerosol 293 phase. Our results here show that the overprediction by W15 persists even when calculating INP in the SML and therefore the 294 overprediction may be due to other factors beyond the transfer of organic matter from the SML to the atmosphere. We stress 295 however, that the TOC value used in this study was derived using DOC_{SML} and POC_{SSW} values as POC measurements in the 296 SML were not conducted. As there typically exists an enrichment of organic matter in the SML relative to the bulk seawater, 297 it is possible that the POC_{SSW} we used to calculate TOC_{SML} was below the actual POC content in the SML, thus underestimating 298 TOC_{SML}. However, if this was the case, a higher abundance of TOC_{SML} would only further increase the overprediction of W15 299 relative to our observations. Finally, it is possible that the oligotrophic nature of Mediterranean waters results in a pool of TOC 300 with a different chemical composition than what is observed in more biologically productive waters such as the Arctic and 301 Atlantic. For example, the pool of TOC during this study was dominated by DOC and featured low POC content, presumably 302 due to low biological productivity.

303 In summary, INP_{SML-15C} increased with SML microbial cell counts (e.g., NCBL and heterotrophic bacteria), FesML 304 and DOCEF during a dust deposition event, but were overall not correlated with TOC nor DOC in the SML. Compared to 305 previous studies, the INP/TOC ratio observed in the Mediterranean is low. We surmise that the overprediction of INP/TOC by 306 the model may either be caused by a different relationship between INP and TOC at warmer temperatures, or possibly be due 307 to the chemical characteristics of TOC in the oligotrophic Mediterranean. This complicated relationship between seawater 308 TOC and INP_{SML} highlights the need for further studies focused on the chemical composition of DOC and POC in bulk SSW 309 and SML. Further experiments during low and high biological productivity are needed in controlled environments to better 310 determine under what conditions (oligotrophic and eutrophic) and location in the water column (i.e., bulk SSW vs SML) TOC, 311 bacteria, and phytoplankton are linked to INP across a range of temperatures. Finally, regardless of the exact mechanism, the 312 impact of dust deposition on INP_{SML,-15C} is fairly large, as we observe an increase of by INP_{SML,-15C} by almost an order of 313 magnitude during the dust event. This impact may have climate implications if INP_{SML-15C} were efficiently transferred to the 314 sea spray.

315 3.2.2 Correlations Between INP_{SSA} Abundance and Observed SSA and Seawater Conditions

In the following section, we compare INP_{SSA} at various temperatures with seawater and SSA properties. Submicron particle concentrations ranged between 1000-3000 particles/cm³ (Figure S5) and its dependence of seawater biology is further explored in a separate manuscript (Sellegri et al. under revision). For comparison with seawater properties, INP_{SSA} was first normalized by SSA particle concentration $(0.1 < D_p < 0.5 \ \mu m)$.

Table 2 shows the correlation statistics between INP_{SSA} normalized by SSA particle number concentration and select conditions in the SML for relationships that were statistically significant. Figure 6 shows the corresponding scatter plots for these relationships. We also tested for correlations on days not affected by the dust event (i.e., days before June 4), and their

- 323 statistics are shown in parentheses in Table 2 and Figure 6. Surprisingly, there were no significant correlations between INPssa,-324 18C and conditions in the SML, including TEP and CSP abundance and enrichment factors, bacteria abundance and enrichment 325 factors, nor with INP_{SML} as measured by the LINDA instrument. This is somewhat unexpected considering INP in the SML at 326 -15°C was correlated with SML phytoplankton and bacteria counts, which are all expected to transfer efficiently from the SML 327 to the aerosol phase, an assumption widely used in the modelling community. Similarly, -22°C INPssA had no significant 328 correlations with SML variables, except for TEP EF which was positively correlated (r=0.69) when only considering days before the dust deposition event. At -25°C, INP_{SSA} were found to be significantly correlated with DOC_{SML} and TOC_{SML} on all 329 330 days (r=0.82 and r=0.80 for DOC and TOC, respectively). When examining only pre-dust event days, the significant 331 correlations included DOC enrichment as well as nano- and micro-CBL.
- 332

333 Table 3 and the corresponding scatter plots in Figure 7 show that a weak correlation exists between INP_{SSA} active at 334 -18°C and POCssw for all days, but becomes significant and strong for days not including the dust event. This points to the 335 possible interference of a different class of organic carbon (e.g., terrestrial OC) or the introduction of some other IN active 336 material (e.g., dissolved iron) which masks the impact of the original pool of POC_{SSW} on INP concentrations. INP_{SSA-18C} are 337 also significantly correlated INPssw,-16C, (results not shown) but with a sample size of n=4 this finding requires further 338 validation. Nonetheless, this result could indicate that INPssA at this temperature come from the bulk water rather than the 339 SML. INPssA at -22°C show a slightly weaker, yet still significant correlation with POCssw than INPssA at -18°C on pre-dust 340 days (r=0.54). Additionally, they have a correlation with Prochlorococcus, coccolithophores, and micro-NCBL. This finding 341 is in agreement with a recent study in which particles generated from lysed Prochlorococcus cultures exhibited good ice 342 nucleating capabilities, albeit at much colder temperatures that observed in our study (i.e., $T < -40^{\circ}$ C) (Wolf et al., 2019). 343 INP_{SSA} at -25°C were correlated with similar variables as INP_{SSA} at -22°C, with the exception POC_{SSW}. Furthermore, the 344 correlations with the various microbial categories was stronger for INP_{SSA} at -25°C than at warmer temperatures, indicating 345 these parameters are more associated with cold INP. Interestingly, INP_{SSA-25C} was not correlated with DOC_{SSW}, yet was 346 correlated with DOC_{SML} (Table 2), potentially indicating an important step in the process of transfer of IN active DOC material 347 to the atmosphere is its prior enrichment at the SML.

