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Comments previously provided by a reviewer  
(Editor: These comments have not been addressed in this ACPD version and thus need 
to be addressed in this round of review.) 
 
I am afraid that even after reading the article, I do not understand why the               
authors choose to explain air quality over Paris based on meteorology at the             
SIRTA location, when regional and local emissions and atmospheric         
transformations during long range transport are the major drivers of ambient           
pollution. These major drivers are mentioned towards the end as future work,            
but studies should start there. For example, even if MLH or wind speed is low,               
zero emissions = no air pollution. 
 
Answer: 
Thank you for this comment. 
Indeed we do not inted to explain Paris air quality using the SIRTA site - the focus is on 
air quality at the SIRTA site, which is near Paris and representative of suburban 
background concentrations. We have clarified this in the manuscript (see changes in 
L11, L88, L94, ​L127, L234, L502 ​). The aim of this study is to quantify how 
meteorological factors influence pollutant concentrations and thus add to system 
understanding. It has been shown in previous studies that pollutant concentrations are 
not solely driven by emissions, and can be exacerbated or weakened substantially by 
certain meteorological conditions. For SIRTA, this has been described for example by 
Dupont et al., 2016.  
It was not intended to set up a prognostic model to forecast PM1 as accurately as 
possible in time. 
Emissions of pollutants or precursor gases undoubtedly constitute a prerequisite to air 
pollution, but  pollutant concentrations are not solely driven by anthropogenic emissions, 
but strongly affected by varying amounts of natural background emissions (see e.g., 
Liora et al., 2016, DOI: 10.1016/j.atmosenv.2016.04.040, Jiang et al. 2019, DOI: 
10.5194/acp-19-15247-2019). Thus, high concentrations of particulates could also occur 



during episodes with low anthropogenic emissions. This is particularly the case in 
summer, when biogenic organic emissions are high (this is mentioned in the 
introduction, L56).  
The influence of meteorology can lead to quite different air pollution situations, even if 
emissions are constant. In winter, meteorological conditions exert great influence on 
formation pathways, as we describe in chapter 4.2.1. For example, condensation of 
ammonium nitrate in the aerosol phase is enhanced at low ambient temperatures and 
high relative humidity  (see e.g., Pay et al., 2012; Bressi et al., 2013; Petetin et al., 
2014; Petit et al., 2015). Hence, even if emissions would be not above average levels, 
this formation mechanism would increase the concentrations of pollutants.  
Transformation processes are partly covered by meteorological parameters, e.g., 
through the influence of temperature (please see also answers to Referee #3 
comments). Obviously, the model does still not capture all of the occurring variance of 
PM1 concentrations, but since it was not the intention to set up a predictive framework, 
the focus is not primarily on accuracy, but on interpretability. Hence, the included 
parameters are deemed adequate for the analysis 
In the updated version of the manuscript, we have taken great care to consider this 
comment and now more clearly communicate the main goal of this manuscript: 

- L3: However, the scientific understanding of the ​ways by which ​complex 
interactions of meteorological factors ​ lead to high pollution episodes is 
inconclusive, as the effects of meteorological variables are not easy to separate 
and quantify 

- L6: In this study, a novel, data-driven approach based on empirical relationships 
is used to characterise, ​quantify and better understand the meteorology-driven 
component of PM1 variability. 

- L8: Changed to “ ​Based on the model, an isolation and quantification of individual 
meteorological influences for process understanding is achieved ​ using SHapley 
Additive exPlanation (SHAP) regression values. 

- L87: Changed to “Here, the multivariate and highly interconnected nature of the 
processes determining local PM1 concentrations is analysed in a data-driven 
way. ​Therefore, a state-of-the-art explainable machine learning model is set up to 
reproduce the variability of PM1 concentrations, thereby capturing empirical 
relationships between PM1 concentrations and meteorological parameters. ​ ​The 
goal is to separate and quantify ​ influences of the meteorological variables on 
PM1 concentrations to advance the process understanding of the complex 
mechanisms ​that govern pollution concentrations at the measurement site. ​” 
 

The authors frame it as "we should take atmospheric and environmental           
processes into account during the development of efficient pollution         



mitigation strategies"/"a basis for future clean air programs", but AirParif can’t           
exactly change wind conditions or MLH orT/RH.  
 
These statements were aimed to show the potential benefits  of considering 
atmospheric and environmental conditions when future measures to prevent air 
pollution are discussed. This relates mainly to three points: 

- a) A realistic assessment of the effectiveness of measures against air 
pollution needs to take atmospheric and environmental processes into 
account as these processes partly control its variability. For example, if 
changes in PM concentrations due to traffic restrictions were to be 
determined, a simple comparison of pre-restriction and post-restriction 
concentrations would not be sufficient, as meteorological influences 
would be omitted. Machine learning approaches can be very useful to 
characterize the efficiency of mitigation policies. Recent lockdown in Spain 
is an adequate example here (Petetin et al., 2020, DOI: 
https://doi.org/10.5194/acp-20-11119-2020) 

- b) Weather conditions which exacerbate pollutant concentrations are 
identified using the SHAP framework. ​On​ this basis, air-pollution measures 
could be adjusted depending on expected meteorological conditions. For 
example, warnings could be expressed to the public to remain vigilant or 
stay at home if possible.  

- c) In a changing climate, more unfavorable meteorology could trigger 
and/or exacerbate PM pollution episodes, lowering the role of emission 
restrictions.  

 
To make this clearer in the manuscript, the following changes were made: 

- L47: The sentence ​“It is therefore crucial to take atmospheric and environmental 
processes into account during the development of efficient pollution mitigation 
strategies” ​ was removed . 

- The explanation relating to future clean air program was shifted to the end of the 
introduction and expanded; L96-106 now read: 
“... allowing to infer meteorology-dependent processes driving PM concentrations 
at high temporal resolution.. ​Typical situations that lead to high PM1 
concentrations are identified, serving as a decision support to policymakers to 
issue preventative warnings to the public if these situations are to be expected. In 
addition, by directly accounting for meteorological effects on PM1 concentrations, 
such a machine learning-based framework could help in assessing the 
effectiveness of measures towards better air quality. Furthermore, the proposed 
ML framework can be viewed as a first step towards a data-driven, prognostic 
tool in operational air quality forecasting, complementary to CTM approaches. 



 
Maybe this can be used to forecast periods of bad air quality - but they               
describe some important events that the model fails to reproduce because it is             
missing major drivers in the inputs (lines 390, 426-427).  
 
We show several examples where the model is well able to reproduce episodes of high               
pollutant concentrations (sections 4.4.1-4.4.3). This is encouraging and shows the          
appropriateness of the approach. There are of course also situations in which the model              
fails to reproduce high-pollution situations. These situations are shown in detail to            
stimulate further research in this direction. 
As stated earlier, the current model setup was chosen for the purpose of improving the               
understanding of how meteorological factors influence pollutant concentrations, and to          
quantify potential influences (which was more clearly stated in L87-105). Setting up a             
probabilistic forecast model based on top of the presented framework would           
undoubtedly require many adjustments to include the factors correctly pointed out by            
the referee.. 

 
So I am not sure this study is an advance over previous knowledge. 
Extensive changes were made to the manuscript to emphasize new scientific insights 
(see previous answers and answers to Referee#3 comments) 

Anonymous Referee #1 
The research work employs field measurements of Particulate Matter smaller          
than1​μ​m in diameter (PM1), routine meteorology data and propose a machine           
learning framework in air-pollution forecasting. The authors address the         
significant challenge of Interpretability in machine learning using the SHapley          
Additive exPlanation (SHAP)regression values. 
 
A general comment is related to the aim of the proposed work. Although the              
role of meteorology on PM concentrations is well studied, the paper proposes            
a novel method/tool of explainable machine learning in atmospheric sciences.          
The results support the use of explainable machine learning as a statistical            
modeling framework in operational air quality forecasting. The authors         
comment on this in the conclusion section but could highlight the ability of             
the proposed framework earlier in the manuscript.  
 
Thank you for your assessment.  
In order to highlight the capability of the framework in air quality forecasting, the 



following statement was added to the introduction (L102): ​“Furthermore, the 
proposed ML framework can be viewed as a first step towards a data-driven, 
prognostic tool in operational air quality forecasting, complementary to CTM 
approaches..” 
 
While the results of the study are of local interest the proposed modelling             
framework has a high replication potential in areas with limited PM1 field            
measurements and therefore has a general implication in atmospheric         
science. ​Some concern is related to the use of meteorological data for the             
period of July to mid-November 2016. It is useful to include some descriptive             
statistical analysis of the meteorological data for all sites in order to compare             
and highlight the suitability of using meteorological data from the Paris           
Charles de Gaulle Airport.  
Please note that only MLH was substituted during that time, all the other variables 
were not affected by the instrument failure. 
An appendix was added. Figs A1 and A2 now provide a comparison of MLHs 
measured at Sirta vs. MLH measured at Charles de Gaulle airport for available data 
of the year 2016.  
 
Furthermore, the locations of all measurement sites should be included in the            
map of the area of study and use more appropriate location mark labels. 
Map (Figure 1) was changed accordingly. 
 
The authors could provide some descriptive statistical analysis of the PM1 
field mea-surements. This analysis could provide thresholds of high-pollution 
events in the region(e.g. similar to the >95 percentiles used in the paper).  
Table showing mean,  interquartile range, 95 percentile was added in section 4.3 
Several thresholds were tested to define high-pollution events (e.g., >75%, >90%, 
>95%). It was found that the more extreme the events, the clearer the 
meteorological influence, which points to a relatively narrow set of meteorological 
characteristics responsible for high-pollution events. The decision to finally use the 
95th percentile for the analysis was because this is a typical threshold for extreme 
value analysis. Below is shown the plot for extreme events >75th percentile; patterns 
are similar, but less distinct compared to >95th percentile as shown in the 
manuscript. 



