
Anonymous Referee #1 

General comments 

The authors present an experimental study of aerosols collected from Hainan Island, 

South China. The analysis includes absorption coefficients, mass concentrations of 

black carbon, organic carbon, inorganic elements, and water-soluble cations and an- 

ions. Major findings include the source apportionment of the total absorption 

coefficient and contribution to radiative forcing. The study shows the importance of 

considering ship emissions in forcing calculation. Overall, the manuscript presents 

interesting data and analysis shows merit. 

Response: We thank the reviewer for his/her valuable suggestions, and it is useful for 

improving our manuscript. We have made modifications accordingly based on the 

reviewer’s comments. Below are point-to-point responses. 

Specific comments 

1. This study uses AE-33 and PAX to measure absorption. AE-33 provides the mass of 

absorbing aerosols as final products. Previous studies have reported the calculation of 

absorption coefficients from AE-33 mass concentration. However, for the sake of 

completeness, I would recommend to include those steps in supplementary. 

Response: We followed the reviewer’s suggestion and added the following in the 

revised manuscript: 

“Since the AE33 aethalometer records the BC mass concentrations, the Abs(λ) 

at each wavelength were retrieved by getting the product of BC mass 

concentration ([BC]) and mass absorption cross-section (MAC) used in the 

instrument (Abs(λ) = [BC] × MAC) (Drinovec et al., 2015).” 

2. This study used a Nafion dryer to reduce the RH of particles collected. These dryers 

are known to minimize particle concentration during the drying process. Is there any 

data on the % of particle loss within the dryer? 

Response: We conducted a test to compare the measured light absorption coefficients 



(Abs(λ)) with and without the Nafion tube. As shown in Fig. R1 below (also see Fig. 

S2 in the revised supporting information), the loss of Abs(λ) is little and can be ignored. 

We have added a sentence to show the result of this test in the revised manuscript. It 

reads as follows: 

“As shown in Fig. S2, the loss of Abs(λ) caused by the dryer was ignored.” 

 

Figure R1. Scatter plot of light absorption coefficient measured with (Abs(λ)with) and 

without (Abs(λ)without) Nafion dryer (MD-700-24S-3). λ is the wavelength of 370, 470, 

520, 590, 660, or 880 nm. 

3. The Nafion dryers were connected to Aethalometers only? Aethalometer data is less 

susceptible to RH. But the PAX data can be influenced by high RH. Was there a dryer 



connected to PAX? 

Response: The PAX and AE33 share a same sampling tube and was set in parallel with 

a tee. Therefore, the PAX and AE33 were both dried by the Nafion dryer. We have 

clarified and added the following information in the revised manuscript: 

“It was set in parallel with the AE33 aethalometer using the same PM2.5 cyclone 

and Nafion® dryer.”  

4. There was a PM2.5 cyclone for Aethalometer and no cyclone for PAX. I remember 

the penetration efficiency of PAX reduces drastically after 1 micrometer. So, both 

instruments were measuring different size-cutoff particles. 

Response: We apologize for our unclear description. As replied above, the PAX and 

AE33 were both collected the ambient aerosols using the same PM2.5 cyclone. 

Therefore , the same size range of particles was measured by the PAX and AE33. 

5. What is the area of quartz filters used? 

Response: The area of quartz filter is 8 × 10 inch. We have added this information in 

the manuscript. It now reads as follows:  

“The PM2.5 quartz-fiber filters (8 × 10 inch) (QM/A; GE Healthcare, Chicago, 

IL, USA) were collected during the day (from 08:00 to 20:00) and at night (from 

20:00 to 08:00 the next day) using a high-volume air sampler (Tisch 

Environmental, Inc., USA) with a flowrate of 1.13 m3 min-1.” 

6. What is the flow rate of the high-volume sampler? 

Response: The flowrate of high-volume sampler was 1.13 m3 min-1. We have added 

this information in the manuscript as shown above response. 

7. One major shortcoming in this study is the absence of ‘lensing effect’ while 

calculating absorption. Studies have shown that the lensing effect can contribute to 

significant absorption. Since Aethalometer uses a filter tape to collect particles, one can 



assume the core-shell structure of particles (the reason for lensing effect) gets destroyed. 

But the absorption from PAX will have contributions from the lensing effect. The slope 

of 2.29 in Figure S3 might include the lensing effect. Since the experimental setup used 

in this study does not measure the absorption of core-shell and core separately, it will 

be difficult to distinguish the contribution from the lensing effect. I would suggest the 

authors include this possibility in text. 

Response: We thank the reviewer for explanation the impact of ‘lensing effect’ on 

comparison of PAX and AE33. In the revised manuscript, we have added this possible 

effect: 

“A slope of 2.3 was regarded as the correction factor and was comparable to the 

values of 2.0–2.6 reported by previous studies using a similar method (Qin et al., 

2018; Tasoglou et al., 2017; Wang et al., 2019b). This difference may mainly be 

related to the matrix scattering and lensing effects.” 

8. Figure 1a – shows the apportionment of Abs, and the same is repeated as Figure 1b. 

Removing the repeated portion from 1a would give better visibility to it. 

Response: We followed the reviewer’s suggestion and modified this figure as shown 

in Fig. R2 below (also see Fig. 3 in the revised manuscript). 

 

Figure R2. (a) Contributions of the four sources to each species from the positive 

matrix factorization model and (b) the light absorption of primary aerosols from each 

source at different wavelengths (Abspri(λ), λ = 370, 470, 520, 590, 660, and 880 nm) 



during the study. 

9. Page 2, line 13- Optical properties of LAC is not just related to its source. It also 

depends on the atmospheric conditions and secondary processing. 

Response: We agree with the reviewer and revised the original sentence to:  

“The optical properties of LAC aerosols are closely related to their sources as 

well as atmospheric conditions and secondary processing.” 

10. Page 4, line 3 – Educational and residential areas will have their pollution sources 

such as vehicles, cooking, etc. 

Response: We agree with the reviewer. In the revised manuscript, we have revised the 

original description to: 

“The sampling site is predominantly an educational and residential area with 

typical urban sources of emission including vehicles and cooking appliances.” 

11. Page 5, Paragraph 1 – The whole paragraph is about the analysis of filters collected. 

It must be specified initially. 

Response: Following the reviewer’s suggestion, we have added a sentence to clarify 

this in the revised manuscript:  

“The collected quartz-fiber filters were used to analyse inorganic elements, 

carbonaceous matter, water-soluble ions, and organics.” 

12. Page 7, line 4 – Which PMF system was used for the analysis? I guess US EPA 

PMF 5.0! It needs to be mentioned with a reference. 

Response: Yes, the version of PMF5.0 from US EPA was used in our study. We have 

added this information in the revised manuscript. It now reads as follows: 

“The PMF version 5.0 (PMF5.0) from the US Environmental Protection Agency 

(Norris et al., 2014) was applied to determine the contribution of various sources 



to aerosol light absorption.” 

13. Page 9, line 24 – Error bars on Y-axis needed. Since the X-axis is from filters (12-

hour sample) and the Y-axis is the average of the same from AE-33 Abs, the error bars 

are required to see the spread of data. 

Response: We followed the reviewer’s suggestion, and the revised version is shown in 

Fig. R3 and Fig. R4 below (also see Fig. S5 and Fig. S6 in the revised supporting 

information). 

 

Figure R3. Scatter plots of light absorption of black carbon at different wavelengths 

(AbsBC(λ), λ = 370, 470, 520, 590, 660, and 880 nm) versus mass concentration of 

elemental carbon (EC). The black lines are the linear regression. The vertical error bars 

represent one standard deviation of AbsBC(λ). 



 

Figure R4. Scatter plots of light absorption of brown carbon at different wavelengths 

(AbsBrC(λ), λ = 370, 470, 520, 590, and 660 nm) versus mass concentration of organic 

carbon (OC). The black lines are the linear regression. The vertical error bars represent 

one standard deviation of AbsBrC(λ). 

14. Page 12, line 1 – The cluster 2 back trajectory doesn’t touch the Vietnam cost to 

influence the biomass burning. Was there a spread towards land for this cluster? 

Response: Thanks for the reviewer pointing out this issue. In the revised manuscript, 

we reworked this paragraph to avoid any misunderstanding. It now reads as follows:  

“Cluster #2 originated from the South China Sea near the Indochina Peninsula 

and accounted for 35% of the total trajectories. The Absship(λ) was also vital in 



this cluster, accounting for 34–37% of Abspri(λ). Fig. S10 shows that the Abspri(λ) 

of Cluster #2 displayed a similar diurnal trend as that of Cluster #1. Considering 

that the air masses of Cluster #2 also originated from the South China Sea, the 

sources except for ship emissions were mainly influenced by local discharge.” 

Technical corrections 

15. Page 2, line 26 – Don’t use ‘firstly’. ‘First’ is fine. 

Response: Change made. 

16. Page 4, line 10 – ‘As described previously’ – It is not described anywhere before. 

Response: This sentence has been revised to “Afterwards, seven light emitting diodes 

(λ = 370, 470, 520, 590, 660, 880, and 950 nm) in the AE33 aethalometer were used to 

irradiate the filter deposition spot to obtain light attenuation as previously described 

(Drinovec et al., 2015).” 



Anonymous Referee #2 

This study performed ground measurements in a small city at the very south end of 

continental China along the South China Sea. The authors attempted to attribute the 

sources from the composition and absorption measurements using receptor models, 

however the analysis of the entire study is rough and the conclusions are vague for the 

current version. 

Response: The authors appreciate the reviewer’s valuable suggestions, and we believe 

that the revised manuscript has been significantly improved after considering the 

comments. Below are point-to-point responses. 

- Many pieces of essential work are missing, which should all appear in the main figures. 

I only list a few examples: the time series as classified by clusters, the diurnal variations 

of absorption for each cluster (to exclude the possible local sources), complete statistics 

of all parameters are required (BC mass, AAE, PM, compositions). Please do a 

complete and sound analysis and just show it. Otherwise, the conclusions are based on 

nowhere. 

