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Abstract. Air pollution, in particular high concentrations of particulate matter smaller than 1µm in diameter (PM1), continues

to be a major health problem, and meteorology is known to substantially influence atmospheric PM concentrations. How-

ever, the scientific understanding of the ways by which complex interactions of meteorological factors lead to high pollution

episodes is inconclusive. In this study, a novel, data-driven approach based on empirical relationships is used to characterise,

and better understand the meteorology-driven component of PM1 variability. A tree-based machine learning model is set up5

to reproduce concentrations of speciated PM1 at a suburban site southwest of Paris, France, using meteorological variables as

input features. The model is able to capture the majority of occurring variance of mean afternoon total PM1 concentrations

(coefficient of determination (R2) of 0.58), with model performance depending on the individual PM1 species predicted. Based

on the models, an isolation and quantification of individual, season-specific meteorological influences for process understand-

ing at the measurement site is achieved using SHapley Additive exPlanation (SHAP) regression values. Model results suggest10

that winter pollution episodes are often driven by a combination of shallow mixed layer heights (MLH), low temperatures, low

wind speeds or inflow from northeastern wind directions. Contributions of MLHs to the winter pollution episodes are quan-

tified to be on average ∼5µg/m3 for MLHs below <500 m agl. Temperatures below freezing initiate formation processes and

increase local emissions related to residential heating, amounting to a contribution to predicted PM1 concentrations of as much

as ∼9µg/m3. Northeasterly winds are found to contribute ∼5µg/m3 to predicted PM1 concentrations (combined effects of u-15

and v-wind components), by advecting particles from source regions, e.g. central Europe or the Paris region. Meteorological

drivers of unusually high PM1 concentrations in summer are temperatures above ∼25 ◦C (contributions of up to ∼2.5µg/m3),

dry spells of several days (maximum contributions of ∼1.5µg/m3) and wind speeds below ∼2 m/s (maximum contributions

of ∼3µg/m3), which cause a lack of dispersion. High-resolution case studies are conducted showing a large variability of pro-

cesses that can lead to high pollution episodes.The identification of these meteorological conditions that increase air pollution20

could help policy makers to adapt policy measures, issue warnings to the public, or to assess the effectiveness of air pollution

measures.
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1 Introduction

Air pollution has serious implications on human well-being, including deleterious effects on the cardiovascular system and the25

lungs (Hennig et al., 2018; Lelieveld et al., 2019), and an increased number of asthma seizures (Hughes et al., 2018). This

includes particles smaller than 1µm in diameter (PM1), which are associated with fits of coughing (Yang et al., 2018) and an

increase in emergency hospital visits (Chen et al., 2017b). The adverse health effect lead to an increase in mortality of people

exposed to high particle concentrations (Samoli et al., 2008, 2013; Lelieveld et al., 2015). People living in urban areas are

particularly affected by poor air quality and with increasing urbanization, their number is projected to grow (Baklanov et al.,30

2016; Li et al., 2019). These developments have motivated several countermeasures to improve air quality. Proposed efforts

to reduce anthropogenic particle emissions include partial traffic bans (Su et al., 2015; Dey et al., 2018) and the reduction

of solid fuel use for domestic heating (Chafe et al., 2014). Although emissions play an important role for PM concentrations

in the atmosphere, meteorological conditions related to large-scale circulation patterns as well as local-scale boundary layer

processes and interactions with the land surface are major drivers of PM variability as well (Cermak and Knutti, 2009; Bressi35

et al., 2013; Megaritis et al., 2014; Dupont et al., 2016; Petäjä et al., 2016; Yang et al., 2016; Li et al., 2017). Wind speed and

direction generally have a strong influence on air quality as they determine the advection of pollutants (Petetin et al., 2014;

Petit et al., 2015; Srivastava et al., 2018). Limiting the vertical exchange of air masses, the mixed layer height (MLH) governs

the volume of air in which particles are typically dispersed. Although some authors indicate that mixed layer height cannot be

related directly to concentrations of pollutants and that other meteorological parameters and local sources need to be considered40

(Geiß et al., 2017), a lower MLH can increase PM concentrations as particles are not mixed into higher atmospheric levels and

accumulate near the ground (Gupta and Christopher, 2009; Schäfer et al., 2012; Stirnberg et al., 2020).

Higher MLHs in combination with high wind speeds increase atmospheric ventilation processes, thus decreasing near-surface

particle concentrations (Sujatha et al., 2016; Wang et al., 2018). Air temperature can influence PM concentrations in multiple

ways, e.g. by modifying the emission of secondary PM precursors such as volatile organic compounds (VOCs) during summer45

(Fowler et al., 2009; Megaritis et al., 2013; Churkina et al., 2017), and by condensating high saturation vapour pressure

compounds such as nitric acid and sulfuric acid (Hueglin et al., 2005; Pay et al., 2012; Bressi et al., 2013; Megaritis et al.,

2014). The wet removal of particles by precipitation is known to be an efficient atmospheric aerosol sink (Radke et al., 1980;

Bressi et al., 2013), while moisture in the atmosphere can stimulate secondary particle formation processes (Ervens et al.,

2011). Although all these atmospheric conditions and processes have been identified as drivers of local air quality, it is usually50

a complex combination of meteorological and chemical processes that lead to the formation of high-pollution events (Petit

et al., 2015; Dupont et al., 2016; Stirnberg et al., 2020).

The metropolitan area of Paris is one of the most densely populated and industrialised areas in Europe. Thus, air quality

is a recurring issue and has been at the focus of many studies in the past years (Bressi et al., 2014; Petetin et al., 2014; Petit

et al., 2015; Dupont et al., 2016; Petit et al., 2017; Srivastava et al., 2018). Results indicate that the Paris metropolitan region is55
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often affected by mid- to long-range transport of pollutants, as due to the city’s flat orography, an efficient horizontal exchange

of air masses is frequent (Bressi et al., 2013; Petit et al., 2015). High-pollution events commonly occur in late autumn, win-

ter, and early spring. Often, these episodes are characterised by stagnant atmospheric conditions and a combination of local

contributions, e.g. traffic emissions, residential emissions, or regionally transported particles, e.g. ammonium nitrates from

manure spreading, or sulfates from point sources (Petetin et al., 2014; Petit et al., 2014, 2015; Srivastava et al., 2018). High-60

pressure conditions with air masses originating from continental Europe (Belgium, Netherlands, West Germany) are generally

associated with an increase in particle concentrations, especially of secondary inorganic aerosols (SIA, Bressi et al. (2013);

Srivastava et al. (2018). The regional contribution has been found to be in the range of 70 % for background concentrations in

Paris of particles with a diameter smaller 2.5µm (Petetin et al., 2014). Hence the variability between high-pollution episodes

in terms of timing, sources and meteorological boundary conditions is considerable (Petit et al., 2017). Previous approaches to65

determine meteorological drivers of air pollution included, for example, the use of chemical transport models (CTMs), which,

however, require comprehensive knowledge on emission sources and secondary particle formation pathways and are associated

with considerable uncertainties (Sciare et al., 2010; Petetin et al., 2014; Kiesewetter et al., 2015). Further methods rely on data

exploration, e.g. the statistical analysis of time-series (Dupont et al., 2016), which can be coupled with positive matrix factor-

ization (PMF, Paatero and Tapper, 1994) to derive PM sources (Petit et al., 2014; Srivastava et al., 2018). To take into account70

the interconnected nature of PM drivers, multivariate statistical approaches such as principal component analysis (PCA) have

been applied (Chen et al., 2014; Leung et al., 2017). In recent years, machine learning techniques have been increasingly used

to expand the analysis of PM concentrations with respect to meteorology, allowing to retrace general patterns (Hu et al., 2017;

Grange et al., 2018).