348

Table 4 and Figure 8 show the significant correlations between INP_{SSA} and SSA properties. A timeseries of SSA chemical properties is shown in Figure S6. A positive correlation was observed between INP_{SSA,-18C} and SSA organic carbon (OC) as well as the ratio of SSA water-soluble organic carbon to organic carbon (WSOC/OC). The correlation between WSOC/OC and INP_{SSA,-18C} makes sense given the finding that INP_{SSA,-18C} was correlated with POC_{SSW}. A higher WSOC/OC value would suggest a higher fraction of soluble organics which would be expected to transfer to the atmosphere from the bulk SSW rather than the SML due to their high solubility. 355 Figure 8 and Table 4 also show that INPssA,-25C had a significant correlation with WIOC and organic mass fraction of sea spray 356 (OMSS) (r=0.58 and r=0.65, respectively). As mentioned above, INP_{SSA-25C} was found to be correlated with various microbes 357 in the SSW, specifically prochlorococcus, coccolithophores, and nano- and micro-NCBL. Phytoplankton are known for their 358 ability to produce extracellular polymeric substances (Thornton, 2014), and a previous mesocosm experiment showed 359 microbially-derived long-chain fatty acids were efficiently ejected from the seawater as SSA, increasing the fraction of highly-360 aliphatic, WIOC (Cochran et al., 2017). A separate manuscript discusses the trend and controls on SSA chemical composition, 361 linking the different classes of organic carbon in submicron SSA to seawater chemical and biological properties (Freney et al., 362 2020). In this work, OMSS was linked to POCssw and the coccolithophores cell abundance. In light of this and given the 363 correlation of INPSSA.-25C with seawater microbial abundance and with SSA OMSS and WIOC, it seems likely that INPSSA at 364 this temperature are related to the exudates of phytoplankton which are concentrated at the SML and then emitted into the SSA 365 as WIOC.

366 To summarize the results thus far, we have found evidence for the existence of two classes of INP in SSA with 367 separate sources: 1) a class of INP related to POC in the bulk SSW and SSA WSOC and 2) a class of INP related to microbial 368 abundance and POC in the SSW, DOC in the SML, and WIOC in SSA. These findings of a two-component marine INP 369 population agree with a recent study which also reported on the existence of dual classes of INP emitted as SSA during two 370 mesocosm experiments, described as: 1) particulate organic carbon INP coming from intact cells or IN-active microbe 371 fragments and 2) dissolved organic carbon INP composed of IN-active molecules enhanced during periods when the SML is 372 enriched with exudates and cellular detritus (McCluskey et al., 2018a). However, in contrast to that study, we report here the 373 existence of separate temperature regimes at which each INP class is active. Here, the first class of INP consists of INP that 374 are more active at warmer temperatures ($T=-18^{\circ}C$) while the second class of INP are active at colder temperatures ($T=-25^{\circ}C$). 375 INP at T=-22°C correlates with items from both warm and cold categories.

4 Proposal of New INP Parameterization and Comparison with Previous Models

377 To date, parameterizations for the estimation of INP in SSA have not incorporated the knowledge of a two-component 378 INP population. Rather, they have predicted INP based on OC or SSA surface area (W15 and MC18, respectively). To improve 379 upon existing models, we formulated various parameterizations consisting of different time periods, features, and number of 380 components for temperature ranges. Predictor features were chosen based upon their correlation with INP concentrations as 381 described in the previous section. Single component parameterizations in which INP across all three temperatures were linked 382 with the same features were compared with two-component parameterizations in which INP were split into warm and cold 383 categories, each having their own predictor features. Finally, we developed and compared an altered version of the W15 model to account for the oligotrophic seawater of the Mediterranean Sea, as the existing model was formulated from observations of 384 385 eutrophic waters. An altered version of the MC18 model for oligotrophy is presented in the SI (Figure S7), based on 386 calculations of INP concentrations normalized by theoretical total SSA surface area. Each parameterization was recalculated 387 using data across all days of the cruise as well as for only days before the dust deposition event in order to determine the impact 388 of the dust event on the ability to predict INP. The complete set of parameterizations and their associated fit metrics (R^2 and 389 $R_{adj.}^{2}$) are given in Table S2.

Figure 10a shows observed vs predicted INP_{SSA} for the W15 model. Similar to our results for seawater INP (Figure 5), a large overprediction is found relative to our observations when using W15. We also present re-calculated best-fit-lines to data using the same features as in W15 (i.e., OC) in order to account for possible changes due to the oligotrophic nature of the Mediterranean Sea. We term this parameterization the altered Wilson fit for oligotrophy, which is given by:

$$\frac{NP}{m^3} = \exp(-7.332 - (0.2989 * T) + (0.3792 * OC_{SSA}))$$

The results for this fit is shown in Figure 9a alongside the results of the original W15 parameterization. The altered model offers an improvement over the original parameterization, with an adjusted R² on log-transformed INP abundance of $R_{adj}^2=0.59$.

We also tried a range of novel parameterizations based on the observed correlations between INP_{SSA} with seawater and SSA properties. Below we describe two parameterizations which offered good fits to the data. The single-component parameterization assumes the abundance of INP per SSA particle at each temperature can be predicted from POC_{SSW} concentrations:

$$\frac{INP}{SSA} = \exp(-28.6963 - (0.2729 * T) + (0.0366 * POC_{SSW})$$

402

403 The second parameterization separates INP into warm and cold classes, where warm INP (\geq -22°C) are related to SSA 404 OC and cold INP (<-22°C) are related to the concentration of SSA WIOC. This two-component parameterization predicts the 405 concentration of INP/m³ through the following equations:

$$\frac{INP_{T \ge -22^{\circ}C}}{m^{3}} = \exp(-7.9857 - (0.3178 * T) + (0.4643 * OC_{SSA}))$$
$$\frac{INP_{T < -22^{\circ}C}}{m^{3}} = \exp(-6.6606 - (0.2712 * T) + (0.5755 * WIOC_{SSA}))$$

406

407 Figure 9b,c shows the results of our single-component model using POCssw and the two-part model which uses SSA 408 WIOC and OC and considers the separate temperature classes of INP. The adjusted R² for each model on the log-transformed INP abundance were $R_{adj}^2=0.402$ for the single component model using POC_{SSW} and $R_{adj}^2=0.60$ for the two-component model 409 410 using OC and WIOC. This result reveals that the two-component method performs as well as the altered Wilson 411 parameterization. Each parameterization's fit to the data is improved when considering pre-dust days only ($R_{adj}^2=0.63$ for the 412 two-component parameterization and $R_{adj}^2=0.57$ for the single-component parameterization). The improvement is more 413 pronounced for the single-component parameterization using POCssw, further pointing to the fact that such dust deposition 414 events can alter the INP properties of surface waters and the subsequent SSA, either through introduction of terrestrial OC or 415 by triggering changes to the trophic status of the surface waters, resulting in a different class of biologically produced OC. We 416 note that the ratio of INP_{SSA-18C}/OC_{SSA} is on average 2.08x10⁵±1.4x10⁵ INP/gC while the ratio of INP_{SML-15C}/TOC_{SML} as 417 reported in Section 3.2.1 is $3.2 \times 10^6 \pm 3.5 \times 10^6$ INP/gC. This points to a depletion in the abundance of INP active material by a 418 factor 16 as it transfers from the seawater to the SSA, which is typically assumed to be negligible in modelling studies. 419 However, when available, using a ratio of INPssw/TOCssw to predict sea spray originating INP in the atmosphere seems a 420 better approach than using the ratio INPssw/NaClssw. Finally, we remind the readers that the two-component parameterization 421 uses results of SSA chemistry for submicron particles only. As previous studies have shown that the overwhelming majority 422 of SSA OC is found in the submicron phase (Gantt and Meskhidze, 2013), we argue that our analysis of WIOC, WSOC, and 423 OC concentrations in submicron SSA is representative of the whole size range of SSA.