 
 
Please note that a  more extensive description of the statistics of the PM1 field 
measurements is also provided in Petit et al., 2014 (DOI: 
https://doi.org/10.5194/acp-14-13773-2014 ​), Petit et al., 2015 (DOI: 
https://doi.org/10.5194/acp-15-2985-2015 ​), Petit et al., 2017 (DOI: 
https://doi.org/10.1016/j.atmosenv.2017.02.012) 

 
The overall ability of the proposed framework could be also evaluated using            
exceedances forecast verification metrics (e.g. Probability of Detection, False         
Alarm Ratio etc.) for certain PM1 thresholds. This analysis could be           
complementary to the analysis of high-pollution case-studies and role of          
meteorological conditions of high-pollution events. 

https://doi.org/10.5194/acp-14-13773-2014
https://doi.org/10.5194/acp-15-2985-2015


As the main objective of this study is to advance the understanding of 
meteorological drivers, a regression model was set up and validated to reproduce 
the temporal development of PM concentrations. The model that was set up for this 
task does not do a classification, therefore calculating the Probability of Detection or 
False Alarm Rate might not be suitable for validation. Hence, while these are 
certainly good suggestions for a classification framework, they are out of the scope 
of the manuscript and could be included in future work on this topic.  
 
The paper presentation and structure is clear and supports the discussion of            
the results. The authors give proper credit to earlier published work and            
discuss their findings appropriately. The figures in the manuscript support the           
discussion of the results.  
Thank you! 
 
In Figures 9 and 10 the color-bar of the PM1 composition could be misleading.              
It is advised to change to avoid confusion with the feature contributions color             
scales. 
The colors used for major PM1 species are consistent with previous literature (e.g.,             
Petit et al. 2014, Petit et al. 2015, Dupont et al. 2016), so the colors of the                 
meteorological variables were changed instead. In addition, a horizontal line was           
added to more clearly separate the PM1 composition plot. 
 
The authors should also check of consistency of abbreviations throughout the           
manuscript. For example, Mixed-layer height (MLH) in some figures is          
abbreviated as BLH. 
Thank you, BLH was changed to MLH in all affected plots. 
 

Anonymous Referee #3 
This paper presents a machine-learning built model approach to analyse an           
extensive multi-parameter dataset at observational in a suburban area south          
of Paris. The focus of the manuscript is using a recently published tool             
(“SHapley Additive exPlanation(SHAP) values”) to analyse the       
machine-learning model’s predictions and then attribute drives of the         
statistical model. 
 
The paper presents large amounts of information about the output from the            
analysis tool, but not enough focused justification or evidence is presented           



about how novel these interpretations are or how that they could be used for              
air pollution mitigation policy etc. At points, the paper even reads as if the              
authors are suggesting that authorities seek to mitigation against the          
meteorology contribution to air pollution. Could this analysis be used to make            
a forecasting tool if parameters were gained in real-time? If so,how long ahead             
would these predictions be expected to be useful for? Would this be useful in              
a public health context? 
Thank you for your assessment. 
The focus of this study is not on the prediction of pollutant concentrations in time, 
but to contribute to the advancement of the scientific understanding of how 
meteorology influences air pollution. The machine-learning framework presented in 
this study provides observation-based, quantitative estimations for the influence of 
various meteorological factors to PM1 at the same time, enabling their direct 
comparison. The model does allow for interactions between the meteorological 
factors, and on this basis, a separation and comparison of  meteorological 
influences on any individual event is feasible. This is a novel aspect, as it allows to 
extract empirical patterns from the data set that are hard to detect using established 
statistical methods. 
Setting up a forecasting tool is a possible extension of the machine-learning 
framework established within this study, but not the key objective here. This is why 
we only outline such possible applications and their usefulness at the end of the 
manuscript. So no, our analysis framework in its present form is not intended as a 
forecasting tool, and cannot be converted into one without more work. Hence, the 
reliability of such a forecast tool was not assessed. It is likely that the PM forecast 
would greatly depend on the reliability of the forecasted meteorological conditions.  
In its present configuration, however, our tool can determine an ‘expected’ level of 
air pollution under given meteorological conditions. By comparing this to actual 
observations, the effect of any source reductions (e.g. via policies) can be assessed. 
These points were added in L510-520. 
 
The following specific changes were made in the manuscript: 

- L2 & 3: “substantially contribute to” was changed to ​“substantially influence”. 
The wording “contribute to” might indeed be misleading here, as it could 
sound as if meteorology actively emits pollutants.  

- Throughout the manuscript, the wording “meteorological contribution” was 
changed to “meteorological influence” or removed, if not referring to the ML 
model (caption chapters 4.2, 4.2.1-4.2.4, L265, L294, L295, 295, 303, 317, 
329, 361, 362, 376, 424, 461, 483, 486)  



- L46: the sentence “ ​It is therefore crucial to take atmospheric and 
environmental processes into account during the development of efficient 
pollution mitigation strategies” ​ was removed. This point is now made clearer 
at the end of the introduction 

- See changes in lines 80-85; the goal of the study is now stated more precisely 
and benefits in a public health context are described 

- L476-479: ...As interactions between the meteorological variables are 
accounted for, the model enables the separation, quantification and 
comparison of their respective impacts the individual events. ​It is shown that 
ambient meteorology can substantially exacerbate air pollution. Results of this 
study point to a distinguished role of ​ shallow MLHs, low temperatures and low 
wind speeds ​during peak PM1 concentrations in winter 

- L512-515: changed to “ ​For policy makers, the presented approach could          
prove beneficial in multiple ways and serve as a decision aid for air policy              
measures. Preventative warnings could be issued to the public if the identified            
meteorological conditions exacerbating air pollution are to be expected.         
Another application would be to attribute changes in air quality to policy            
measures by comparing an ‘expected’ level of air pollution under given           
meteorological conditions to actual observations (e.g., Cermak2009 and        
Knutti 2009), which may help…” 

 
A core premise (in the abstract and elsewhere) is that we do not fully              
understand the contribution of meteorology to high air pollution episodes is           
true, however, this does justify the framework used here which omits two            
other key drivers (chemistry and emis-sions). Apart from a few mentions, it is             
not clear how are these contributions and con-sidered in this method. Are the             
contributions of these processes just assumed to be part of the           
meteorological contributions? This needs to be a lot clearer. 
 
The focus of this paper explicitly lies on the analysis of the influence of 
meteorological conditions on PM1 concentrations. We are fully aware that 
meteorology alone cannot explain PM1; one of our aims is to ultimately be able to 
‘remove’ the effect of meteorology, and retain the effects of emissions (and to a 
lesser degree, chemistry), which to some extent can be influenced directly by policy 
(this was added in L99-102). As mentioned in other answers above, ​pollutant 
concentrations have been shown to be exacerbated or decreased by certain 
meteorological conditions (e.g., Dupont et al., 2016). It is shown that the model is able 
to capture a large fraction of the occurring variation of daily PM1 concentrations, which 
shows that the variables chosen as inputs are indeed important drivers. Even without 



explicitly considering emissions and chemistry, the model explains between 50-60% of 
the day-to-day PM1 variability. Thus, for the location and data set analysed here, the 
influence of meteorological variability on PM1 is at least as large as the influence of the 
variability of emissions and chemistry. Hence, given the key objective of this study, the 
presented framework is suitable for the analysis by capturing key meteorology-based 
processes. The detailed analysis presented in chapter 4.4 emphasizes that the temporal 
trends of PM1 concentrations are largely well captured. 
Some of the meteorological parameters inherently contain information on chemistry and 
emissions. For example, RH, solar radiation, and temperature can influence local 
transformation processes, as detailed in L44-60. Temperature also contains inherent 
information on the strength of residential heating (L250). Wind direction indicates 
whether clean air from the west or more polluted air from the northeast is influencing the 
PM1 measurement. These mechanisms are mentioned in the introduction (L42-59) and 
the result section (chapter 4.2) 
To convey these points more clearly  to the reader, the following changes were 
made:  

- L85: added ​“atmospheric” ​, changed “determining” to ​“influencing” 
- L60: Added ​“...while moisture in the atmosphere can stimulate secondary 

particle formation processes…” 
- L136-141: added in method section (chapter 2.2): ​“Following the objective of 

this study, a set of meteorological variables is chosen as inputs for the ML 
model that either influence PM concentrations directly via dilution (MLH, wind 
speed (ws), and wet scavenging of particles (precipitation)) and particle 
transport (wind direction as u, v components, air pressure (AirPres)), as a 
proxy for emissions (e.g. from residential heating: temperature at a height of 2 
m (T)), and as a proxy for transformation processes (total incoming solar 
radiation (TISR), relative humidity (RH), T). 

 
The paper seems mostly focused on exploring the “SHapley Additive          
exPlanation(SHAP) values” approach and it is unclear whether a novel          
contribution has been made to the field of air pollution research. This paper             
may be better suited to a machine learn-ing journal or could be re-write to be               
more focused on air pollution. Either of these two options would require large             
changes to the current manuscript. 
The novelty and also the advantage of the machine-learning framework is that all 
meteorological influences on PM1 concentrations are quantified at the same time, 
and interactions between the meteorological variables are captured. On this basis, 
their influence on any individual event can be separated and quantified (as done in 



chapter 4.4). These aspects are novel and taken together, exceed the potential of 
past observation-based analyses. 
It was not the aim of this study to explore the applicability SHAP values and it is 
unfortunate if this impression is conveyed by the current state of the manuscript.  
Therefore, extensive changes to the manuscript have been made to sharpen the 
scientific contribution of this manuscript and to more carefully emphasize scientific 
contributions.  
Still, it is important to note here that much of the methodology chapter is dedicated 
to the ML algorithm and the SHAP values to make sure that the results chapter can 
be followed by readers not familiar with these techniques. An evaluation of the 
model such as in chapter 4.1 is critical to ensure that the model is able to reproduce 
empirical patterns. 

 
Large parts of the abstract, introduction and the conclusion section were altered to 
shift the focus from the SHAP approach to the scientific findings. The following 
specific changes were made in the manuscript: 

- L510: removed ​“To our knowledge, this is the first time that the 
SHAP-framework for explainable machine learning is applied in atmospheric 
sciences” 

- Headline 3.2: added ​“to infer processes” ​ to stress the purpose of the SHAP 
values 

- L211: was changed to ​“The interactions of input features contribute to the 
model output and thus reflect empirical patterns that are important to deepen 
the process understanding.” 