Here, the multivariate and highly interconnected nature of meteorology-dependent atmospheric processes influencing local75

PM1 concentrations at a suburban site southwest of Paris is analysed in a data-driven way. Therefore, a state-of-the-art ex-

plainable machine learning model is set up to reproduce the variability of PM1 concentrations, thereby capturing empirical

relationships between PM1 concentrations and meteorological parameters. The goal is to separate and quantify influences of

the meteorological variables on PM1 concentrations to advance the process understanding of the complex mechanisms that

govern pollution concentrations at the measurement site. Localised (i.e. situation-based) and individualised attributions of fea-80

ture contributions are performed using SHapley Additive exPlanation regression (SHAP) values (Lundberg and Lee, 2017;

Lundberg et al., 2018a, 2020), allowing to infer meteorology-dependent processes driving PM concentrations at high temporal

resolution. Typical situations that lead to high PM1 concentrations are identified, serving as a decision support to policymak-

ers to issue preventative warnings to the public if these situations are to be expected. In addition, by directly accounting for

meteorological effects on PM1 concentrations, such a machine learning-based framework could help in assessing the effective-85

ness of measures towards better air quality. Furthermore, the proposed ML framework can be viewed as a first step towards a

data-driven, prognostic tool in operational air quality forecasting, complementary to CTM approaches.
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Figure 1. Location of the SIRTA supersite southwest of Paris. © OpenStreetMap contributors 2020. Distributed under a Creative Commons

BY-SA License.

2 Data sets

Seven years (2012-2018) of meteorological and air quality data from the Site Instrumental de Recherche par Télédétection

Atmosphérique (SIRTA, Haeffelin et al., 2005) supersite are the basis of this study. The SIRTA Atmospheric Observatory is90

located about 25km southwest of Paris (48.713◦N and 2.208◦E, Fig. 1). This study focuses on day-to-day variations of total

and speciated PM1, a highly health relevant fraction of PM including small particles that can penetrate deep into the lungs

(Yang et al., 2018; Chen et al., 2017a). To separate diurnal effects e.g. the development of the boundary layer during morning

hours (Petit et al., 2014; Dupont et al., 2016; Kotthaus and Grimmond, 2018a) from day-to-day variations of PM1, mean

concentrations of total and speciated PM1 for the afternoon period 12-15 UTC are considered, when the boundary layer is fully95

developed. In sections 2.1 and 2.2, the PM1 and meteorological data and preprocessing steps before setting up the machine

learning model are described. The applied machine learning model and data analysis techniques are presented in sections 3.1

and 3.2.

2.1 Submicron particle measurements

Aerosol chemical speciation monitor (ACSM, Ng et al., 2011) measurements are conducted at SIRTA in the framework of the100

ACTRIS project. The ACSM provides continuous and near real-time measurements of the major chemical composition of non-

refractory submicron aerosols, i.e., organics (Org), ammonium (NH+
4 ), sulfate (SO2−

4 ), nitrate (NO−
3 ) and chloride (Cl−). A

detailed description of its functionality can be found in Ng et al. (2011). Data processing and validation protocol can be found

in Petit et al. (2015) and Zhang et al. (2019). In addition, black carbon (BC) has been monitored by a seven-wavelength Magee
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Scientific Aethalometer AE31 from 2011 to mid-2013, and a dual-spot AE33 (Drinovec et al., 2015) from mid-2013 onwards.105

Consistency of both instruments have been checked in Petit et al. (2014). Using the multispectral information, a differentiation

into fossil fuel-based BC (BCff) and BC from wood burning (BCwb) is achieved (Sciare et al., 2010; Healy et al., 2012; Petit

et al., 2014; Zhang et al., 2019). Here, the sum of all measured species is assumed to represent the total PM1 content (see

Petit et al., 2014, 2015). The consistency of ACSM and Aethalometer measurements is checked by comparing the sum of all

monitored species with measurements of a nearby Tapered Element Oscillating Microbalance equipped with a Filter Dynamic110

Measurement System (TEOM-FDMS). PM1 measurements are representative of suburban background pollution levels of the

region of Paris (Petit et al., 2015). As an additional input to the machine learning model, the average fraction of NO−
3 of the

previous day is added (NO3_frac). Pollution events dominated by NO−
3 are often linked to regional-scale events, which depend

on anthropogenically-influenced processes in the source regions of NO−
3 precursors (Petit et al., 2017). This is approximated by

the inclusion of the average fraction of NO−
3 of the previous day, assuming that a high fraction of NO−

3 indicates the occurrence115

of such an anthropogenically-influenced regime.

2.2 Meteorological data

Following the objective of this study, a set of meteorological variables is chosen as inputs for the ML model that either influence

PM concentrations directly via dilution (MLH, wind speed (ws), and wet scavenging of particles (precipitation)) and particle

transport (wind direction as u, v components, air pressure (AirPres)), as a proxy for emissions (e.g. from residential heating:120

temperature at a height of 2 m (T)), and as a proxy for transformation processes (total incoming solar radiation (TISR), relative

humidity (RH), T). Data are taken from the quality-controlled and 1h averaged re-analysed observation (ReObs) dataset.

Further information on the instrumentation used for the acquisition of these variables is provided in Chiriaco et al. (2018).

MLH is derived from automatic lidar and ceilometer (ALC) measurements of a Vaisala CL31 ceilometer using the CABAM

algorithm (Characterising the Atmospheric Boundary layer based on ALC Measurements, Kotthaus and Grimmond, 2018a,125

b). Due to an instrument failure, during the period July to mid-November 2016, SIRTA ALC measurements had to be replaced

with measurements conducted at the Paris Charles de Gaulle Airport, located northeast of Paris. A comparison of measured

MLHs at SIRTA and Charles de Gaulle Airport for the available measurements in 2016 (Appendix A) shows generally good

agreement, which is why only minor uncertainties are expected due to the replacement.