424 425

426 5 Conclusions

In this paper we have presented results from the month-long PEACETIME cruise which took place in the Mediterranean Sea during the spring of 2017, which was characterized with a dust wet deposition event that occurred towards the end of the cruise. We find that the INP concentrations measured in the seawater are in agreement with previous studies on oligotrophic waters (Gong et al., 2020). We next investigated the relationship between seawater INP concentrations and seawater biogeochemical properties. In the SML, the increase of INP_{SML,-15C} concentrations during the dust deposition event followed the SML microbial cell counts (e.g., NCBL, CBL and heterotrophic bacteria), Fe_{SML} and DOC_{EF}. Excluding this dust event, INP_{SML,-15C} were still correlated to Fe and bacteria (although not significantly) in the SML. Overall INP_{SML,-15C} were not 434 correlated with TOC nor DOC in the SML and compared to previous studies, the INP/TOC in the SML observed during the
 435 PEACETIME cruise was low. We surmise that these low INP/TOC is a result of TOC from the oligotrophic Mediterranean

436 being less IN active.

- The impact of dust deposition on $INP_{SML,-15C}$ is fairly large, as we observe an increase of $INP_{SML,-15C}$ by almost an order of magnitude during this event. This impact of dust deposition could have climate implications if $INP_{SML,-15C}$ were efficiently transferred to the sea spray emitted to the atmosphere. However, we find that INP_{SSA} does not evolve in the same manner as the INP_{SML} does, as an increase of INP_{SSA} is observed with at least a three day delay after the dust wet deposition event. This difference could be attributed to the fact that INP_{SSA} measured at $-18^{\circ}C$ are more influenced by the INP concentration in the bulk surface seawater (as shown by the correlation between $INP_{SSA,-18C}$ and $INP_{SSW,-16C}$). It is possible that IN active species deposited during the rain event, either dust- related or biology-related, take a few days before entering the bulk surface layer.
- 444 We also investigated the relationship between INP_{SSA} and various biogeochemical values in the SML, SSW, and SSA. In 445 general, we observed the existence of two classes of INPssA, each linked to different classes of organic matter. Our results 446 indicate each class is active at separate temperatures. Warm INP (INPssA.-18C) are linked to water soluble organic matter in the 447 SSA, but also to SSW parameters (POCssw INPssw.-16C). This indicates that INP at this temperature come from the bulk water 448 rather than the SML. Colder INP (INPssa,-25c) are rather correlated with SSA water-insoluble organic carbon, and SML 449 properties (DOC). As the cold INP are also correlated to the SSW nano- and micro-NCBL cell abundance as well, we 450 hypothesize that these classes of phytoplankton produce surface-active water-insoluble organic matter that is active as IN at 451 these temperatures and are transferred to the atmosphere via the SML. Unfortunately, we do not have measurements of the 452 "colder" temperatures INP in the SML to check this hypothesis.
- 453 We finally proposed a single-component model linking INP/SSA to POCssw and a two-component model linking warm 454 INP to SSA OC and cold INP to SSA WIOC. Both models utilize features that are readily approximated either from satellite 455 data, biogeochemical models, or from existing parameterizations and observations (Aumont et al., 2015; Rasse et al., 2017; 456 Albert et al., 2010). We then showed these parameterizations fit the data much better than previous single component model 457 based solely on OC content (W15) developed from studies of more biologically active waters. We also re-calculated 458 parameterizations based on SSA OC content but for the oligotrophic Mediterranean Sea. The parameterization using SSA OC 459 content fits almost as well as the two-component model using SSA OC and WIOC. However, given the results of correlation 460 analysis with SSA properties as well as results from previous studies indicating a dual composition of INP, we believe the 461 two-component model should help improve attempts to incorporate marine INP emissions into numerical models.
- 462

468

463 Data availability: Underlying research data are being used by researcher participants of the "Peacetime" campaign 464 to prepare other manuscripts, and therefore data are not publicly accessible at the time of publication. Data will be 465 accessible (<u>http://www.obs-vlfr.fr/proof/php/PEACETIME/peacetime.php</u>) once the special issue is completed (all 466 papers should be published by spring 2021). The policy of the database is detailed here <u>http://www.obsvlfr.fr/proof/dataconvention.php</u>.

469 Authors contribution: KS designed the emission experiment, KS and AN performed them. AN performed the 470 seawater, SML and sea spray aerosol sample INP analysis, with the help of FB and GS. JT performed the formal 471 INP data analysis and merged data set investigation, with help from KS and EF. BZ and AT-S performed SML 472 sampling and analysed the sample together with AR-R, AE, BZ and AT-S contributed to formal analysis of SML 473 data. MR, EF, analysed the chemical composition of sea spray aerosol samples. MT and IO and JD contributed to 474 the analysis of the chemical and biological composition of the SSW. CG contributed to funding acquisition and

- management of the Peacetime project. JT and KS wrote the original draft. All authors contributed to writing and
 revision of the work.
- 477
- 478 Competing interests: The authors declare that they have no conflict of interest479
- 480 Acknowledgements This study is a contribution to the PEACETIME project (http://peacetime-project.org), a joint
- 481 initiative of the MERMEX and ChArMEx components supported by CNRS-INSU, IFREMER, CEA, and Météo-
- 482 France as part of the programme MISTRALS coordinated by INSU. PEACETIME was endorsed as a process study
- 483 by GEOTRACES. PEACETIME cruise https://doi.org/10.17600/17000300. We thank the captain and the crew of
- 484 the R/V Pourquoi Pas? for their professionalism and their work at sea. The underway optical instrumentation was
- 485 provided by Emmanuel Boss's group funded by Nasa Ocean Biology and biogeochemistry. This work has also
- 486 received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research
- 487 and innovation program (Sea2Cloud grant agreement No 771369). Sea2Cloud was endorsed by SOLAS.
- 488