- L215: deleted from the manuscript ​“SHAP values are a novel tool to better 
understand multivariate natural systems, in particular when applied in 
state-of-the-art machine learning models as GBRT. So far, SHAP values have 
been used in the fields of computer science (Antwarg et al. 2019) and medical 
science (Lundberg et al., 2018b; Li et al., 2019a; Lundberg et al.,2020), but 
have yet to be applied to study environmental systems.”  

- L96: Removed ​“With the use of SHAP values, a detailed insight to the 
decisions of the statistical model can be provided, hence allowing an 
advancement of previous ML approaches (Friedman, 2001; Lundberg et al., 
2018a).” 

- L508-511: Removed ​“The GBRT approach in combination with the SHAP 
regression values presented here provides an intuitive tool to assess 
meteorological drivers of air pollution and to advance the understanding of 
high pollution events by uncovering different physical mechanisms leading to 
high-pollution episodes.” 



- L248: added ​“...as suggested by Fig. 5d...” ​ to state more clearly that this 
constitutes a new finding 

- L404-405: added ​“The physical explanation behind this pattern would be that 
lacking wet deposition and low wind speeds increase particle numbers in the 
atmosphere, while northeastern winds advect further particles. Given that 
there is now a large number of particles available, the accumulation effect of a 
low MLH is more efficient” 

- See also changes in L96-103, which now more clearly pinpoint the purpose of 
the study 

Specific comments 
 
Why has PM1 been the focus of this study, rather than the more             
health-relevant PM2.5species? Also, how did the model perform at predicting          
PM10? Considering the omis-sion of chemistry and emissions in this study,           
would PM10 or PM2.5 be a better candi-date for study? 
The available ACSM instrumentation does process only PM1 particles. PM1 is highly 
relevant for human health, affecting the respiratory system. Smaller particles can 
penetrate deeper into the lungs compared to larger particles and potentially cause 
more damage Studies show that health impacts of PM1 are similar (Yang et al., 
2018, DOI: ​10.1016/S2542-5196(17)30100-6 ​) or worse than PM2.5 (Chen et al. 
2017, DOI: 10.1016/j.envint.2018.08.027). In addition, a study by the WHO indicates 
that BC is a good indicator for human health, which is most prominent for particles 
smaller 1µm (see 
https://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publicat
ions/2012/health-effects-of-black-carbon-2012)  

- A comparison to PM10/PM2.5 is currently not feasible since no simultaneous 
measurements of PM1, PM2.5, PM10 and meteorological parameters at the 
same site are available 

- Added to L111: ​“..., a highly health relevant fraction of PM including small 
particles that can penetrate deep into the lungs (Yang et al., 2018; Chen et 
al., 2017a)” 

 
Line 21 - “Processes vary even within seasons”This does not read well. Of             
course, processes will vary within seasons. 
Sentence was removed from the manuscript. 
 

https://doi.org/10.1016/S2542-5196(17)30100-6


Line 24 - “likely causes an increase in local wood-burning emissions”Cause           
and effect seem to be muddled. Maybe the authors mean to say increases in              
burning emission could explain increased particulates? 
Yes, this was the intention. To make this more clear, the sentence was changed to               
“likely triggers increased local wood-burning emissions, which increase PM1         
concentrations” 
 
line 25 - “The application of SHAP regression values within a machine learning             
frame-work presents a novel and promising way of analysing observational          
data sets in envi-ronmental sciences.”Are there implications for what we          
should focus on meteorology studies or observations on? What about the           
implications for air-quality modelling or policy? Just presenting another tool          
that can be used is not a notable contribution. 
This sentence was removed from the manuscript and replaced by ​“The identification            
of these meteorological conditions that increase air pollution could help policy           
makers to issue warnings to the public or install preemptive measures by specifically             
accounting for meteorological variability that influences PM1 concentrations.        
Furthermore, the presented framework has the potential to assess the effectiveness           
of air pollution measures.” ​L8 was changed to … ​”Based on the model, an isolation              
and quantification of individual meteorological influences for process understanding         
is achieved...” 
See also changes in the introduction (L98-106) and conclusion (L502-510). 
 
Line 90 - How can policymakers use this information? Improve air quality            
models?Focus research directions? What about it is new? 
Extensive changes in the manuscript have been made in L96-103 (see also previous             
answers). In addition, potential applications and the new insights were emphasized           
in various parts of the conclusion section (L475-480, L502-510, L515-520). 
 
L482-485: changed to “ ​For policy makers, the presented approach could prove           
beneficial in multiple ways and serve as a decision aid for air policy measures.              
Another application would be to attribute changes in air quality to policy measures             
by comparing an ‘expected’ level of air pollution under given meteorological           
conditions to actual observations (e.g.,Cermak2009 and Knutti 2009), which may          
help…”  
 
 



Line 90 - Why not focus on the SIRTA region, rather than Paris, which is in                
completely different chemistry and emissions regime? The reader needs to be           
convinced that the site is representative of the Paris region. 
The results relate to the measurement site, which is representative of the Paris 
region background values. This was added in L127: “ ​PM1 measurements are 
representative of background pollution levels of the region of Paris (Petit2015 et al., 
2015)”  
Sentence was rephrased in L94 ​ “govern pollution concentrations at the 
measurement site” ​ instead of “lead to high pollution events in Paris”  

Technical comments 
Please use sub/superscripts for chemical species throughout (e.g. SO42-, 
SO2,PM2.5). 
This was adjusted accordingly. 
 
Expand acronyms in sub-header titles (e.g. MLH). 
This was adjusted accordingly. 
 
Expand acronyms once per major section too. 
Given the limited number of acronyms, the authors propose to extend them only at 
the first mention. 
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Abstract. Air pollution, in particular high concentrations of particulate matter smaller than 1µm in diameter (PM1), continues

to be a major health problem, and meteorology is known to RS:substantially contribute tosubstantially influence atmospheric PM

concentrations. However, the scientific understanding of the HA:ways by which complex HA:mechanismsinteractions of meteoro-

logical factors lead to high pollution episodes is inconclusive, as the effects of meteorological variables are not easy to separate

and quantify. In this study, a novel, data-driven approach based on empirical relationships is used to characterise HA:the role5

of meteorology on atmospheric concentrations of PM1, and better understand the meteorology-driven component of PM1 variability.

A tree-based machine learning model is set up to reproduce concentrations of speciated PM1 at a suburban site southwest

of Paris, France, using meteorological variables as input features. RS:Based on the model, an isolation and quantification of

individual meteorological influences for process understanding is achieved RS:the contributions of each meteorological feature to mod-

eled PM1 concentrations is quantified using SHapley Additive exPlanation (SHAP) regression values. RS:Meteorological contributions to10

PM1 concentrations RS:Season-specific processes influencing PM1 concentrations at the measurement site are analysed in selected

high-resolution case studies.RS:, contrasting season-specific processes. Model results suggest that winter pollution episodes are often

driven by a combination of shallow mixed layer heights (MLH), low temperatures, low wind speeds or inflow from northeastern

wind directions. Contributions of MLHs to the winter pollution episodes are quantified to be on average ∼5µg/m3 for MLHs

below <500 m agl. Temperatures below freezing initiate formation processes and increase local emissions related to residential15

heating, amounting to a contribution RS:to predicted PM1 concentrations of as much as ∼9µg/m3. Northeasterly winds are found

to contribute ∼5µg/m3 to RS:totalpredicted PM1 concentrations (combined effects of u- and v-wind components), by advecting

particles from source regions, e.g. central Europe or the Paris region. However, in calm conditions (i.e. wind speeds < ∼2 m/s),

the lack of dispersion leads to increased PM1 concentrations by ∼3µg/m3. Unusually high PM1 concentrations in summer are

generally lower compared to winter peak concentrations, and are characterised by a higher content of organics. Meteorological20

drivers of summer peak PM1 concentrations are temperatures above ∼25 ◦C (contributions of up to ∼2.5µg/m3), dry spells of

several days (maximum contributions of ∼1.5µg/m3) and wind speeds below ∼2 m/s (maximum contributions of ∼3µg/m3 ).

High-resolution case studies show a large variability of processes, which together lead to high PM1 concentrations. RS:Processes
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vary even within seasons. A high pollution episode in January 2016 is shown to be driven by a drop in temperature (maximum

contributions of 11µg/m3), which enhances formation of secondary inorganic aerosols (SIA) and RS:likely causes an increase in local25

wood-burning emissionslikely triggers increased local wood-burning emissions, which increase PM1 concentrations. In contrast,

during December 2016, high PM1 concentrations are caused mainly by a shallow MLH and low wind speeds. It is shown that

an observed decrease in pollution levels is linked to a change in wind direction, advecting cleaner, maritime air to the PM

measurement site (combined contributions of u- and v-wind-components of ∼-4µg/m3). RS:The application of SHAP regression values

within a machine learning framework presents a novel and promising way of analysing observational data sets in environmental sciences. RS:The identifi-30

cation of these meteorological conditions that increase air pollution could help policy makers to issue warnings to the public

or install preemptive measures by specifically accounting for meteorological variability that influences PM1 concentrations.

Furthermore, the presented approach has the potential to realistically assess the effectiveness of air pollution measures.