Meteorological factors are chosen as input features for the statistical model based on findings of previous studies (see section130

1). Meteorological observations are converted to suitable input information for the statistical model (see section 3.1). Wind

speed (ws) is derived from the ReObs u and v components [m/s] and the maximum wind speed of the afternoon period (12-15

UTC) is included in the model. U and v wind components are then normalised to values between 0 and 1, thus only depicting

the direction information. To reduce the impact of short-term fluctuation in wind direction, the 3-day running mean is calculated

based on the normalised u and v wind components (umean and vmean). Hours since the last precipitation event (Tprec) are135

counted and used as input to capture the particle accumulation effect between precipitation events (Rost et al., 2009; Petit et al.,

2017).
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3 Methods

3.1 Machine learning model: technique and application

Gradient Boosted Regression Trees (GBRT, used here in a python 3.6.4 environment with the scikit-learn module, Friedman,140

2002; Pedregosa et al., 2012) are applied to predict daily total and speciated PM1 concentrations. As a tree-based method,

GBRTs use a tree regressor, which sets up decision trees based on a training data set. The trees split the training data along

decision nodes, creating homogeneous subsamples of the data by minimizing the variance of each subsample. For each sub-

sample, regression trees fit the mean response of the model to the observations (Elith et al., 2008). To increase confidence in the

model outputs, decision trees are combined to form an ensemble prediction. Trees are sequentially added to the ensemble (Elith145

et al., 2008; Rybarczyk and Zalakeviciute, 2018) and each new tree is fitted to the predecessor’s previous residual error using

gradient descent (Friedman, 2002). This is an advantage of GBRT over standard ensemble tree methods (e.g. Random Forests

(RF), Just et al., 2018) as trees are built systematically and fewer iterations are required (Elith et al., 2008). Characteristics

of the meteorological training data set with respect to observed total and speciated PM1 concentrations are conveyed to the

statistical model. The learned relationships are then used for model interpretation and to produce estimates of PM1 based on150

unseen meteorological data to test the model. The architecture of the statistical model is determined by the hyperparameters,

e.g. the number of trees, the maximum depth of each tree (i.e., the number of split nodes on each tree) and the learning rate (i.e.,

the magnitude of the contribution of each tree to the model outcome, which is basically the step size of the gradient descent).

The hyperparameters are tuned by executing a grid search, systematically validating testing previously defined hyperparameter

combinations and determining the best combination via a three-fold cross validation. Note that PM1 data is not uniformly155

distributed, i.e. there is more data available for mid-range PM1 concentrations. To avoid that the model primarily optimizes

its predictions on these values, a least-squares loss function was chosen. This loss function is more sensitive to higher PM1

values (i.e. outliers of the PM1 data distribution), as it strongly penalises high absolute differences between predictions and

observations. Accordingly, the model is adjusted to reproduce higher concentrations as well.

For each PM species, a specific GBRT model is set up and used for the analysis of meteorological influences on individual160

PM1 species (see section 4.2). Additionally, a quasi-total PM1 model is used to reproduce the sum of all species at once, which

is used for an analysis of meteorological drivers of high-pollution events (see sections 4.3 and 4.4). Train and test data sets

to evaluate each model are created by randomly splitting the full data set. These splits, however, are the same for the species

models and the full PM1 model to ensure comparability between the models. Three quarters of the data are used for training

and hyperparameter tuning with cross-validation (n=1086), and one quarter for testing (n=363). In addition, the robustness165

of the model results is tested by repeating this process ten times, resulting in ten models with different train-/ test-splits and

different hyperparameters.

3.2 Explaining model decisions to infer processes: SHapley Additive exPlanation (SHAP) values

While being powerful predictive models, tree-based machine learning methods also have a high interpretability (Lundberg et al.,

2020). In order to understand physical mechanisms on the basis of model decisions, the contributions of the meteorological170
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input features to the model outcome are analysed. Feature contributions are attributed using SHAP values, which allow for an

individualised, unique feature attribution for every prediction (Shapley, 1953; Lundberg and Lee, 2017; Lundberg et al., 2018a,

2020). SHAP values provide a deeper understanding of model decisions than the relatively widely used partial dependence

plots (Friedman, 2001; Goldstein et al., 2015; Fuchs et al., 2018; Lundberg et al., 2018a; McGovern et al., 2019; Stirnberg

et al., 2020). Partial dependence plots show the global mean effect of an input feature to the model outcome, while SHAP175

values quantify the feature contribution to each single model output, accounting for multicollinearity. Feature contributions

are calculated from the difference in model outputs with that feature present, versus outputs for a retrained model, without the

feature. Since the effect of withholding a feature depends on other features in the model due to interactive effects between the

features, differences are computed for all possible feature subset combinations of each data instance (Lundberg and Lee, 2017).

Summing up SHAP values for each input feature at a single time step yields the final model prediction. SHAP values can be180

negative since SHAP values are added to the base value, which is the mean prediction when taking into account all possible

input feature combinations. Negative (positive) SHAP values reduce (raise) the prediction below (above) the base value. The

higher the absolute SHAP value of a feature, the more distinct is the influence of that feature on the model predictions. The

sum of all SHAP values at one time step yields the final prediction of PM1 concentrations. An example of breaking down a

model prediction into feature contributions using SHAP values is shown schematically in Fig. 2. The computation of traditional185

Shapley Regression values is time consuming, since a large number of all possible feature combinations have to be included.

The SHAP framework for tree-based models allows a faster computation compared to full shapley regression values while

maintaining a high accuracy (Lundberg and Lee, 2017; Lundberg et al., 2018a) and is therefore used here. The shap python

implementation is used for the computation of SHAP values (https://github.com/slundberg/shap).

The interactions of input features contribute to the model output and thus reflect empirical patterns that are important to deepen190

the process understanding. Interactive effects are defined as the difference between the SHAP values for one feature when a

second feature is present and the SHAP values for the one feature when the other feature is absent (Lundberg et al., 2018a).

4 Results and discussion

4.1 Model performance

The performance of the species and total PM1 models, each with ten model iterations (of which each has different hyperpa-195

rameters) is assessed by comparing the coefficient of determination (R2) and normalised root mean square error (NRSME)

for the independent test data that was withheld during the training process (Fig. 3). While the models for BCwb, BCff and

total PM1 show small spread, Cl− and NO−
3 exhibit larger variations between model runs (indicated by horizontal and vertical

lines in Fig. 3). This suggests that while drivers of variations in BCff concentration are well covered by the model, this is

less so in the case of Cl− and NO−
3 . Possible reasons for this are that no explicit information on anthropogenic emissions or200

chemical formation pathways are included in the models. Still, the model performance indicators highlight that a large fraction

of the variations in particle concentrations are explained by the meteorological variables used as model inputs. Performances

of model iterations of the species-specific and total PM1 are generally similar, suggesting a robust model outcome.
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Figure 2. Conceptual figure illustrating the interaction of SHAP values and model output. Starting with a base value, which is the mean pre-

diction if all data points are considered, positive SHAP values (blue) increase the final prediction of total and speciated PM1 concentrations,

while negative SHAP values (red) decrease the prediction. The sum of all SHAP values for each input feature yields the final prediction.

Depending on whether positive or negative SHAP values dominate, the prediction is higher or lower than the base value (Lundberg et al.,

2018b). Adapted from https://github.com/slundberg/shap.