489 **References**

- Albert, M. F. M. A., Schaap, M., de Leeuw, G., and Builtjes, P. J. H.: Progress in the determination of the sea spray
 source function using satellite data, Journal of Integrative Environmental Sciences, 7, 159-166,
 10.1080/19438151003621466, 2010.
- 493 Aumont, O., Ethé, C., Tagliabue, A., Bopp, L., and Gehlen, M.: PISCES-v2: an ocean biogeochemical model for 494 carbon and ecosystem studies, Geosci. Model Dev., 8, 2465-2513, 10.5194/gmd-8-2465-2015, 2015.
- 495 Bigg, E. K.: Ice Nucleus Concentrations in Remote Areas, J. Atmos. Sci., 30, 1153-1157, 496 <u>https://doi.org/10.1175/1520-0469(1973)030%3C1153:INCIRA%3E2.0.CO;2</u>, 1973.
- Burrows, S. M., Hoose, C., Pöschl, U., and Lawrence, M. G.: Ice Nuclei in Marine Air: Biogenic Particles or Dust?,
 ACP, 13, 245-267, <u>https://doi.org/10.5194/acp-13-245-2013</u>, 2013.
- Burrows, S. M., Ogunro, O., Frossard, A. A., Russell, L. M., Rasch, P. J., and Elliott, S. M.: A Physically Based
 Framework for Modeling the Organic Fractionation of Sea Spray Aerosol from Bubble Film Langmuir Equilibria,
 ACP, 14, 13601-13629, https://doi.org/10.5194/acp-14-13601-2014, 2014.
- Cochran, R. E., Laskina, O., Trueblood, J. V., Estillore, A. D., Morris, H. S., Jayarathne, T., Sultana, C. M., Lee, C., Lin,
 P., Laskin, J., Laskin, A., Dowling, J. A., Qin, Z., Cappa, C. D., Bertram, T. H., Tivanski, A. V., Stone, E. A., Prather, K.
 A., and Grassian, V. H.: Molecular Diversity of Sea Spray Aerosol Particles: Impact of Ocean Biology on Particle
 Composition and Hygroscopicity, Chem, 2, 655-667, 10.1016/j.chempr.2017.03.007, 2017.
- 506 DeMott, P. J., Hill, T. C. J., McCluskey, C. S., Prather, K. A., Collins, D. B., Sullivan, R. C., Ruppel, M. J., Mason, R. H., 507 Irish, V. E., Lee, T., Hwang, C. Y., Rhee, T. S., Snider, J. R., McMeeking, G. R., Dhaniyala, S., Lewis, E. R., Wentzell, J.
- J. B., Abbatt, J., Lee, C., Sultana, C. M., Ault, A. P., Axson, J. L., Martinez, M. D., Venero, I., Santos-Figueroa, G.,
- 509 Stokes, D. M., Deane, G. B., Mayol-Bracero, O. L., Grassian, V. H., Bertram, T. H., Bertram, A. K., Moffett, B. F., and
- Franc, G. D.: Sea Spray Aerosol as a Unique Source of ice Nucleating Particles, PNAS, 113, 5797-5803,
 <u>https://doi.org/10.1073/pnas.1514034112</u>, 2016.
- DeMott, P. J., Möhler, O., Cziczo, D. J., Hiranuma, N., Petters, M. D., Petters, S. S., Belosi, F., Bingemer, H. G.,
 Brooks, S. D., Budke, C., Burkert-Kohn, M., Collier, K. N., Danielczok, A., Eppers, O., Felgitsch, L., Garimella, S.,
 Grothe, H., Herenz, P., Hill, T. C. J., Höhler, K., Kanji, Z. A., Kiselev, A., Koop, T., Kristensen, T. B., Krüger, K., Kulkarni,
- G., Levin, E. J. T., Murray, B. J., Nicosia, A., O'Sullivan, D., Peckhaus, A., Polen, M. J., Price, H. C., Reicher, N.,
- Rothenberg, D. A., Rudich, Y., Santachiara, G., Schiebel, T., Schrod, J., Seifried, T. M., Stratmann, F., Sullivan, R. C.,
- 517 Suski, K. J., Szakáll, M., Taylor, H. P., Ullrich, R., Vergara-Temprado, J., Wagner, R., Whale, T. F., Weber, D., Welti,
- A., Wilson, T. W., Wolf, M. J., and Zenker, J.: The Fifth International Workshop on Ice Nucleation phase 2 (FIN-02): laboratory intercomparison of ice nucleation measurements, Atmospheric Measurement Techniques, 11, 6231-
- 520 6257, 10.5194/amt-11-6231-2018, 2018.
- 521 Engel, A.: Determination of Marine Gel Particles, in: Practical Guidelines for the Analysis of Seawater, edited by:
- 522 Wurl, O., CRC Press Taylor & Francis Group), Boca Raton, FL, 125-142, 2009.

