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BOLD = reviewer comment
[talic = answer to reviewer comment
Red = highlighted changes in manuscript

Comments previously provided by a reviewer

(Editor: These comments have not been addressed in this ACPD version and thus need
to be addressed in this round of review.)

| am afraid that even after reading the article, | do not understand why the
authors choose to explain air quality over Paris based on meteorology at the
SIRTA location, when regional and local emissions and atmospheric
transformations during long range transport are the major drivers of ambient
pollution. These major drivers are mentioned towards the end as future work,
but studies should start there. For example, even if MLH or wind speed is low,
zero emissions = no air pollution.

Answer:

Thank you for this comment.

Indeed we do not inted to explain Paris air quality using the SIRTA site - the focus is on
air quality at the SIRTA site, which is near Paris and representative of suburban
background concentrations. We have clarified this in the manuscript (see changes in
L11,L88, L94, L127, L234, L502). The aim of this study is to quantify how
meteorological factors influence pollutant concentrations and thus add to system
understanding. It has been shown in previous studies that pollutant concentrations are
not solely driven by emissions, and can be exacerbated or weakened substantially by
certain meteorological conditions. For SIRTA, this has been described for example by
Dupont et al., 2016.

It was not intended to set up a prognostic model to forecast PM1 as accurately as
possible in time.

Emissions of pollutants or precursor gases undoubtedly constitute a prerequisite to air
pollution, but pollutant concentrations are not solely driven by anthropogenic emissions,
but strongly affected by varying amounts of natural background emissions (see e.g.,
Liora et al., 2016, DOI: 10.1016/j.atmosenv.2016.04.040, Jiang et al. 2019, DOI:
10.5194/acp-19-15247-2019). Thus, high concentrations of particulates could also occur



during episodes with low anthropogenic emissions. This is particularly the case in
summer, when biogenic organic emissions are high (this is mentioned in the
introduction, L56).

The influence of meteorology can lead to quite different air pollution situations, even if
emissions are constant. In winter, meteorological conditions exert great influence on
formation pathways, as we describe in chapter 4.2.1. For example, condensation of
ammonium nitrate in the aerosol phase is enhanced at low ambient temperatures and
high relative humidity (see e.g., Pay et al., 2012; Bressi et al., 2013; Petetin et al.,
2014; Petit et al., 2015). Hence, even if emissions would be not above average levels,
this formation mechanism would increase the concentrations of pollutants.
Transformation processes are partly covered by meteorological parameters, e.q.,
through the influence of temperature (please see also answers to Referee #3
comments). Obviously, the model does still not capture all of the occurring variance of
PM1 concentrations, but since it was not the intention to set up a predictive framework,
the focus is not primarily on accuracy, but on interpretability. Hence, the included
parameters are deemed adequate for the analysis

In the updated version of the manuscript, we have taken great care to consider this
comment and now more clearly communicate the main goal of this manuscript:

- L3: However, the scientific understanding of the ways by which complex
interactions of meteorological factors lead to high pollution episodes is
inconclusive, as the effects of meteorological variables are not easy to separate
and quantify

- L6: In this study, a novel, data-driven approach based on empirical relationships
is used to characterise, quantify and better understand the meteorology-driven
component of PM1 variability.

- L8: Changed to “Based on the model, an isolation and quantification of individual
meteorological influences for process understanding is achieved using SHapley
Additive exPlanation (SHAP) regression values.

- L87: Changed to “Here, the multivariate and highly interconnected nature of the
processes determining local PM1 concentrations is analysed in a data-driven
way. Therefore, a state-of-the-art explainable machine learning model is set up to
reproduce the variability of PM1 concentrations, thereby capturing empirical
relationships between PM1 concentrations and meteorological parameters. The
goal is to separate and quantify influences of the meteorological variables on
PM1 concentrations to advance the process understanding of the complex
mechanisms that govern pollution concentrations at the measurement site.”

The authors frame it as "we should take atmospheric and environmental
processes into account during the development of efficient pollution



mitigation strategies"/"a basis for future clean air programs”, but AirParif can’t
exactly change wind conditions or MLH orT/RH.

These statements were aimed to show the potential benefits of considering
atmospheric and environmental conditions when future measures to prevent air
pollution are discussed. This relates mainly to three points:

- a) A realistic assessment of the effectiveness of measures against air
pollution needs to take atmospheric and environmental processes into
account as these processes partly control its variability. For example, if
changes in PM concentrations due to traffic restrictions were to be
determined, a simple comparison of pre-restriction and post-restriction
concentrations would not be sufficient, as meteorological influences
would be omitted. Machine learning approaches can be very useful to
characterize the efficiency of mitigation policies. Recent lockdown in Spain
is an adequate example here (Petetin et al., 2020, DOI:
https://doi.org/10.5194/acp-20-11119-2020)

- b) Weather conditions which exacerbate pollutant concentrations are
identified using the SHAP framework. On this basis, air-pollution measures
could be adjusted depending on expected meteorological conditions. For
example, warnings could be expressed to the public to remain vigilant or
stay at home if possible.

- c¢) In a changing climate, more unfavorable meteorology could trigger
and/or exacerbate PM pollution episodes, lowering the role of emission
restrictions.

To make this clearer in the manuscript, the following changes were made:

L47: The sentence ‘It is therefore crucial to take atmospheric and environmental
processes into account during the development of efficient pollution mitigation
strategies” was removed .

The explanation relating to future clean air program was shifted to the end of the
introduction and expanded; L96-106 now read:

“.. allowing to infer meteorology-dependent processes driving PM concentrations
at high temporal resolution.. Typical situations that lead to high PM1
concentrations are identified, serving as a decision support to policymakers to
issue preventative warnings to the public if these situations are to be expected. In
addition, by directly accounting for meteorological effects on PM1 concentrations,
such a machine learning-based framework could help in assessing the
effectiveness of measures towards better air quality. Furthermore, the proposed
ML framework can be viewed as a first step towards a data-driven, prognostic
tool in operational air quality forecasting, complementary to CTM approaches.



Maybe this can be used to forecast periods of bad air quality - but they
describe some important events that the model fails to reproduce because it is
missing major drivers in the inputs (lines 390, 426-427).

We show several examples where the model is well able to reproduce episodes of high
pollutant concentrations (sections 4.4.1-4.4.3). This is encouraging and shows the
appropriateness of the approach. There are of course also situations in which the model
fails to reproduce high-pollution situations. These situations are shown in detail to
stimulate further research in this direction.

As stated earlier, the current model setup was chosen for the purpose of improving the
understanding of how meteorological factors influence pollutant concentrations, and to
quantify potential influences (which was more clearly stated in L87-105). Setting up a
probabilistic forecast model based on top of the presented framework would
undoubtedly require many adjustments to include the factors correctly pointed out by
the referee..

So | am not sure this study is an advance over previous knowledge.
Extensive changes were made to the manuscript to emphasize new scientific insights
(see previous answers and answers to Referee#3 comments)

Anonymous Referee #1

The research work employs field measurements of Particulate Matter smaller
than1um in diameter (PM1), routine meteorology data and propose a machine
learning framework in air-pollution forecasting. The authors address the
significant challenge of Interpretability in machine learning using the SHapley
Additive exPlanation (SHAP)regression values.

A general comment is related to the aim of the proposed work. Although the
role of meteorology on PM concentrations is well studied, the paper proposes
a novel method/tool of explainable machine learning in atmospheric sciences.
The results support the use of explainable machine learning as a statistical
modeling framework in operational air quality forecasting. The authors
comment on this in the conclusion section but could highlight the ability of
the proposed framework earlier in the manuscript.

Thank you for your assessment.
In order to highlight the capability of the framework in air quality forecasting, the



following statement was added to the introduction (L102): “Furthermore, the

proposed ML framework can be viewed as a first step towards a data-driven,
prognostic tool in operational air quality forecasting, complementary to CTM

approaches..”

While the results of the study are of local interest the proposed modelling
framework has a high replication potential in areas with limited PM1 field
measurements and therefore has a general implication in atmospheric
science. Some concern is related to the use of meteorological data for the
period of July to mid-November 2016. It is useful to include some descriptive
statistical analysis of the meteorological data for all sites in order to compare
and highlight the suitability of using meteorological data from the Paris
Charles de Gaulle Airport.

Please note that only MLH was substituted during that time, all the other variables
were not affected by the instrument failure.

An appendix was added. Figs A1 and A2 now provide a comparison of MLHs
measured at Sirta vs. MLH measured at Charles de Gaulle airport for available data
of the year 2016.

Furthermore, the locations of all measurement sites should be included in the
map of the area of study and use more appropriate location mark labels.
Map (Figure 1) was changed accordingly.

The authors could provide some descriptive statistical analysis of the PM1
field mea-surements. This analysis could provide thresholds of high-pollution
events in the region(e.g. similar to the >95 percentiles used in the paper).
Table showing mean, interquartile range, 95 percentile was added in section 4.3
Several thresholds were tested to define high-pollution events (e.q., >75%, >90%,
>95%). It was found that the more extreme the events, the clearer the
meteorological influence, which points to a relatively narrow set of meteorological
characteristics responsible for high-pollution events. The decision to finally use the
95th percentile for the analysis was because this is a typical threshold for extreme
value analysis. Below is shown the plot for extreme events >75th percentile; patterns
are similar, but less distinct compared to >95th percentile as shown in the
manuscript.
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Please note that a more extensive description of the statistics of the PM1 field
measurements is also provided in Petit et al., 2014 (DOI:
https://doi.org/10.5194/acp-14-13773-2014), Petit et al., 2015 (DOI:
https://doi.org/10.5194/acp-15-2985-2015), Petit et al., 2017 (DOI:
https://doi.org/10.1016/j.atmosenv.2017.02.012)

The overall ability of the proposed framework could be also evaluated using
exceedances forecast verification metrics (e.g. Probability of Detection, False
Alarm Ratio etc.) for certain PM1 thresholds. This analysis could be
complementary to the analysis of high-pollution case-studies and role of
meteorological conditions of high-pollution events.


https://doi.org/10.5194/acp-14-13773-2014
https://doi.org/10.5194/acp-15-2985-2015

As the main objective of this study is to advance the understanding of
meteorological drivers, a regression model was set up and validated to reproduce
the temporal development of PM concentrations. The model that was set up for this
task does not do a classification, therefore calculating the Probability of Detection or
False Alarm Rate might not be suitable for validation. Hence, while these are
certainly good suggestions for a classification framework, they are out of the scope
of the manuscript and could be included in future work on this topic.