The mean input feature importance, ordered from high to low, of the total PM1 model run by means of the SHAP feature

attribution values is shown in Fig. 4, The NO−
3 fraction of the previous day has the highest impact on the model, followed by205

temperature, wind direction information, and MLH. To some extent, NO−
3 fraction can be related to PM1 mass concentrations

(Petit et al., 2015; Beekmann et al., 2015). This means that the higher the PM1 levels one day, the greater the chances of having

higher PM1 levels the next day See Fig. B1). Lower wind speeds generally lead to higher particle concentrations (see Fig. B2)

due to a lack of dispersion (Sujatha2016). Temperature, MLH and wind direction require an in-depth analysis, as changes of

these variables cause nonlinear responses in PM1 predictions, which vary also between species.210

4.2 Influence of meteorological input features on modelled particle species and total PM1 concentrations

To gain insights on relevant processes governing particle concentrations at SIRTA, the contribution of input features on species

and total PM1 concentration outcomes from the statistical model, i.e. the SHAP values, are plotted as a function of absolute

feature values (Figs 5-7). The contribution of an input feature to each (local) prediction of the species or total PM1 concentra-

tions is shown while taking into account intra-model variability. Intra-model variability of SHAP values, i.e. different SHAP215

value attributions for the same feature value within one model, is shown by the vertical distribution of dots for absolute input

feature values. Intra-model variability is caused by interactions of the different model input features.

4.2.1 Influence of temperature

The impact of ambient air temperature on modelled species concentrations is highly non-linear (Fig. 5). All species show

increased contributions to model outcomes at temperatures below ∼4 ◦C while the contribution of high temperatures on model220

outcomes differs substantially between species. The statistical model is able to reproduce well-known characteristics of species
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Figure 3. Performance indicators for ten model iterations: coefficient of determination R2 against normalised Root Mean Squared Error

(NRMSE) for the separate species models Org: organics, NH+
4 : ammonium, SO2−

4 : sulfate, NO−
3 : nitrate, Cl−: chloride, BCff: black carbon

from fossil fuel combustion, and BCwb: black carbon from wood burning), and the total PM1 model. Vertical and horizontal lines indicate

the maximum spread in R2 and NRMSE, respectively, between the ten model iterations.

concentration variations related to temperature. For example, sulfate formation is enhanced with increasing temperatures (Fig.

5d) due to an increased oxidation rate of SO2 (see Dawson et al., 2007; Li et al., 2017) and strong solar irradiation due to

photochemical oxidation (Gen et al., 2019). Dawson et al. (2007) reported an increase of 34 ng/m3K for PM2.5 concentrations

using a CTM. The increase in sulfate at low ambient temperatures as suggested by Fig. 5d is not reported in this study. It225

is likely linked to increased aqueous phase particle formation in cold and foggy situations (Rengarajan et al., 2011; Petetin

et al., 2014; Cheng et al., 2016). Considerable local formation of nitrate at low temperatures (Fig. 5b) is consistent with results

from previous studies in western Europe and enhanced formation of ammonium nitrate at lower temperatures (Fig. 5c) by

the shifting gas-particle equilibrium is a well-known pattern (e.g., Clegg et al., 1998; Pay et al., 2012; Bressi et al., 2013;

Petetin et al., 2014; Petit et al., 2015). The increase in organic matter and BCwb concentrations at low temperatures (Fig. 5g)230

is likely related to the emission intensity, as biomass burning is often used for domestic heating in the study area (Favez et al.,

9



Figure 4. Ranked median SHAP values of the model input features, i.e. the average absolute value that a feature adds to the final model

outcome, referring to the total PM1 model [µg/m3] (Lundberg et al., 2018b). Horizontal lines indicate the variability between model runs.

2009; Sciare et al., 2010; Healy et al., 2012; Jiang et al., 2019). In addition, organic matter concentrations are linked to the

condensation of semi-volatile organic species at low temperatures (Putaud et al., 2004; Bressi et al., 2013). The sharp increase

in modelled concentrations of organics above 25◦C (Fig 5a) could be due to enhanced biogenic activity leading to a rise in

biogenic emissions and secondary aerosol formation (Guenther et al., 1993; Churkina et al., 2017; Jiang et al., 2019).235

The contribution of temperature on modelled total PM1 concentrations (Fig. 6h) is consistent with the response patterns to

changes in temperatures described for the individual species in panels 6a-6g, with positive contributions at both low (<4 ◦C)

and high air temperatures (>25 ◦C). For temperatures below freezing, the model allocates maximum contributions to modelled

total PM1 concentrations of up to 12µg/m3. The spread of SHAP values between model iterations is generally higher for low

temperatures (vertical grey bars in Figs 5-7), where SHAP values are of greater magnitude, but in all cases the signal contained240

in the feature contributions far exceeds the spread between model runs.

4.2.2 Influence of the mixed layer height (MLH)

Variations in MLH can have substantial impact on near-surface particle concentrations, as the mixed layer is the atmospheric

volume in which the particles are dispersed (see Klingner and Sähn, 2008; Dupont et al., 2016; Wagner and Schäfer, 2017).

The effect of MLH variations on modelled particle concentrations is highly nonlinear and varies in magnitude for all species245
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Figure 5. Air temperature SHAP values (contribution of temperature to the prediction of species and total PM1 concentrations [µg/m3] for

each data instance) vs. absolute air temperature [◦C]. Inter-model variability of allocated SHAP values is shown as the variance of predicted

values between the ten model iterations and plotted as vertical grey bars. The dotted horizontal line indicates the transition from positive to

negative SHAP values.

(Fig. 6). Similar to the patterns observed for temperature SHAP values, the inter-model variation of predictions is highest

for low MLHs where predicted particle concentrations have the highest variation. For predicted total PM1 concentrations, the
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maximum positive contribution of the MLH is as high as 5.5µg/m3 while negative contributions can amount to -2µg/m3.

While the maximum influence of MLH is lower than the maximum influence determined for air temperature, the frequency of

shallow MLH is far greater than that of the minimum temperatures that have the largest effect (Figs 5d & 6d). Contributions of250

MLH to predicted particle concentrations are highest for very shallow mixed layers due to the accumulation of particles close

to the ground (Dupont et al., 2016; Wagner and Schäfer, 2017). In addition to causing particles to accumulate near the surface,

low MLH can also provide effective pathways for local new particle formation. Secondary pollutants, such as ammonium

nitrate, are increased at low MLHs when conditions favorable to their formation usually coincide with reduced vertical mixing

(i.e., low temperatures, often in combination with high RH, Pay et al., 2012; Petetin et al., 2014; Dupont et al., 2016; Wang255

et al., 2016). BC concentrations, on the other hand, are dominated by primary emissions, as is a substantial fraction of organic

matter (Petit et al., 2015). Hence, the accumulation of these particles during low buoyancy conditions can explain the strong

influence of MLH on BCwb and BCff. A relatively distinct transition from positive contributions during shallow boundary layer

conditions (∼0–800 m) towards negative contributions at high MLHs is evident for all species except SO2−
4 . Modelled SO2−

4

concentrations show a less distinct response to changes in MLH as they are largely driven by gaseous precursor sources and260

particle advection, both rather independent of MLH (Pay et al., 2012; Petit et al., 2014, 2015), so that the accumulation effect

is less important. The increase of SO2−
4 concentrations with higher MLHs (>∼ 1500m agl) could be linked to the effective

transport of SO2−
4 and its precursor SO2.