- 523 Franklin, C. N., Z. Sun, D. B., Yan, M. D. H., and Bodas-Salcedo, A.: Evaluation of Clouds in ACCESS Using the Satellite
- 524 Simulator Package COSP: Global, Seasonal, and Regional Cloud Properties, J. Geophys. Res. Atmos., 118, 732-748, 525 https://doi.org/10.1029/2012JD018469, 2013.
- 526 Freney, E., Sellegri, K., Nicosia, A., Trueblood, J. V., Bloss, M., Rinaldi, M., Prevot, A., Slowik, J. G., Thyssen, M., 527 Gregori, G., Engel, A., Zancker, B., Desboeufs, K., Asmi, E., Lefevre, D., and Guieu, C.: High Time Resolution of 528 Organic Content and Biological Origin of Mediterranean Sea Spray Aerosol, ACP, 2020.
- 529 Fuentes, E., Coe, H., Green, D., de Leeuw, G., and McFiggans, G.: Laboratory-generated primary marine aerosol 530 via bubble-bursting and atomization, Atmos. Meas. Tech., 3, 141-162, 10.5194/amt-3-141-2010, 2010.
- 531 Gantt, B., and Meskhidze, N.: The physical and chemical characteristics of marine primary organic aerosol: a 532 review, Atmospheric Chemistry and Physics, 13, 3979-3996, 10.5194/acp-13-3979-2013, 2013.
- 533 Gong, X., Wex, H., van Pinxteren, M., Triesch, N., Fomba, K. W., Lubitz, J., Stolle, C., Robinson, T.-B., Müller, T.,
- 534 Herrmann, H., and Stratmann, F.: Characterization of aerosol particles at Cabo Verde close to sea level and at the 535 cloud level – Part 2: Ice-nucleating particles in air, cloud and seawater, Atmospheric Chemistry and Physics, 20, 536 1451-1468, 10.5194/acp-20-1451-2020, 2020.
- 537 Hiranuma, N., Adachi, K., Bell, D. M., Belosi, F., Beydoun, H., Bhaduri, B., Bingemer, H., Budke, C., Clemen, H.-C.,
- 538 Conen, F., Cory, K. M., Curtius, J., DeMott, P. J., Eppers, O., Grawe, S., Hartmann, S., Hoffmann, N., Höhler, K.,
- 539 Jantsch, E., Kiselev, A., Koop, T., Kulkarni, G., Mayer, A., Murakami, M., Murray, B. J., Nicosia, A., Petters, M. D.,
- 540 Piazza, M., Polen, M., Reicher, N., Rudich, Y., Saito, A., Santachiara, G., Schiebel, T., Schill, G. P., Schneider, J., 541
- Segev, L., Stopelli, E., Sullivan, R. C., Suski, K., Szakáll, M., Tajiri, T., Taylor, H., Tobo, Y., Ullrich, R., Weber, D., Wex, 542 H., Whale, T. F., Whiteside, C. L., Yamashita, K., Zelenyuk, A., and Möhler, O.: A comprehensive characterization 543 of ice nucleation by three different types of cellulose particles immersed in water, Atmospheric Chemistry and
- 544 Physics, 19, 4823-4849, 10.5194/acp-19-4823-2019, 2019.
- 545 Irish, V. E., Elizondo, P., Chen, J., Chou, C., Charette, J., Lizotte, M., Ladino, L. A., Wilson, T. W., Gosselin, M., 546 Murray, B. J., Polishchuk, E., Abbatt, J. P. D., Miller, L. A., and Bertram, A. K.: Ice-Nucleating Particles in Canadian 547 Arctic Sea-Surface Microlayer and Bulk Seawater, Atmos. Chem. Phys., 17, 10583-10595, 548 https://doi.org/10.5194/acp-17-10583-2017, 2017.
- 549 Irish, V. E., Hanna, S. J., Xi, Y., Boyer, M., Polishchuk, E., Ahmed, M., Chen, J., Abbatt, J. P. D., Gosselin, M., Chang,
- 550 R., Miller, L. A., and Bertram, A. K.: Revisiting properties and concentrations of ice-nucleating particles in the sea 551 surface microlayer and bulk seawater in the Canadian Arctic during summer, Atmospheric Chemistry and Physics,
- 552 19, 7775-7787, 10.5194/acp-19-7775-2019, 2019.
- Knopf, D. A., Alpert, P. A., Wang, B., and Aller, J. Y.: Stimulation of Ice Nucleation by Marine Diatoms, Nat. Geosci., 553 554 4, 88-90, <u>https://doi.org/10.1038/ngeo1037</u>, 2011.
- 555 McCluskey, C. S., Hill, T. C. J., Malfatti, F., Sultana, C. M., Lee, C., Santander, M. V., Beall, C. M., Moore, K. A., 556 Cornwell, G. C., Collins, D. B., Prather, K. A., Jayarathne, T., Stone, E. A., Azam, F., Kreidenweis, S. M., and DeMott,
- 557 P. J.: A Dynamic Link between Ice Nucleating Particles Released in Nascent Sea Spray Aerosol and Oceanic 558 Biological Activity during Two Mesocosm Experiments, J. Atmos. Sci., 74, 151-166, https://doi.org/10.1175/JAS-559 D-16-0087.1, 2017.
- 560 McCluskey, C. S., Hill, T. C. J., Sultana, C. M., Laksina, O., Trueblood, J. V., Santander, M. V., Beall, C. M., Michaud, 561 J. M., Kreidenweis, S. M., Prather, K. A., Grassian, V. H., and DeMott, P. J.: A Mesocosm Double Feature: Insights
- 562 into the Chemical Makeup of Marine Ice Nucleating Particles, J. Atmos. Sci., 75, 2405-2423, https://doi.org/10.1175/JAS-D-17-0155.1, 2018a. 563
- McCluskey, C. S., Ovadnevaite, J., Rinaldi, M., Atkinson, J., Belosi, F., Ceburnis, D., Marullo, S., Hill, T. C. J., 564 565 Lohmann, U., Kanji, Z. A., O'Dowd, C., Kreidenweis, S. M., and DeMott, P. J.: Marine and Terrestrial Organic Ice-Nucleating Particles in Pristine Marine to Continentally Influenced Northeast Atlantic Air Masses, J. Geophys Res. 566
- 567 Atmos., 123, 6196-6212, <u>https://doi.org/10.1029/2017JD028033</u>, 2018b.
- 568 McCluskey, C. S., DeMott, P. J., Ma, P. L., and Burrows, S. M.: Numerical Representations of Marine Ice-Nucleating Particles in Remote Marine Environments Evaluated Against Observations, Geophys Res. Lett., 46, 7838-7847, 569 570 https://doi.org/10.1029/2018GL081861, 2019.
- 571 McCoy, D. T., Hartmann, D. L., Zelinka, M. D., Ceppi, P., and Grosvenor, D. P.: Mixed-phase Cloud Physics and
- 572 Southern Ocean Cloud Feedback in Climate Models, Journal of Geophysical Research: Atmospheres, 120, 9539-573 95554, https://doi.org/10.1175/JAS-D-17-0155.1, 2015.
- 574 McCoy, D. T., Tan, I., Hartmann, D. L., Zelinka, M. D., and Storelvmo, T.: On the Relationship Among Cloud Cover,
- 575 Mixed-phase Partioning and Planetary Albedo in GCMs, Journal of Advances in Modeling Earth Systems, 8, 650-
- 576 668, <u>https://doi.org/10.1002/2015MS000589</u>, 2016.