Response: We thank the reviewer for pointing out the shortcoming of our manuscript. 

Following the reviewer’s suggestion, we have added a Fig. R1 below (also see Fig. 1 

in the revised main text) to show the time series of light absorption (Abs(λ)) influenced 

by different clusters, a Fig. R2 below (also see Fig. S10 in the revised supporting 

information) to show the diurnal variations of Abs(λ) of each cluster, a Table R1 below 

(also see Table 1 in the revised manuscript) to summarize the optical parameters, and a 

Table R2 below (also see Table 2 in the revised main text) to summarize the mass 

concentrations of PM2.5 and chemical species. 



 
 

Figure R1. Time series of hourly averaged light absorption at different wavelengths 

(Abs(λ), λ = 370, 470, 520, 590, 660, and 880 nm). The different types of horizontal 

lines represent the four clusters of air masses. 

 
 

Figure R2. Diurnal variations of light absorption from primary emissions (Abspri(λ), λ 

= 370, 470, 520, 590, 660, and 880 nm) in different clusters. 

 



Table R1. Summary of light absorption at different wavelengths (Abs(λ), λ = 370, 470, 

520, 590, 660, and 880 nm) and absorption Ångström exponent (AAE) of different 

emission sources. 

 

Table R2. The average mass concentrations of carbonaceous matter, water-soluble ions, 

inorganic elements, and organics during the campaign. 

Parametera Average Standard deviation 

Abs(370) (Mm-1) 15.7 5.3 
Abs(470) (Mm-1) 11.4 3.7 
Abs(520) (Mm-1) 9.7 3.0 
Abs(590) (Mm-1) 8.3 2.6 
Abs(660) (Mm-1) 7.0 2.2 
Abs(880) (Mm-1) 4.9 1.5 
AAEtotal 1.41 0.05 
AAEship 1.06 0.03 
AAEbiomass 1.75 0.06 
AAEvehicle 0.96 0.06 

aAAEtotal represents the AAE caused by total light-absorbing aerosols while AAEship, 

AAEbiomass, and AAEvehicle are AAE from ship emissions, biomass burning, and motor 

vehicle emissions, respectively. 

 



 

- many issues here regarding the source attribution. The local source influence needs to 

be clearly excluded, or by some way to show it is of minor influence compared to the 

regional sources you stated. 

Response: We thank the reviewer pointing out the influence of local emissions. Our 

sampling site is not located at a background area, therefore the influence of local 

emissions cannot be neglected. As a coastal city near the South China Sea, one of our 

objectives is to emphasize the ship emissions transported from ocean. Given that the 

air masses from the South China Sea are unable to carry pollutants from biomass 

burning, motor vehicles, and fugitive dust, these sources were possibly mainly 

Types Species Average Standard deviation 

PM2.5 (μg m-3)  14.3 4.2 

    

Carbonaceous matter 

(μg m-3) 

organic carbon 2.7 1.1 

elemental carbon 0.8 0.3 
    

Water-soluble ions 

(μg m-3) 

Na+ 0.5 0.2 

NH4+ 0.6 0.4 

K+ 0.2 0.1 

Mg2+ 0.05 0.02 

Ca2+ 0.2 0.1 

Cl- 0.23 0.2 

NO3- 0.6 0.3 

SO42- 3.5 1.2 
    

Inorganic elements 

(ng m-3) 

Ti 13.1 9.7 

V 2.4 1.4 

Mn 5.1 2.7 

Fe 127.3 78.9 

Ni 1.1 0.6 

Cu 28.0 14.4 

Zn 16.6 11.1 

Br 2.6 2.0 
    

Organics (ng m-3) hopanes 0.2 0.05 
 



influenced by local emissions. In the revised manuscript, we used diurnal patter and 

concentration-weighted trajectory (CWT) analysis to indicate the influences of local 

emissions and regional transport. We have reworked the relevant discussion to make it 

more clearly, and it now reads as follows: 

“To identify the possible source areas that affected Abspri(λ), CWT analysis was 

performed based on the three-day backward trajectories. Large CWT values were 

mainly concentrated in the South China Sea (Fig. S9), highlighting the effect of 

ship emissions on aerosol light absorption. Additionally, the three-day backward 

trajectories were grouped into four cluster-mean trajectories to investigate the 

impact of different sources on Abspri(λ) (Fig. 4). The air masses associated with 

Cluster #1 originated from the South China Sea. The Absship(λ) was the largest 

contributor in this cluster constituting 44–45% of Abspri(λ) due to the high vessel 

traffic density over the South China Sea, consistent with the CWT results. Cluster 

#1 accounted for about 44% of the total trajectories, suggesting that Sanya was 

subjected to the influence of ship exhaust-related LAC aerosols, transported from 

the South China Sea. It is noteworthy that the diurnal pattern of Abspri(λ) showed 

typically high values in the mornings and evenings (Fig. S10). This was 

attributed to the daily anthropogenic activities and variations in height of the 

planetary boundary layer. Given that the air masses from the South China Sea 

are unable to carry pollutants from biomass burning, motor vehicles, and fugitive 

dust, these sources were possibly mainly influenced by local emissions.  

Cluster #2 originated from the South China Sea near the Indochina Peninsula and 

accounted for 35% of the total trajectories. The Absship(λ) was also vital in this 

cluster, accounting for 34–37% of Abspri(λ). Fig. S10 shows that the Abspri(λ) of 

Cluster #2 displayed a similar diurnal trend as that of Cluster #1. Considering 

that the air masses of Cluster #2 also originated from the South China Sea, the 

sources except for ship emissions were mainly influenced by local discharge. A 

small number of air masses were grouped into Cluster #3 and Cluster #4, 

accounting for only 6% and 15% of total trajectories, respectively. Cluster #3 



originated from southern Burma and passed over Thailand, Laos, and Vietnam. 

On the other hand, Cluster #4 had the longest cluster-mean trajectory which 

originated and passed through the coastal areas of South-eastern China. Biomass 

burning was the dominant contributor to Abspri(λ) in both clusters, with 62–69% 

for Cluster #3 and 56–64% for Cluster #4. Moreover, the Absbiomass(λ) of Cluster 

#3 and Cluster #4 were 1.8–4.4 times higher than those of Cluster #1 and Cluster 

#2. Since the Absbiomass(λ) from Cluster #1 and Cluster #2 were mainly attributed 

to local emissions, the higher values in Cluster #3 and Cluster #4 may have been 

influenced by the long-range transport of biomass burning from Southeast Asia 

and South-eastern China, where there was a large number of fire incidences (Fig. 

4).” 

Not clear with the definition of secondary substance, most organic and mineral should 

also be primary? 

Response: The organics contains primary emissions and secondary formation, and the 

mineral dust here is fugitive dust. In our study, we used the BC-tracer method with 

MRS approach to distinguish the light absorption contributed by primary emissions 

(including black carbon and primary brown carbon) and secondary formation (that is 

secondary brown carbon). As the results shown in the main text, ~95% of light 

absorption was contributed by primary emissions. The reason why we wanted to prove 

this was that there was lack of tracers of secondary brown carbon when we did the PMF 

model. The negligible impact of secondary formation on light absorption can avoid 

potential uncertainty of not obtaining the secondary brown carbon in the optical source 

apportionment. However, the minor light absorption of secondary BrC did not mean 

that the mass concentration of secondary organic aerosol was low. It only indicated that 

few secondary organic aerosols had the light-absorbing ability. To eliminate the 

misunderstanding on this aspect, we revised our original expressions to “Based on Eq. 

(5), Abssec(λ) accounted for less than 5% of Abs(λ) (Table S1), suggesting a negligible 

impact of secondary formation on the light absorption capacity of aerosols during the 

study. Therefore, the uncertainty caused by using only Abspri(λ) in the model could be 



put to rest in the absence of an effective way to identify the source of secondary BrC.” 

Where did the dust come from, I don’t think there was any dust sources rather than 

some sea salt. 

Response: We agree with the reviewer that the sea salt is an important component in 

particulate matter at coastal city. However, the sea salt is a scattering material which is 

beyond the scope of our study. Here the dust denotes the fugitive dust which was mainly 

caused by the winds or relevant human activities in Sanya. In order to make it more 

clearly, we have changed the ‘mineral dust’ to ‘fugitive dust’ in the revised manuscript. 

The shipping emissions are not really supported with any other external data source (I 

don’t know what is that because I can’t see anything from the current analysis done so 

far). 

Response: We agree with the reviewer that more external tracers of ship emissions can 

further strengthen the identification results. However, the tracers were hard to 

determine due to the lack of effective chemical analysis method in this study. Actually, 

the V is a reliable tracer to indicate the ship emissions used in previous studies (e.g., 

Tao et al., 2016; Mamoudou et al., 2018). The V/Ni ratio can be further used to identify 

the ship emissions because it varies from 2.5 to 4.0 for this source (Cesari et al., 2014). 

In the case of lack of other external tracers, the current used V-based identification 

method in PMF model is also a reliable approach. To strengthen the reliability of our 

results, we have added more description about the verification of the PMF in the revised 

manuscript (see next response below). 

References: 

Cesari, D., Genga, A., Ielpo, P., Siciliano, M., Mascolo, G., Grasso, F. M., and Contini, 

D.: Source apportionment of PM2.5 in the harbour–industrial area of Brindisi 

(Italy): Identification and estimation of the contribution of in-port ship emissions, 

Sci. Total Environ., 497–498, 392–400, 

https://doi.org/10.1016/j.scitotenv.2014.08.007, 2014. 

Mamoudou, I., Zhang, F., Chen, Q., Wang, P. and Chen, Y.: Characteristics of PM2.5 



from ship emissions and their impacts on the ambient air: A case study in Yangshan 

Harbor, Shanghai, Sci. Total Environ., 640–641, 207–216, 

https://doi.org/10.1016/j.scitotenv.2018.05.261, 2018. 