In agreement with results from previous studies focusing on PM10 (Grange et al., 2018; Stirnberg et al., 2020) or PM2.5 (Liu

et al., 2018), SHAP values do not change much for MLH above ∼800–900 m, i.e. boundary layer height variations above265

this level do not influence submicron particle concentrations. Positive contributions of MLHs above ∼800–900 m on predicted

PM1 concentrations, as visible in Fig. 6 for some species, have been previously reported by Grange et al. (2018), who relate

this pattern to enhanced secondary aerosol formation in a very deep and dry boundary layer. The positive influence of high

MLHs on species that are partly secondarily formed, e.g. SO2−
4 and Org, could be explained following this argumentation.

The increase in SHAP values observed for BCff at high MLHs could be also related to secondary aerosol formation processes,270

causing an “encapsulation” of BC within a thick coating of secondary aerosols (Zhang et al., 2018).

4.2.3 Influence of wind direction

To analyse the contribution of wind direction to predicted particle concentrations, SHAP values of normalised 3-day mean u

and v wind components were added up and transformed to units of degrees (Fig. 7). Generally, wind direction has a positive

contribution to the model outcome when winds from the northern to northeastern sectors prevail, while negative contributions275

are evident for southwesterly directions. Given the location of the measurement site, this pattern undoubtedly reflects the

advection of particles emitted from continental Europe and/or the Paris metropolitan area under high pressure system conditions

versus cleaner marine air masses during southwesterly flow (Bressi et al., 2013; Petetin et al., 2014; Petit et al., 2015; Srivastava

et al., 2018). Increased concentrations of organic matter are predicted for northerly, northeasterly and easterly winds. These

patterns suggest a significant contribution of advected organic particles from a specific wind sector. This is in agreement with280

the findings of Petetin et al. (2014) who estimated that 69 % of the PM25 organic matter fraction is advected by northeasterly
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Figure 6. As Fig. 5 for MLH SHAP values (contribution of MLH to the prediction of species and total PM1 for each data instance) vs.

absolute MLH values [m agl].

winds, which is related to advected particles from wood burning sources in the Paris region and SOA formation along the

transport trajectories. While Petit et al. (2015) did not find a wind direction dependence of organic matter measured at SIRTA

using wind regression, they reported the regional background of organic matter to be of importance. Comparing upwind rural

stations to urban sites, Bressi et al. (2013) concluded organic matter is largely driven by mid- to long-range transport. Influences285
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on the SO2−
4 -model are highest for northeastern and eastern wind direction, which aligns with previous findings by Pay et al.

(2012); Bressi et al. (2014); Petit et al. (2017), who identified the Benelux region and western Germany as strong emitters

of sulfur dioxide (SO2). SO2 can be transformed to particulate SO2−
4 (Pay et al., 2012) while being transported towards

the measurement site. Nitrate concentrations are affected by long-range transport from continental Europe (Benelux, western

Germany), which are advected towards SIRTA from northeastern directions (Petetin et al., 2014; Petit et al., 2014). It is to be290

expected that the influence of mid- to long-range transport on the particle observations at SIRTA is rather substantial, with most

high pollution days affected by particle advection from continental Europe (Bressi et al., 2013). Concerning BCff and BCwb,

model results suggest a dependence on wind direction during northwestern to northeastern inflow. Although BC concentrations

are expected to be largely determined by local emissions (Bressi et al., 2013), e.g. from local residential areas, a substantial

contribution of imported particles from wood burning and traffic emissions from the Paris region (Laborde et al., 2013; Petetin295

et al., 2014) and continental sources is likely (Petetin et al., 2014).

4.2.4 Influence of feature interactions

Pairwise interaction effects, where the effect of a specific predictor on the total PM1 prediction is dependent on the state

of a second predictor, are analysed in the model. Strong pairwise interactive effects are found between MLH vs. time since

last precipitation and MLH vs. maximum wind speed and shown in Figs 8a and 8b. SHAP interaction effects between MLH300

and time since last precipitation are most pronounced for MLHs below ∼ 500 m agl (Fig. 8a). Interaction values are negative

for low MLHs paired with time since last precipitation close to zero hours. With increasing time since last precipitation,

interaction effects become positive, thus increasing the contribution of Tprec and MLH to the model outcome. An explanation

of this pattern concerning underlying processes could be that due to the lack of precipitation, a higher number of particles is

available in the atmosphere for accumulation, hence increasing the accumulation effect of a shallow MLH. In case of recent305

precipitation, the accumulation effect of a shallow MLH is weakened. For higher MLHs, interactive effects with time since the

last precipitation event are marginal. Interactive effects between MLH and wind speed are shown in Fig. 8b. Positive SHAP

values for maximum wind speeds below ∼2 m/s reflect stable situations, favoring the accumulation of particles, whereas high

wind speeds enhance the ventilation of particles (Sujatha et al., 2016). This can also be deduced from Fig. 8b, which shows

increased SHAP values for low wind speeds in combination with a low MLH. Low wind speeds combined with a high MLH310

(>∼1000 m agl), on the other hand, result in decreased SHAP values. Similarly, low MLHs combined with higher wind speeds

(>∼2 m/s) also decrease predictions of total PM1 concentrations. High MLHs in combination with high wind speeds, however,

reduce SHAP values. A physical explanation of this pattern could be the more effective transport of SO2−
4 and its precursor

SO2 as well as ammonium nitrate under high-MLH conditions and stronger winds (Pay et al., 2012). Maximum wind speed

and time since last precipitation (plot not shown here) interact in a similar way. The positive effect of low wind speeds on the315

model outcome is increasing with increasing time since last precipitation.
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Figure 7. As Fig. 5 for wind direction SHAP values (contribution of 3-day mean wind direction to the prediction of species and total PM1

for each data instance) vs. absolute wind direction [◦].

4.3 Meteorological conditions of high-pollution events

To further identify conditions that favor high pollution episodes, the data set is split into situations with exceptionally high total

PM1 concentrations (>95th percentile) and situations with typical concentrations of total PM1 (interquartile range, IQR). This
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Figure 8. MLH vs. a) time since last precipitation and MLH vs. b) maximum wind speed, respectively, colored by the SHAP interaction

values for the respective features.

Table 1. Statistics for typical PM1 concentrations (mean, median, IQR) and high-pollution concentrations (>95th percentile).