- 577 Ovadnevaite, J., Manders, A., de Leeuw, G., Ceburnis, D., Monahan, C., Partanen, A. I., Korhonen, H., and O'Dowd,
- 578 C. D.: A sea spray aerosol flux parameterization encapsulating wave state, Atmospheric Chemistry and Physics, 579 14, 1837-1852, 10.5194/acp-14-1837-2014, 2014.
- Pujo-Pay, M., Conan, P., Oriol, L., Cornet-Barthaux, V. C., Falco, C., Ghiglione, J.-F., Goyet, C., Moutin, T., and
 Prieur, L.: Integrated Survey of Elemental Stoichiometry (C, N, P) from the Western to Eastern Mediterranean Sea,
 Biogeosciences, 8, 883-899, <u>https://doi.org/10.5194/bg-8-883-2011</u>, 2011.
- 583 Rasse, R., Dall'Olmo, G., Graff, J., Westberry, T. K., van Dongen-Vogels, V., and Behrenfeld, M. J.: Evaluating Optical
- 584 Proxies of Particulate Organic Carbon across the Surface Atlantic Ocean, Frontiers in Marine Science, 4, 367, 2017.
- Rogers, D. C., DeMott, P. J., Kreidenweis, S. M., and Chen, Y.: Measurements of Ice Nucleating Aerosols During
 SUCCESS, Geophys. Res. Lett., 25, 1383-1386, <u>https://doi.org/10.1029%2F97GL03478</u>, 1998.
- 587 Schnell, R. C., and Vali, G.: Biogenic ice Nuclei: Part I. Terrestrial and Marine Sources, J. Atmos. Sci., 33, 1554-1564,
 588 <u>https://doi.org/10.1175/1520-0469(1976)033%3C1554:BINPIT%3E2.0.CO;2</u>, 1976.
- Schwier, A. N., Rose, C., Asmi, E., Ebling, A. M., Landing, W. M., Marro, S., Pedrotti, M.-L., Sallon, A., Iuculano, F.,
 Agusti, S., Tsiola, A., Pitta, P., Louis, J., Guieu, C., Gazeau, F., and Sellegri, K.: Primary Marine Aerosol Emissions
- from the Mediterranean Sea During Pre-Bloom and Oligotrophic Conditions: Correlations to Seawater Chlorophyll-a From a Mesocosm Study, Atmos. Chem. Phys., 15, 7961-7976, <u>https://doi.org/10.5194/acp-15-</u> 7961-2015, 2015.
- 594 Schwier, A. N., Sellegri, K., Mas, S., Charrière, B., Pey, J., Rose, C., Temime-Roussel, B., Jaffrezo, J.-L., Parin, D., 595 Picard, D., Ribeiro, M., Roberts, G., Sempéré, R., Marchand, N., and D'Anna, B.: Primary marine aerosol physical
- flux and chemical composition during a nutrient enrichment experiment in mesocosms in the Mediterranean Sea,
- 597 Atmospheric Chemistry and Physics, 17, 14645-14660, 10.5194/acp-17-14645-2017, 2017.
- Stopelli, E., Conen, F., Zimmermann, L., Alewell, C., and Morris, C. E.: Freezing Nucleation Apparatus puts New
 Slant on Study of Biological Ice Nucleators in Precipitation, Atmos. Meas. Tech., 7, 129-134,
 <u>https://doi.org/10.5194/amt-7-129-2014</u>, 2014.
- Thornton, D. C. O.: Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean, European Journal of Phycology, 49, 20-46, 10.1080/09670262.2013.875596, 2014.
- 603Tovar-Sanchez, A., Arrieta, J. M., Duarte, C. M., and Sanudo-Wilhelmy, S. A.: Spatial Gradients in Trace Metal604Concentrations in the Surface Microlayer of the Mediterranean Sea, Front. Mar. Sci, 1, 1-8,605https://doi.org/10.3389/fmars.2014.00079, 2019.
- Vali, G.: Quantitative Evaluation of Experimental Results on the Heterogeneous Freezing Nucleation ofSupercooled Liquids, J. Atmos. Sci., 28, 402-409, 1971.
- Vali, G., DeMott, P. J., Möhler, O., and Whale, T. F.: Technical Note: A proposal for ice nucleation terminology,
 Atmospheric Chemistry and Physics, 15, 10263-10270, 10.5194/acp-15-10263-2015, 2015.
- 610 Vergara-Temprado, J., Murray, B. J., Wilson, T. W., O'Sullivan, D., Browse, J., Pringle, K. J., O'Sullivan, D., Browse,
- 511 J. P., K. J., Ardon-Dryer, K., Bertram, A. K., Burrows, S. M., Ceburnis, D., DeMott, P. J., Mason, R. H., O'Dowd, C. D.,
- Rinaldi, M., and Carslaw, K. S.: Contribution of Feldspar and Marine Organic Aerosols to Global Ice Nucleating
 Particle Concentrations, ACP, 17, 3637-3658, <u>https://doi.org/10.5194/acp-17-3637-2017</u>, 2017.
- Verheggen, B., Cozic, J., Weingartner, E., Bower, K., Mertes, S., Connolly, P., Gallagher, M., Flynn, M., Choularton,
 T., and Baltensperger, U.: Aerosol Partitioning Between the Interstitial and the Condensed Phase in Mixed-phase
- 616 Clouds, J. Geophys. Res., 112, <u>https://doi.org/10.1029/2007JD008714</u>, 2007.
- 617 Wilson, T. W., Ladino, L. A., Alpert, P. A., Breckels, M. N., Brooks, I. M., Browse, J., Burrows, S. M., Carslaw, K. S.,
- Huffman, J. A., Judd, C., Kilthau, W. P., Mason, R. H., McFiggans, G., Miller, L. A., Nájera, J. J., Polishchuk, E., Rae,
 S., Schiller, C. L., Si, M., Vergara Temprado, J., Whale, T. F., Wong, J. P. S., Wurl, O., Yakobi-Hancock, J. D., Abbatt,
- J. P. D., Aller, J. Y., Bertram, A. K., Knopf, D. A., and Murray, D. J.: A Marine Biogenic Source of Atmospheric Ice Nucleating Particles, Nature, 525, 234-238, <u>https://doi.org/10.1038/nature14986</u>, 2015.
- Wolf, M. J., Coe, A., Dove, L. A., Zawadowicz, M. A., Dooley, K., Biller, S. J., Zhang, Y., Chisholm, S. W., and Cziczo,
 D. J.: Investigating the Heterogeneous Ice Nucleation of Sea Spray Aerosols Using Prochlorococcus as a Model
 Source of Marine Organic Matter, Environ Sci Technol, 53, 1139-1149, 10.1021/acs.est.8b05150, 2019.
- 625 626

628 Tables

Variable	pall days (ppre-dust)	r all days (r pre-dust)
	SSW	
CSP	0.005 (0.78)	0.87 (-0.15)
TOCssw	0.015 (0.36)	-0.85 (-0.53)
DOCssw	0.045 (0.52)	-0.76 (-0.39)
Nanoeukaryotes <10µm	0.038 (0.20)	-0.63 (-0.51)
Micro-NCBL	0.051 (0.021)	-0.70 (-0.88)
TEP	0.25 (0.022)	-0.46 (-0.88)
Bacteria HNA	0.14 (0.043)	0.57 (0.83)
	SML	
Dissolved Iron	.0000021 (.012)	0.99 (0.91)
TEP EF	0.00032 (0.42)	0.95 (0.41)
Total Bacteria EF	0.00075 (0.82)	0.93 (-0.12)
CSP	0.0053 (0.25)	0.87 (-0.56)
Total NCBL	0.0053 (0.34)	0.87 (0.48)
Pico-NCBL	0.0088 (0.43)	0.84 (0.40)
Total Bacteria	0.016 (0.17)	0.81 (0.64)
Phytoplankton (NCBL+CBL)	0.021 (0.68)	0.78 (-0.22)
NCBL EF	0.022 (0.92)	0.78 (0.054)
DOC EF	0.041 (0.38)	0.78 (-0.51)
Nano-NCBL	0.027 (0.42)	0.77 (0.41)
Bacteria HNA	0.012 (0.068)	0.83 (0.78)
Bacteria LNA	0.037 (0.54)	0.74 (0.32)
TOC _{SML}	0.50 (0.020)	0.31 (-0.93)

630Table 1. Correlation statistics between $INP_{SML,-15C}$ and seawater properties in the SML and SSW, where p is the p-value test for631significance and r is the Pearson correlation coefficient. Values in parentheses are calculated for days before the dust deposition632event (i.e., days before June 4). Values that are not statistically significant (p > .05) are italicized.