The paper presentation and structure is clear and supports the discussion of
the results. The authors give proper credit to earlier published work and
discuss their findings appropriately. The figures in the manuscript support the
discussion of the results.

Thank you!

In Figures 9 and 10 the color-bar of the PM1 composition could be misleading.
It is advised to change to avoid confusion with the feature contributions color
scales.

The colors used for major PM1 species are consistent with previous literature (e.g.,
Petit et al. 2014, Petit et al. 2015, Dupont et al. 2016), so the colors of the
meteorological variables were changed instead. In addition, a horizontal line was
added to more clearly separate the PM1 composition plot.

The authors should also check of consistency of abbreviations throughout the
manuscript. For example, Mixed-layer height (MLH) in some figures is
abbreviated as BLH.

Thank you, BLH was changed to MLH in all affected plots.

Anonymous Referee #3

This paper presents a machine-learning built model approach to analyse an
extensive multi-parameter dataset at observational in a suburban area south
of Paris. The focus of the manuscript is using a recently published tool
(“SHapley  Additive exPlanation(SHAP) values”) to analyse the
machine-learning model’s predictions and then attribute drives of the
statistical model.

The paper presents large amounts of information about the output from the
analysis tool, but not enough focused justification or evidence is presented



about how novel these interpretations are or how that they could be used for
air pollution mitigation policy etc. At points, the paper even reads as if the
authors are suggesting that authorities seek to mitigation against the
meteorology contribution to air pollution. Could this analysis be used to make
a forecasting tool if parameters were gained in real-time? If so,how long ahead
would these predictions be expected to be useful for? Would this be useful in
a public health context?

Thank you for your assessment.

The focus of this study is not on the prediction of pollutant concentrations in time,
but to contribute to the advancement of the scientific understanding of how
meteorology influences air pollution. The machine-learning framework presented in
this study provides observation-based, quantitative estimations for the influence of
various meteorological factors to PM1 at the same time, enabling their direct
comparison. The model does allow for interactions between the meteorological
factors, and on this basis, a separation and comparison of meteorological
influences on any individual event is feasible. This is a novel aspect, as it allows to
extract empirical patterns from the data set that are hard to detect using established
statistical methods.

Setting up a forecasting tool is a possible extension of the machine-learning
framework established within this study, but not the key objective here. This is why
we only outline such possible applications and their usefulness at the end of the
manuscript. So no, our analysis framework in its present form is not intended as a
forecasting tool, and cannot be converted into one without more work. Hence, the
reliability of such a forecast tool was not assessed. It is likely that the PM forecast
would greatly depend on the reliability of the forecasted meteorological conditions.

In its present configuration, however, our tool can determine an ‘expected’ level of
air pollution under given meteorological conditions. By comparing this to actual
observations, the effect of any source reductions (e.q. via policies) can be assessed.
These points were added in L510-520.

The following specific changes were made in the manuscript:

- L2 & 3: “substantially contribute to” was changed to “substantially influence”.
The wording “contribute to” might indeed be misleading here, as it could
sound as if meteorology actively emits pollutants.

- Throughout the manuscript, the wording “meteorological contribution” was
changed to “meteorological influence” or removed, if not referring to the ML
model (caption chapters 4.2, 4.2.1-4.2.4, L265, .294, [ 295, 295, 303, 317,
329, 361, 362, 376, 424, 461, 483, 486)



- L46: the sentence ‘It is therefore crucial to take atmospheric and
environmental processes into account during the development of efficient
pollution mitigation strategies” was removed. This point is now made clearer
at the end of the introduction

- See changes in lines 80-85; the goal of the study is now stated more precisely
and benefits in a public health context are described

- L476-479: ...As interactions between the meteorological variables are
accounted for, the model enables the separation, quantification and
comparison of their respective impacts the individual events. It is shown that
ambient meteorology can substantially exacerbate air pollution. Results of this
study point to a distinguished role of shallow MLHs, low temperatures and low
wind speeds during peak PM1 concentrations in winter

- L512-515: changed to “For policy makers, the presented approach could
prove beneficial in multiple ways and serve as a decision aid for air policy
measures. Preventative warnings could be issued to the public if the identified
meteorological conditions exacerbating air pollution are to be expected.
Another application would be to attribute changes in air quality to policy
measures by comparing an ‘expected’ level of air pollution under given
meteorological conditions to actual observations (e.g., Cermak2009 and
Knutti 2009), which may help...”

A core premise (in the abstract and elsewhere) is that we do not fully
understand the contribution of meteorology to high air pollution episodes is
true, however, this does justify the framework used here which omits two
other key drivers (chemistry and emis-sions). Apart from a few mentions, it is
not clear how are these contributions and con-sidered in this method. Are the
contributions of these processes just assumed to be part of the
meteorological contributions? This needs to be a lot clearer.

The focus of this paper explicitly lies on the analysis of the influence of
meteorological conditions on PM1 concentrations. We are fully aware that
meteorology alone cannot explain PM1; one of our aims is to ultimately be able to
‘remove’ the effect of meteorology, and retain the effects of emissions (and to a
lesser degree, chemistry), which to some extent can be influenced directly by policy
(this was added in L99-102). As mentioned in other answers above, pollutant
concentrations have been shown to be exacerbated or decreased by certain
meteorological conditions (e.g., Dupont et al., 2016). It is shown that the model is able
to capture a large fraction of the occurring variation of daily PM1 concentrations, which
shows that the variables chosen as inputs are indeed important drivers. Even without



explicitly considering emissions and chemistry, the model explains between 50-60% of
the day-to-day PM1 variability. Thus, for the location and data set analysed here, the
influence of meteorological variability on PM1 is at least as large as the influence of the
variability of emissions and chemistry. Hence, given the key objective of this study, the
presented framework is suitable for the analysis by capturing key meteorology-based
processes. The detailed analysis presented in chapter 4.4 emphasizes that the temporal
trends of PM1 concentrations are largely well captured.

Some of the meteorological parameters inherently contain information on chemistry and
emissions. For example, RH, solar radiation, and temperature can influence local
transformation processes, as detailed in L44-60. Temperature also contains inherent
information on the strength of residential heating (L250). Wind direction indicates
whether clean air from the west or more polluted air from the northeast is influencing the
PM1 measurement. These mechanisms are mentioned in the introduction (L42-59) and
the result section (chapter 4.2)

To convey these points more clearly to the reader, the following changes were
made:

- L85: added “atmospheric”, changed “determining” to “influencing”

- L60: Added “...while moisture in the atmosphere can stimulate secondary
particle formation processes...”

- L136-141: added in method section (chapter 2.2): “Following the objective of
this study, a set of meteorological variables is chosen as inputs for the ML
model that either influence PM concentrations directly via dilution (MLH, wind
speed (ws), and wet scavenging of particles (precipitation)) and particle
transport (wind direction as u, v components, air pressure (AirPres)), as a
proxy for emissions (e.g. from residential heating: temperature at a height of 2
m (T)), and as a proxy for transformation processes (total incoming solar
radiation (TISR), relative humidity (RH), T).

The paper seems mostly focused on exploring the “SHapley Additive
exPlanation(SHAP) values” approach and it is unclear whether a novel
contribution has been made to the field of air pollution research. This paper
may be better suited to a machine learn-ing journal or could be re-write to be
more focused on air pollution. Either of these two options would require large
changes to the current manuscript.

The novelty and also the advantage of the machine-learning framework is that all
meteorological influences on PM1 concentrations are quantified at the same time,
and interactions between the meteorological variables are captured. On this basis,
their influence on any individual event can be separated and quantified (as done in



chapter 4.4). These aspects are novel and taken together, exceed the potential of
past observation-based analyses.

It was not the aim of this study to explore the applicability SHAP values and it is
unfortunate if this impression is conveyed by the current state of the manuscript.
Therefore, extensive changes to the manuscript have been made to sharpen the
scientific contribution of this manuscript and to more carefully emphasize scientific
contributions.

Still, it is important to note here that much of the methodology chapter is dedicated
to the ML algorithm and the SHAP values to make sure that the results chapter can
be followed by readers not familiar with these techniques. An evaluation of the
model such as in chapter 4.1 is critical to ensure that the model is able to reproduce
empirical patterns.

Large parts of the abstract, intfroduction and the conclusion section were altered to
shift the focus from the SHAP approach to the scientific findings. The following
specific changes were made in the manuscript:

- L510: removed “To our knowledge, this is the first time that the
SHAP-framework for explainable machine learning is applied in atmospheric
sciences”

- Headline 3.2: added “to infer processes” to stress the purpose of the SHAP
values

- L211: was changed to “The interactions of input features contribute to the
model output and thus reflect empirical patterns that are important to deepen
the process understanding.”

- L215: deleted from the manuscript “SHAP values are a novel tool to better
understand multivariate natural systems, in particular when applied in
state-of-the-art machine learning models as GBRT. So far, SHAP values have
been used in the fields of computer science (Antwarg et al. 2019) and medical
science (Lundberg et al., 2018b; Li et al., 2019a; Lundberg et al.,2020), but
have yet to be applied to study environmental systems.”

- L96: Removed “With the use of SHAP values, a detailed insight to the
decisions of the statistical model can be provided, hence allowing an
advancement of previous ML approaches (Friedman, 2001; Lundberg et al.,
2018a).”

- L508-511: Removed “The GBRT approach in combination with the SHAP
regression values presented here provides an intuitive tool to assess
meteorological drivers of air pollution and to advance the understanding of
high pollution events by uncovering different physical mechanisms leading to
high-pollution episodes.”