PM1 concentrations Mean Median Interquartile range 95th percentile

Winter (DJF) 11.1µg/m3 6.3µg/m3 2.7-15.4µg/m3 34.3µg/m3

Summer (JJA) 7.5µg/m3 6.0µg/m3 3.5-10.1µg/m3 18.2µg/m3

is done for the meteorological summer and winter seasons to contrast dominant drivers between these seasons. Mean SHAP320

values refer to the total PM1 model, corresponding input feature distributions and species fractions for the two subgroups are

aggregated seasonally. This allows for a quantification of seasonal feature contributions to average or polluted situations.

Figs 9 & 10 show mean SHAP values for typical (left) and high-pollution (right) situations in the upper panel. The distribu-

tion of SHAP values are shown as box plots for each feature. Absolute feature value distributions are given in the bottom of

the figure. In the lowest subpanel, the chemical composition of the total PM1 concentration for each subgroup is shown. The325

largest contributor to high pollution situations in winter is air temperature (Fig. 9). SHAP values for temperature are substan-

tially increased during high pollution situations, when temperatures are systematically lower. Further contributing factors to

high pollution situations are the lows MLHs, low wind speeds, a high average NO−
3 fraction of the previous day and negative

u (i.e., winds from the east) and v (i.e., winds from the north) wind components. In winter, the PM1 composition shows a

relatively large fraction of nitrates, which is increased during high pollution situations (Fig. 9, lower panel). High concentra-330

tions of nitrate in winter can be linked to advection or to enhanced formation due to the temperature-dependent low volatility

of ammonium nitrate (Petetin et al., 2014). The organic matter fraction is slightly decreased during high pollution situations.

MLH and maximum wind speed influences on high pollution situations are linked to low ventilation conditions which are very
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frequent in winter (Dupont et al., 2016). Positive influence of wind direction for inflow from the northern and eastern sectors

are dominant during high pollution situations while inflow from the southern and western sectors prevails during average pol-335

lution situations (see Fig. 7, Bressi et al., 2013; Petetin et al., 2014; Srivastava et al., 2018). Note that the time since the last

precipitation is increased during high pollution situations, but the effects on the model outcome is weak. This suggests that

lacking precipitation is not a direct driver of modelled total PM1 concentrations, but increases the contribution of other input

features (see Fig. 8a) or is a meaningful factor in only some situations.

Summer total PM1 composition (Fig. 10) is characterised by a larger fraction of organics compared to the winter season (Fig.340

9). As a considerable fraction of organic matter is formed locally (Petetin et al., 2014), the increased proportion of organics

could be due to more frequent stagnant synoptic situations that may limit the advection of transported SIA particles. In addition,

the positive SHAP values of solar irradiation and temperature highlight that the solar irradiation stimulates transformation pro-

cesses and increases the number of biogenic SOA particles (Guenther et al., 1993; Petetin et al., 2014). As mean temperatures

are highest in summer, positive temperature SHAP values are associated with increased organic matter concentrations (Fig.345

5). The higher importance (i.e. higher SHAP values) of time since the last precipitation event during high pollution situations

points to an accumulation of particles in the atmosphere. Dry situations can also enhance the emission of dust over dry soils

(Hoffmann and Funk, 2015). The negative influences of MLH during both typical and high pollution situations reflects season-

ality, as afternoon MLHs in summer are usually too high to have a substantial positive impact on total PM1 concentrations (see

Fig. 6). MLH is thus not expected to be a driver of day-to-day variations of summer total PM1 concentrations. Note that the350

average MLH is higher during high pollution situations, which likely points to increased formation of SO2−
4 (see Fig. 6).

4.4 Day-to-day variability of selected pollution events

Analysing the combination of SHAP values of the various input features on a daily basis allows for direct attribution of

the respective implications for modelled total PM1 concentrations (Lundberg et al., 2020). Here, four particular pollution

episodes are selected to analyse the model outcome with respect to physical processes (Figs 11-14). The examples highlight355

the advantages but also the limitations of the interpretation of the statistical model results. The high pollution episodes took

place in winter 2016 (10th - 30th January and 25th November - 25th December), spring 2015 (11th - 31st March) and summer

2017 (8th - 28th June).

4.4.1 January 2016

Prior to the onset of the high-pollution episode in January 2016 (Fig. 11), the situation is characterised by MLHs in the range360

of 1000m, temperatures above freezing (∼5-10◦C), frequent precipitation and winds from the southwest. The organic matter

fraction dominates the particle speciation. The episode itself is reproduced well by the model. According to the model results,

the event is largely temperature-driven, i.e. SHAP values of temperature explain a large fraction of the total PM1 concentration

variation (note the adjusted y-axis of the temperature SHAP values). On 18th January, temperatures drop below freezing,

coupled with a decrease in MLH. As a consequence, both modelled and observed PM1 concentrations start to rise. A further365

increase in total PM1 concentrations is driven by a sharp transition from stronger southwestern to weaker northeastern winds
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Figure 9. Mean feature contributions (i.e., SHAP values) for situations with low total PM1 concentrations (left) and situations with high

pollution (right), respectively, during winter (December, January, February). Respective range of SHAP values by species are shown as

box plots, with median (bold line), 25-75th percentile range (boxes), and 10–90th percentile range (whiskers). Both training and test data

are included. Absolute feature value distributions (given as normalised frequencies) as well as the chemical composition of the total PM1

concentration are shown in the subpanels. Colors of the box plots correspond to colors in the feature distribution subpanels. SHAP values

of the input features u_norm_3d and u_norm as well as v_norm_3d and v_norm were merged to u_norm, merged and v_norm, merged to

achieve better transparency.
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Figure 10. As Fig. 9 for mean feature contributions (i.e., SHAP values) for situations with low total PM1 concentrations (left) and situations

with high pollution (right), respectively, during summer (July, June, August).

(strong negative u component, weak negative v component) on January 19th. The combined effects of these changes lead

to a marked increase in total modelled PM1 concentrations, peaking at ∼37µg/m3 on 20th January. On the following days,

temperatures increase steadily, thus the contribution of temperature decreases. At the same time, although values of MLH

remain almost constant, the contribution of MLH drops substantially from ∼5µg/m3 to ∼2µg/m3. This is due to interactive370

effects between MLH and the features wind speed, time since last precipitation and normalised v-wind-component. All of
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these features increase the contribution of MLH on 20th January, but decrease its contribution on 21st-23rd January. The

physical explanation behind this pattern would be that lacking wet deposition and low wind speeds increase particle numbers

in the atmosphere, while inflow from northeasterly directions increase particle numbers in the atmosphere. Given that there is

now a large number of particles present, the accumulation effect of a low MLH is more efficient. The high pollution episode375

ceases after a shift to southeastern winds and the increasing temperatures. The pollution episode is characterised by a relatively

large fraction of NO−
3 and NH+

4 , which explains the strong feature contribution of temperature to the modeled total PM1

concentration, as the abundance of these species is temperature dependent (see Fig. 5) and points to a large contribution of

locally formed inorganic particles. Still, the contribution of wind direction and speed also suggests that advected secondary

particles and their build-up in the boundary layer are relevant factors during the development of the high pollution episode380

(Petetin et al., 2014; Petit et al., 2014; Srivastava et al., 2018).