Copyright statement. TEXT

1 Introduction35

Air pollution has serious implications on human well-being, including deleterious effects on the cardiovascular system and the

lungs (Hennig et al., 2018; Lelieveld et al., 2019), and an increased number of asthma seizures (Hughes et al., 2018). This

includes particles smaller than 1µm in diameter (PM1), which are associated with fits of coughing (Yang et al., 2018) and an

increase in emergency hospital visits (Chen et al., 2017b). The adverse health effect lead to an increase in mortality of people

exposed to high particle concentrations (Samoli et al., 2008, 2013; Lelieveld et al., 2015). People living in urban areas are40

particularly affected by poor air quality and with increasing urbanization, their number is projected to grow (Baklanov et al.,

2016; Li et al., 2019). These developments have motivated several countermeasures to improve air quality. Proposed efforts

to reduce anthropogenic particle emissions include partial traffic bans (Su et al., 2015; Dey et al., 2018) and the reduction

of solid fuel use for domestic heating (Chafe et al., 2014). Although emissions play an important role for PM concentrations

in the atmosphere, meteorological conditions related to large-scale circulation patterns as well as local-scale boundary layer45

processes and interactions with the land surface are major drivers of PM variability as well (Cermak and Knutti, 2009; Bressi

et al., 2013; Megaritis et al., 2014; Dupont et al., 2016; Petäjä et al., 2016; Yang et al., 2016; Li et al., 2017). RS:It is therefore

crucial to take atmospheric and environmental processes into account during the development of efficient pollution mitigation strategies. Wind speed and

direction generally have a strong influence on air quality as they determine the advection of pollutants (Petetin et al., 2014;

Petit et al., 2015; Srivastava et al., 2018). Limiting the vertical exchange of air masses, the mixed layer height (MLH) governs50

the volume of air in which particles are typically dispersed. Although some authors indicate that mixed layer height cannot be

related directly to concentrations of pollutants and that other meteorological parameters and local sources need to be considered

(Geiß et al., 2017), a lower MLH can increase PM concentrations as particles are not mixed into higher atmospheric levels and

accumulate near the ground (Gupta and Christopher, 2009; Schäfer et al., 2012; Stirnberg et al., 2020).
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Higher MLHs in combination with high wind speeds increase atmospheric ventilation processes, thus decreasing near-surface55

particle concentrations (Sujatha et al., 2016; Wang et al., 2018). Air temperature can influence PM concentrations in multiple

ways, e.g. by modifying the emission of secondary PM precursors such as volatile organic compounds (VOCs) during summer

(Fowler et al., 2009; Megaritis et al., 2013; Churkina et al., 2017), and by condensating high saturation vapour pressure

compounds such as nitric acid and sulfuric acid (Hueglin et al., 2005; Pay et al., 2012; Bressi et al., 2013; Megaritis et al.,

2014). The wet removal of particles by precipitation is known to be an efficient atmospheric aerosol sink (Radke et al., 1980;60

Bressi et al., 2013), RS:while moisture in the atmosphere can stimulate secondary particle formation processes (Ervens et al.,

2011). Although all these atmospheric conditions and processes have been identified as drivers of local air quality, it is usually

a complex combination of meteorological and chemical processes that lead to the formation of high-pollution events (Petit

et al., 2015; Dupont et al., 2016; Stirnberg et al., 2020).

The metropolitan area of Paris is one of the most densely populated and industrialised areas in Europe. Thus, air quality65

is a recurring issue and has been at the focus of many studies in the past years (Bressi et al., 2014; Petetin et al., 2014;

Petit et al., 2015; Dupont et al., 2016; Petit et al., 2017; Srivastava et al., 2018). Results indicate that the Paris metropolitan

region is often affected by mid- to long-range transport of pollutants, as due to the city’s flat orography, an efficient horizontal

exchange of air masses is frequent (Bressi et al., 2013; Petit et al., 2015). High-pollution events commonly occur in late autumn,

winter, and early spring. Often, these episodes are characterised by stagnant atmospheric conditions and a combination of local70

contributions, e.g. traffic emissions, residential emissions, or regionally transported particles, e.g. ammonium nitrates from

manure spreading, or sulfates from point sources (Petetin et al., 2014; Petit et al., 2014, 2015; Srivastava et al., 2018). High-

pressure conditions with air masses originating from continental Europe (Belgium, Netherlands, West Germany) are generally

associated with an increase in particle concentrations, especially of secondary inorganic aerosols (SIA, Bressi et al. (2013);

Srivastava et al. (2018). The regional contribution has been found to be in the range of 70 % for background concentrations in75

Paris of particles with a diameter smaller 2.5µm (Petetin et al., 2014). Hence the variability between high-pollution episodes

in terms of timing, sources and meteorological boundary conditions is considerable (Petit et al., 2017). Previous approaches

to determine meteorological drivers of air pollution included, for example, the use of chemical transport models (CTMs),

which, however, require comprehensive knowledge on emission sources and secondary particle formation pathways and are

associated with considerable uncertainties (Sciare et al., 2010; Petetin et al., 2014; Kiesewetter et al., 2015). Further methods80

rely on data exploration, e.g. the statistical analysis of time-series (Dupont et al., 2016), which can be coupled with positive

matrix factorization (PMF, Paatero and Tapper, 1994) to derive PM sources (Petit et al., 2014; Srivastava et al., 2018). To

take into account the interconnected nature of PM drivers, multivariate statistical approaches such as principal component

analysis (PCA) have been applied (Chen et al., 2014; Leung et al., 2017). In recent years, machine learning techniques have

been increasingly used to expand the analysis of PM concentrations with respect to meteorology, allowing to retrace general85

patterns (Hu et al., 2017; Grange et al., 2018).

Here, the multivariate and highly interconnected RS:nature of meteorology-dependent atmospheric processes influencing RS:na-

ture of the processes determining local PM1 concentrations RS:at a suburban site southwest of Paris is RS:captured and analysed in a

data-driven way. RS:Therefore, a state-of-the-art explainable machine learning model is set up to reproduce the variability of
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PM1 concentrations, thereby capturing empirical relationships between PM1 concentrations and meteorological parameters.90

RS:A state-of-the-art explainable machine learning model is set up to reproduce the variability of PM1 concentrations, RS:The goal is to separate and

quantify influences of the meteorological variables on PM1 concentrations to advance RS:with the objective of advancing the process

understanding of the complex mechanisms that RS:lead to high pollution events in Parisgovern pollution concentrations at the measure-

ment site. Localised (i.e. situation-based) and individualised attributions of feature contributions are performed using SHapley

Additive exPlanation regression (SHAP) values (Lundberg and Lee, 2017; Lundberg et al., 2018a, 2020), RS:allowing to infer95

meteorology-dependent processes driving PM concentrations at high temporal resolution. RS:With the use of SHAP values, a detailed

insight to the decisions of the statistical model can be provided, hence allowing an advancement of previous ML approaches RS:The attribution of local (i.e.

situation-based) statistical feature contributions enables quantitative estimates of meteorological drivers of PM concentrations and allows to infer meteorol-

ogy-dependent processes driving PM concentrations at high temporal resolution. RS:Typical situations that lead to high PM1 concentrations are

identified, serving as a decision support to policymakers to issue preventative warnings to the public if these situations are to be100

expected. In addition, by directly accounting for meteorological effects on PM1 concentrations, such a machine learning-based

framework could help in assessing the effectiveness of measures towards better air quality. Meteorological effects on speciated PM1

concentrations are quantified and the roles of the most critical atmospheric variables for driving peak particle concentrations are highlighted. The improved

scientific understanding of processes is crucial for the assessment of the effectiveness of measures towards better air quality, and therefore of high value to po-

litical decision makers. RS:Furthermore, the proposed ML framework can be viewed as a first step towards a data-driven, prognostic105

tool in operational air quality forecasting, complementary to CTM approaches.

2 Data sets

Seven years (2012-2018) of meteorological and air quality data from the Site Instrumental de Recherche par Télédétection

Atmosphérique (SIRTA, Haeffelin et al., 2005) supersite are the basis of this study. The SIRTA Atmospheric Observatory is

located about 25km southwest of Paris (48.713◦N and 2.208◦E, Fig. 1). This study focuses on day-to-day variations of total110

and speciated PM1
RS:, a highly health relevant fraction of PM including small particles that can penetrate deep into the lungs

(Yang et al., 2018; Chen et al., 2017a). To separate diurnal effects e.g. the development of the boundary layer during morning

hours (Petit et al., 2014; Dupont et al., 2016; Kotthaus and Grimmond, 2018a) from day-to-day variations of PM1, mean

concentrations of total and speciated PM1 for the afternoon period 12-15 UTC are considered, when the boundary layer is fully

developed. In sections 2.1 and 2.2, the PM1 and meteorological data and preprocessing steps before setting up the machine115

learning model are described. The applied machine learning model and data analysis techniques are presented in sections 3.1

and 3.2.

2.1 Submicron particle measurements

Aerosol chemical speciation monitor (ACSM, Ng et al., 2011) measurements are conducted at SIRTA in the framework of

the ACTRIS project. The ACSM provides continuous and near real-time measurements of the major chemical composition of120

non-refractory submicron aerosols, i.e., organics (Org), ammonium (NH+

4 ), sulfate (SO2−

4 ), nitrate (NO−

3 ) and chloride (Cl−).
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Figure 1. Location of the SIRTA supersite southwest of Paris. © OpenStreetMap contributors 2020. Distributed under a Creative Commons

BY-SA License.

A detailed description of its functionality can be found in Ng et al. (2011). Data processing and validation protocol can be

found in Petit et al. (2015) and Zhang et al. (2019). In addition, black carbon (BC) has been monitored by a seven-wavelength

Magee Scientific Aethalometer AE31 from 2011 to mid-2013, and a dual-spot AE33 (Drinovec et al., 2015) from mid-2013

onwards. Consistency of both instruments have been checked in Petit et al. (2014). Using the multispectral information, a125

differentiation into fossil fuel-based BC (BCff) and BC from wood burning (BCwb) is achieved (Sciare et al., 2010; Healy

et al., 2012; Petit et al., 2014; Zhang et al., 2019). Here, the sum of all measured species is assumed to represent the total PM1

content (see Petit et al., 2014, 2015). The consistency of ACSM and Aethalometer measurements is checked by comparing the

sum of all monitored species with measurements of a nearby Tapered Element Oscillating Microbalance equipped with a Filter

Dynamic Measurement System (TEOM-FDMS). RS:PM1 measurements are representative of suburban background pollution130

levels of the region of Paris (Petit et al., 2015). As an additional input to the machine learning model, the average fraction of

NO−

3 of the previous day is added (NO3_frac). Pollution events dominated by NO−

3 are often linked to regional-scale events,

which depend on anthropogenically-influenced processes in the source regions of NO−

3 precursors (Petit et al., 2017). This

is approximated by the inclusion of the average fraction of NO−

3 of the previous day, assuming that a high fraction of NO−

3

indicates the occurrence of such an anthropogenically-influenced regime.135

2.2 Meteorological data

RS:Meteorological variables included in this study are ambient air temperature (at a height of 2 m, T), relative humidity (RH), ambient air pressure (AirPres),

precipitation, wind speed (ws), wind direction (u, v components) and total incoming solar radiation (TISR).Following the objective of this study,

a set of meteorological variables is chosen as inputs for the ML model that either influence PM concentrations directly via
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dilution (MLH, wind speed (ws), and wet scavenging of particles (precipitation)) and particle transport (wind direction as u,140

v components, air pressure (AirPres)), as a proxy for emissions (e.g. from residential heating: temperature at a height of 2 m