Tao, J., Zhang, L., Cao, J., Zhong, L., Chen, D., Yang, Y., Chen, D., Chen, L., Zhang, 

Z., Wu, Y., Xia, Y., Ye, S. and Zhang, R.: Source apportionment of PM2.5 at urban 

and suburban areas of the Pearl River Delta region, south China - With emphasis 

on ship emissions, Sci. Total Environ., 574, 1559–1570, 

https://doi.org/10.1016/j.scitotenv.2016.08.175, 2017. 

- The PMF analysis seems not quite convincing, could you provide more details about 

the scenarios. 

Response: Following the reviewer’s suggestion, we have added more descriptions 

about the verification of the PMF results (e.g., BS, DISP, and BS-DISP analysis) in the 

revised manuscript. It now reads as follows:  

“Moreover, two to seven factors were selected to initiate the PMF5.0 run. Due 

to the additional factors, the Q/Qexp ratio decreased with the increased number of 

factors as shown in Fig. S7. The decrease in Q/Qexp was large when the factor 

number changed from 2 to 3 and 3 to 4 but stabilized as the factor number grew 

larger than 4, indicating that four factors may be the optimal solution. After 

multiple runs of the PMF5.0 model, four factor sources including ship emissions, 

motor vehicle emissions, biomass burning, and fugitive dust were finally 

identified (Fig. 3a). Additionally, the modeled Abspri(λ) at different wavelengths 

showed strong correlations with the measured Abs(λ) (r = 0.82–0.89, p < 0.01, 

Fig. S8). The slopes of 0.92–0.98 were consistent with the absorption fractions 

of Abspri(λ) estimated by the BC-tracer method combined with the MRS 

approach (Table S1). The scaled residuals for each species varied between -3 and 

+3.  

The uncertainty of each factor profile was further evaluated using BS, DISP, and 

BS-DISP. The BS results showed that the reproducibility of each source factor 



was larger than 80% (Table S2), indicating good stability. Therefore, this 

suggested that the four source factors were appropriate. No swaps occurred in 

DISP, indicating the stability of the selected solution. Furthermore, all BS-DISP 

runs were successful. Overall, these results pointed to the efficiency of the 

PMF5.0 model in performing optical source apportionment.” 

And even so, would you really believe to incorporate the spectral absorption in parallel 

with the offline composition will really give some physical meaning? There seems no 

signature of sources on the absorption. 

Response: We agree with the reviewer that there is no special signature of sources for 

one single-wavelength light absorption. However, when we use multiwavelength light 

absorption data together (e.g., λ = 370, 470, 520, 590, 660, and 880 nm in this study), 

there will be certain indication for specific sources due to the different light-absorbing 

aerosols having distinct absorption properties. For example, brown carbon, which is 

mainly from biomass burning, absorbs light towards short wavelengths (e.g., near-

ultraviolet region). Therefore, compared to the fossil fuel sources, the biomass burning 

can contribute more to light absorption in the near-ultraviolet region (e.g., λ = 370 nm). 

Moreover, this contribution decreases with increase in wavelength. In contrast, the 

motor vehicle emissions contribute less to light absorption at λ = 370 nm than biomass 

burning due to the presence of large amounts of black carbon. This contribution 

increases with increase in wavelength. From this perspective, the additional 

multiwavelength absorption data in the PMF model will be helpful for optimizing the 

performance of source apportionment. 

The time resolution is different between online and offline measurements, did you just 

average the online data into a very low time interval. 

Response: Yes, we averaged the period of online data to match each filter sampling 

time. In the revised manuscript, we have added a sentence to clarify this:  

“Online Abspri(λ) data was integrated to match each filter sampling time.” 



- MAC of organic should be normalized by organic matter (including all elements) not 

only organic carbon. The MAC of organic here doesn’t mean anything. 

Response: We followed the reviewer’s suggestion and changed to discuss the MAC of 

organic matter instead of organic carbon. The relevant content in the main text and 

figure (Fig. 6 in the revised manuscript) were revised accordingly. The update 

calculation method in the revised manuscript is shown as follows: 

“Additionally, MAC could be used to reflect the light absorption capacity of 

aerosols. The MACs of BC and BrC at different wavelengths (MACBC(λ) and 

MACBrC(λ), respectively) were calculated with AbsBC(λ) and AbsBrC(λ) divided 

by the corresponding mass concentrations of BC and organic matter (OM), 

respectively: 

MAC!"(λ) = #$%!"(')
[!"]

           (7) 

MAC!+"(λ) = #$%!#"(')
[,-]

          (8) 

where the mass concentration of OM was estimated by a factor of 1.8 times that 

of OC mass concentration (Turpin and Lim, 2001).” 

- I am not convinced with the forcing calculation and the directly correlated heating. I 

don’t think you really need to make that calculation as the main job of this study is to 

get the absorption attribution properly. The forcing largely replies on the vertical 

distribution of AOD and SSA, which you don’t really have such information, which is 

beyond the scope of this study though. 

Response: We thank the reviewer pointing out this. The direct radiative effect (DRE) 

caused by light-absorbing carbonaceous (LAC) aerosols is mainly related to their light 

absorption properties. So, it will be valuable for further estimating the source-specific 

LAC DRE after we obtained the light absorption of different sources. We agree with 

the reviewer that aerosol DRE strongly relies on the vertical distributions of AOD and 

SSA. The Optical Properties of Aerosols and Clouds (OPAC) model is a mature and 

widespread approach used in current studies to retrieve the vertical AOD and SSA based 



on the surface measurements of chemical composition (e.g., Singh et al., 2018; Zhao et 

al., 2019; Kant et al., 2020). In our study, we used the OPAC model combining the 

measured mass concentrations of OC, EC, and water-soluble ions as well as the 

estimated mineral dust to estimate the vertical AOD, SSA, and AP. These optical 

parameters are essential inputs in the SBDART model for calculation of aerosol DRE. 

After careful consideration, we think that the reviewer’s puzzle may be caused by our 

original unclear description in models of OPAC and SBDART. Therefore, we added 

more information about the calculations of OPAC (e.g., compared with the PAX 

measured light extinction and the satellite-derived AODs) and SBDART model in the 

revised manuscript. It now reads as follows: 

“2.7 The Optical Properties of Aerosols and Clouds (OPAC) Model 

The OPAC model was used to retrieve the following parameters: aerosol optical 

depth (AOD), single scattering albedo (SSA), and asymmetric parameter (AP). 

The parameters were important in estimating the radiative effect of aerosols. A 

detailed description of the OPAC software package was given by Hess et al. 

(1998). The measured mass concentrations of OC, EC, and water-soluble ions as 

well as the estimated mineral dust loading (=[Fe]/0.035) during the day were 

used in the OPAC model to estimate the optical parameters. Moreover, the BC 

number concentration in the OPAC model was constrained by the measured BC 

mass concentration. Although several water-soluble ions and mineral dust were 

obtained, they did not contain all the water-soluble and insoluble material. 

Therefore, based on the measured data, the number concentrations of water-

soluble and insoluble materials were tuned. This was done until the differences 

between the OPAC-derived light scattering, light absorption, and SSA versus the 

corresponding PAX-measured values were within 5% (Fig. S3). After the aerosol 

light extinction coefficient (sum of light scattering and absorption) was obtained, 

the AOD was estimated as follows (Hess et al., 1998): 

AOD = ∑ ∫ σ.,0(ℎ).ℎ = ∑ /.,01 00(0) ∫ 22
$
%&.ℎ3&,()*

3&,(+,0
3&,()*
3&,(+,0     (12) 

where 30,456 and 30,478 were the upper and lower boundaries in layer 4;	/.,0 



was the surface aerosol light extinction coefficient in layer 4; ℎ was the layer 

height; /.,01  represented the aerosol light extinction coefficient that was 

normalized to 1 particle cm-3; 00 was the number concentration in layer 4;	and 

7 was the scale height. Furthermore, the OPAC-derived AODs were tuned to 

match the satellite-derived AODs (https://giovanni.gsfc.nasa.gov/giovanni, last 

access: January 2020) by altering the scale height in OPAC until the difference 

between them was within 5%. Owing to closure with AOD and anchoring of 

chemical composition, the assumptions in the OPAC model did not have a 

significant impact on the estimation of radiative effect in subsequent section 2.8 

(Satheesh and Srinivasan 2006). 

2.8 Estimations of radiative effect and heating rate 

The LAC direct radiative effect (DRE) was estimated by the Santa Barbara 

DISORT (Discrete Ordinate Radiative Transfer) Atmospheric Radiative Transfer 

(SBDART) model in the shortwave spectral region of 0.25–4.0 μm. A detailed 

description of the SBDART model was given by Ricchiazzi et al. (1998). The 

AOD, SSA, and AP are essential input parameters in the SBDART model and 

were obtained from the OPAC model (see section 2.7). In addition to these, 

several other input parameters were included, namely the surface albedo, solar 

zenith angle, and profiles of atmospheric parameters. The surface albedo was 

derived from the Moderate Resolution Imaging Spectroradiometer 

(https://modis-atmos.gsfc.nasa.gov/ALBEDO/index.html, last access: January 

2020). On the other hand, the solar zenith angle was calculated with a specific 

time and location (i.e., latitude and longitude) using a small code from the 

SBDART model. Furthermore, six standard atmospheric vertical profiles (i.e., 

tropical, mid-latitude summer, subarctic summer, mid-latitude winter, subarctic 

winter and US62) were embedded in the SBDART model. They provided vertical 

distributions of temperature, pressure, water vapor, and ozone density 

(Ricchiazzi et al., 1998). In this study, the mid-latitude summer was selected to 

represent the situation of Sanya based on its classification as a mid-latitude 



region. Obregón et al. (2015) demonstrated that the SBDART model could 

provide a reliable estimation of radiative effect. Moreover, aerosol DRE was 

defined as the difference in the radiation flux (F) either at the Earth’s surface or 

at the top of the atmosphere, respectively with and without the aerosol in the 

atmosphere: 

DRE = (F ↓ −F ↑)9:;<	>?+@%@A − (F ↓ −F ↑)9:;<@B;	>?+@%@A     (13) 

where ↓  and ↑  represented the downward and upward flux, respectively. 