- L248: added “...as suggested by Fig. 5d...” to state more clearly that this
constitutes a new finding

- L404-4056: added “The physical explanation behind this pattern would be that
lacking wet deposition and low wind speeds increase particle numbers in the
atmosphere, while northeastern winds advect further particles. Given that
there is now a large number of particles available, the accumulation effect of a
low MLH is more efficient”

- See also changes in L96-103, which now more clearly pinpoint the purpose of
the study

Specific comments

Why has PM1 been the focus of this study, rather than the more
health-relevant PM2.5species? Also, how did the model perform at predicting
PM10? Considering the omis-sion of chemistry and emissions in this study,
would PM10 or PM2.5 be a better candi-date for study?

The available ACSM instrumentation does process only PM1 particles. PM1 is highly
relevant for human health, affecting the respiratory system. Smaller particles can
penetrate deeper into the lungs compared to larger particles and potentially cause
more damage Studies show that health impacts of PM1 are similar (Yang et al.,
2018, DOI: 10.1016/52542-5196(17)30100-6) or worse than PM2.5 (Chen et al.
2017, DOI: 10.1016/j.envint.2018.08.027). In addition, a study by the WHO indicates
that BC is a good indicator for human health, which is most prominent for particles
smaller 1um (see
https.//www.euro.who.int/en/health-topics/environment-and-health/air-quality/publicat
ions/2012/health-effects-of-black-carbon-2012)

- A comparison to PM10/PM2.5 is currently not feasible since no simultaneous
measurements of PM1, PM2.5, PM10 and meteorological parameters at the
same site are available

- Addedto L111: “.., a highly health relevant fraction of PM including small
particles that can penetrate deep into the lungs (Yang et al., 2018; Chen et
al., 2017a)”

Line 21 - “Processes vary even within seasons”This does not read well. Of
course, processes will vary within seasons.
Sentence was removed from the manuscript.


https://doi.org/10.1016/S2542-5196(17)30100-6

Line 24 - “likely causes an increase in local wood-burning emissions”Cause
and effect seem to be muddled. Maybe the authors mean to say increases in
burning emission could explain increased particulates?

Yes, this was the intention. To make this more clear, the sentence was changed to
“likely triggers increased local wood-burning emissions, which increase PM1
concentrations”

line 25 - “The application of SHAP regression values within a machine learning
frame-work presents a novel and promising way of analysing observational
data sets in envi-ronmental sciences.”Are there implications for what we
should focus on meteorology studies or observations on? What about the
implications for air-quality modelling or policy? Just presenting another tool
that can be used is not a notable contribution.

This sentence was removed from the manuscript and replaced by “The identification
of these meteorological conditions that increase air pollution could help policy
makers to issue warnings to the public or install preemptive measures by specifically
accounting for meteorological variability that influences PM1 concentrations.
Furthermore, the presented framework has the potential to assess the effectiveness
of air pollution measures.” L8 was changed to ...”Based on the model, an isolation
and quantification of individual meteorological influences for process understanding
is achieved...”

See also changes in the introduction (L98-106) and conclusion (L502-510).

Line 90 - How can policymakers use this information? Improve air quality
models?Focus research directions? What about it is new?

Extensive changes in the manuscript have been made in L96-103 (see also previous
answers). In addition, potential applications and the new insights were emphasized
in various parts of the conclusion section (L475-480, L502-510, L515-520).

L482-485: changed to “For policy makers, the presented approach could prove
beneficial in multiple ways and serve as a decision aid for air policy measures.
Another application would be to attribute changes in air quality to policy measures
by comparing an ‘expected’ level of air pollution under given meteorological
conditions to actual observations (e.g.,Cermak2009 and Knutti 2009), which may
help...”



Line 90 - Why not focus on the SIRTA region, rather than Paris, which is in
completely different chemistry and emissions regime? The reader needs to be
convinced that the site is representative of the Paris region.

The results relate to the measurement site, which is representative of the Paris
region background values. This was added in L127: “PM1 measurements are
representative of background pollution levels of the region of Paris (Petit2015 et al.,
2015)”

Sentence was rephrased in L94 “govern pollution concentrations at the
measurement site” instead of “lead to high pollution events in Paris”

Technical comments

Please use sub/superscripts for chemical species throughout (e.g. SO42-,
S02,PM2.5).
This was adjusted accordingly.

Expand acronyms in sub-header titles (e.g. MLH).
This was adjusted accordingly.

Expand acronyms once per major section too.
Given the limited number of acronyms, the authors propose to extend them only at
the first mention.
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Abstract. Air pollution, in particular high concentrations of particulate matter smaller than 1 ym in diameter (PM; ), continues

to be a major health problem, and meteorology is known to ?substantially-eontributetosubstantially influence atmospheric PM

concentrations. However, the scientific understanding of the “*ways by which complex 7*‘meehanismsinteractions of meteoro-

and quantify. In this study, a novel, data-driven approach based on empirical relationships is used to characterise *therole

, and better understand the meteorology-driven component of PM; variability.

A tree-based machine learning model is set up to reproduce concentrations of speciated PM; at a suburban site southwest
of Paris, France, using meteorological variables as input features. #Based on the model, an isolation and quantification of
individual meteorological influences for process understanding is achieved *5 the-contributions-of each-meteorological feature-to-mod-
eled-PM1-concentrations-is-quantified using SHapley Additive exPlanation (SHAP) regression values. *5Meteerological-contributions-to

PM+-concentrations ®5°Season-specific processes influencing PM1 concentrations at the measurement site are analysed in selected

high-resolution case studies.?S; ses: Model results suggest that winter pollution episodes are often

driven by a combination of shallow mixed layer heights (MLH), low temperatures, low wind speeds or inflow from northeastern
wind directions. Contributions of MLH:s to the winter pollution episodes are quantified to be on average ~5 pig/m? for MLHs
below <500 m agl. Temperatures below freezing initiate formation processes and increase local emissions related to residential

heating, amounting to a contribution #%:to predicted PM; concentrations of as much as ~9 pg/m>. Northeasterly winds are found

to contribute ~5 pg/m? to FS:etalpredicted PM; concentrations (combined effects of u- and v-wind components), by advecting
particles from source regions, e.g. central Europe or the Paris region. However, in calm conditions (i.e. wind speeds < ~2 m/s),
the lack of dispersion leads to increased PM; concentrations by ~3 p1ig/m>. Unusually high PM; concentrations in summer are
generally lower compared to winter peak concentrations, and are characterised by a higher content of organics. Meteorological
drivers of summer peak PM; concentrations are temperatures above ~25 °C (contributions of up to ~2.5 g/m?), dry spells of
several days (maximum contributions of ~1.5 yg/m?®) and wind speeds below ~2 m/s (maximum contributions of ~3 pg/m? ).

High-resolution case studies show a large variability of processes, which together lead to high PM; concentrations. #Precesses
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vary-even-within-seasens: A high pollution episode in January 2016 is shown to be driven by a drop in temperature (maximum
contributions of 11 ug/m?), which enhances formation of secondary inorganic aerosols (SIA) and Slikely-causes-an-inerease-in-locat

wood-burning-emissienslikely triggers increased local wood-burning emissions, which increase PM; concentrations. In contrast,

during December 2016, high PM; concentrations are caused mainly by a shallow MLH and low wind speeds. It is shown that
an observed decrease in pollution levels is linked to a change in wind direction, advecting cleaner, maritime air to the PM
measurement site (combined contributions of u- and v-wind-components of ~-4 pg/m?). #S:The application-of SHAP regression vahues

ithi i ing framework presents-a-novel-and-promising-way-of analysing observational data-sets-in-environmen al-sciences- 5 The identifi-

cation of these meteorological conditions that increase air pollution could help policy makers to issue warnings to the public

or install preemptive measures by specifically accounting for meteorological variability that influences PM1 concentrations.

Furthermore, the presented approach has the potential to realistically assess the effectiveness of air pollution measures.

Copyright statement. TEXT

1 Introduction

Air pollution has serious implications on human well-being, including deleterious effects on the cardiovascular system and the
lungs (Hennig et al., 2018; Lelieveld et al., 2019), and an increased number of asthma seizures (Hughes et al., 2018). This
includes particles smaller than 1 ym in diameter (PM; ), which are associated with fits of coughing (Yang et al., 2018) and an
increase in emergency hospital visits (Chen et al., 2017b). The adverse health effect lead to an increase in mortality of people
exposed to high particle concentrations (Samoli et al., 2008, 2013; Lelieveld et al., 2015). People living in urban areas are
particularly affected by poor air quality and with increasing urbanization, their number is projected to grow (Baklanov et al.,
2016; Li et al., 2019). These developments have motivated several countermeasures to improve air quality. Proposed efforts
to reduce anthropogenic particle emissions include partial traffic bans (Su et al., 2015; Dey et al., 2018) and the reduction
of solid fuel use for domestic heating (Chafe et al., 2014). Although emissions play an important role for PM concentrations
in the atmosphere, meteorological conditions related to large-scale circulation patterns as well as local-scale boundary layer
processes and interactions with the land surface are major drivers of PM variability as well (Cermak and Knutti, 2009; Bressi
et al., 2013; Megaritis et al., 2014; Dupont et al., 2016; Petdji et al., 2016; Yang et al., 2016; Li et al., 2017). ®5Itis-therefore

cies. Wind speed and

direction generally have a strong influence on air quality as they determine the advection of pollutants (Petetin et al., 2014;
Petit et al., 2015; Srivastava et al., 2018). Limiting the vertical exchange of air masses, the mixed layer height (MLH) governs
the volume of air in which particles are typically dispersed. Although some authors indicate that mixed layer height cannot be
related directly to concentrations of pollutants and that other meteorological parameters and local sources need to be considered
(Geif3 et al., 2017), a lower MLH can increase PM concentrations as particles are not mixed into higher atmospheric levels and

accumulate near the ground (Gupta and Christopher, 2009; Schifer et al., 2012; Stirnberg et al., 2020).
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Higher MLHs in combination with high wind speeds increase atmospheric ventilation processes, thus decreasing near-surface
particle concentrations (Sujatha et al., 2016; Wang et al., 2018). Air temperature can influence PM concentrations in multiple
ways, e.g. by modifying the emission of secondary PM precursors such as volatile organic compounds (VOCs) during summer
(Fowler et al., 2009; Megaritis et al., 2013; Churkina et al., 2017), and by condensating high saturation vapour pressure
compounds such as nitric acid and sulfuric acid (Hueglin et al., 2005; Pay et al., 2012; Bressi et al., 2013; Megaritis et al.,
2014). The wet removal of particles by precipitation is known to be an efficient atmospheric aerosol sink (Radke et al., 1980;

Bressi et al., 2013), #:while moisture in the atmosphere can stimulate secondary particle formation processes (Ervens et al.,

2011). Although all these atmospheric conditions and processes have been identified as drivers of local air quality, it is usually
a complex combination of meteorological and chemical processes that lead to the formation of high-pollution events (Petit
et al., 2015; Dupont et al., 2016; Stirnberg et al., 2020).