(T)), and as a proxy for transformation processes (total incoming solar radiation (TISR), relative humidity (RH), T). Data

are taken from the quality-controlled and 1h averaged re-analysed observation (ReObs) dataset. Further information on the

instrumentation used for the acquisition of these variables is provided in Chiriaco et al. (2018). MLH is derived from automatic

lidar and ceilometer (ALC) measurements of a Vaisala CL31 ceilometer using the CABAM algorithm (Characterising the145

Atmospheric Boundary layer based on ALC Measurements, Kotthaus and Grimmond, 2018a, b). Due to an instrument failure,

during the period July to mid-November 2016, SIRTA ALC measurements had to be replaced with measurements conducted

at the Paris Charles de Gaulle Airport, located northeast of Paris. RS:A comparison of measured MLHs at SIRTA and Charles

de Gaulle Airport for the available measurements in 2016 (Appendix A) shows generally good agreement, which is why only

minor uncertainties are expected due to the replacement.150

Meteorological factors are chosen as input features for the statistical model based on findings of previous studies (see section

1). Meteorological observations are converted to suitable input information for the statistical model (see section 3.1). Wind

speed (ws) is derived from the ReObs u and v components [m/s] and the maximum wind speed of the afternoon period (12-15

UTC) is included in the model. U and v wind components are then normalised to values between 0 and 1, thus only depicting

the direction information. To reduce the impact of short-term fluctuation in wind direction, the 3-day running mean is calculated155

based on the normalised u and v wind components (umean and vmean). Hours since the last precipitation event (Tprec) are

counted and used as input to capture the particle accumulation effect between precipitation events (Rost et al., 2009; Petit et al.,

2017).

3 Methods

3.1 Machine learning model: technique and application160

Gradient Boosted Regression Trees (GBRT, used here in a python 3.6.4 environment with the scikit-learn module, Friedman,

2002; Pedregosa et al., 2012) are applied to predict daily total and speciated PM1 concentrations. As a tree-based method,

GBRTs use a tree regressor, which sets up decision trees based on a training data set. The trees split the training data along

decision nodes, creating homogeneous subsamples of the data by minimizing the variance of each subsample. For each sub-

sample, regression trees fit the mean response of the model to the observations (Elith et al., 2008). To increase confidence in the165

model outputs, decision trees are combined to form an ensemble prediction. Trees are sequentially added to the ensemble (Elith

et al., 2008; Rybarczyk and Zalakeviciute, 2018) and each new tree is fitted to the predecessor’s previous residual error using

gradient descent (Friedman, 2002). This is an advantage of GBRT over standard ensemble tree methods (e.g. Random Forests

(RF), Just et al., 2018) as trees are built systematically and fewer iterations are required (Elith et al., 2008). Characteristics

of the meteorological training data set with respect to observed total and speciated PM1 concentrations are conveyed to the170

statistical model. The learned relationships are then used for model interpretation and to produce estimates of PM1 based on

unseen meteorological data to test the model. The architecture of the statistical model is determined by the hyperparameters,
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e.g. the number of trees, the maximum depth of each tree (i.e., the number of split nodes on each tree) and the learning rate

(i.e., the magnitude of the contribution of each tree to the model outcome, which is basically the step size of the gradient

descent). The hyperparameters are tuned by executing a grid search, systematically validating testing previously defined hy-175

perparameter combinations and determining the best combination via a three-fold cross validation. Note that PM1 data is not

normally distributed, i.e. there is more data available for mid-range concentrations. To avoid that the model primarily optimizes

its predictions on these values, a least-squares loss function was chosen. This loss function is more sensitive to higher PM1

values (i.e. outliers of the PM1 data distribution), as it strongly penalises high absolute differences between predictions and

observations. Accordingly, the model is adjusted to reproduce higher concentrations as well.180

For each PM species, a specific GBRT model is set up and used for the analysis of meteorological influences on individual

PM1 species (see section 4.2). Additionally, a quasi-total PM1 model is used to reproduce the sum of all species at once, which

is used for an analysis of meteorological drivers of high-pollution events (see sections 4.3 and 4.4). Train and test data sets

to evaluate each model are created by randomly splitting the full data set. These splits, however, are the same for the species

models and the full PM1 model to ensure comparability between the models. Three quarters of the data are used for training185

and hyperparameter tuning with cross-validation (n=1086), and one quarter for testing (n=363). In addition, the robustness

of the model results is tested by repeating this process ten times, resulting in ten models with different train-/ test-splits and

different hyperparameters.

3.2 Explaining model decisions RS:to infer processes: SHapley Additive exPlanation (SHAP) values

While being powerful predictive models, tree-based machine learning methods also have a high interpretability (Lundberg et al.,190

2020). In order to understand physical mechanisms on the basis of model decisions, the contributions of the meteorological

input features to the model outcome are analysed. Feature contributions are attributed using SHAP values, which allow for an

individualised, unique feature attribution for every prediction (Shapley, 1953; Lundberg and Lee, 2017; Lundberg et al., 2018a,

2020). SHAP values provide a deeper understanding of model decisions than the relatively widely used partial dependence

plots (Friedman, 2001; Goldstein et al., 2015; Fuchs et al., 2018; Lundberg et al., 2018a; McGovern et al., 2019; Stirnberg195

et al., 2020). Partial dependence plots show the global mean effect of an input feature to the model outcome, while SHAP

values quantify the feature contribution to each single model output, accounting for multicollinearity. Feature contributions

are calculated from the difference in model outputs with that feature present, versus outputs for a retrained model, without the

feature. Since the effect of withholding a feature depends on other features in the model due to interactive effects between the

features, differences are computed for all possible feature subset combinations of each data instance (Lundberg and Lee, 2017).200

Summing up SHAP values for each input feature at a single time step yields the final model prediction. SHAP values can be

negative since SHAP values are added to the base value, which is the mean prediction when taking into account all possible

input feature combinations. Negative (positive) SHAP values reduce (raise) the prediction below (above) the base value. The

higher the absolute SHAP value of a feature, the more distinct is the influence of that feature on the model predictions. The

sum of all SHAP values at one time step yields the final prediction of PM1 concentrations. An example of breaking down a205

model prediction into feature contributions using SHAP values is shown schematically in Fig. 2. The computation of traditional

7



Figure 2. Conceptual figure illustrating the interaction of SHAP values and model output. Starting with a base value, which is the mean pre-

diction if all data points are considered, positive SHAP values (blue) increase the final prediction of total and speciated PM1 concentrations,

while negative SHAP values (red) decrease the prediction. The sum of all SHAP values for each input feature yields the final prediction.

Depending on whether positive or negative SHAP values dominate, the prediction is higher or lower than the base value (Lundberg et al.,

2018b). Adapted from https://github.com/slundberg/shap.

Shapley Regression values is time consuming, since a large number of all possible feature combinations have to be included.

The SHAP framework for tree-based models allows a faster computation compared to full shapley regression values while

maintaining a high accuracy (Lundberg and Lee, 2017; Lundberg et al., 2018a) and is therefore used here. The shap python

implementation is used for the computation of SHAP values (https://github.com/slundberg/shap).210

RS:Pairwise interactive effects between input features can be estimated using the SHAP approach.The interactions of input features contribute to

the model output and thus reflect empirical patterns that are important to deepen the process understanding. Interactive effects

are defined as the difference between the SHAP values for one feature when a second feature is present and the SHAP values

for the one feature when the other feature is absent (Lundberg et al., 2018a). RS:SHAP values are a novel tool to better understand multi-

variate natural systems, in particular when applied in state-of-the-art machine learning models as GBRT. So far, SHAP values have been used in the fields of215

computer science and medical science , but have yet to be applied to study environmental systems.

4 Results and discussion

4.1 Model performance

The performance of the ten model iterations is assessed by comparing the coefficient of determination (R2) and normalised

root mean square error (NRSME) for the independent test data that was withheld during the training process (Fig. 3). While220

the models for BCwb, BCff and total PM1 show small spread, Cl− and NO−

3 exhibit larger variations between model runs

(indicated by horizontal and vertical lines in Fig. 3). This suggests that while drivers of variations in BCff concentration are

well covered by the model, this is less so in the case of Cl− and NO−

3 . Possible reasons for this are that no explicit information

on anthropogenic emissions or chemical formation pathways are included in the models. Still, the model performance indicators
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Figure 3. Performance indicators for ten model iterations: coefficient of determination R2 against normalised Root Mean Squared Error

(NRMSE) for the separate species models and the total PM1 model. Vertical and horizontal lines indicate the maximum spread in R2 and

NRMSE, respectively.

highlight that a large fraction of the variations in particle concentrations are explained by the meteorological variables used as225

model inputs. Performances of model iterations of the species-specific and total PM1 are generally similar, suggesting a robust

model outcome.

The mean input feature importance, ordered from high to low, of the total PM1 model run by means of the SHAP feature

attribution values is shown in Fig. 4, The NO−

3 fraction of the previous day has the highest impact on the model, followed by

temperature, wind direction information, and MLH. To some extent, NO−

3 fraction can be related to PM1 mass concentrations230

(Petit et al., 2015; Beekmann et al., 2015). This means that the higher the PM1 levels one day, the greater the chances of having

higher PM1 levels the next day. The impact of the meteorological variables on model decisions is analysed in more detail in

the following.
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Figure 4. Ranked median SHAP values of the model input features, i.e. the average absolute value that a feature adds to the final model

outcome, referring to the total PM1 model [µg/m3] (Lundberg et al., 2018b). Horizontal lines indicate the variability between model runs.