Table 2. Correlation statistics between INP_{SSA} and properties in the SML, where p is the p-value test for significance and r is the
 Pearson correlation coefficient. Values in parentheses are calculated for days before the dust deposition event (i.e., days before June
 Values that are not statistically significant (p > .05) are italicized.

Variable	pall days (ppre-dust)	rall days (rpre-dust)
	-18°C	
	No significant correlation	ns
	-22°C	
TEP EF	0.80 (0.028)	-0.081 (0.69)
	-25°C	
DOC _{SML}	0.0071 (0.00055)	0.82 (0.94)
TOC _{SML}	0.016 (0.0066)	0.80 (0.89)
DOC EF	0.45 (0.014)	0.29 (0.81)
Nano+Micro CBL	0.10 (0.021)	0.47 (0.71)

Table 3. Correlation statistics between INP_{SSA} and properties in the SSW, where p is the p-value test for significance and r is the643Pearson correlation coefficient. Values in parentheses are calculated for days before the dust deposition event (i.e., days before June6444). Values that are not statistically significant (p > .05) are italicized.

Variable	pall days (ppre-dust)	r _{all days} (r _{pre-dust})
	-18°C	
POCssw	0.95 (0.010)	0.017 (0.64)
DOCssw	0.16 (0.023)	-0.51 (-0.78)
	-22°C	
Nanoeukaryotes <10µm	0.021 (0.050)	-0.51 (-0.48)
Prochlorococcus	0.23 (0.000014)	0.31 (0.90)
POC _{SSW}	0.44 (0.036)	0.20 (0.54)
Coccolithophores	0.67 (0.033)	0.10 (0.52)
Micro-NCBL	0.14 (0.0085)	0.43 (0.77)
	-25°C	
Nanoeukaryotes <10µm	0.0065 (0.0042)	-0.59 (-0.65)
Prochlorococcus	0.00033 (0.00014)	0.77 (0.84)
Coccolithophores	0.033 (0.039)	0.48 (0.50)
Cryptophytes	0.034 (0.052)	0.48 (0.48)
Micro-NCBL	0.0013 (0.0053)	0.79 (0.80)
Nano-NCBL	0.049 (0.059)	0.56 (0.61)

Table 4. Correlation statistics between INP_{SSA} and SSA properties, where p is the p-value test for significance and r is the Pearson649correlation coefficient. Values in parentheses are calculated for days before the dust deposition event (i.e., days before June 4).650Values that are not statistically significant (p > .05) are italicized.

651	Variable	Pall days (Ppre-dust)	rall days (rpre-dust)		
652		-18°C			
653	WSOC/OC	0.0099 (0.014)	0.68 (0.68)		
654	OC	0.018 (0.021)	0.64 (0.65)		
	WSOC	0.25 (0.0074)	0.29 (0.66)		
55		-22°C			
56	WSOC	0.042 (0.0082)	0.48 (0.65)		
57	OC	0.015 (0.0080)	0.66 (0.72)		
58	WIOC	0.061 (0.043)	0.53 (0.59)		
	OMSS	0.066 (0.028)	0.52 (0.63)		
59		-25°C			
60	WIOC	0.037 (0.057)	0.58 (0.56)		
61	OMSS	0.016 (0.025)	0.65 (0.64)		
62					

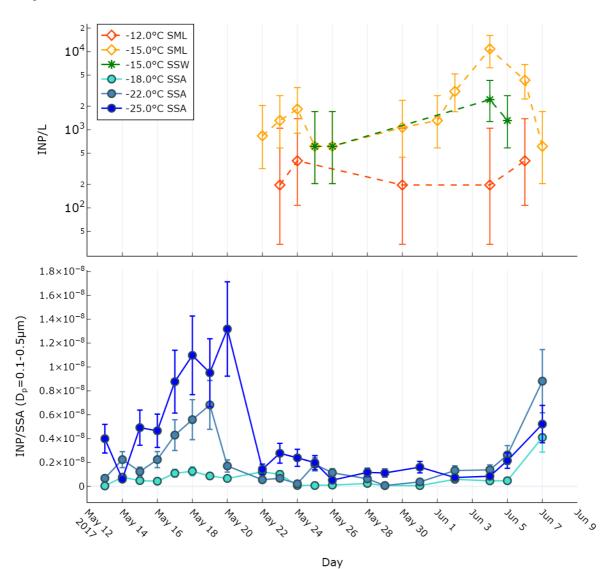


Figure 1. a) INP concentrations observed during the PEACETIME cruise in the SML and SSW as measured using the LINDA
 instrument. Error bars represent the binomial proportion confidence interval (95%) using the Wilson score interval. b) INP_{SSA}
 concentrations as observed by the DFPC normalized by SSA particle number concentration. Error bars represent ±30% uncertainty
 of the DFPC instrument, as cited previously (DeMott et al., 2018).

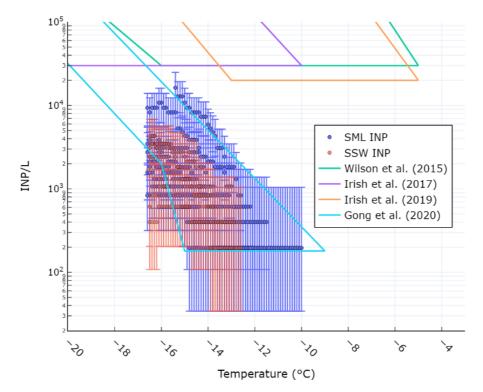


Figure 2. Comparison of observed SSW (blue markers) and SML (red markers) INP concentrations with previous studies. Error
 bars represent the binomial proportion confidence interval (95%) using the Wilson score interval.