The metropolitan area of Paris is one of the most densely populated and industrialised areas in Europe. Thus, air quality
is a recurring issue and has been at the focus of many studies in the past years (Bressi et al., 2014; Petetin et al., 2014;
Petit et al., 2015; Dupont et al., 2016; Petit et al., 2017; Srivastava et al., 2018). Results indicate that the Paris metropolitan
region is often affected by mid- to long-range transport of pollutants, as due to the city’s flat orography, an efficient horizontal
exchange of air masses is frequent (Bressi et al., 2013; Petit et al., 2015). High-pollution events commonly occur in late autumn,
winter, and early spring. Often, these episodes are characterised by stagnant atmospheric conditions and a combination of local
contributions, e.g. traffic emissions, residential emissions, or regionally transported particles, e.g. ammonium nitrates from
manure spreading, or sulfates from point sources (Petetin et al., 2014; Petit et al., 2014, 2015; Srivastava et al., 2018). High-
pressure conditions with air masses originating from continental Europe (Belgium, Netherlands, West Germany) are generally
associated with an increase in particle concentrations, especially of secondary inorganic aerosols (SIA, Bressi et al. (2013);
Srivastava et al. (2018). The regional contribution has been found to be in the range of 70 % for background concentrations in
Paris of particles with a diameter smaller 2.5 ym (Petetin et al., 2014). Hence the variability between high-pollution episodes
in terms of timing, sources and meteorological boundary conditions is considerable (Petit et al., 2017). Previous approaches
to determine meteorological drivers of air pollution included, for example, the use of chemical transport models (CTMs),
which, however, require comprehensive knowledge on emission sources and secondary particle formation pathways and are
associated with considerable uncertainties (Sciare et al., 2010; Petetin et al., 2014; Kiesewetter et al., 2015). Further methods
rely on data exploration, e.g. the statistical analysis of time-series (Dupont et al., 2016), which can be coupled with positive
matrix factorization (PMF, Paatero and Tapper, 1994) to derive PM sources (Petit et al., 2014; Srivastava et al., 2018). To
take into account the interconnected nature of PM drivers, multivariate statistical approaches such as principal component
analysis (PCA) have been applied (Chen et al., 2014; Leung et al., 2017). In recent years, machine learning techniques have
been increasingly used to expand the analysis of PM concentrations with respect to meteorology, allowing to retrace general
patterns (Hu et al., 2017; Grange et al., 2018).

Here, the multivariate and highly interconnected *Snature of meteorology-dependent atmospheric processes influencing *5'na-

ture-of the-processes-determining local PM; concentrations #S‘at a suburban site southwest of Paris is *Seaptured-and analysed in a

data-driven way. *'Therefore, a state-of-the-art explainable machine learning model is set up to reproduce the variability of
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PM; concentrations, thereby capturing empirical relationships between PM; concentrations and meteorological parameters.

ions, 5" The goal is to separate and

quantify influences of the meteorological variables on PM; concentrations to advance ?5with-the-objective-of advaneing the process

understanding of the complex mechanisms that #5lead-to-high-pellution-events-inParisgovern pollution concentrations at the measure-

ment site. Localised (i.e. situation-based) and individualised attributions of feature contributions are performed using SHapley
Additive exPlanation regression (SHAP) values (Lundberg and Lee, 2017; Lundberg et al., 2018a, 2020), £S:allowing to infer
meteorology-dependent processes driving PM concentrations at high temporal resolution. #5With-the use-of SHAP values;-a-detailed

hoc R.S‘::l:he attribution-of loeal (1’.8.

ien- ®5Typical situations that lead to high PM; concentrations are

identified, serving as a decision support to policymakers to issue preventative warnings to the public if these situations are to be

expected. In addition, by directly accounting for meteorological effects on PM1 concentrations, such a machine learning-based

framework could help in assessing the effectiveness of measures towards better air quality. Meteorological-effects-on-speciated PM+

litical-decision-makers. ®'Furthermore, the proposed ML framework can be viewed as a first step towards a data-driven, prognostic

tool in operational air quality forecasting, complementary to CTM approaches.

2 Data sets

Seven years (2012-2018) of meteorological and air quality data from the Site Instrumental de Recherche par Télédétection
Atmosphérique (SIRTA, Haeffelin et al., 2005) supersite are the basis of this study. The SIRTA Atmospheric Observatory is
located about 25km southwest of Paris (48.713°N and 2.208°E, Fig. 1). This study focuses on day-to-day variations of total

and speciated PM; *%, a highly health relevant fraction of PM including small particles that can penetrate deep into the lungs

(Yang et al., 2018; Chen et al., 2017a). To separate diurnal effects e.g. the development of the boundary layer during morning
hours (Petit et al., 2014; Dupont et al., 2016; Kotthaus and Grimmond, 2018a) from day-to-day variations of PM;, mean
concentrations of total and speciated PM; for the afternoon period 12-15 UTC are considered, when the boundary layer is fully
developed. In sections 2.1 and 2.2, the PM; and meteorological data and preprocessing steps before setting up the machine
learning model are described. The applied machine learning model and data analysis techniques are presented in sections 3.1
and 3.2.

2.1 Submicron particle measurements

Aerosol chemical speciation monitor (ACSM, Ng et al., 2011) measurements are conducted at SIRTA in the framework of
the ACTRIS project. The ACSM provides continuous and near real-time measurements of the major chemical composition of

non-refractory submicron aerosols, i.e., organics (Org), ammonium (NHI), sulfate (SOi_), nitrate (NOj3') and chloride (CI7).
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Figure 1. Location of the SIRTA supersite southwest of Paris. © OpenStreetMap contributors 2020. Distributed under a Creative Commons
BY-SA License.

A detailed description of its functionality can be found in Ng et al. (2011). Data processing and validation protocol can be
found in Petit et al. (2015) and Zhang et al. (2019). In addition, black carbon (BC) has been monitored by a seven-wavelength
Magee Scientific Aethalometer AE31 from 2011 to mid-2013, and a dual-spot AE33 (Drinovec et al., 2015) from mid-2013
onwards. Consistency of both instruments have been checked in Petit et al. (2014). Using the multispectral information, a
differentiation into fossil fuel-based BC (BCff) and BC from wood burning (BCwb) is achieved (Sciare et al., 2010; Healy
et al., 2012; Petit et al., 2014; Zhang et al., 2019). Here, the sum of all measured species is assumed to represent the total PM;
content (see Petit et al., 2014, 2015). The consistency of ACSM and Aethalometer measurements is checked by comparing the
sum of all monitored species with measurements of a nearby Tapered Element Oscillating Microbalance equipped with a Filter

Dynamic Measurement System (TEOM-FDMS). #PM; measurements are representative of suburban background pollution

levels of the region of Paris (Petit et al., 2015). As an additional input to the machine learning model, the average fraction of

NOj3 of the previous day is added (NO3_frac). Pollution events dominated by NO3 are often linked to regional-scale events,
which depend on anthropogenically-influenced processes in the source regions of NO; precursors (Petit et al., 2017). This
is approximated by the inclusion of the average fraction of NO; of the previous day, assuming that a high fraction of NO3

indicates the occurrence of such an anthropogenically-influenced regime.

2.2 Meteorological data

RS: Meteorologi variables included in this stud ¢ ambicnt ai

R).Following the objective of this study,

a set of meteorological variables is chosen as inputs for the ML model that either influence PM concentrations directly via
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dilution (MLH, wind speed (ws), and wet scavenging of particles (precipitation)) and particle transport (wind direction as u,

v components, air pressure (AirPres)), as a proxy for emissions (e.g. from residential heating: temperature at a height of 2m

(T)), and as a proxy for transformation processes (total incoming solar radiation (TISR), relative humidity (RH), T). Data

are taken from the quality-controlled and 1h averaged re-analysed observation (ReObs) dataset. Further information on the
instrumentation used for the acquisition of these variables is provided in Chiriaco et al. (2018). MLH is derived from automatic
lidar and ceilometer (ALC) measurements of a Vaisala CL31 ceilometer using the CABAM algorithm (Characterising the
Atmospheric Boundary layer based on ALC Measurements, Kotthaus and Grimmond, 2018a, b). Due to an instrument failure,
during the period July to mid-November 2016, SIRTA ALC measurements had to be replaced with measurements conducted

at the Paris Charles de Gaulle Airport, located northeast of Paris. #°A comparison of measured MLHs at SIRTA and Charles

de Gaulle Airport for the available measurements in 2016 (Appendix A) shows generally good agreement, which is why only

minor uncertainties are expected due to the replacement.

Meteorological factors are chosen as input features for the statistical model based on findings of previous studies (see section
1). Meteorological observations are converted to suitable input information for the statistical model (see section 3.1). Wind
speed (ws) is derived from the ReObs u and v components [m/s] and the maximum wind speed of the afternoon period (12-15
UTC) is included in the model. U and v wind components are then normalised to values between 0 and 1, thus only depicting
the direction information. To reduce the impact of short-term fluctuation in wind direction, the 3-day running mean is calculated
based on the normalised u and v wind components (umean and vmean). Hours since the last precipitation event (Tprec) are
counted and used as input to capture the particle accumulation effect between precipitation events (Rost et al., 2009; Petit et al.,
2017).