Atmospheric DRE was then estimated by the difference between the DRE at the 

top of the atmosphere and the Earth’s surface.  

Further, the atmospheric heating rate (CD
C;

, in unit of K d-1) caused by LAC 

aerosols was estimated using the first law of thermodynamics and hydrostatic 

equilibrium as follows (Liou, 2002): 
CD
C;
= E

"-
× △G

△H
               (14) 

where E
"-

 was the lapse rate and g stood for acceleration due to gravity while 

CI described the specific heat capacity of air at a constant pressure (1006 J kg-1 

K-1). Additionally, ∆F was the atmospheric DRE contributed by LAC aerosols 

and ∆P represented the atmospheric pressure difference (300 hPa).” 
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backward trajectories was used to identify the potential source areas (Q. Wang 
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Optical source apportionment and radiative effect of light-absorbing 
carbonaceous aerosols in a tropical marine monsoon climate zone: 
The importance of ship emissions 
Qiyuan Wang1,2, Huikun Liu1, Ping Wang3, Wenting Dai1, Ting Zhang1, Youzhi Zhao3, Jie Tian1, Wenyan 
Zhang1, Yongming Han1,2, Junji Cao1,2 5 
1Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary 
Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710061, China 
2CAS Center for Excellence in Quaternary Science and Global Change, Xi’an 710061, China 
3Hainan Tropical Ocean University, Sanya 572022, China 

Correspondence to: Qiyuan Wang (wangqy@ieecas.cn) and Junji Cao (cao@loess.llqg.ac.cn) 10 

Abstract. Source-specific optical properties of light-absorbing carbonaceous (LAC) aerosols in the 

atmosphere are poorly understood because they are generated by various sources. In this study, a receptor 

model combining multi-wavelength absorption and chemical species was used to explore the source-

specific optical properties of LAC aerosols in a tropical marine monsoon climate zone. The results showed 

that biomass burning had the largest contribution to average LAC absorption. However, ship emissions 15 

emerged as the dominant contributors (44–45%) when the air masses originated from the South China 

Sea. Additionally, the source-specific Absorption Ångström Exponent (AAE) indicated that black carbon 

(BC) was the dominant LAC aerosol in ship and motor vehicle emissions. Moreover, brown carbon (BrC) 

was present in biomass-burning emissions. The source-specific mass absorption cross section (MAC) 

showed that BC from ship emissions had a stronger light-absorbing capacity compared to emissions from 20 

biomass burning and motor vehicles. The BrC MAC derived from biomass burning was also smaller than 

the BC MAC and was highly depended on wavelength. Furthermore, radiative effect assessment indicated 

a comparable atmospheric forcing and heating capacity of LAC aerosols between biomass burning and 

ship emissions. This study provides insights into the optical properties of LAC aerosols from various 

sources. It also sheds more light on the radiative effects of LAC aerosols generated by ship emissions. 25 
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1 Introduction 

Carbonaceous aerosols are abundant in PM2.5 (particulate matter with an aerodynamic diameter ≤ 2.5 µm) 

(e.g., 20–50% of PM2.5 mass, Putaud et al., 2010; Tao et al., 2017) and have extensively been explored 

due to their implications on global climate forcing (IPCC, 2013). Among the complex carbonaceous 

compounds are the light-absorbing carbonaceous (LAC) aerosols which are mainly associated with 5 

absorption of light. LAC aerosols consist of black carbon (BC) and brown carbon (BrC). BC is a short-

lived climate forcer with a strong ability to absorb sunlight. Moreover, it is regarded as the second largest 

contributor of positive anthropogenic climate forcing after carbon dioxide (Bond et al., 2013). On the 

other hand, BrC refers to a class of light-absorbing organic compounds with enhanced light absorption at 

short wavelengths (e.g., near-ultraviolet region). Therefore, it is a potential contributor to atmospheric 10 

heating at both global and regional scales (Laskin et al., 2015). 

The optical properties of LAC aerosols are closely related to their sources as well as atmospheric 

conditions and secondary processing. However, distinguishing source-specific light absorption by LAC 

from a mixture of aerosols in the atmosphere is still a challenge. It is possible to use multi-wavelength 

light absorption data to identify optical source apportionment based on the Beer-Lambert’s Law (e.g., 15 

aethalometer model and multi-wavelength absorption analyzer model, Sandradewi et al., 2008; Massabò 

et al., 2015), which can typically explain two different types of sources (e.g., fossil fuels versus biomass 

burning). Results from this method are highly dependent on the use of the source-specific Absorption 

Ångström Exponent (AAE). However, due to lack of source-specific AAE data, most studies use 

empirical values reported in previous literature (e.g., Healy et al., 2017; Küpper et al., 2018; Zheng et al., 20 

2019). This may create inconsistencies in the reported results because the source-specific AAEs varies 

with the type of fuels and their burning efficiencies (Tian et al., 2019). 

In addition, optical source apportionment can be obtained using receptor models (e.g., Positive Matrix 

Factorization (PMF) and Multilinear Engine (ME2)). Several studies have utilized receptor models to 

identify sources, first based on the sole chemical species or mass spectra information. Thereafter, a 25 

multiple linear regression model is used to apportion the contribution of each source to the optical 

parameters of an aerosol (Qin et al., 2018; Tian et al., 2020). This method may be referred to as indirect 

optical source apportionment. In contrast, Forello et al. (2019) coupled chemical species with multi-
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wavelength absorption in ME2 to directly perform optical source apportionment. Compared to the indirect 

approach, the additional optical data in receptor models can improve the performance of source 

apportionment because each source has its own optical features. Furthermore, it may eliminate potential 

uncertainties caused by multiple operations in the indirect approach. However, the application of direct 

optical source apportionment is scarce at the moment. 5 

Alternatively, laboratory studies may effectively be used to explore the optical properties of LAC from a 

specific source (e.g., vehicle engine exhaust, coal combustion, and biomass burning) (Tian et al., 2019; 

Xie et al., 2017). However, the optical properties of LAC may significantly change due to the complex 

atmospheric processes that they undergo after emission into the atmosphere. Therefore, it is critical to 

identify LAC aerosols from different sources in the atmosphere using specific methods in order to obtain 10 

their optical properties. Furthermore, to the best of our knowledge, there is no study focusing on the 

optical properties of ship exhaust-related LAC aerosols in the atmosphere. This presents a challenge to 

our understanding of the role of ship emissions on the climate considering that it is a significant part of 

discharge from the transport sector. 

In this study, multi-wavelength aerosol light absorption and chemical species were measured in Sanya, a 15 

coastal city in China. This was done to investigate the optical properties of LAC aerosols from ship 

emissions and other sources. A dataset combining optical and chemically speciated data was used 

simultaneously in a receptor model to obtain the optical source apportionment. Afterwards, the source-

specific optical properties of LAC aerosols were determined and characterized. Finally, the impact of 

radiative effect induced by LAC aerosols from different sources was evaluated. This study provides 20 

insights into the source-specific optical properties of LAC aerosols from various sources. Additionally, it 

reinforces knowledge on the radiative effects of LAC aerosol. 

2 Methodology 

2.1 Sampling site 

The sampling site is located in Sanya, a small city (an area of 1921.5 km2 and a total population of 0.59 25 

million as at 2017) in the southernmost tip of the Hainan Island in Southern China (Fig. S1). 
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Comprehensive measurements were taken in spring from 12th April to 14th May 2017 on the rooftop of a 

teaching building (about 20 m above ground level) in Hainan Tropical Ocean University (18.30° N, 

109.52° E). The sampling site is predominantly an educational and residential area with typical urban 

sources of emission including vehicles and cooking appliances. Sanya lies within a tropical marine 

monsoon climate zone therefore the weather was warm (temperature = 28 ± 3°C) and wet (relative 5 

humidity = 81 ± 12%) during the study. 

2.2 Online and offline measurements 

A model AE33 aethalometer (Magee Scientific, Berkeley, CA, USA) was used to determine the light 

absorption coefficients of the aerosols at multi-wavelengths (Abs(λ), λ is wavelength) with a PM2.5 

cyclone (SCC 1.829, BGI Inc. USA). Briefly, the collected particles were desiccated using a Nafion® 10 

dryer (MD-700-24S-3; Perma Pure, Inc., Lakewood, NJ, USA) before measurement with the AE33 

aethalometer. As shown in Fig. S2, the loss of Abs(λ) caused by the dryer was ignored. Afterwards, seven 

light emitting diodes (λ = 370, 470, 520, 590, 660, 880, and 950 nm) in the AE33 aethalometer were used 

to irradiate the filter deposition spot to obtain light attenuation as previously described (Drinovec et al., 

2015). Since the AE33 aethalometer records the BC mass concentrations, the Abs(λ) at each wavelength 15 

were retrieved by getting the product of BC mass concentration ([BC]) and mass absorption cross-section 

(MAC) used in the instrument (Abs(λ) = [BC] × MAC) (Drinovec et al., 2015). One of the advantages of 

AE33 aethalometer is that it resolves the filter loading effect using a dual-spot compensation technique. 

Further details regarding the principles of operation of the AE33 aethalometer have been outlined by 

Drinovec et al. (2015). 20 

In addition, A Photoacoustic Extinctiometer (PAX, Droplet Measurement Technologies, Boulder, CO, 

USA) was used to directly measure aerosol light absorption at λ = 532 nm. It was set in parallel with the 

AE33 aethalometer using the same PM2.5 cyclone and Nafion® dryer. Briefly, the PAX adopts an 

intracavity photoacoustic technique, with a modulated laser beam heating up the sampled particles in an 

acoustic chamber. The pressure wave generated from heating is then detected by a sensitive microphone. 25 

Moreover, aerosol light scattering can be measured using a wide-angle integrating reciprocal 

nephelometer in a scattering chamber. In this study, different concentration gradients of ammonium 
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sulphate and freshly-generated propane soot were used to calibrate light scattering and absorption 

measurements, respectively. The calibration procedure was described in detail by Q. Wang et al. (2018a). 