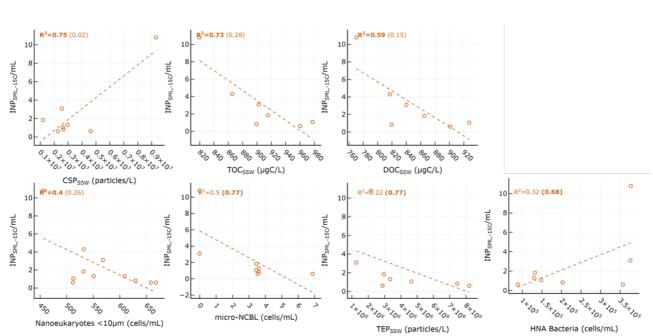
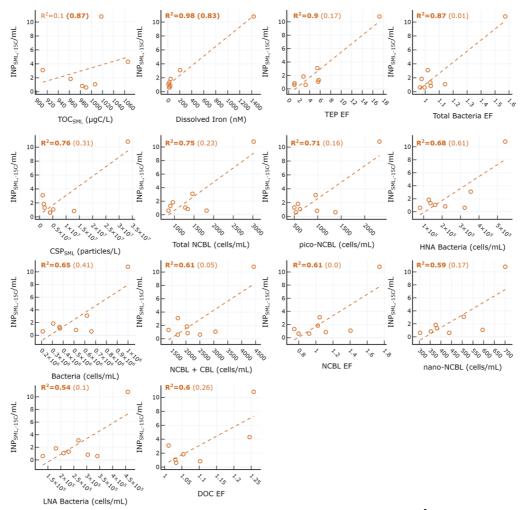



Figure 3. Scatter plot of INP in the SML and various biogeochemical parameters in the SSW. R² for all days are shown in each plot,
 with R² calculated for only days before the dust event shown in parentheses. Statistically significant relationships are shown in bold.

680 Figure 4. Scatter plot of INP in the SML and various biogeochemical properties in the SML. R² for all days are shown in each plot,

681 with R² calculated for only days before the dust event shown in parentheses. Statistically significant R² values are shown in **bold**.

682

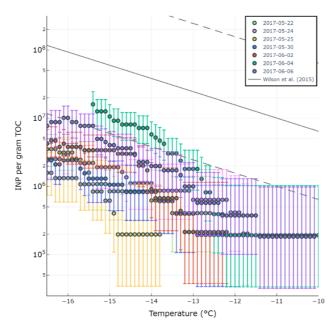


Figure 5. Observed INP/TOC ratio in the SML during PEACETIME experiment for different temperatures. The gray line is the fit
 from Wilson et al., 2015.

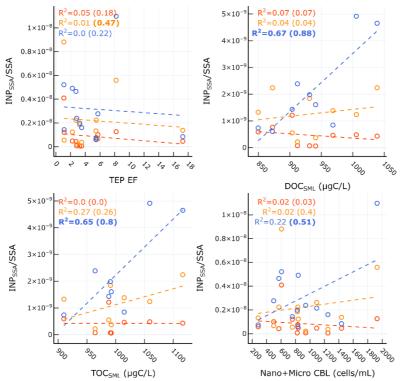


Figure 6. Scatter plots of INP_{SSA} normalized by SSA number concentration at three temperatures and select conditions in the SML
 for relationships that were statistically significant. Corresponding correlation parameters are reported Table 2. R² values for all
 days are shown in each plot, with R² values for days not including the dust deposition event (i.e., days before June 4) in parentheses.
 R² for statistically significant relationships are shown in bold.

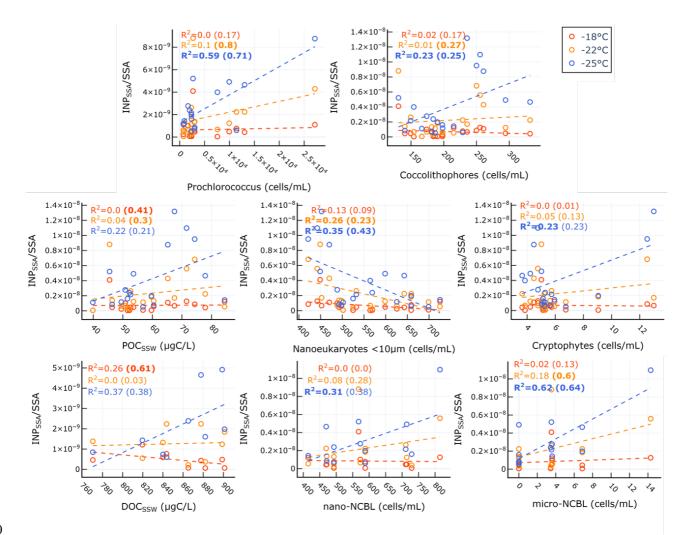
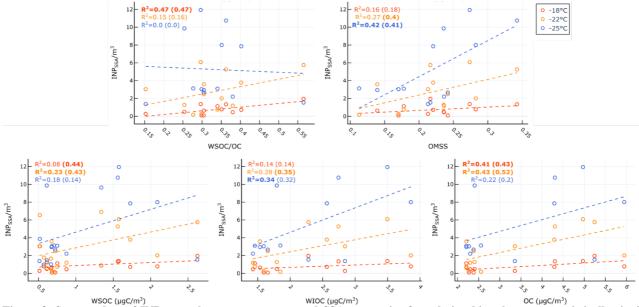
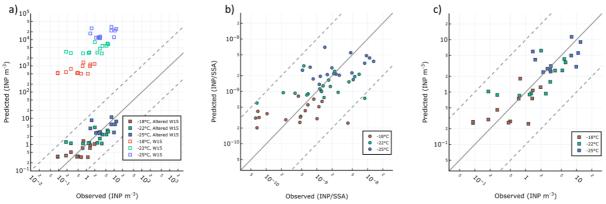




Figure 7. Scatter plots of INP_{SSA} normalized by SSA number concentration at three temperatures and select conditions in the SSW
 for relationships that were statistically significant. Corresponding correlation parameters are reported Table 3. R² values for all
 days are shown in each plot, with R² values for days not including the dust deposition event (i.e., days before June 4) in parentheses.
 R² for statistically significant relationships are shown in bold.

696WSOC (µgC/m³)697OC (µgC/m³)698Corresponding correlation statistics are reported Table 2. R² values for all days are shown in each plot, with values calculated pre-699dust event (i.e., days before June 4) in parentheses. Statistically significant values are shown in bold.

702Figure 9. Different parameterizations for prediction of INP in SSA. a) W15 and refit of same method using PEACETIME703observations b) single-component parameterization for INP/SSA where INP at all temperatures are related to POCssw c) two-704component parameterization for INP/m³ where INP≥-22°C are related to OC and INP <-22°C are related to WIOC.</td>