4.2 RS:ContributionInfluence of meteorological input features on modelled particle species and total PM1 concentrations

To gain insights on relevant processes governing particle concentrations RS:in the Paris regionat SIRTA, the contribution of input235

features on species and total PM1 concentration outcomes from the statistical model, i.e. the SHAP values, are plotted as a

function of absolute feature values (Figs 5-7). The contribution of an input feature to each (local) prediction of the species or

total PM1 concentrations is shown while taking into account intra-model variability. Intra-model variability of SHAP values,

i.e. different SHAP value attributions for the same feature value within one model, is shown by the vertical distribution of dots

for absolute input feature values. Intra-model variability is caused by interactions of the different model input features.240

4.2.1 RS:ContributionInfluence of temperature

The impact of ambient air temperature on modelled species concentrations is highly non-linear (Fig. 5). All species show

increased contributions to model outcomes at temperatures below ∼4 ◦C while the contribution of high temperatures on model

outcomes differs substantially between species. The statistical model is able to reproduce well-known characteristics of species

concentration variations related to temperature. For example, sulfate formation is enhanced with increasing temperatures (Fig.245

5d) due to an increased oxidation rate of SO2 (see Dawson et al., 2007; Li et al., 2017) and strong solar irradiation due to
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photochemical oxidation (Gen et al., 2019). Dawson et al. (2007) reported an increase of 34 ng/m3K for PM2.5 concentrations

using a CTM. The increase in sulfate at low ambient temperatures RS:as suggested by Fig. 5d is not reported in this study. It

is likely linked to increased aqueous phase particle formation in cold and foggy situations (Rengarajan et al., 2011; Petetin

et al., 2014; Cheng et al., 2016). Considerable local formation of nitrate at low temperatures (Fig. 5b) is consistent with results250

from previous studies in western Europe and enhanced formation of ammonium nitrate at lower temperatures (Fig. 5c) by

the shifting gas-particle equilibrium is a well-known pattern (e.g., Clegg et al., 1998; Pay et al., 2012; Bressi et al., 2013;

Petetin et al., 2014; Petit et al., 2015). The increase in organic matter and BCwb concentrations at low temperatures (Fig. 5g)

is likely related to the emission intensity, as biomass burning is often used for domestic heating in the study area (Favez et al.,

2009; Sciare et al., 2010; Healy et al., 2012; Jiang et al., 2019). In addition, organic matter concentrations are linked to the255

condensation of semi-volatile organic species at low temperatures (Putaud et al., 2004; Bressi et al., 2013). The sharp increase

in modelled concentrations of organics above 25◦C (Fig 5a) could be due to enhanced biogenic activity leading to a rise in

biogenic emissions and secondary aerosol formation (Guenther et al., 1993; Churkina et al., 2017; Jiang et al., 2019).

The contribution of temperature on modelled total PM1 concentrations (Fig. 6h) is consistent with the response patterns to

changes in temperatures described for the individual species in panels 6a-6g, with positive contributions at both low (<4 ◦C)260

and high air temperatures (>25 ◦C). For temperatures below freezing, the model allocates maximum contributions to modelled

total PM1 concentrations of up to 12µg/m3. The spread of SHAP values between model iterations is generally higher for low

temperatures (vertical grey bars in Fig. 6), where SHAP values are of greater magnitude, but in all cases the signal contained

in the feature contributions far exceeds the spread between model runs.

4.2.2 RS:ContributionInfluence of RS:the mixed layer height (MLH)265

Variations in MLH can have substantial impact on near-surface particle concentrations, as the mixed layer is the atmospheric

volume in which the particles are dispersed (see Klingner and Sähn, 2008; Dupont et al., 2016; Wagner and Schäfer, 2017). The

effect of MLH variations on modelled particle concentrations is highly nonlinear RS:and varies in magnitude for all species (Fig.

6)RS:, with the magnitude of the contribution varying by species. RS:Possible reasons for this will be discussed in the following. Similar to the patterns

observed for temperature SHAP values, the inter-model variation of predictions is highest for low MLHs where predicted270

particle concentrations have the highest variation. RS:For predicted total PM1 concentrations, the maximum positive contribu-

tion of the MLH is as high as 5.5µg/m3 while negative contributions can amount to -2µg/m3. While the maximum influence

of MLH is lower than the maximum influence determined for air temperature, the frequency of shallow MLH is far greater

than that of the minimum temperatures that have the largest effect (Figs 5d & 6d). Contributions of MLH to predicted particle

concentrations are highest for very shallow mixed layers due to the accumulation of particles close to the ground RS:under shallow275

MLH conditions (Dupont et al., 2016; Wagner and Schäfer, 2017). RS:In addition to causing particles to accumulate near the sur-

face, low MLH can also provide effective pathways for local new particle formation. Secondary pollutants, such as ammonium

nitrate, are increased at low MLHs when conditions favorable to their formation usually coincide with reduced vertical mixing

(i.e., low temperatures, often in combination with high RH, Pay et al., 2012; Petetin et al., 2014; Dupont et al., 2016; Wang

et al., 2016). RS:BC concentrations, on the other hand, are dominated by primary emissions, as is a substantial fraction of organic280
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Figure 5. Air temperature SHAP values (contribution of temperature to the prediction of species and total PM1 concentrations [µg/m3] for

each data instance) vs. absolute air temperature [◦C]. Inter-model variability of allocated SHAP values is shown as the variance of predicted

values between the ten model iterations and plotted as vertical grey bars. The dotted horizontal line indicates the transition from positive to

negative SHAP values.

matter (Petit et al., 2015). RS:Hence, the accumulation of these particles during low buoyancy conditions can explain the strong

influence of MLH on BCwb and BCff. A relatively distinct transition from positive contributions during shallow boundary
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layer conditions (∼0–800 m) towards negative contributions at high MLHs is evident for all species except SO2−

4 . Modelled

SO2−

4 concentrations show a less distinct response to changes in MLH as they are largely driven by gaseous precursor sources

and particle advection, RS:both rather independent of MLH (Pay et al., 2012; Petit et al., 2014, 2015), so that the accumulation285

effect RS:under low MLH conditions is hence is less important. RS:Furthermore, anThe increase of SO2−

4 concentrations with higher MLHs

(>∼ 1500m agl) could RS:be due to a morelinked to the effective transport of SO2−

4 and its precursor SO2
RS:under high MLH conditions

(Pay et al., 2012).

In agreement with results from previous studies focusing on PM10 (Grange et al., 2018; Stirnberg et al., 2020) or PM2.5 (Liu

et al., 2018), SHAP values do not change much for MLH above ∼800–900 m, i.e. boundary layer height variations above290

this level do not influence submicron particle concentrations. Positive contributions of MLHs above ∼800–900 m RS:on pre-

dicted PM1 concentrations, as visible in Fig. 6 RS:for some species, have been previously reported by Grange et al. (2018), who

relate this pattern to enhanced secondary aerosol formation in a very deep and dry boundary layer. The positive RS:contributionin-

fluence of high MLHs on species that are partly secondarily formed, e.g. SO2−

4 and Org, could be explained following this

argumentation. However, processes driving the positive RS:contributioninfluence of high MLHs on BCff, which is directly emitted295

to the atmosphere, remain inconclusive. RS:For predicted total PM1 concentrations, the maximum positive contribution of the MLH is as high as

5.5µg/m3 while negative contributions can amount to -2µg/m3. While the maximum influence of MLH is lower than the maximum influence determined

for air temperature, the frequency of shallow MLH is far greater than that of the minimum temperatures that have the largest effect RS:In addition to causing

particles to accumulate near the surface, low MLH can also provide effective pathways for local new particle formation. Secondary pollutants, such as ammo-

nium nitrate, are increased at low MLHs when conditions favorable to their formation usually coincide with reduced vertical mixing RS:BC concentrations,300

on the other hand, are dominated by primary emissions, as is a substantial fraction of organic matter RS:Hence, the accumulation of these particles during low

buoyancy conditions can explain the strong influence of MLH on BCwb and BCff.

4.2.3 RS:ContributionInfluence of wind direction

To analyse the contribution of wind direction to predicted particle concentrations, SHAP values of normalised 3-day mean u

and v wind components were added up and transformed to RS:units of degrees (Fig. 7). Generally, wind direction has a positive305

contribution to the model outcome when winds from the northern to northeastern sectors prevail, while negative contributions

are evident for southwesterly directions. Given the location of the measurement site, this pattern undoubtedly reflects the

advection of particles emitted from continental Europe and/or RS:Paris city centrethe Paris metropolitan area under high pressure

system conditions versus cleaner marine air masses during southwesterly flow (Bressi et al., 2013; Petetin et al., 2014; Petit

et al., 2015; Srivastava et al., 2018). Increased concentrations of organic matter are predicted for northerly, northeasterly and310

easterly winds. These patterns suggest a significant contribution of advected organic particles from a specific wind sector.

This is in agreement with the findings of Petetin et al. (2014) who estimated that 69 % of the PM25 organic matter fraction

is advected by northeasterly winds, which is related to advected particles from wood burning sources in the Paris region and

SOA formation along the transport trajectories. While Petit et al. (2015) did not find a wind direction dependence of organic

matter measured at SIRTA using wind regression, they reported the regional background of organic matter to be of importance.315

Comparing upwind rural stations to urban sites, Bressi et al. (2013) concluded organic matter is largely driven by mid- to
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Figure 6. As Fig. 5 for MLH SHAP values (contribution of MLH to the prediction of species and total PM1 for each data instance) vs.

absolute MLH values [m agl].

long-range transport. RS:Contributions toInfluences on the SO2−

4 -model are highest for northeastern and eastern wind direction,

which aligns with previous findings by Pay et al. (2012); Bressi et al. (2014); Petit et al. (2017), who identified the Benelux

region and western Germany as strong emitters of sulfur dioxide (SO2). SO2 can be transformed to particulate SO2−

4 (Pay et al.,

2012) while being transported towards the measurement site. Nitrate concentrations are affected by long-range transport from320
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continental Europe (Benelux, western Germany), which are RS:importedadvected towards SIRTA from northeastern directions

(Petetin et al., 2014; Petit et al., 2014). It is to be expected that the influence of mid- to long-range transport on the particle

observations at SIRTA is rather substantial, with most high pollution days affected by particle advection from continental

Europe (Bressi et al., 2013). Concerning BCff and BCwb, model results suggest a dependence on wind direction during

northwestern to northeastern inflow. Although BC concentrations are expected to be largely determined by local emissions325

(Bressi et al., 2013), e.g. from local residential areas, a substantial contribution of imported particles from wood burning and

traffic emissions from the Paris RS:city centreregion (Laborde et al., 2013; Petetin et al., 2014) and continental sources is likely

(Petetin et al., 2014).