The PM2.5 quartz-fiber filters (8 × 10 inch) (QM/A; GE Healthcare, Chicago, IL, USA) were collected 

during the day (from 08:00 to 20:00) and at night (from 20:00 to 08:00 the next day) using a high-volume 

air sampler (Tisch Environmental, Inc., USA) with a flowrate of 1.13 m3 min-1. Before sampling, the 5 

blank quartz-fiber filters were heated in a muffle furnace at 805 °C for 3h to remove possible impurities. 

After sampling, the quartz-fiber filters were saved in a freezer at about -20 °C to minimize evaporation 

of volatile materials before chemical analyses. Finally, field blanks were collected and analysed to 

eliminate potential background artifacts. 

The collected quartz-fiber filters were used to analyse inorganic elements, carbonaceous matter, water-10 

soluble ions, and organics. An Energy-Dispersive X-ray Fluorescence (ED-XRF) spectrometry (Epsilon 

5 ED-XRF, PANalytical B.V., Netherlands) was used to determine the Titanium (Ti), Vanadium (V), 

Manganese (Mn), Ferrum (Fe), Nickel (Ni), Copper (Cu), Zinc (Zn), and Bromine (Br) quantities. A 

detailed description of the principles of ED-XRF has been highlighted by Xu et al. (2012). Moreover, a 

thermal/optical carbon analyzer (Desert Research Institute Model 2001, Atmoslytic Inc., Calabasa, CA, 15 

USA) was used to analyse organic carbon (OC) and elemental carbon (EC). A detailed analytical 

procedure has been described elsewhere (Chow et al., 2007). An Ion Chromatograph (IC, Dionex 600; 

Dionex Corporation, Sunnyvale, CA, USA) was also used to quantify the water-soluble cations (i.e., Na+, 

K+, Mg2+, Ca2+, and NH4+) and anions (i.e., Cl-, NO3-, and SO42-) as described by Zhang et al. (2011). 

Finally, an in-injection port Thermal Desorption (TD) coupled with an Agilent 7890/5975C Gas 20 

Chromatography/Mass Spectrometer (GC/MS) (Agilent Technologies, Santa Clara, CA, USA) was used 

to determine the hopanes using a protocol described by J. Wang et al. (2016). 

2.3 Segregation of BC and BrC absorption 

The Abs(λ) consisted of light absorption from both LAC aerosols (BC and BrC) and mineral dust (Wang 

et al., 2013). Therefore, LAC absorption (AbsLAC(λ)) was calculated as follows: 25 

Abs!"#(λ) = Abs$#(λ)+ Abs$%#(λ) = Abs(λ)− Abs&'()%*+(λ)     (1) 
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where AbsBC(λ), AbsBrC(λ), and Absmineral(λ) were absorption of light by BC, BrC, and mineral dust at λ 

= 370, 470, 520, 590, 660, or 880 nm, respectively (in unit of Mm-1). The Absmineral(λ) was retrieved from 

the optical source apportionment as discussed in section 3.2. With an assumption of BC only absorbing 

at λ = 880 nm, the AbsBC(λ) at wavelengths of 370, 470, 520, 590, and 660 was extrapolated as follows: 

Abs$#(λ) = Abs(880) × (
λ
880)

-AAEBC
         (2) 5 

where AAEBC represents BC AAE, which was assumed to be 1.1 based on a study by Lack and Langridge 

(2013). Combining Eqs. (1) and (2) gave the following equation: 

Abs$%#(λ) = Abs(λ) − Abs(880) × (
,

--.
)/""0!" − Abs&'()%*+(λ)     (3) 

From the perspective of emission and formation, the Abs(λ) could be divided into light absorption 

contributed by primary emissions (Abspri(λ)) and secondary formation (Abssec(λ)). Therefore, the Abs(λ) 10 

could be calculated as follows: 

Abs(λ) = Abs1%'(λ)+ Abs2)3(λ)         (4) 

A BC-tracer method was utilized to separate Abssec(λ) from Abspri(λ) and the Eq. (4) could further be 

developed as follows (Wang et al., 2019a): 

Abs2)3(λ) = Abs(λ) − (
"42(,)

$# )1%' × [BC]        (5) 15 

where ("42(,)
$#

)1%' described the ratio of Abs(λ) to BC mass concentration in primary emissions (in unit of 

m2 g-1) and [BC] denoted the mass concentration of BC in the atmosphere (in unit of μg m-3). This was 

retrieved from the relationship between Abs(880) measured by the AE33 aethalometer and EC mass 

concentration. Finally, the ("42(,)
$#

)1%' ratio was determined using a minimum R-squared (MRS) method 

previously described by Wang et al. (2019a). 20 

2.4 Estimation of optical parameters 

AAE reflects spectral dependence of aerosol light absorption and can be used to distinguish the chemical 

composition of LAC aerosols. For example, LAC aerosol dominated by BC has an AAE close to 1.0 while 

the presence of BrC results in AAE larger than 1.0 (Andreae and Gelencsér, 2006). As described 

previously, AAE can be retrieved using a power law function as follows (Andreae and Gelencsér, 2006): 25 
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Abs(λ) = C × λ/""0           (6) 

where C is a constant independent of wavelength. 

Additionally, MAC could be used to reflect the light absorption capacity of aerosols. The MACs of BC 

and BrC at different wavelengths (MACBC(λ) and MACBrC(λ), respectively) were calculated with AbsBC(λ) 

and AbsBrC(λ) divided by the corresponding mass concentrations of BC and organic matter (OM), 5 

respectively: 

MAC$#(λ) = "42!"(,)
[$#]

           (7) 

MAC$%#(λ) = "42!#"(,)
[9#]

          (8) 

where the mass concentration of OM was estimated by a factor of 1.8 times that of OC mass concentration 

(Turpin and Lim, 2001). 10 

2.5 Receptor model source apportionment 

The PMF version 5.0 (PMF5.0) from the US Environmental Protection Agency (Norris et al., 2014) was 

applied to determine the contribution of various sources to aerosol light absorption. The principle of PMF 

has been described elsewhere (Paatero and Tapper, 1994). Briefly, PMF decomposes the initial dataset 

into a factor contribution matrix G': (i × k dimensions) and a factor profile matrix F:; (k × j dimensions) 15 

and then iteratively minimizes the object function 6: 

X'; = ∑ G':F:; + E';1
:<=           (9) 

6 = ∑ ∑ (0$%
>$%
)?(

;<=
&
'<=            (10) 

where X'; was the value of the jth species in the ith sample; E'; described the model residual; and σ'; 
represented uncertainty, which was calculated as follows: 20 

σ'; = ;
<(error	fraction × concentration)? + (0.5 × MDL)?, (concentration > MDL)
@

A
×MDL, (concentration ≤ MDL)																																																																																	

  (11) 

where MDL was the method detection limit and the error fraction was set to 10% (Rai et al., 2020). The 

uncertainties of the PMF5.0 results were evaluated by the following analyses: Bootstrap (BS), 

Displacement (DISP), and Bootstrap-displacement (BS-DISP). The BS analysis assesses the random 
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errors in PMF solutions while DISP estimates rotational ambiguity. On the other hand, BS-DISP estimates 

both random errors and rotational ambiguity. A more detailed description of the three error estimation 

methods has been provided by Paatero et al. (2014) and Brown et al. (2015). 

2.6 Analysis of air-mass trajectories 

Cluster analysis of three-day backward air-mass trajectories was used to investigate the impact of 5 

transport pathways on Abs(λ). The backward trajectories were calculated hourly with an arrival height of 

500 m above ground level using the Hybrid Single-Particle Lagrangian Integrated Trajectory Model 

(Draxler and Rolph, 2003). The cluster analysis was performed according to the angle-based distance 

statistics method (Q. Wang et al., 2018a). Furthermore, a Concentration-weighted Trajectory (CWT) 

analysis based on the three-day backward trajectories was used to identify the potential source areas (Q. 10 

Wang et al., 2016). Finally, cluster and CWT analyses were performed using a GIS-based TrajStat 

software developed by Wang et al. (2009). 

2.7 The Optical Properties of Aerosols and Clouds (OPAC) Model 

The OPAC model was used to retrieve the following parameters: aerosol optical depth (AOD), single 

scattering albedo (SSA), and asymmetric parameter (AP). The parameters were important in estimating 15 

the radiative effect of aerosols. A detailed description of the OPAC software package was given by Hess 

et al. (1998). The measured mass concentrations of OC, EC, and water-soluble ions as well as the 

estimated mineral dust loading (=[Fe]/0.035) during the day were used in the OPAC model to estimate 

the optical parameters. Moreover, the BC number concentration in the OPAC model was constrained by 

the measured EC mass concentration. Although several water-soluble ions and mineral dust were obtained, 20 

they did not contain all the water-soluble and insoluble material. Therefore, based on the measured data, 

the number concentrations of water-soluble and insoluble materials were tuned. This was done until the 

differences between the OPAC-derived light scattering, light absorption, and SSA versus the 

corresponding PAX-measured values were within 5% (Fig. S3). After the aerosol light extinction 

coefficient (sum of light scattering and absorption) was obtained, the AOD was estimated as follows 25 

(Hess et al., 1998): 
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AOD = ∑ ∫ σB,D(ℎ)Qℎ = ∑ RB,D= SD(0) ∫ T
/
&
'(QℎE(,*+,

E(,*-.D
E(,*+,
E(,*-.D      (12) 

where UD,FGH and UD,FIJ were the upper and lower boundaries in layer V;	RB,D was the surface aerosol light 

extinction coefficient in layer V ; ℎ  was the layer height; RB,D=  represented the aerosol light extinction 

coefficient that was normalized to 1 particle cm-3; SD was the number concentration in layer V;	and X was 

the scale height. Furthermore, the OPAC-derived AODs were tuned to match the satellite-derived AODs 5 

(https://giovanni.gsfc.nasa.gov/giovanni, last access: January 2020) by altering the scale height in OPAC 

until the difference between them was within 5%. Owing to closure with AOD and anchoring of chemical 

composition, the assumptions in the OPAC model did not have a significant impact on the estimation of 

radiative effect in subsequent section 2.8 (Satheesh and Srinivasan 2006). 