3 Methods
3.1 Machine learning model: technique and application

Gradient Boosted Regression Trees (GBRT, used here in a python 3.6.4 environment with the scikit-learn module, Friedman,
2002; Pedregosa et al., 2012) are applied to predict daily total and speciated PM; concentrations. As a tree-based method,
GBRTSs use a tree regressor, which sets up decision trees based on a training data set. The trees split the training data along
decision nodes, creating homogeneous subsamples of the data by minimizing the variance of each subsample. For each sub-
sample, regression trees fit the mean response of the model to the observations (Elith et al., 2008). To increase confidence in the
model outputs, decision trees are combined to form an ensemble prediction. Trees are sequentially added to the ensemble (Elith
et al., 2008; Rybarczyk and Zalakeviciute, 2018) and each new tree is fitted to the predecessor’s previous residual error using
gradient descent (Friedman, 2002). This is an advantage of GBRT over standard ensemble tree methods (e.g. Random Forests
(RF), Just et al., 2018) as trees are built systematically and fewer iterations are required (Elith et al., 2008). Characteristics
of the meteorological training data set with respect to observed total and speciated PM; concentrations are conveyed to the
statistical model. The learned relationships are then used for model interpretation and to produce estimates of PM; based on

unseen meteorological data to test the model. The architecture of the statistical model is determined by the hyperparameters,
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e.g. the number of trees, the maximum depth of each tree (i.e., the number of split nodes on each tree) and the learning rate
(i.e., the magnitude of the contribution of each tree to the model outcome, which is basically the step size of the gradient
descent). The hyperparameters are tuned by executing a grid search, systematically validating testing previously defined hy-
perparameter combinations and determining the best combination via a three-fold cross validation. Note that PM; data is not
normally distributed, i.e. there is more data available for mid-range concentrations. To avoid that the model primarily optimizes
its predictions on these values, a least-squares loss function was chosen. This loss function is more sensitive to higher PM;
values (i.e. outliers of the PM; data distribution), as it strongly penalises high absolute differences between predictions and
observations. Accordingly, the model is adjusted to reproduce higher concentrations as well.

For each PM species, a specific GBRT model is set up and used for the analysis of meteorological influences on individual
PM; species (see section 4.2). Additionally, a quasi-total PM; model is used to reproduce the sum of all species at once, which
is used for an analysis of meteorological drivers of high-pollution events (see sections 4.3 and 4.4). Train and test data sets
to evaluate each model are created by randomly splitting the full data set. These splits, however, are the same for the species
models and the full PM; model to ensure comparability between the models. Three quarters of the data are used for training
and hyperparameter tuning with cross-validation (n=1086), and one quarter for testing (n=363). In addition, the robustness
of the model results is tested by repeating this process ten times, resulting in ten models with different train-/ test-splits and

different hyperparameters.

3.2 Explaining model decisions *5:to infer processes: SHapley Additive exPlanation (SHAP) values

While being powerful predictive models, tree-based machine learning methods also have a high interpretability (Lundberg et al.,
2020). In order to understand physical mechanisms on the basis of model decisions, the contributions of the meteorological
input features to the model outcome are analysed. Feature contributions are attributed using SHAP values, which allow for an
individualised, unique feature attribution for every prediction (Shapley, 1953; Lundberg and Lee, 2017; Lundberg et al., 2018a,
2020). SHAP values provide a deeper understanding of model decisions than the relatively widely used partial dependence
plots (Friedman, 2001; Goldstein et al., 2015; Fuchs et al., 2018; Lundberg et al., 2018a; McGovern et al., 2019; Stirnberg
et al., 2020). Partial dependence plots show the global mean effect of an input feature to the model outcome, while SHAP
values quantify the feature contribution to each single model output, accounting for multicollinearity. Feature contributions
are calculated from the difference in model outputs with that feature present, versus outputs for a retrained model, without the
feature. Since the effect of withholding a feature depends on other features in the model due to interactive effects between the
features, differences are computed for all possible feature subset combinations of each data instance (Lundberg and Lee, 2017).
Summing up SHAP values for each input feature at a single time step yields the final model prediction. SHAP values can be
negative since SHAP values are added to the base value, which is the mean prediction when taking into account all possible
input feature combinations. Negative (positive) SHAP values reduce (raise) the prediction below (above) the base value. The
higher the absolute SHAP value of a feature, the more distinct is the influence of that feature on the model predictions. The
sum of all SHAP values at one time step yields the final prediction of PM; concentrations. An example of breaking down a

model prediction into feature contributions using SHAP values is shown schematically in Fig. 2. The computation of traditional



210

215

220

Model output: positive SHAP values
PM1 prediction _)(—

negative SHAP values

AirPres NO3_frac
Base value MLH TISR T ws
-€ <€ -
™1 T = — 1 : ! I PM1 —>»> .
v u RH u_mean Tprec V_mean concentration

Figure 2. Conceptual figure illustrating the interaction of SHAP values and model output. Starting with a base value, which is the mean pre-
diction if all data points are considered, positive SHAP values (blue) increase the final prediction of total and speciated PM; concentrations,
while negative SHAP values (red) decrease the prediction. The sum of all SHAP values for each input feature yields the final prediction.
Depending on whether positive or negative SHAP values dominate, the prediction is higher or lower than the base value (Lundberg et al.,

2018b). Adapted from https://github.com/slundberg/shap.

Shapley Regression values is time consuming, since a large number of all possible feature combinations have to be included.
The SHAP framework for tree-based models allows a faster computation compared to full shapley regression values while
maintaining a high accuracy (Lundberg and Lee, 2017; Lundberg et al., 2018a) and is therefore used here. The shap python
implementation is used for the computation of SHAP values (https://github.com/slundberg/shap).

RS:paj h.The interactions of input features contribute to

the model output and thus reflect empirical patterns that are important to deepen the process understanding. Interactive effects

are defined as the difference between the SHAP values for one feature when a second feature is present and the SHAP values

for the one feature when the other feature is absent (Lundberg et al., 2018a). S SHAP values-are-a-novel tool-to-better-understand-multi-

4 Results and discussion

4.1 Model performance

The performance of the ten model iterations is assessed by comparing the coefficient of determination (R?) and normalised
root mean square error (NRSME) for the independent test data that was withheld during the training process (Fig. 3). While
the models for BCwb, BCff and total PM; show small spread, CI~ and NO3 exhibit larger variations between model runs
(indicated by horizontal and vertical lines in Fig. 3). This suggests that while drivers of variations in BCff concentration are
well covered by the model, this is less so in the case of C1~ and NOj . Possible reasons for this are that no explicit information

on anthropogenic emissions or chemical formation pathways are included in the models. Still, the model performance indicators
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Figure 3. Performance indicators for ten model iterations: coefficient of determination R? against normalised Root Mean Squared Error
(NRMSE) for the separate species models and the total PM; model. Vertical and horizontal lines indicate the maximum spread in R? and

NRMSE, respectively.

highlight that a large fraction of the variations in particle concentrations are explained by the meteorological variables used as
model inputs. Performances of model iterations of the species-specific and total PM; are generally similar, suggesting a robust
model outcome.

The mean input feature importance, ordered from high to low, of the total PM; model run by means of the SHAP feature
attribution values is shown in Fig. 4, The NOj fraction of the previous day has the highest impact on the model, followed by
temperature, wind direction information, and MLH. To some extent, NO5 fraction can be related to PM; mass concentrations
(Petit et al., 2015; Beekmann et al., 2015). This means that the higher the PM; levels one day, the greater the chances of having
higher PM; levels the next day. The impact of the meteorological variables on model decisions is analysed in more detail in

the following.
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Figure 4. Ranked median SHAP values of the model input features, i.e. the average absolute value that a feature adds to the final model

outcome, referring to the total PM; model [pg/m®] (Lundberg et al., 2018b). Horizontal lines indicate the variability between model runs.

4.2 RS:contributienInfluence of meteorological input features on modelled particle species and total PM; concentrations

To gain insights on relevant processes governing particle concentrations #in-the Parisregionat SIRTA, the contribution of input
features on species and total PM; concentration outcomes from the statistical model, i.e. the SHAP values, are plotted as a
function of absolute feature values (Figs 5-7). The contribution of an input feature to each (local) prediction of the species or
total PM; concentrations is shown while taking into account intra-model variability. Intra-model variability of SHAP values,
i.e. different SHAP value attributions for the same feature value within one model, is shown by the vertical distribution of dots

for absolute input feature values. Intra-model variability is caused by interactions of the different model input features.
4.2.1 ZS:ContributienInfluence of temperature

The impact of ambient air temperature on modelled species concentrations is highly non-linear (Fig. 5). All species show
increased contributions to model outcomes at temperatures below ~4 °C while the contribution of high temperatures on model
outcomes differs substantially between species. The statistical model is able to reproduce well-known characteristics of species
concentration variations related to temperature. For example, sulfate formation is enhanced with increasing temperatures (Fig.

5d) due to an increased oxidation rate of SO, (see Dawson et al., 2007; Li et al., 2017) and strong solar irradiation due to

10
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photochemical oxidation (Gen et al., 2019). Dawson et al. (2007) reported an increase of 34 ng/m3K for PMj 5 concentrations
using a CTM. The increase in sulfate at low ambient temperatures *$as suggested by Fig. 5d is not reported in this study. It
is likely linked to increased aqueous phase particle formation in cold and foggy situations (Rengarajan et al., 2011; Petetin
et al., 2014; Cheng et al., 2016). Considerable local formation of nitrate at low temperatures (Fig. 5b) is consistent with results
from previous studies in western Europe and enhanced formation of ammonium nitrate at lower temperatures (Fig. 5c) by
the shifting gas-particle equilibrium is a well-known pattern (e.g., Clegg et al., 1998; Pay et al., 2012; Bressi et al., 2013;
Petetin et al., 2014; Petit et al., 2015). The increase in organic matter and BCwb concentrations at low temperatures (Fig. 5g)
is likely related to the emission intensity, as biomass burning is often used for domestic heating in the study area (Favez et al.,
2009; Sciare et al., 2010; Healy et al., 2012; Jiang et al., 2019). In addition, organic matter concentrations are linked to the
condensation of semi-volatile organic species at low temperatures (Putaud et al., 2004; Bressi et al., 2013). The sharp increase
in modelled concentrations of organics above 25°C (Fig 5a) could be due to enhanced biogenic activity leading to a rise in
biogenic emissions and secondary aerosol formation (Guenther et al., 1993; Churkina et al., 2017; Jiang et al., 2019).