4.2.4 RS:ContributionInfluence of feature interactions

Strong pairwise interactive effects are found between MLH vs. time since last precipitation and MLH vs. maximum wind speed330

and shown in Figs 8a and 8b. SHAP interaction effects between MLH and time since last precipitation are most pronounced for

MLHs below ∼ 500 m agl (Fig. 8a). Interaction values are negative for low MLHs paired with time since last precipitation close

to zero hours. With increasing time since last precipitation, interaction effects become positive, thus increasing the contribution

of Tprec and MLH to the model outcome. An explanation of this pattern concerning underlying processes could be that due

to the lack of precipitation, a higher number of particles is available in the atmosphere for accumulation, hence increasing the335

accumulation effect of a shallow MLH. In case of recent precipitation, the accumulation effect of a shallow MLH is weakened.

For higher MLHs, interactive effects with time since the last precipitation event are marginal. Interactive effects between MLH

and wind speed are shown in Fig. 8b. Positive SHAP values for maximum wind speeds below ∼2 m/s reflect stable situations,

favoring the accumulation of particles, whereas high wind speeds enhance the ventilation of particles (Sujatha et al., 2016).

This can also be deduced from Fig. 8b, which shows increased SHAP values for low wind speeds in combination with a low340

MLH. Low wind speeds combined with a high MLH (>∼1000 m agl), on the other hand, result in decreased SHAP values.

Similarly, low MLHs combined with higher wind speeds (>∼2 m/s) also decrease predictions of total PM1 concentrations.

Maximum wind speed and time since last precipitation (plot not shown here) interact in a similar way. The positive effect of

low wind speeds on the model outcome is increasing with increasing time since last precipitation.

4.3 Meteorological conditions of high-pollution events345

To further identify conditions that favor high pollution episodes, the data set is split into situations with exceptionally high total

PM1 concentrations (>95th percentile) and situations with typical concentrations of total PM1 (interquartile range, IQR). This

is done for the meteorological summer and winter seasons to contrast dominant drivers between these seasons. Mean SHAP

values refer to the total PM1 model, corresponding input feature distributions and species fractions for the two subgroups are

aggregated seasonally. This allows for a quantification of seasonal feature contributions to average or polluted situations.350

Figs 9 & 10 show mean SHAP values for typical (left) and high-pollution (right) situations in the upper panel. The distribu-

tion of SHAP values are shown as box plots for each feature. Absolute feature value distributions are given in the bottom of

the figure. In the lowest subpanel, the chemical composition of the total PM1 concentration for each subgroup is shown. The
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Figure 7. As Fig. 5 for wind direction SHAP values (contribution of 3-day mean wind direction to the prediction of species and total PM1

for each data instance) vs. absolute wind direction [◦].

largest contributor to high pollution situations in winter is air temperature (Fig. 9). SHAP values for temperature are substan-

tially increased during high pollution situations, when temperatures are systematically lower. Further contributing factors to355

high pollution situations are the lows MLHs, low wind speeds, a high average NO−

3 fraction of the previous day and negative

u (i.e., winds from the east) and v (i.e., winds from the north) wind components. In winter, the PM1 composition shows a
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Figure 8. MLH vs. a) time since last precipitation and MLH vs. b) maximum wind speed, respectively, colored by the SHAP interaction

values for the respective features.

Table 1. Statistics for typical PM1 concentrations (mean, median, IQR) and high-pollution concentrations (>95th percentile).

PM1 concentrations Mean Median Interquartile range 95th percentile

Winter (DJF) 11.1µg/m3 6.3µg/m3 2.7-15.4µg/m3 34.3µg/m3

Summer (JJA) 7.5µg/m3 6.0µg/m3 3.5-10.1µg/m3 18.2µg/m3

relatively large fraction of nitrates, which is increased during high pollution situations (Fig. 9, lower panel). High concentra-

tions of nitrate in winter can be linked to advection or to enhanced formation due to the temperature-dependent low volatility

of ammonium nitrate (Petetin et al., 2014). The organic matter fraction is slightly decreased during high pollution situations.360

MLH and maximum wind speed RS:contributions toinfluences on high pollution situations are linked to low ventilation conditions

which are very frequent in winter (Dupont et al., 2016). Positive RS:contributionsinfluences of wind direction for inflow from the

northern and eastern sectors are dominant during high pollution situations while inflow from the southern and western sectors

prevails during average pollution situations (see Fig. 7, Bressi et al., 2013; Petetin et al., 2014; Srivastava et al., 2018). Note

that the time since the last precipitation is increased during high pollution situations, but the effects on the model outcome is365

weak. This suggests that lacking precipitation is not a direct driver of modelled total PM1 concentrations, but increases the

contribution of other input features (see Fig. 8a) or is a meaningful factor in only some situations.

Summer total PM1 composition (Fig. 10) is characterised by a larger fraction of organics compared to the winter season (Fig.

9). As a considerable fraction of organic matter is formed locally (Petetin et al., 2014), the increased proportion of organics

could be due to more frequent stagnant synoptic situations that may limit the advection of transported SIA particles. In addition,370

the positive SHAP values of solar irradiation and temperature highlight that the solar irradiation stimulates transformation pro-
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Figure 9. Mean feature contributions (i.e., SHAP values) for situations with low total PM1 concentrations (left) and situations with high

pollution (right), respectively, during winter (December, January, February). Respective range of SHAP values by species are shown as

box plots, with median (bold line), 25-75th percentile range (boxes), and 10–90th percentile range (whiskers). Both training and test data

are included. Absolute feature value distributions (given as normalised frequencies) as well as the chemical composition of the total PM1

concentration are shown in the subpanels. Colors of the box plots correspond to colors in the feature distribution subpanels. SHAP values

of the input features u_norm_3d and u_norm as well as v_norm_3d and v_norm were merged to u_norm, merged and v_norm, merged to

achieve better transparency.
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cesses and increases the number of biogenic SOA particles (Guenther et al., 1993; Petetin et al., 2014). As mean temperatures

are highest in summer, positive temperature SHAP values are associated with increased organic matter concentrations (Fig.

5). The higher importance (i.e. higher SHAP values) of time since the last precipitation event during high pollution situations

points to an accumulation of particles in the atmosphere. Dry situations can also enhance the emission of dust over dry soils375

(Hoffmann and Funk, 2015). The negative RS:contributionsinfluences of MLH during both typical and high pollution situations

reflects seasonality, as afternoon MLHs in summer are usually too high to have a substantial positive impact on total PM1 con-

centrations (see Fig. 6). MLH is thus not expected to be a driver of day-to-day variations of summer total PM1 concentrations.

Note that the average MLH is higher during high pollution situations, which likely points to increased formation of SO2−

4 (see

Fig. 6).380

4.4 Day-to-day variability of selected pollution events

Analysing the combination of SHAP values of the various input features on a daily basis allows for direct attribution of

the respective implications for modelled total PM1 concentrations (Lundberg et al., 2020). Here, four particular pollution

episodes are selected to analyse the model outcome with respect to physical processes (Figs 11-14). The examples highlight the

advantages but also the limitations of the interpretation of the statistical model results. The high pollution episodes took place385

in winter 2016 (10th - 30th January and 25th November - 25th December), spring 2015 (11th - 31st March) and summer 2017

(8th - 28th June). The upper panels in Figs 13-16 indicate the total PM1 prediction as horizontal black line with vertical black

lines denoting the range of predictions of all 10 models. The observed species concentrations are shown in the corresponding

colors. The subsequent panels show absolute values and SHAP values for the most relevant meteorological input features.

4.4.1 January 2016390

Prior to the onset of the high-pollution episode in January 2016 (Fig. 11), the situation is characterised by MLHs in the range

of 1000m, temperatures above freezing (∼5-10◦C), frequent precipitation and winds from the southwest. The organic matter

fraction dominates the particle speciation. The episode itself is reproduced well by the model. According to the model results,

the event is largely temperature-driven, i.e. SHAP values of temperature explain a large fraction of the total PM1 concentration

variation (note the adjusted y-axis of the temperature SHAP values). On 18th January, temperatures drop below freezing,395

coupled with a decrease in MLH. As a consequence, both modelled and observed PM1 concentrations start to rise. A further

increase in total PM1 concentrations is driven by a sharp transition from stronger southwestern to weaker northeastern winds

(strong negative u component, weak negative v component) on January 19th. The combined effects of these changes lead to

a marked increase in total RS:modelled PM1 concentrations, peaking at ∼37µg/m3 on 20th January. On the following days,

temperatures increase steadily, thus the contribution of temperature decreases. At the same time, although values of MLH400

remain almost constant, the contribution of MLH drops substantially from ∼5µg/m3 to ∼2µg/m3. This is due to interactive

effects between MLH and the features wind speed, time since last precipitation and normalised v-wind-component. All of

these features increase the contribution of MLH on 20th January, but decrease its contribution on 21st-23rd January. RS:The

physical explanation behind this pattern would be that lacking wet deposition and low wind speeds increase particle numbers
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Figure 10. As Fig. 9 for mean feature contributions (i.e., SHAP values) for situations with low total PM1 concentrations (left) and situations

with high pollution (right), respectively, during summer (July, June, August).

in the atmosphere, while inflow from northeasterly directions increase particle numbers in the atmosphere. Given that there is405

now a large number of particles present, the accumulation effect of a low MLH is more efficient. The high pollution episode

ceases after a shift to southeastern winds and the increasing temperatures. The pollution episode is characterised by a relatively

large fraction of NO−

3 and NH+

4 , which explains the strong feature contribution of temperature to the modeled total PM1

concentration, as the abundance of these species is temperature dependent (see Fig. 5) and points to a large contribution of
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Figure 11. Winter pollution episode in January 2016. (a): predicted total PM1 and observed PM1 species concentrations, with absolute input

feature values and corresponding SHAP values of (b) MLH, (c) temperature, (d) hours after rain, (e) maximum wind speed (f) normalised u

wind and (g) normalised v wind component.

locally formed inorganic particles. Still, the contribution of wind direction and speed also suggests that advected secondary410

particles and their build-up in the boundary layer are relevant factors during the development of the high pollution episode

(Petetin et al., 2014; Petit et al., 2014; Srivastava et al., 2018).
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4.4.2 December 2016

A high-pollution episode with several peaks of total PM1 is observed in November and December 2016. The first peak on 26th

December is followed by an abrupt minimum in total PM1 concentrations on 28th November, and a build-up of pollution in a415

shallow boundary layer towards the second peak on 2nd December with total PM1 concentrations exceeding 40µg/m3. In the

following days, total PM1 concentrations continuously decrease, eventually reaching a second minimum on 11th December.