2.8 Estimations of radiative effect and heating rate 10 

The LAC direct radiative effect (DRE) was estimated by the Santa Barbara DISORT (Discrete Ordinate 

Radiative Transfer) Atmospheric Radiative Transfer (SBDART) model in the shortwave spectral region 

of 0.25–4.0 μm. A detailed description of the SBDART model was given by Ricchiazzi et al. (1998). The 

AOD, SSA, and AP are essential input parameters in the SBDART model and were obtained from the 

OPAC model (see section 2.7). In addition to these, several other input parameters were included, namely 15 

the surface albedo, solar zenith angle, and profiles of atmospheric parameters. The surface albedo was 

derived from the Moderate Resolution Imaging Spectroradiometer (https://modis-

atmos.gsfc.nasa.gov/ALBEDO/index.html, last access: January 2020). On the other hand, the solar zenith 

angle was calculated with a specific time and location (i.e., latitude and longitude) using a small code 

from the SBDART model. Furthermore, six standard atmospheric vertical profiles (i.e., tropical, mid-20 

latitude summer, subarctic summer, mid-latitude winter, subarctic winter and US62) were embedded in 

the SBDART model. They provided vertical distributions of temperature, pressure, water vapor, and 

ozone density (Ricchiazzi et al., 1998). In this study, the mid-latitude summer was selected to represent 

the situation of Sanya based on its classification as a mid-latitude region. Obregón et al. (2015) 

demonstrated that the SBDART model could provide a reliable estimation of radiative effect. Moreover, 25 
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aerosol DRE was defined as the difference in the radiation flux (F) either at the Earth’s surface or at the 

top of the atmosphere, respectively with and without the aerosol in the atmosphere: 

DRE = (F ↓ −F ↑)K'LM	*)%O2O+ − (F ↓ −F ↑)K'LMOPL	*)%O2O+      (13) 

where ↓ and ↑ represented the downward and upward flux, respectively. Atmospheric DRE was then 

estimated by the difference between the DRE at the top of the atmosphere and the Earth’s surface.  5 

Further, the atmospheric heating rate (QR
QL

, in unit of K d-1) caused by LAC aerosols was estimated using 

the first law of thermodynamics and hydrostatic equilibrium as follows (Liou, 2002): 
QR

QL
= S

#/
× △U

△V
            (15) 

where S
#/

 was the lapse rate and g stood for acceleration due to gravity while C1 described the specific 

heat capacity of air at a constant pressure (1006 J kg-1 K-1); Additionally, ∆F was the atmospheric DRE 10 

contributed by LAC aerosols and ∆P representd the atmospheric pressure difference (300 hPa). 

3 Results and discussion 

3.1 Overview of Abs(λ) 

The AE33 absorption was first corrected using PAX measurement and a strong correlation (r = 0.96, p < 

0.01) between them was found (Fig. S4). A slope of 2.3 was regard as the correction factor and was 15 

comparable to the values of 2.0–2.6 reported by previous studies using a similar method (Qin et al., 2018; 

Tasoglou et al., 2017; Wang et al., 2019b). This difference may mainly be related to the matrix scattering 

and lensing effects. The time series of corrected Abs(λ) is shown in Fig. 1 and a statistical summary of 

the data presented in Table 1. The average Abs(λ) were 15.7 ± 5.3, 11.4 ± 3.7, 9.7 ± 3.0, 8.3 ± 2.6, 7.0 ± 

2.2, and 4.9 ± 1.5 Mm-1 at 370, 470, 520, 590, 660, and 880 nm, respectively in the throughout the study. 20 

However, it is noteworthy that such single-wavelength calibrations may overestimate Abs(λ) at long 

wavelengths (i.e., λ = 590, 660, and 880 nm) and underestimate it at short wavelengths (i.e., λ = 370 and 

470 nm) owing to the correction factor’s dependence on wavelength (Kim et al., 2019). Compared to 

previous work, the Abs(λ) in this study were lower than those obtained from urban areas in China and 

Europe (J. Wang et al., 2018; Liakakou et al., 2020). However, they were comparable to some rural and 25 
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remote areas where anthropogenic activities were not intensive (Zanatta et al., 2016; Zhu et al., 2017). 

This suggests the possibility of a relatively small LAC burden in the atmosphere at Sanya during the study. 

Additionally, AbsBC(λ) contributed more than 77% to Abs(λ) whereas the contribution of AbsBrC(λ) was 

less than 17% (Fig. 2). This was consistent with previous studies showing that BC was stronger at 

absorbing light compared to BrC at the near-ultraviolet to near-infrared wavelengths in the atmosphere 5 

(Massabò et al., 2015; Liakakou et al., 2020). However, laboratory studies reported that AbsBrC(λ) could 

exceed AbsBC(λ) at short wavelengths in fresh smoke from biomass burning, especially in the smoldering 

phase (Tian et al., 2019; Chow et al., 2018). Furthermore, the fraction of AbsBC(λ) increased with an 

increase in wavelength although the fraction of AbsBrC(λ) showed an inverse trend with a dramatic drop 

from 17% at 370 nm to 3% at 660 nm as shown in Fig. 2. This suggests a stronger light-absorbing capacity 10 

for BrC at short wavelengths compared to the long ones. With regard to the relationship between Abs(λ) 

and carbonaceous composition, the AbsBC(λ) correlated well with EC mass concentration (r = 0.93, p < 

0.01, Fig. S5). However, a weak but significant correlation was observed between AbsBrC(λ) and OC mass 

concentration (r = 0.27–0.42, p < 0.05, Fig. S6). The results further conformed that BC was the dominant 

light-absorbing material in LAC aerosols while OC comprised more of non-light-absorbing carbon 15 

components compared to the light-absorbing ones. 

3.2 Source apportionment of Abs(λ) 

To quantify the contributions of various sources to Abs(λ), chemical species and Abspri(λ) were 

simultaneously used as input parameters in the PMF5.0 model. Online Abspri(λ) data was integrated to 

match each filter sampling time. The selected chemical species included carbonaceous matter (i.e., OC 20 

and EC), water-soluble cations (i.e., Na+, K+, and Ca2+), elements (i.e., Ti, V, Mn, Fe, Ni, Cu, Zn, and 

Br), and hopanes. The mass concentrations of the chemicals are summarized in Table 2. Based on Eq. (5), 

Abssec(λ) accounted for less than 5% of Abs(λ) (Table S1), suggesting a negligible impact of secondary 

formation on the light absorption capacity of aerosols during the study. Therefore, the uncertainty caused 

by using only Abspri(λ) in the model could be put to rest in the absence of an effective way to identify the 25 

sources of secondary BrC.  
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Moreover, two to seven factors were selected to initiate the PMF5.0 run. Due to the additional factors, 

the Q/Qexp ratio decreased with the increased number of factors as shown in Fig. S7. The decrease in 

Q/Qexp was large when the factor number changed from 2 to 3 and 3 to 4 but stabilized as the factor 

number grew larger than 4, indicating that four factors may be the optimal solution. After multiple runs 

of the PMF5.0 model, four factor sources including ship emissions, motor vehicle emissions, biomass 5 

burning, and fugitive dust were finally identified (Fig. 3a). Additionally, the modeled Abspri(λ) at different 

wavelengths showed strong correlations with the measured Abs(λ) (r = 0.82–0.89, p < 0.01, Fig. S8). The 

slopes of 0.92–0.98 were consistent with the absorption fractions of Abspri(λ) estimated by the BC-tracer 

method combined with the MRS approach (Table S1). The scaled residuals for each species varied 

between -3 and +3.  10 

The uncertainty of each factor profile was further evaluated using BS, DISP, and BS-DISP. The BS results 

showed that the reproducibility of each source factor was larger than 80% (Table S2), indicating good 

stability. Therefore, this suggested that the four source factors were appropriate. No swaps occurred in 

DISP, indicating the stability of the selected solution. Furthermore, all BS-DISP runs were successful. 

Overall, these results pointed to the efficiency of the PMF5.0 model in performing optical source 15 

apportionment. 

The first source factor was characterized by large proportions of V, Ni, and hopanes as well as moderate 

amounts of OC, EC, Na+, K+, Cu, and Abspri(λ) as shown in Fig. 3a. V and Ni were associated with oil 

fuel combustion (Moreno et al., 2010) and their ratio (V/Ni) can be used to further identify ship engine 

emissions, which has a typical range of 2.5–4.0 (Cesari et al., 2014). The estimated V/Ni ratio was 3.4 in 20 

this source factor, consistent with the previously established range of ship engine emissions. Since 

hydrocarbons are the major components of ship engine oil, hopanes, OC, and EC can be produced as 

byproducts in the combustion process. Therefore, this source factor was assigned to ship emissions. The 

second source factor was associated with large amounts of Cu, Zn, and Br as well as moderate proportions 

of hopanes, EC, Ti, and Abspri(λ). Previous studies confirmed that hopanes, Br, and EC were typically 25 

present in vehicle exhaust particles (Huang et al., 1994; Sheesley et al., 2009). Additionally, Zn and Cu 

were associated with lubricant and metal brake wear (Lin et al., 2015). Therefore, this source factor was 

allocated to motor vehicle emissions. The third source factor was dominated by high proportions of K+, 
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OC, EC, and Abspri(λ) which was an obvious feature of biomass burning (Forello et al., 2019). Finally, 

the fourth source factor was characterized by large amounts of several crustal materials such as Ca2+, Ti, 

Fe, and Mn and was identified as mineral dust. 