4.4.2 December 2016

A high-pollution episode with several peaks of total PM1 is observed in November and December 2016. The first peak on 26th

Movember is followed by an abrupt minimum in total PM1 concentrations on 28th November, and a build-up of pollution in a

shallow boundary layer towards the second peak on 2nd December with total PM1 concentrations exceeding 40µg/m3. In the385

following days, total PM1 concentrations continuously decrease, eventually reaching a second minimum on 11th December.

A gradual increase in total PM1 concentrations follows, resulting in a third (double-)peak total PM1 concentration on 17th

December. Total PM1 concentrations drop to lower levels afterwards. Throughout the 3.5 week-long episode, high pollution

is largely driven by shallow MLH (<∼500m), and weak north-northeasterly winds, i.e. a regime of low ventilation associated

with high pressure conditions favorable for emission accumulation and possibly some advection of polluted air from the390

Paris region. During the brief periods with lower total PM1 concentrations, these conditions are disrupted by a higher MLH

(∼28th November), or a change in prevailing winds (∼11th December). In contrast to the pollution episode in January 2016,

this December 2016 episode is not driven by temperature changes. Temperatures range between ∼5-12◦C and have a minor

contribution to predicted total PM1 concentrations (see also Fig. 5), emphasizing the different processes causing air pollution

in the Paris region. Note that the model is not able to fully reproduce the pollution peak on December 2nd, which may be395

indicative of missing input features in the model. Judging from the PM1 species composition during this time (relatively high

fraction of NO−
3 and BC), it seems likely that missing information on particle emissions may be the reason for the difference

between modeled and observed total PM1 concentration.

4.4.3 June 2017

A period of above average total PM1 concentrations occurred in June 2017. The episode is very well reproduced by the model,400

suggesting a strong dependence of the observed total PM1 concentration to meteorological drivers. Although absolute total

PM1 concentrations are substantially lower than during the previously described winter pollution episodes, the event is still

above average for summer pollution levels. Organic matter particles dominate the PM1 fraction throughout the episode, with

a relatively high SO2−
4 fraction. Conditions during this episode are characterised by strong solar irradiation (positive SHAP
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Figure 11. Winter pollution episode in January 2016. The upper panel (a) indicates the total PM1 prediction as horizontal black line with

vertical black lines denoting the range of predictions of all 10 models. The observed species concentrations are shown as stacked planes in

the corresponding colors. The subsequent panels show absolute values (left y-axis, solid lines) and SHAP values (right y-axis, pink bars for

positive and blue bars for negative values) for the most relevant meteorological input features: MLH (b) , temperature (c), hours after rain

(d), maximum wind speed (e) normalised u wind (f) and normalised v wind (g) component.

values) and high MLHs (mostly negative SHAP values), which show low day-to-day variability and reflect characteristic405

summer conditions. A lack of precipitation (no rain for a period of more than 2 weeks) and high temperatures also contribute

to the total PM1 concentrations during this episode. While solar irradiation and time since last precipitation are associated
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Figure 12. As Fig. 11 for a further winter pollution episode in December 2016.

with positive SHAP values throughout this period, air temperature only has a positive contribution when exceeding ∼25 ◦C.

This aligns with patterns shown in Fig. 5, where increased concentrations of organic matter and SO2−
4 are identified for high

temperatures. Peak total PM1 concentrations of ∼17µg/m3 are observed on June 20th and 21st. A change in the east-west410

wind component from western to eastern inflow directions in conjunction with an increase in temperatures to above 30 ◦C

are the drivers of the modeled peak in total PM1 concentrations. MLH is also increased with values ∼2000 m agl, which are

associated with slightly positive SHAP values. This observation fits with findings described in section 4.2.2 and is likely linked
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Figure 13. As Fig. 11 for an exemplary summer pollution episode in June 2017.

to enhanced secondary particle formation (Megaritis et al., 2014; Jiang et al., 2019). As suggested by response patterns of

species to changes in MLH shown in Fig. 7, this effect is linked to an increase in SO2−
4 concentrations. The main fraction of415

the peak total PM1 values, however, is linked to an increase in organic matter concentrations due to the warm temperatures

(see Fig. 5).
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4.4.4 March 2015

High particle concentrations are measured in early March 2015 with high day-to-day variability. This modelled course of the

pollution episode is chosen to compare results to previous studies focusing on the evolution of this episode (Petit et al., 2017;420

Srivastava et al., 2018). The episode is characterised by high fractions of SIA particles, in particular SO2−
4 , NH+

4 and NO−
3 (Fig.

14, upper panel) and similar concentrations observed at multiple measurement sites in France (Petit et al., 2017). Contributions

of local sources are low and much of the episode is characterised by winds blowing in from the northwest, advecting aged SIA

particles (Petit et al., 2017; Srivastava et al., 2018) and organic particles of secondary origin (Srivastava et al., 2019) towards

SIRTA. A widespread scarcity of rain probably enhanced the large-scale formation of secondary pollution across western425

Europe (in particular western Germany, The Netherlands, Luxemburg, Petit et al., 2017), which were then transported towards

SIRTA. This is reflected by the SHAP values of the u and v wind components, which are positive throughout the episode (see

Fig. 14g & 14h). Concentration peaks of total PM1 are measured on 18th and 20th March. Both peaks are characterised by a

rapid development of total PM1 concentrations. As described in Petit et al. (2017), these strong daily variations of total PM1,

which are mainly driven by the SIA fraction, could be due to varying synoptic cycles, especially the passage of cold fronts.430

The influence of MLH and temperature is relatively small, which is consistent with the high influence of advection on total

PM1 concentrations during the episode. The exceptional character of the episode (see Petit et al., 2017) partly explains the bad

performance of the model in capturing total PM1 variability during the event. Unusual rain shortage is observed in large areas

of Western Europe prior to the episode (Petit et al., 2017). While time since precipitation at the SIRTA-site is a large positive

contributor to the model outcome (see Fig. 14d), it is not driving the day-to-day variations. The unusual nature of this event and435

lacking information on emission in the source regions and formation processes along air mass trajectories in the model likely

explain why the model has difficulties in reproducing this pollution episode. While this has implications for the application of

explainable machine learning models for rare events, this is not expected to be an issue for the other cases and seasonal results

presented here.

5 Conclusions and outlook440

In this study, dominant patterns of meteorological drivers of PM1 species and total PM1 concentrations are identified and anal-

ysed using a novel, data-driven approach. A machine learning model is set up to analyse measured speciated and total PM1

concentrations based on meteorological measurements from the SIRTA supersite, southwest of Paris. The machine learning

model is able to reproduce daily variability of particle concentrations well, and is used to analyse and quantify the atmo-

spheric processes causing high-pollution episodes during different seasons using a SHAP-value framework. As interactions445

between the meteorological variables are accounted for, the model enables the separation, quantification and comparison of

their respective impacts the individual events. It is shown that ambient meteorology can substantially exacerbate air pollution.

