Supporting Information for

Distinct response of Asian summer monsoon due to black carbon

aerosols and greenhouse gases

Xiaoning Xie^{1,2}, Gunnar Myhre³, Xiaodong Liu^{1,4}, Xinzhou Li¹, Zhengguo Shi¹, Hongli Wang⁵, Alf Kirkevåg⁶, Jean-Francois Lamarque⁷, Drew Shindell⁸, Toshihiko Takemura⁹, and Yangang Liu¹⁰

¹SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
²CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, China
³Center for International Climate and Environmental Research, Oslo, Norway
⁴University of Chinese Academy of Sciences, Beijing, China
⁵School of Tourism and Hospitality Management, Shaanxi Radio and TV University, Xi'an, China
⁶Norwegian Meteorological Institute, Oslo, Norway
⁷National Center for Atmospheric Research, Boulder, USA
⁸Nicholas School of the Environment, Duke University, Durham, USA
⁹Climate Change Science Section, Kyushu University, Fukuoka, Japan
¹⁰Environmental and Climate Sciences Department, Brookhaven National Laboratory, Upton, NY, USA

Contents of this file Figures S1 to S4.

Introduction

This supporting information provides additional figures (Figure S1 to Figure S4) to aid in the understanding of the main article.

Figure S1, Changes in MJJAS surface atmospheric temperature at 2m (°C) for individual models under increasing BC. Dotted regions indicate represent the grid points where the changes pass the two-tailed t test at the 5% significance level.

Figure S2, Changes in MJJAS 200 hPa atmospheric temperature (°C) for individual models under increasing BC. Dotted regions indicate represent the grid points where the changes pass the two-tailed t test at the 5% significance level.

Figure S3, (a), MJJAS domain-averaged changes (mm day⁻¹) in multi-model mean (MMM) precipitation minus evaporation (\triangle (P-E)), the thermodynamic term (\triangle TH), the dynamic term (\triangle DY), and residual term (\triangle Res) of moisture budget equation under increasing Asian black carbon. (b) Spatial distribution of MMM MJJAS \triangle TH, (c) \triangle DY, (d) 850 hPa wind field (\triangle UV850, m s⁻¹), (e) 500 hPa vertical velocity (\triangle Omega, 0.01xPa s⁻¹), and (f) vertically integrated water vapor (\triangle Q, g m⁻²) under increasing Asian BC. Error bars (a) of MMM represent the standard deviation. Dotted regions (b, c, e, f, and g) and black arrows (d) indicate where MMM is more than 1 standard deviation away from zero, and the areas (b, c) within the blue line represent the Asian monsoon region.

Figure S4, Changes in Multi-model mean (MMM) of MJJAS effective radiative forcing (ERF, W m^{-2}) under (a) increasing Asian BC, (b) global SO4, and (c) Asian SO4. Dotted regions indicate where MMM is more than 1 standard deviation away from zero.