Journal cover Journal topic
Atmospheric Chemistry and Physics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 5.414
IF5.414
IF 5-year value: 5.958
IF 5-year
5.958
CiteScore value: 9.7
CiteScore
9.7
SNIP value: 1.517
SNIP1.517
IPP value: 5.61
IPP5.61
SJR value: 2.601
SJR2.601
Scimago H <br class='widget-line-break'>index value: 191
Scimago H
index
191
h5-index value: 89
h5-index89
Preprints
https://doi.org/10.5194/acp-2020-474
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/acp-2020-474
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  04 Jun 2020

04 Jun 2020

Review status
A revised version of this preprint is currently under review for the journal ACP.

Optical source apportionment and radiative forcing of light-absorbing carbonaceous aerosol at a tropical marine monsoon climate zone: the importance of ship emissions

Qiyuan Wang1,2, Huikun Liu1, Ping Wang3, Wenting Dai1, Ting Zhang1, Youzhi Zhao3, Jie Tian1, Wenyan Zhang1, Yongming Han1,2, and Junji Cao1,2 Qiyuan Wang et al.
  • 1Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
  • 2CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
  • 3Hainan Tropical Ocean University, Sanya 572022, China

Abstract. Source-specific optical properties of light-absorbing carbonaceous (LAC) aerosol are poorly understood owing to its various sources in the atmosphere. Here, a receptor model coupling multi-wavelength absorption with chemical species was utilized to explore the source-specific LAC optical properties at a tropical marine monsoon climate zone. Results showed that biomass burning contributed the largest to LAC absorption on average, but ship emissions became the dominant contributor (44–45 %) when the air masses originated from the South China Sea. The source-specific absorption Ångström exponent indicates that black carbon (BC) was the dominant LAC aerosol in ship and motor vehicle emissions while there was also brown carbon (BrC) existed in biomass-burning emissions. The source-specific mass absorption cross section (MAC) showed that BC from ship emissions had a stronger light-absorbing capacity than biomass burning and motor vehicle emissions. The BrC MAC derived from biomass burning was smaller than BC MAC and highly depended on wavelengths. Radiative effect assessment indicates a comparable atmospheric forcing and heating capacity of LAC aerosol from biomass burning and ship emissions. Our study provides insights into the optical properties of LAC aerosol from various sources and can improve our understanding of the LAC radiative effects caused by ship emissions.

Qiyuan Wang et al.

Interactive discussion

Status: final response (author comments only)
Status: final response (author comments only)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Login for Authors/Editors] [Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Qiyuan Wang et al.

Qiyuan Wang et al.

Viewed

Total article views: 259 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
153 97 9 259 32 13 13
  • HTML: 153
  • PDF: 97
  • XML: 9
  • Total: 259
  • Supplement: 32
  • BibTeX: 13
  • EndNote: 13
Views and downloads (calculated since 04 Jun 2020)
Cumulative views and downloads (calculated since 04 Jun 2020)

Viewed (geographical distribution)

Total article views: 345 (including HTML, PDF, and XML) Thereof 345 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 29 Sep 2020
Publications Copernicus
Download
Short summary
Light-absorbing carbonaceous (LAC) aerosol is an important influencing factor for global climate forcing. In this study, we used a receptor model coupling multi-wavelength absorption with chemical species to explore the source-specific LAC optical properties at a tropical marine monsoon climate zone. The results can improve our understanding of the LAC radiative effects caused by ship emissions.
Light-absorbing carbonaceous (LAC) aerosol is an important influencing factor for global climate...
Citation
Altmetrics