Notably, biomass burning occupied the largest proportion of light absorption  (Absbiomass(λ)) at 32–44% 

of Abspri(λ) as shown in Fig. 3a. Sanya is coastal city with heavy maritime traffic (e.g., the cargo handling 5 

capacity was larger than 5.8 million tons in 2017 at Sanya port, 

http://tjj.sanya.gov.cn/tjjsite/2019nnj/tjnj.shtml, in Chinese) therefore absorption of ship emissions 

(Absship(λ)) also had a significant contribution to Abspri(λ) (30–39%). The contribution of motor vehicle 

emissions (Absvehicle(λ) = 17–24% of Abspri(λ)) was much lower than that of biomass burning and ship 

emissions. Moreover, the absorption of fugitive dust (Absdust(λ)) occupied less than 10% of Abspri(λ), 10 

consistent with previous reports where it was identified as a minor contributor in the atmosphere (Yang 

et al., 2009; Zhao et al., 2019). This small absorptive fraction may be attributed to the low proportion of 

light-absorbing iron oxides in the atmosphere. Furthermore, the Abspri(λ) of different sources all 

decreased with the increased wavelength (Fig. 3b) although their relative contributions displayed distinct 

trends (Fig. 3a). The fraction of Absship(λ) and Absvehicle(λ) increased with an increase in wavelength while 15 

a reverse trend was observed in the Absbiomass(λ) fraction. This discrepancy can be explained by the large 

amount of BrC present in biomass-burning emissions which can result in more light absorption at short 

wavelengths relative to the long ones. 

To identify the possible source areas that affected Abspri(λ), CWT analysis was performed based on the 

three-day backward trajectories. Large CWT values were mainly concentrated in the South China Sea 20 

(Fig. S9), highlighting the effect of ship emissions on aerosol light absorption. Additionally, the three-

day backward trajectories were grouped into four cluster-mean trajectories to investigate the impact of 

different sources on Abspri(λ) (Fig. 4). The air masses associated with Cluster #1 originated from the 

South China Sea. The Absship(λ) was the largest contributor in this cluster constituting 44–45% of Abspri(λ) 

due to the high vessel traffic density over the South China Sea, consistent with the CWT results. Cluster 25 

#1 accounted for about 44% of the total trajectories, suggesting that Sanya was subjected to the influence 

of ship exhaust-related LAC aerosols transported from the South China Sea. It is noteworthy that the 

diurnal pattern of Abspri(λ) showed typically high values in the mornings and evenings (Fig. S10). This 
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was attributed to the daily anthropogenic activities and variations in height of the planetary boundary 

layer. Given that the air masses from the South China Sea are unable to carry pollutants from biomass 

burning, motor vehicles, and fugitive dust, these sources were possibly mainly influenced by local 

emissions.  

Cluster #2 originated from the South China Sea near the Indochina Peninsula and accounted for 35% of 5 

the total trajectories. The Absship(λ) was also vital in this cluster, accounting for 34–37% of Abspri(λ). Fig. 

S10 shows that the Abspri(λ) of Cluster #2 displayed a similar diurnal trend as that of Cluster #1. 

Considering that the air masses of Cluster #2 also originated from the South China Sea, the sources except 

for ship emissions were mainly influenced by local discharge. A small number of air masses were grouped 

into Cluster #3 and Cluster #4, accounting for only 6% and 15% of total trajectories, respectively. Cluster 10 

#3 originated from southern Burma and passed over Thailand, Laos, and Vietnam. On the other hand, 

Cluster #4 had the longest cluster-mean trajectory which originated and passed through the coastal areas 

of South-eastern China. Biomass burning was the dominant contributor to Abspri(λ) in both clusters, with 

62–69% for Cluster #3 and 56–64% for Cluster #4. Moreover, the Absbiomass(λ) of Cluster #3 and Cluster 

#4 were 1.8–4.4 times higher than those of Cluster #1 and Cluster #2. Since the Absbiomass(λ) from Cluster 15 

#1 and Cluster #2 were mainly attributed to local emissions, the higher values in Cluster #3 and Cluster 

#4 may have been influenced by the long-range transport of biomass burning from Southeast Asia and 

South-eastern China, where there was a large number of fire incidences (Fig. 4). 

3.3 Source-dependent optical properties of LAC aerosol 

According to a power law function (Fig. 5), the average LAC AAE (1.4, Table 1) was greater than unity 20 

during the study, indicating the presence of both BC and BrC in the atmosphere. In addition, the estimated 

AAE of motor vehicle emissions (AAEvehicle) was 0.96. This was close to the previously reported range 

of 0.9–1.1 obtained from ambient observations using the radiocarbon method or vehicle exhaust-related 

source experiments (Sandradewi et al., 2008; Chow et al., 2018; Zotter et al., 2017). This narrow range 

of AAEvehicle obtained by various studies suggests that the spectral dependence of vehicle exhaust-related 25 

LAC absorption was less affected by atmospheric processes. Furthermore, the AAE of ship emissions 

(AAEship = 1.06) was similar to that of AAEvehicle. These low spectral dependences of light absorption 
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indicate that BC was the dominant compound in LAC aerosols from ship and motor vehicle emissions. 

Compared to marine engine emissions, the AAEship obtained in this study was consistent with the values 

derived from marine gas oil and diesel fuel emissions (1.0 ± 0.1) but was lower than heavy fuel oil exhaust 

(1.7 ± 0.2) (Corbin et al., 2018). This indicates that Sanya may be influenced more by ships using distillate 

rather than heavy fuel oil. 5 

The AAE of biomass burning (AAEbiomass = 1.75) was larger than that from ship and motor vehicle 

emissions. This implyed the presence of BrC in LAC aerosols derived from biomass-burning in addition 

to BC. The observation corroborated with previous studies which showed that BrC was mainly derived 

from biomass burning rather than fossil fuels in the atmosphere (Laskin et al., 2015). Additionally, 

chamber studies showed that the AAEs of fresh smoke from biomass burning varied largely (e.g., 1.64–10 

3.25) depending on the type of biomass and their burning efficiencies (Tian et al., 2019). The AAEbiomass 

from this study was close to those (1.7–1.9) from the atmosphere constrained by the radiocarbon method 

(Sandradewi et al., 2008; Zotter et al., 2017). Given that the approach used in this study could retrieve the 

source-specific AAEs in the atmosphere, it can also improve the performance of those optical source 

apportionment models based solely on optical data. 15 

Owing to the dominance of BC in ship and motor vehicle emissions, only MACBC(λ) was estimated for 

these two sources. The results of optical source apportionment revealed that the estimated MACBC(λ) of 

motor vehicle emissions (MACBC,vehicle(λ)) were close to the values of uncoated BC particles at different 

wavelengths (Fig. 6). This indicated that vehicle exhaust-related BC particles were mainly associated with 

local emissions and underwent minor atmospheric aging processes. In contrast, the MACBC(λ) of ship 20 

emissions (MACBC,ship(λ)) was 1.4–1.6 times larger than that of the uncoated ones (Fig. 6). This implied 

that ship exhaust-related BC particles were prone to substantial aging during transit from the ocean. 

Freshly emitted BC particles from fossil fuels tend to mix externally with other substances and become 

internally-mixed ones after aging (Xing et al., 2020). It was therefore unexpected for the obtained 

MACBC,ship(λ) to have a similar value as that of marine engine emissions reported by Corbin et al. (2018) 25 

(7.8 m2 g-1 at 780 nm, extrapolated to the same wavelengths in this study by assuming an AAEBC = 1.1). 

Consequently, more work is needed to understand the large MACBC(λ) values from marine engine 

emissions. 
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Since LAC aerosols derived from biomass burning comprised of both BC and BrC, the MACBC(λ) and 

MACBrC(λ) were retrieved based on the results of optical source apportionment. The findings revealed 

that the MACBC(λ) of biomass burning (MACBC,biomass(λ)) was larger than MACBC,vehicle(λ) as shown in 

Fig. 6. This was consistent with previous studies showing a stronger capacity to absorb light by BC from 

biomass burning compared to that from motor vehicle emissions (Qiu et al., 2014; Q. Wang et al., 2018b). 5 

Moreover, the MACBC,biomass(λ) was smaller than MACBC,ship(λ), suggesting a stronger ability to absorb 

light by BC particles from ship exhaust. A broader implication of this observation is that more focus 

should be put on BC particles related to ship emissions due to their impact on climate given the increase 

in shipping activities globally. 

The MACBrC(λ) of biomass burning (MACBrC,biomass(λ)) was highly dependent on wavelength, with 0.9 10 

m2 g-1 at λ = 370 nm but dropped close to zero (0.02 m2 g-1) at λ = 660 nm (Fig. 6). Additionally, the 

MACBrC,biomass(λ) was several times to two orders of magnitude lower than MACBC(λ) from different 

sources, suggesting that BC had a stronger ability to absorb light compared to BrC. Notably, the 

MACBrC(λ) obtained in this study lied within the range reported by previous investigations although with 

differences among studies (Wang et al., 2019b; Cho et al., 2019). The differences in MACBrC(λ) may 15 

partly be related to biomass types and their burning efficiencies as well as the aging processes of BrC in 

the atmosphere. In addition, the use of different BrC substitutes (e.g., OM, organic aerosol, or water-

soluble organic carbon) may have impacted the calculation of MACBrC(λ). Compared to previous 

laboratory studies, the MACBrC,biomass(λ) obtained here was smaller than that of fresh smoke from biomass 

burning (Zhong and Jang, 2014; Pandey et al., 2016). Given that photobleaching is an effective way of 20 

turning BrC into a transparent organic substance (Laskin et al., 2015), the smaller atmospheric 

MACBrC,biomass(λ) observed in this study may be attributed to the elimination of organic chromophores 

induced by the bright sunlight at Sanya. 