The contribution of temperature on modelled total PM; concentrations (Fig. 6h) is consistent with the response patterns to
changes in temperatures described for the individual species in panels 6a-6g, with positive contributions at both low (<4 °C)
and high air temperatures (>25 °C). For temperatures below freezing, the model allocates maximum contributions to modelled
total PM; concentrations of up to 12 g/m3. The spread of SHAP values between model iterations is generally higher for low
temperatures (vertical grey bars in Fig. 6), where SHAP values are of greater magnitude, but in all cases the signal contained

in the feature contributions far exceeds the spread between model runs.

4.2.2 ES:centributionInfluence of #5:the mixed layer height (MLH)

Variations in MLH can have substantial impact on near-surface particle concentrations, as the mixed layer is the atmospheric
volume in which the particles are dispersed (see Klingner and Siahn, 2008; Dupont et al., 2016; Wagner and Schifer, 2017). The
effect of MLH variations on modelled particle concentrations is highly nonlinear #and varies in magnitude for all species (Fig.
6)RS:’ with-the m'lgﬂ]’ﬂlde of the-contribution vary ng bfl 'pBE]‘E . RS:

observed for temperature SHAP values, the inter-model variation of predictions is highest for low MLHs where predicted

. Similar to the patterns

particle concentrations have the highest variation. #5For predicted total PM; concentrations, the maximum positive contribu-

tion of the MLH is as high as 5.5 ug/m® while negative contributions can amount to -2 zzg/m3. While the maximum influence

of MLH is lower than the maximum influence determined for air temperature, the frequency of shallow MLH is far greater

than that of the minimum temperatures that have the largest effect (Figs 5d & 6d). Contributions of MLH to predicted particle

concentrations are highest for very shallow mixed layers due to the accumulation of particles close to the ground #5undershallow

MLH conditiens (Dupont et al., 2016; Wagner and Schifer, 2017). #5In addition to causing particles to accumulate near the sur-

face, low MLH can also provide effective pathways for local new particle formation. Secondary pollutants, such as ammonium

nitrate, are increased at low MLHs when conditions favorable to their formation usually coincide with reduced vertical mixing

(i.e., low temperatures, often in combination with high RH, Pay et al., 2012; Petetin et al., 2014; Dupont et al., 2016; Wang

etal., 2016). ®:BC concentrations, on the other hand, are dominated by primary emissions, as is a substantial fraction of organic

11
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Figure 5. Air temperature SHAP values (contribution of temperature to the prediction of species and total PM; concentrations [pg/m®] for
each data instance) vs. absolute air temperature [°C]. Inter-model variability of allocated SHAP values is shown as the variance of predicted
values between the ten model iterations and plotted as vertical grey bars. The dotted horizontal line indicates the transition from positive to

negative SHAP values.

matter (Petit et al., 2015). ®S‘Hence, the accumulation of these particles during low buoyancy conditions can explain the strong

influence of MLH on BCwb and BCff. A relatively distinct transition from positive contributions during shallow boundary
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layer conditions (~0-800 m) towards negative contributions at high MLHs is evident for all species except SO}~ . Modelled
SOZ* concentrations show a less distinct response to changes in MLH as they are largely driven by gaseous precursor sources
and particle advection, #*S'both rather independent of MLH (Pay et al., 2012; Petit et al., 2014, 2015), so that the accumulation
effect *5 underlow MEH conditions-ishenee 1S less important. ®5Furthermore-anThe increase of SOZ_ concentrations with higher MLHs
(>~ 1500 m agl) could *S‘be-dueto-a-merelinked to the effective transport of SO?{ and its precursor SOy *S‘under-high MLH-conditions
(Pay et al., 2012).

In agreement with results from previous studies focusing on PM; (Grange et al., 2018; Stirnberg et al., 2020) or PMs 5 (Liu
et al., 2018), SHAP values do not change much for MLH above ~800-900 m, i.e. boundary layer height variations above

this level do not influence submicron particle concentrations. Positive contributions of MLHs above ~800-900 m *$on pre-

dicted PM; concentrations, as visible in Fig. 6 #5:for some species, have been previously reported by Grange et al. (2018), who

relate this pattern to enhanced secondary aerosol formation in a very deep and dry boundary layer. The positive *5 contributionin-

fluence of high MLHs on species that are partly secondarily formed, e.g. SO?[ and Org, could be explained following this

argumentation. However, processes driving the positive *5 centributieninfluence of high MLHs on BCAf, which is directly emitted

to the atmosphere, remain inconclusive. ?5Fer predieted-to

4.2.3 RS:centributionlnfluence of wind direction

To analyse the contribution of wind direction to predicted particle concentrations, SHAP values of normalised 3-day mean u

and v wind components were added up and transformed to *5‘units of degrees (Fig. 7). Generally, wind direction has a positive

contribution to the model outcome when winds from the northern to northeastern sectors prevail, while negative contributions
are evident for southwesterly directions. Given the location of the measurement site, this pattern undoubtedly reflects the

advection of particles emitted from continental Europe and/or *5Paris-eity-centrethe Paris metropolitan area under high pressure

system conditions versus cleaner marine air masses during southwesterly flow (Bressi et al., 2013; Petetin et al., 2014; Petit
et al., 2015; Srivastava et al., 2018). Increased concentrations of organic matter are predicted for northerly, northeasterly and
easterly winds. These patterns suggest a significant contribution of advected organic particles from a specific wind sector.
This is in agreement with the findings of Petetin et al. (2014) who estimated that 69 % of the PM25 organic matter fraction
is advected by northeasterly winds, which is related to advected particles from wood burning sources in the Paris region and
SOA formation along the transport trajectories. While Petit et al. (2015) did not find a wind direction dependence of organic
matter measured at SIRTA using wind regression, they reported the regional background of organic matter to be of importance.

Comparing upwind rural stations to urban sites, Bressi et al. (2013) concluded organic matter is largely driven by mid- to
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Figure 6. As Fig. 5 for MLH SHAP values (contribution of MLH to the prediction of species and total PM; for each data instance) vs.
absolute MLH values [m agl].

long-range transport. *5Centributiens-toInfluences on the SOi_-model are highest for northeastern and eastern wind direction,
which aligns with previous findings by Pay et al. (2012); Bressi et al. (2014); Petit et al. (2017), who identified the Benelux
region and western Germany as strong emitters of sulfur dioxide (SO32). SO2 can be transformed to particulate SOZ* (Pay et al.,

320 2012) while being transported towards the measurement site. Nitrate concentrations are affected by long-range transport from
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continental Europe (Benelux, western Germany), which are #impertedadvected towards SIRTA from northeastern directions
(Petetin et al., 2014; Petit et al., 2014). It is to be expected that the influence of mid- to long-range transport on the particle
observations at SIRTA is rather substantial, with most high pollution days affected by particle advection from continental
Europe (Bressi et al., 2013). Concerning BCff and BCwb, model results suggest a dependence on wind direction during
northwestern to northeastern inflow. Although BC concentrations are expected to be largely determined by local emissions
(Bressi et al., 2013), e.g. from local residential areas, a substantial contribution of imported particles from wood burning and
traffic emissions from the Paris *Scity-centreregion (Laborde et al., 2013; Petetin et al., 2014) and continental sources is likely
(Petetin et al., 2014).

4.2.4 RS:centributionlnfluence of feature interactions

Strong pairwise interactive effects are found between MLH vs. time since last precipitation and MLH vs. maximum wind speed
and shown in Figs 8a and 8b. SHAP interaction effects between MLH and time since last precipitation are most pronounced for
MLHs below ~ 500 m agl (Fig. 8a). Interaction values are negative for low MLHs paired with time since last precipitation close
to zero hours. With increasing time since last precipitation, interaction effects become positive, thus increasing the contribution
of Tprec and MLH to the model outcome. An explanation of this pattern concerning underlying processes could be that due
to the lack of precipitation, a higher number of particles is available in the atmosphere for accumulation, hence increasing the
accumulation effect of a shallow MLH. In case of recent precipitation, the accumulation effect of a shallow MLH is weakened.
For higher MLHs, interactive effects with time since the last precipitation event are marginal. Interactive effects between MLH
and wind speed are shown in Fig. 8b. Positive SHAP values for maximum wind speeds below ~2 m/s reflect stable situations,
favoring the accumulation of particles, whereas high wind speeds enhance the ventilation of particles (Sujatha et al., 2016).
This can also be deduced from Fig. 8b, which shows increased SHAP values for low wind speeds in combination with a low
MLH. Low wind speeds combined with a high MLH (>~1000 m agl), on the other hand, result in decreased SHAP values.
Similarly, low MLHs combined with higher wind speeds (>~2m/s) also decrease predictions of total PM; concentrations.
Maximum wind speed and time since last precipitation (plot not shown here) interact in a similar way. The positive effect of

low wind speeds on the model outcome is increasing with increasing time since last precipitation.
4.3 Meteorological conditions of high-pollution events

To further identify conditions that favor high pollution episodes, the data set is split into situations with exceptionally high total
PM; concentrations (>95th percentile) and situations with typical concentrations of total PM; (interquartile range, IQR). This
is done for the meteorological summer and winter seasons to contrast dominant drivers between these seasons. Mean SHAP
values refer to the total PM; model, corresponding input feature distributions and species fractions for the two subgroups are
aggregated seasonally. This allows for a quantification of seasonal feature contributions to average or polluted situations.