Results of this study point to the distinguished role of shallow MLHs, low temperatures and low wind speeds during peak

PM1 episodes in winter. These conditions are often amplified by northeastern wind inflow under high-pressure synoptic cir-

cuation. A detailed analysis reveals how the meteorological drivers of winter high-pollution episodes interact. For an episode450

24



Figure 14. As Fig. 11 for an exemplary spring pollution episode in March 2015.

in January 2016, model results show a strong influence of temperature to the elevated PM1 concentrations during this episode

(up to 11µg/m3 are attributed to temperature), suggesting enhanced local, temperature-dependent particle formation. During a

different, prolonged pollution episode in December 2016, temperature levels were relatively stable and had no influence. Here,

MLH (<500 m asl) was quantified to be the main driver of modelled PM1 peak concentrations with contributions up to 6µg/m3,

along with wind direction contributions of up to ∼6µg/m3. Total PM1 concentrations in spring can be as high as 50µg/m3.455

These peaks in spring are not as well reproduced by the model as winter episodes and are likely due to new particle formation
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processes along the air mass trajectories, in particular of nitrate. Summer PM1 concentrations are lower than in other seasons.

Model results suggest that summer peak concentrations are largely driven by high temperatures, particle advection from Paris

and continental Europe with low wind speeds and prolonged periods without precipitation. For an example episode in June

2017, temperatures above 30◦C contribute ∼3µg/m3 to the total PM1 concentration. On site scarcity of rain increases air pol-460

lution, but does not appear to be a main driver of strong day-to-day variations in particle concentrations. Presumably, this is

because droughts are synoptic and are spread over several days or even weeks. Thus, they present very low inter-daily variabil-

ity on the local scale. Nonetheless, Petit et al. (2017) have highlighted the link between extreme PM concentrations (especially

during spring) and extreme precipitation deficit (compared to average conditions). Main drivers of day-to-day variability of

predicted PM1 concentrations are changes in wind direction, air temperature and MLH. These changes often superimpose the465

influence of time without precipitation. Individual PM1 species are shown to respond differently to changes in temperature.

While SO2−
4 and organic matter concentrations are increased during both high and low temperature situations, NH+

4 and NO−
3

are substantially increased only at low temperatures. Model results indicate that SIA particle formation is enhanced during

shallow MLH conditions.

The presented findings refer to the SIRTA supersite but the results are nevertheless transferable to other regions as well. For470

example, the importance of temperature-induced particle formation processes have been shown for the U.S.A. (Dawson et al.,

2007), Europe (Megaritis et al., 2014), and China (Wang et al., 2016). Hence, it is likely that the detailed, species-dependent

disclosure of the nonlinear relationship between temperature and PM1 of this study holds for other urban and suburban areas.

This has implications for the PM concentrations in the context of climate change. The empirical perspective of the current

study complement to the findings of various modelling studies (Dawson et al., 2007; Megaritis et al., 2013, 2014; Sá et al.,475

2016; Doherty et al., 2017), the insights provided here from an empirical perspective could increase the confidence in air qual-

ity estimations under climate change. Furthermore, the impact of shallow MLHs on PM1 concentrations investigated here is

comparable to results found in a previous, regional-scale study over central Europe that highlighted the dominant role of MLH

on PM10 concentrations (Stirnberg et al., 2020). The importance of wind direction highlights the role of advected pollution

by remote, highly polluted urban or industrial hotspots.. In general, the interpretation of pollution advection patterns requires480

knowledge on source regions and terrain. Here, the Paris agglomeration is a major source of pollutants while the relatively flat

terrain allows unimpeded advection of air masses. Urban areas in a more complex terrain would likely be affected by slightly

different and possibly more complex mechanisms., such as terrain- and meteorology-dependent air stagnation events Wang

et al. (2018) as well as orography driven wind and precipitation patterns (Rosenfeld et al., 2007). Still, given the task of disen-

tangling the impact of the various meteorological drivers on air quality is already a complex scientific subject, a continental,485

flat terrain city such as Paris was chosen as the subject area precisely to exclude other factors (such as orographic flow, or sea

breeze) that would add further complexity. Certainly, the methods developed here could be transferred to more urban areas in

more complex settings in the framework of future studies.

Furthermore, the analysis of meteorological drivers could be extended in future studies, e.g. by including information on

anthropogenic emissions or further stations down- and upwind of SIRTA, which would allow further analysis of dominant490

advection patterns. Furthermore, information on emissions or meteorology in the source region of air masses e.g., using
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Figure A1. Scatterplot for MLH [m agl] measured at SIRTA vs. MLH measured at Charles de Gaulle airport .

satellite-based observations, might be helpful to better reproduce particle transport patterns. This could be complemented

by incorporating synoptic variables, e.g., the North Atlantic Oscillation (NAO) index.

For policy makers, the presented approach could prove beneficial in multiple ways. Knowledge of meteorological conditions

that exacerbate air pollution could be used to issue preventative warnings to the public if these conditions are forecasted.495

Another potential future application could be the quantitative assessment of policy measures, e.g., traffic bans, by comparing

an "expected" level of air pollution under given meteorological conditions to actual observations (e.g., Cermak and Knutti,

2009), Finally, the presented model framework could be combined with short-term weather forecasts, which would allow to

provide an air quality forecast based on the predictions of the statistical models.

Data availability. SIRTA-ReOBS data can be accessed online (https://sirta.ipsl.fr/reobs.html), ACSM data are available upon request.500

Appendix A: Comparison of mixed layer height (MLH) measured at SIRTA and Charles de Gaulle airport

As mentioned in section 2.2, ca. 90 missing MLH values in 2016 were replaced with measurements conducted at the Charles de

Gaulle airport (see Fig. 1). Figs A2 and A1 summarize MLH values for 2016 when measurements from both sites are available

(afternoon period). As shown in Fig. A1, measurements at both sites generally agree well, except for some outliers. Spearman’s

rank coefficient is significant (p-value < 0.05) and has a value of 0.51.505

A comparison of the frequency of occurrence is shown as histogram in Fig. A1 and indicates good agreement as well.
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Figure A2. Histogram showing the frequency of occurrence for MLH [m agl] measured at SIRTA (red) vs. MLH measured at Charles de

Gaulle airport (black).

Appendix B: Illustration of the influence of NO−
3 fraction and wind speed

Figs B1 and B2 illustrate the influence of the NO−
3 fraction and maximum wind speed on the model outcome using SHAP

values.
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Figure B1. As Fig. 5 for fraction of NO−
3 SHAP values (contribution of NO−

3 fraction to the prediction of species and total PM1 for each

data instance) vs. absolute NO−
3 fraction.
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Figure B2. As Fig. 5 for the maximum wind speed SHAP values (contribution of maximum wind speed to the prediction of species and total

PM1 for each data instance) vs. absolute maximum wind speed.
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