The MAC links LAC mass to its light absorption, which is an important parameter in climate models to 

evaluate global or regional LAC radiative effects. Because identifying source-specific MACs still remains 25 

challenging in the atmosphere, an equal MAC of different sources is often assumed in climate models 

(Bond et al., 2013). However, this assumption could cause a large uncertainty owing to the distinct MACs 

for various sources (e.g., MACBC,ship(λ) > MACBC,biomass(λ) > MACBC,vehicle(λ) in this study). The chemical 
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composition-based optical source apportionment approach may provide a potential solution to resolve 

this issue, although more source-specific MACs in different areas and seasons are needed in the future 

study to gauge the accuracy of climate models. Moreover, this approach also can minimize the 

uncertainties of BC source apportionment using the aethalometer model due to the assumption of equal 

AAE and MAC of different sources. 5 

3.4 Impacts of LAC aerosols on radiative effect 

Fig. 7 shows the source-specific LAC DRE during the study. The LAC DRE varied from -5.5 to -1.6 W 

m-2 at the Earth’s surface with an average cooling effect of -3.2 ± 1.0 W m-2. In contrast, the LAC aerosols 

produced a warm effect of +1.5 ± 0.5 W m-2 at the top of the atmosphere with a range of +0.8 to +2.8 W 

m-2 suggesting a net energy gain. The presence of LAC aerosols enhanced aerosol DRE at the top of the 10 

atmosphere by 62% compared to the results of light scattering by aerosols only. Moreover, the difference 

between LAC DRE at the top of the atmosphere and the Earth’s surface gave the atmospheric DRE (a net 

atmospheric absorption) of +4.7 ± 1.5 W m-2 and could generate a heating rate of 0.13 ± 0.04 K day-1. 

With regard to LAC absorption sources, biomass burning was the largest contributor to LAC DRE at -1.5 

± 0.5 W m-2 and +0.7 ± 0.2 W m-2 on the surface of the Earth and the top of the atmosphere, respectively. 15 

In addition, BrC from biomass burning had a less contribution to LAC DRE compared to BC from the 

same source. However, the presence of BrC reinforced the LAC DRE of biomass burning by 21% as 

opposed to BC only, suggesting a substantial radiative effect from BrC aerosol. Additionally, the LAC 

DRE were -1.1 ± 0.4 W m-2 and +0.5 ± 0.2 W m-2 for ship emissions and -0.6 ± 0.2 W m-2 and +0.3 ± 0.1 

W m-2 for motor vehicle emissions on the Earth’s surface and the top of the atmosphere, respectively. The 20 

LAC DRE contributed by ship and motor vehicle emissions was mainly caused by BC aerosol. Although 

a larger BC atmospheric DRE was observed for biomass burning, ship emissions showed an equivalent 

capacity of radiative effect (0.5 (W m-2) (μg m-3)-1) from per unit BC mass concentration generating 

atmospheric DRE. In contrast, motor vehicle emissions had a smaller value of 0.3 (W m-2) (μg m-3)-1. 

Furthermore, the atmospheric heating rate of LAC aerosols was similar for biomass burning (0.06 ± 0.02 25 

K day-1) and ship emissions (0.05 ± 0.01 K day-1) but larger than that produced by motor vehicle emissions 

删除了: forcing

删除了: 5

删除了: F

删除了: campaign30 
删除了: F

删除了: ,

删除了: ,

删除了: forcing 

删除了:  with35 
删除了: T

删除了: F

删除了: forcing 

删除了: ,

删除了: which can40 
删除了: From the perspective of

删除了: F, which were

删除了: at 

删除了: ’s surface

删除了: Although the45 
删除了: -

删除了: BrC contributed

删除了: F than that produced by

删除了: ,

删除了: strengthened 50 
删除了: biomass-burning 

删除了: forcing 

删除了: relative 

删除了: the result with 

删除了: T55 
删除了: F

删除了: at 

删除了: F

删除了: forcing 

删除了: found 60 
删除了:  the

删除了: forcing production 

删除了: forcing

删除了: By 

删除了: ,65 



18 
 

(0.03 ± 0.01 K day-1). This further highlighted the importance of LAC aerosols from ship exhaust in 

atmospheric heating. 

4 Conclusions 

In this study, the optical properties and radiative effect of LAC aerosols in Sanya, a Chinese tropical 

marine monsoon climate zone, were explored. The study found that light absorption caused by primary 5 

emissions was the mian contributor to LAC absorption while secondary processes played a minor role. 

Moreover, BC aerosol (> 77%) contributed more to AbsLAC(λ) compared to BrC (< 17%). Through a 

combination of chemical species and multi-wavelength absorption in a positive matrix factorization 

model, it was shown that biomass burning had the highest contribution to Abspri(λ) (32–44%) followed 

by ship (30–39%) and motor vehicle emissions (17–24%). Fugitive dust had the lowest contribution (< 10 

10%). Furthermore, cluster analysis of three-day backward trajectories showed that ship emissions were 

the major contributors to Abspri(λ) when the air-masses originated from the South China Sea whereas 

biomass burning dominated in other directions. 

Moreover, source-specific AAE showed a similarity between ship and motor vehicle emissions (1.06 

versus 0.96). The low spectral dependence of light absorption indicated that LAC aerosols were 15 

dominated by BC in ship and motor vehicle emissions. In contrast, a large AAE of 1.75 was found in 

biomass burning, indicating the presence of both BC and BrC. Additionally, source-specific MAC showed 

that BC particles from ship emissions had the strongest light-absorbing capacity followed by biomass 

burning and motor vehicle emissions. Compared to BC MAC, the BrC MAC of biomass burning was 

smaller with a value of 0.9 m2 g-1 at λ = 370 nm but dropped to 0.02 m2 g-1 at λ = 660 nm. The radiative 20 

transfer model also showed that the atmospheric DRE caused by LAC aerosols was +4.7 ± 1.5 W m-2 

during the study and corresponded to a heating rate of 0.13 ± 0.04 K day-1. The presence of BrC reinforced 

the LAC DRE of biomass burning by 21% as compared to BC only. Finally, ship emissions showed an 

equivalent capacity to produce radiative effect (0.5 (W m-2) (μg m-3)-1) from per unit BC mass 

concentration generating atmospheric DRE. In contrast, motor vehicle emissions had a smaller value of 25 

0.3 (W m-2) (μg m-3)-1. 
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Table 1. Summary of light absorption at different wavelengths (Abs(λ), λ = 370, 470, 520, 590, 660, and 

880 nm) and Absorption Ångström Exponent (AAE) of different emission sources. 

Parametera Average Standard deviation 
Abs(370) (Mm-1) 15.7 5.3 
Abs(470) (Mm-1) 11.4 3.7 
Abs(520) (Mm-1) 9.7 3.0 
Abs(590) (Mm-1) 8.3 2.6 
Abs(660) (Mm-1) 7.0 2.2 
Abs(880) (Mm-1) 4.9 1.5 
AAEtotal 1.41 0.05 
AAEship 1.06 0.03 
AAEbiomass 1.75 0.06 
AAEvehicle 0.96 0.06 

aAAEtotal represents the AAE caused by total light-absorbing aerosols while AAEship, AAEbiomass, and 

AAEvehicle are AAE from ship emissions, biomass burning, and motor vehicle emissions, respectively. 

5 
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Table 2. The average mass concentrations of PM2.5, carbonaceous matter, water-soluble ions, inorganic 

elements, and organics during the campaign. 

Types Species Average Standard deviation 

PM2.5 (μg m-3)  14.3 4.2 

    

Carbonaceous matter 

(μg m-3) 

organic carbon 2.7 1.1 

elemental carbon 0.8 0.3 
    

Water-soluble ions 

(μg m-3) 

Na+ 0.5 0.2 

NH4+ 0.6 0.4 

K+ 0.2 0.1 

Mg2+ 0.05 0.02 

Ca2+ 0.2 0.1 

Cl- 0.23 0.2 

NO3- 0.6 0.3 

SO42- 3.5 1.2 
    

Inorganic elements 

(ng m-3) 

Ti 13.1 9.7 

V 2.4 1.4 

Mn 5.1 2.7 

Fe 127.3 78.9 

Ni 1.1 0.6 

Cu 28.0 14.4 

Zn 16.6 11.1 

Br 2.6 2.0 
    

Organics (ng m-3) hopanes 0.2 0.05 

Figure Captions 
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Figure 1. Time series of hourly averaged light absorption at different wavelengths (Abs(λ), λ = 370, 470, 

520, 590, 660, and 880 nm). The different types of horizontal lines represent the four clusters of air masses. 

Figure 2. Light absorption fractions of BC, BrC, and MD in the total light-absorbing aerosols. BC = black 

carbon; BrC = brown carbon; MD = mineral dust. 

Figure 3. (a) Contributions of the four sources to each species from the positive matrix factorization 5 

model and (b) the light absorption of primary aerosols from each source at different wavelengths 

(Abspri(λ), λ = 370, 470, 520, 590, 660, and 880 nm) during the study. 

Figure 4. Contribution of different sources to light absorption of primary aerosols in each three-day 

backward-trajectory cluster during the campaign at Sanya. The map was drawn using ArcGIS software. 

The base map is the World Topographic Map from © ESRI (Environmental Systems Research Institute, 10 

Inc.) (www.arcgis.com/home/item.html?id=30e5fe3149c34df1ba922e6f5bbf808f). 

Figure 5. The light absorption (Abs(λ)) of light-absorbing carbonaceous (LAC) aerosols from ship 

emissions, traffic emissions, and biomass burning. The dash line is power law fit. 

Figure 6. The source-specific mass absorption cross section (MAC) of black carbon (BC) and brown 

carbon (BrC) at different wavelengths. The MAC of uncoated BC particles at each wavelength are 15 

extrapolated from 7.5 m2 g-1 at 550 nm (Bond and Bergstrom, 2006) by assuming an BC absorption 

Ångström exponent of 1.1. 

Figure 7. Direct radiative effect (DRE) of light-absorbing carbonaceous (LAC) aerosols from biomass 

burning, ship emissions, and motor vehicle emissions. The error bar represents one standard deviation. 

ES, TOA, ATM represent the DRE at the Earth’s surface, the top of the atmosphere, and in the atmosphere, 20 

respectively. 
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