Figs 9 & 10 show mean SHAP values for typical (left) and high-pollution (right) situations in the upper panel. The distribu-
tion of SHAP values are shown as box plots for each feature. Absolute feature value distributions are given in the bottom of

the figure. In the lowest subpanel, the chemical composition of the total PM; concentration for each subgroup is shown. The
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Figure 7. As Fig. 5 for wind direction SHAP values (contribution of 3-day mean wind direction to the prediction of species and total PM;

for each data instance) vs. absolute wind direction [°].

largest contributor to high pollution situations in winter is air temperature (Fig. 9). SHAP values for temperature are substan-
tially increased during high pollution situations, when temperatures are systematically lower. Further contributing factors to
high pollution situations are the lows MLHs, low wind speeds, a high average NO3 fraction of the previous day and negative

u (i.e., winds from the east) and v (i.e., winds from the north) wind components. In winter, the PM; composition shows a
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Figure 8. MLH vs. a) time since last precipitation and MLH vs. b) maximum wind speed, respectively, colored by the SHAP interaction

values for the respective features.

Table 1. Statistics for typical PM; concentrations (mean, median, IQR) and high-pollution concentrations (>95th percentile).

PM1 concentrations Mean Median Interquartile range ~ 95th percentile
Winter (DJF) 11.1 pugm® 63 pgm®  2.7-15.4 ug/m?3 34.3 ug/m?
Summer (JJA) 7.5 pgm® 6.0 pugm®  3.5-10.1 pug/m?3 18.2 pug/m?

relatively large fraction of nitrates, which is increased during high pollution situations (Fig. 9, lower panel). High concentra-
tions of nitrate in winter can be linked to advection or to enhanced formation due to the temperature-dependent low volatility
of ammonium nitrate (Petetin et al., 2014). The organic matter fraction is slightly decreased during high pollution situations.
MLH and maximum wind speed *5 centributiensteinfluences on high pollution situations are linked to low ventilation conditions
which are very frequent in winter (Dupont et al., 2016). Positive *Scentributionsinfluences of wind direction for inflow from the
northern and eastern sectors are dominant during high pollution situations while inflow from the southern and western sectors
prevails during average pollution situations (see Fig. 7, Bressi et al., 2013; Petetin et al., 2014; Srivastava et al., 2018). Note
that the time since the last precipitation is increased during high pollution situations, but the effects on the model outcome is
weak. This suggests that lacking precipitation is not a direct driver of modelled total PM; concentrations, but increases the
contribution of other input features (see Fig. 8a) or is a meaningful factor in only some situations.

Summer total PM; composition (Fig. 10) is characterised by a larger fraction of organics compared to the winter season (Fig.
9). As a considerable fraction of organic matter is formed locally (Petetin et al., 2014), the increased proportion of organics
could be due to more frequent stagnant synoptic situations that may limit the advection of transported SIA particles. In addition,

the positive SHAP values of solar irradiation and temperature highlight that the solar irradiation stimulates transformation pro-
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Figure 9. Mean feature contributions (i.e., SHAP values) for situations with low total PM; concentrations (left) and situations with high
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achieve better transparency.
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cesses and increases the number of biogenic SOA particles (Guenther et al., 1993; Petetin et al., 2014). As mean temperatures
are highest in summer, positive temperature SHAP values are associated with increased organic matter concentrations (Fig.
5). The higher importance (i.e. higher SHAP values) of time since the last precipitation event during high pollution situations
points to an accumulation of particles in the atmosphere. Dry situations can also enhance the emission of dust over dry soils
(Hoffmann and Funk, 2015). The negative *Scentributionsinfluences of MLH during both typical and high pollution situations
reflects seasonality, as afternoon MLHs in summer are usually too high to have a substantial positive impact on total PM; con-
centrations (see Fig. 6). MLH is thus not expected to be a driver of day-to-day variations of summer total PM; concentrations.
Note that the average MLH is higher during high pollution situations, which likely points to increased formation of SOi_ (see

Fig. 6).
4.4 Day-to-day variability of selected pollution events

Analysing the combination of SHAP values of the various input features on a daily basis allows for direct attribution of
the respective implications for modelled total PM; concentrations (Lundberg et al., 2020). Here, four particular pollution
episodes are selected to analyse the model outcome with respect to physical processes (Figs 11-14). The examples highlight the
advantages but also the limitations of the interpretation of the statistical model results. The high pollution episodes took place
in winter 2016 (10th - 30th January and 25th November - 25th December), spring 2015 (11th - 31st March) and summer 2017
(8th - 28th June). The upper panels in Figs 13-16 indicate the total PM; prediction as horizontal black line with vertical black
lines denoting the range of predictions of all 10 models. The observed species concentrations are shown in the corresponding

colors. The subsequent panels show absolute values and SHAP values for the most relevant meteorological input features.
4.4.1 January 2016

Prior to the onset of the high-pollution episode in January 2016 (Fig. 11), the situation is characterised by MLHs in the range
of 1000m, temperatures above freezing (~5-10°C), frequent precipitation and winds from the southwest. The organic matter
fraction dominates the particle speciation. The episode itself is reproduced well by the model. According to the model results,
the event is largely temperature-driven, i.e. SHAP values of temperature explain a large fraction of the total PM; concentration
variation (note the adjusted y-axis of the temperature SHAP values). On 18th January, temperatures drop below freezing,
coupled with a decrease in MLH. As a consequence, both modelled and observed PM; concentrations start to rise. A further
increase in total PM; concentrations is driven by a sharp transition from stronger southwestern to weaker northeastern winds
(strong negative u component, weak negative v component) on January 19th. The combined effects of these changes lead to
a marked increase in total #modelled PM; concentrations, peaking at ~37 pg/m> on 20th January. On the following days,
temperatures increase steadily, thus the contribution of temperature decreases. At the same time, although values of MLH
remain almost constant, the contribution of MLH drops substantially from ~5 pg/m? to ~2 pg/m?. This is due to interactive
effects between MLH and the features wind speed, time since last precipitation and normalised v-wind-component. All of
these features increase the contribution of MLH on 20th January, but decrease its contribution on 21st-23rd January. 5 The

physical explanation behind this pattern would be that lacking wet deposition and low wind speeds increase particle numbers

19



A
3 PM1 concentrations, PM1 concentrations,
IQR highest 5%
=
-
£
=
o
=
&
2
=
=]
a
=
=
c
S
L]
7]
=
EQEnEes N B | T e SO e s fpoupRUURRI eR  EE e
2 |
[+
7]
.- —_—
c
©
7]
= =
=2 R A
Feature distribution Feature distribution
TISR [W/fm?]
I I 1 I I I I I i i I I I I 1 I
ma  ma  wa a0 W e W m ma ma ;w0 W @ mo =
#F—-_.'_ RH [%] A EE—————
| |
= © =®» ® ® = W 1w x @ = ® ™ = w
S Threc [h) ——
T T T T i
a 1o e ;0 @0 a 10 = =0 20
—‘ umean;:merged: s —h,—
T T T T T | ]
07 -0M -0z A e ad o 1o a7 -0 -023 a0 4z e; a;m 1o
R ST e —
I T T T T T T i
-1.00 073 -0.30 -0.23 Q00 azs am ars 100 -100 073 030 0233 oo oazs ax ors 100
ws [m/s]
] I I I I 1 ] I I ] ] ]
a 4 8 o a 2 4 a a o
AirPres [hPa]
1 | I 1 1 | i I 1 I i i
s =0 s 10D 1003 1010 o =0 S oo 10 110
. Tra —_——
B E = = = E = =
MLH [m] -
T T 1 ' T i) T ey { 1 1 1 1 1
ma  wor mon  moo  moo ;oo moo ma  woo Mmoo mao  mon  moo  mao
NO3frac [%]
I I 1 1 | | I | I |
_______________ i e T B R B o SO 2 e St oot e B B e R
PN B eu1composition [N B
I | I I [ I | I I I ] I
a0 a as as as 10 ao az as as as 10
== Org B S04  mEm NO3 N O =m BCFf mem BCwb

Figure 10. As Fig. 9 for mean feature contributions (i.e., SHAP values) for situations with low total PM; concentrations (left) and situations

with high pollution (right), respectively, during summer (July, June, August).

405 in the atmosphere, while inflow from northeasterly directions increase particle numbers in the atmosphere. Given that there is

now a large number of particles present, the accumulation effect of a low MLH is more efficient. The high pollution episode

ceases after a shift to southeastern winds and the increasing temperatures. The pollution episode is characterised by a relatively
large fraction of NO3 and NH;, which explains the strong feature contribution of temperature to the modeled total PM;

concentration, as the abundance of these species is temperature dependent (see Fig. 5) and points to a large contribution of
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Figure 11. Winter pollution episode in January 2016. (a): predicted total PM; and observed PM; species concentrations, with absolute input
feature values and corresponding SHAP values of (b) MLH, (c) temperature, (d) hours after rain, (¢) maximum wind speed (f) normalised u

wind and (g) normalised v wind component.

locally formed inorganic particles. Still, the contribution of wind direction and speed also suggests that advected secondary
particles and their build-up in the boundary layer are relevant factors during the development of the high pollution episode

(Petetin et al., 2014, Petit et al., 2014; Srivastava et al., 2018).
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4.4.2 December 2016

A high-pollution episode with several peaks of total PM; is observed in November and December 2016. The first peak on 26th
December is followed by an abrupt minimum in total PM; concentrations on 28th November, and a build-up of pollution in a
shallow boundary layer towards the second peak on 2nd December with total PM; concentrations exceeding 40 pg/m?. In the
following days, total PM; concentrations continuously decrease, eventually reaching a second minimum on 11th December.
A gradual increase in total PM; concentrations follows, resulting in a third (double-)peak total PM; concentration on 17th
December. Total PM; concentrations drop to lower levels afterwards. Throughout the 3.5 week-long episode, high pollution is
largely driven by shallow MLH (<~500m), and weak north-northeasterly winds, i.e. a regime of low ventilation associated with
high pressure conditions favorable for emission accumulation. During the brief periods with lower total PM; concentrations,
these conditions are disrupted by a higher MLH (~28th November), or a change in prevailing winds (~11th December). In
contrast to the pollution episode in January 2016, this December 2016 episode is not driven by temperature changes. Tempera-
tures range between ~5-12°C and have a minor #5 centributionteinfluence on to predicted total PM; concentrations (see also Fig.
5), emphasizing the different processes causing air pollution in the Paris region. Note that the model is not able to fully repro-
duce the pollution peak on December 2nd, which may be indicative of missing input features in the model. Judging from the
PM; species composition during this time (relatively high fraction of NO3 and BC), it seems likely that missing information

on particle emissions may be the reason for the difference between modeled and observed total PM; concentration.
4.4.3 June 2017

A period of above average total PM; concentrations occurred in June 2017. The episode is very well reproduced by the model,
suggesting a strong dependence of the observed total PM; concentration to meteorological drivers. Although absolute total
PM; concentrations are substantially lower than during the previously described winter pollution episodes, the event is still
above average for summer pollution levels. Organic matter particles dominate the PM; fraction throughout the episode, with
a relatively high SO?{ fraction. Conditions during this episode are characterised by strong solar irradiation (positive SHAP
values) and high MLHs (mostly negative SHAP values), which show low day-to-day variability and reflect characteristic
summer conditions. A lack of precipitation (no rain for a period of more than 2 weeks) and high temperatures also contribute
to the total PM; concentrations during this episode. While solar irradiation and time since last precipitation are associated
with positive SHAP values throughout this period, air temperature only has a positive contribution when exceeding ~25 °C.
This aligns with patterns shown in Fig. 5, where increased concentrations of organic matter and SO}~ are identified for high
temperatures. Peak total PM; concentrations of ~17 ug/m? are observed on June 20th and 21st. A change in the east-west
wind component from western to eastern inflow directions in conjunction with an increase in temperatures to above 30 °C
are the drivers of the modeled peak in total PM; concentrations. MLH is also increased with values ~2000 m agl, which are
associated with slightly positive SHAP values. This observation fits with findings described in section 4.2.2 and is likely linked
to enhanced secondary particle formation (Megaritis et al., 2014; Jiang et al., 2019). As suggested by response patterns of

species to changes in MLH shown in Fig. 7, this effect is linked to an increase in SOi_ concentrations. The main fraction of
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Figure 12. As Fig. 11 for a further winter pollution episode in December 2016.

the peak total PM; values, however, is linked to an increase in organic matter concentrations due to the warm temperatures

(see Fig. 5).
4.44 March 2015

High particle concentrations are measured in early March 2015 with high day-to-day variability. This modelled course of the

450 pollution episode is chosen to compare results to previous studies focusing on the evolution of this episode (Petit et al., 2017;
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Figure 13. As Fig. 11 for an exemplary summer pollution episode in June 2017.

Srivastava et al., 2018). The episode is characterised by high fractions of SIA particles, in particular SO}, NHI and NO; (Fig.
14, upper panel) and similar concentrations observed at multiple measurement sites in France (Petit et al., 2017). Contributions
of local sources are low and much of the episode is characterised by winds blowing in from the northwest, advecting aged SIA
particles (Petit et al., 2017; Srivastava et al., 2018) and organic particles of secondary origin (Srivastava et al., 2019) towards
SIRTA. A widespread scarcity of rain probably enhanced the large-scale formation of secondary pollution across western

Europe (in particular western Germany, The Netherlands, Luxemburg, Petit et al., 2017), which were then transported towards
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SIRTA. This is reflected by the SHAP values of the u and v wind components, which are positive throughout the episode (see
Fig. 14g & 14h). Concentration peaks of total PM; are measured on 18th and 20th March. Both peaks are characterised by a
rapid development of total PM; concentrations. As described in Petit et al. (2017), these strong daily variations of total PMy,
which are mainly driven by the STA fraction, could be due to varying synoptic cycles, especially the passage of cold fronts. The
RS contributioninfluence of MLH and temperature is relatively small, which is consistent with the high influence of advection on
total PM; concentrations during the episode. The exceptional character of the episode (see Petit et al., 2017) partly explains
the bad performance of the model in capturing total PM; variability during the event. Unusual rain shortage is observed in
large areas of Western Europe prior to the episode (Petit et al., 2017). While time since precipitation at the SIRTA-site is a
large positive contributor to the model outcome (see Fig. 14d), it is not driving the day-to-day variations. The unusual nature
of this event and lacking information on emission in the source regions and formation processes along air mass trajectories in
the model likely explain why the model has difficulties in reproducing this pollution episode. While this has implications for
the application of explainable machine learning models for rare events, this is not expected to be an issue for the other cases

and seasonal results presented here.

5 Conclusions and outlook

In this study, dominant patterns of meteorological drivers of PM; species and total PM; concentrations are identified and
analysed using a novel, data-driven *Sstatistieal approach. A machine learning model is set up to *Sexplainanalyse measured
speciated and total PM; concentrations based on meteorological measurements from the SIRTA supersite, southwest of Paris.
The #$statistiealmachine learning model is able to reproduce daily variability of particle concentrations well, and is used to
analyse and quantify the atmospheric processes causing high-pollution episodes during different seasons using a SHAP-value

framework.ks:

sion-shews-good-agreement-:AS interactions between the meteorological variables are accounted for, the model enables the sepa-

ration, quantification and comparison of their respective impacts the individual events. It is shown that ambient meteorol-

ogy can substantially exacerbate air pollution. *'Results of this study point to the distinguished role of £5'Peak-concentrations

of total PM1—in-winter-are-mainly-driven-by shallow MLHs, low temperatures and low wind speeds *S:during peak PM; episodes

in winter. These conditions are often amplified by northeastern wind inflow under high-pressure *cenditionssynoptic circua-

tion. A detailed analysis reveals #5differenthow the *Smeteorological drivers of *$winter high-pollution episodes *in-winterin-

teract. For an episode in January 2016, model results show a strong *Scentributioninfluence of temperature to the elevated PM;
concentrations during this episode (up to 11 ug/m? are attributed to temperature), suggesting enhanced local, temperature-
dependent particle formation. During a different, prolonged pollution episode in December 2016, temperature levels were
relatively stable and had no influence. Here, *%centributionsof MLH (<500 m asl) was quantified to be the main driver of #mod-
elled PM; peak concentrations with contributions up to 6 pg/m3, along with wind direction contributions of up to ~6 ug/m?.
Total PM; concentrations in spring can be as high as 50 ug/m?. These peaks in spring are not as well reproduced by the model

as winter episodes and are likely due to new particle formation processes along the air mass trajectories, in particular of nitrate.
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Figure 14. As Fig. 11 for an exemplary spring pollution episode in March 2015.

490 Summer PM; concentrations are lower than in other seasons. Model results suggest that summer peak concentrations are
largely driven by high temperatures, particle advection from Paris and continental Europe with low wind speeds and prolonged
periods without precipitation. For an example episode in June 2017, temperatures above 30°C contribute ~3 pg/m? to the
total PM; concentration. On site scarcity of rain increases air pollution, but does not appear to be a main driver of strong
day-to-day variations in particle concentrations. Presumably, this is because droughts are synoptic and are spread over several

495 days or even weeks. Thus, they present very low inter-daily variability on the local scale. Nonetheless, Petit et al. (2017) have
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highlighted the link between extreme PM concentrations (especially during spring) and extreme precipitation deficit (compared
to average conditions). Main drivers of day-to-day variability of predicted PM; concentrations are changes in wind direction,
air temperature and MLH. These changes often superimpose the influence of time without precipitation. Individual PM; species
are shown to respond differently to changes in temperature. While SOi_ and organic matter concentrations are increased during
both high and low temperature situations, NH; and NO3 are substantially increased only at low temperatures. Model results
indicate that SIA particle formation is enhanced during shallow MLH conditions.

Many of the results presented here hold true for regions other than *5'suburbanParisthe Sirta supersite and are thus beneficial for

the general understanding of drivers of air pollution. This includes the ®nonlinear response of PM; concentrations to changes

in temperature or MLH, including their dependencies on other meteorological factors, which has potential implications for the

settings of future CTMs. Furthermore, the temperature-dependency of PM; is relevant in terms of rising temperatures due to
ns. The

climate change *imp

RS:contributionimportance of wind direction highlights the role of advected pollution and emphasizes the need for large-scale

measures against air pollution. *5The

RS:For policy makers, the presented approach could prove beneficial in multiple ways for air quality policies. Preventative

warnings could be issued to the public if the identified meteorological conditions exacerbating air pollution are to be expected.

al ®5: Another potential future application could be the attribution

of changes in air quality to policy measures *5'by comparing an "expected" level of air pollution under given meteorological

conditions to actual observations (e.g., Cermak and Knutti, 2009),?5 and-may-help which may help political decision makers

develop and implement effective clean-air policies. Future efforts could also combine the statistical model framework with
short-term weather forecasts, which would allow to provide an air quality forecast based on the predictions of the statistical
models, taking into account expected meteorological conditions. This study could be extended in the future, e.g. by including
information on anthropogenic emissions or further stations down- and upwind of SIRTA, which would allow further analysis
of dominant advection patterns. Furthermore, information on emissions or meteorology in the source region of air masses e.g.,
using satellite-based observations, might be helpful to better reproduce particle transport patterns. This could be complemented

by incorporating synoptic variables, e.g., the North Atlantic Oscillation (NAO) index.

Data availability. SIRTA-ReOBS data can be accessed online (https://sirta.ipsl.fr/reobs.html), ACSM data are available upon request.
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Appendix A: Comparison of mixed layer height (MLH) measured at Sirta and Charles de Gaulle airport

As mentioned in section 2.2, ca. 90 missing MLH values in 2016 were replaced with measurements conducted at the Charles de

Gaulle airport (see Fig. 1). Figs A2 and A1 summarize MLH values for 2016 when measurements from both sites are available

(afternoon period). As shown in Fig. A1, measurements at both sites generally agree well, except for some outliers. Spearman’s
530 rank coefficient is significant (p-value <0.05) and has a value of 0.51.

A comparison of the frequency of occurrence is shown as histogram in Fig. A1 and indicates good agreement as well.
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