A gradual increase in total PM1 concentrations follows, resulting in a third (double-)peak total PM1 concentration on 17th

December. Total PM1 concentrations drop to lower levels afterwards. Throughout the 3.5 week-long episode, high pollution is

largely driven by shallow MLH (<∼500m), and weak north-northeasterly winds, i.e. a regime of low ventilation associated with420

high pressure conditions favorable for emission accumulation. During the brief periods with lower total PM1 concentrations,

these conditions are disrupted by a higher MLH (∼28th November), or a change in prevailing winds (∼11th December). In

contrast to the pollution episode in January 2016, this December 2016 episode is not driven by temperature changes. Tempera-

tures range between ∼5-12◦C and have a minor RS:contribution toinfluence on to predicted total PM1 concentrations (see also Fig.

5), emphasizing the different processes causing air pollution in the Paris region. Note that the model is not able to fully repro-425

duce the pollution peak on December 2nd, which may be indicative of missing input features in the model. Judging from the

PM1 species composition during this time (relatively high fraction of NO−

3 and BC), it seems likely that missing information

on particle emissions may be the reason for the difference between modeled and observed total PM1 concentration.

4.4.3 June 2017

A period of above average total PM1 concentrations occurred in June 2017. The episode is very well reproduced by the model,430

suggesting a strong dependence of the observed total PM1 concentration to meteorological drivers. Although absolute total

PM1 concentrations are substantially lower than during the previously described winter pollution episodes, the event is still

above average for summer pollution levels. Organic matter particles dominate the PM1 fraction throughout the episode, with

a relatively high SO2−

4 fraction. Conditions during this episode are characterised by strong solar irradiation (positive SHAP

values) and high MLHs (mostly negative SHAP values), which show low day-to-day variability and reflect characteristic435

summer conditions. A lack of precipitation (no rain for a period of more than 2 weeks) and high temperatures also contribute

to the total PM1 concentrations during this episode. While solar irradiation and time since last precipitation are associated

with positive SHAP values throughout this period, air temperature only has a positive contribution when exceeding ∼25 ◦C.

This aligns with patterns shown in Fig. 5, where increased concentrations of organic matter and SO2−

4 are identified for high

temperatures. Peak total PM1 concentrations of ∼17µg/m3 are observed on June 20th and 21st. A change in the east-west440

wind component from western to eastern inflow directions in conjunction with an increase in temperatures to above 30 ◦C

are the drivers of the modeled peak in total PM1 concentrations. MLH is also increased with values ∼2000 m agl, which are

associated with slightly positive SHAP values. This observation fits with findings described in section 4.2.2 and is likely linked

to enhanced secondary particle formation (Megaritis et al., 2014; Jiang et al., 2019). As suggested by response patterns of

species to changes in MLH shown in Fig. 7, this effect is linked to an increase in SO2−

4 concentrations. The main fraction of445
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Figure 12. As Fig. 11 for a further winter pollution episode in December 2016.

the peak total PM1 values, however, is linked to an increase in organic matter concentrations due to the warm temperatures

(see Fig. 5).

4.4.4 March 2015

High particle concentrations are measured in early March 2015 with high day-to-day variability. This modelled course of the

pollution episode is chosen to compare results to previous studies focusing on the evolution of this episode (Petit et al., 2017;450
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Figure 13. As Fig. 11 for an exemplary summer pollution episode in June 2017.

Srivastava et al., 2018). The episode is characterised by high fractions of SIA particles, in particular SO2−

4 , NH+

4 and NO−

3 (Fig.

14, upper panel) and similar concentrations observed at multiple measurement sites in France (Petit et al., 2017). Contributions

of local sources are low and much of the episode is characterised by winds blowing in from the northwest, advecting aged SIA

particles (Petit et al., 2017; Srivastava et al., 2018) and organic particles of secondary origin (Srivastava et al., 2019) towards

SIRTA. A widespread scarcity of rain probably enhanced the large-scale formation of secondary pollution across western455

Europe (in particular western Germany, The Netherlands, Luxemburg, Petit et al., 2017), which were then transported towards
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SIRTA. This is reflected by the SHAP values of the u and v wind components, which are positive throughout the episode (see

Fig. 14g & 14h). Concentration peaks of total PM1 are measured on 18th and 20th March. Both peaks are characterised by a

rapid development of total PM1 concentrations. As described in Petit et al. (2017), these strong daily variations of total PM1,

which are mainly driven by the SIA fraction, could be due to varying synoptic cycles, especially the passage of cold fronts. The460

RS:contributioninfluence of MLH and temperature is relatively small, which is consistent with the high influence of advection on

total PM1 concentrations during the episode. The exceptional character of the episode (see Petit et al., 2017) partly explains

the bad performance of the model in capturing total PM1 variability during the event. Unusual rain shortage is observed in

large areas of Western Europe prior to the episode (Petit et al., 2017). While time since precipitation at the SIRTA-site is a

large positive contributor to the model outcome (see Fig. 14d), it is not driving the day-to-day variations. The unusual nature465

of this event and lacking information on emission in the source regions and formation processes along air mass trajectories in

the model likely explain why the model has difficulties in reproducing this pollution episode. While this has implications for

the application of explainable machine learning models for rare events, this is not expected to be an issue for the other cases

and seasonal results presented here.

5 Conclusions and outlook470

In this study, dominant patterns of meteorological drivers of PM1 species and total PM1 concentrations are identified and

analysed using a novel, data-driven RS:statistical approach. A machine learning model is set up to RS:explainanalyse measured

speciated and total PM1 concentrations based on meteorological measurements from the SIRTA supersite, southwest of Paris.

The RS:statisticalmachine learning model is able to reproduce daily variability of particle concentrations well, and is used to

analyse and quantify the atmospheric processes causing high-pollution episodes during different seasons using a SHAP-value475

framework.RS:Comparison of the results based on the machine learning model with findings of previous studies on air quality patterns in the Paris re-

gion shows good agreement.As interactions between the meteorological variables are accounted for, the model enables the sepa-

ration, quantification and comparison of their respective impacts the individual events. It is shown that ambient meteorol-

ogy can substantially exacerbate air pollution. RS:Results of this study point to the distinguished role of RS:Peak concentrations

of total PM1 in winter are mainly driven by shallow MLHs, low temperatures and low wind speeds RS:during peak PM1 episodes480

in winter. These conditions are often amplified by northeastern wind inflow under high-pressure RS:conditionssynoptic circua-

tion. A detailed analysis reveals RS:differenthow the RS:meteorological drivers of RS:winter high-pollution episodes RS:in winterin-

teract. For an episode in January 2016, model results show a strong RS:contributioninfluence of temperature to the elevated PM1

concentrations during this episode (up to 11µg/m3 are attributed to temperature), suggesting enhanced local, temperature-

dependent particle formation. During a different, prolonged pollution episode in December 2016, temperature levels were485

relatively stable and had no influence. Here, RS:contributions of MLH (<500 m asl) was quantified to be the main driver of RS:mod-

elled PM1 peak concentrations with contributions up to 6µg/m3, along with wind direction contributions of up to ∼6µg/m3.

Total PM1 concentrations in spring can be as high as 50µg/m3. These peaks in spring are not as well reproduced by the model

as winter episodes and are likely due to new particle formation processes along the air mass trajectories, in particular of nitrate.
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Figure 14. As Fig. 11 for an exemplary spring pollution episode in March 2015.

Summer PM1 concentrations are lower than in other seasons. Model results suggest that summer peak concentrations are490

largely driven by high temperatures, particle advection from Paris and continental Europe with low wind speeds and prolonged

periods without precipitation. For an example episode in June 2017, temperatures above 30◦C contribute ∼3µg/m3 to the

total PM1 concentration. On site scarcity of rain increases air pollution, but does not appear to be a main driver of strong

day-to-day variations in particle concentrations. Presumably, this is because droughts are synoptic and are spread over several

days or even weeks. Thus, they present very low inter-daily variability on the local scale. Nonetheless, Petit et al. (2017) have495
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highlighted the link between extreme PM concentrations (especially during spring) and extreme precipitation deficit (compared

to average conditions). Main drivers of day-to-day variability of predicted PM1 concentrations are changes in wind direction,

air temperature and MLH. These changes often superimpose the influence of time without precipitation. Individual PM1 species

are shown to respond differently to changes in temperature. While SO2−

4 and organic matter concentrations are increased during

both high and low temperature situations, NH+

4 and NO−

3 are substantially increased only at low temperatures. Model results500

indicate that SIA particle formation is enhanced during shallow MLH conditions.

Many of the results presented here hold true for regions other than RS:suburban Paristhe Sirta supersite and are thus beneficial for

the general understanding of drivers of air pollution. This includes the RS:nonlinear response of PM1 concentrations to changes

in temperature or MLH, including their dependencies on other meteorological factors, which has potential implications for the

settings of future CTMs. Furthermore, the temperature-dependency of PM1 is relevant in terms of rising temperatures due to505

climate change RS:importance of formation processes of secondary pollutants as well as the dominant role of the MLH for PM1 concentrations. The

RS:contributionimportance of wind direction highlights the role of advected pollution and emphasizes the need for large-scale

measures against air pollution. RS:The GBRT approach in combination with the SHAP regression values presented here provides an intuitive tool to

assess meteorological drivers of air pollution and to advance the understanding of high pollution events by uncovering different physical mechanisms leading

to high-pollution episodes. RS:To our knowledge, this is the first time that the SHAP-framework for explainable machine learning is applied in atmospheric510

sciences.

RS:For policy makers, the presented approach could prove beneficial in multiple ways for air quality policies. Preventative

warnings could be issued to the public if the identified meteorological conditions exacerbating air pollution are to be expected.

RS:The results of this study are highly relevant for policy makers, e.g. by providing a basis for future clean air programs or by providing the potential of a

statistically-based early warning system for high pollution episodes. Statistical RS:Another potential future application could be the attribution515

of changes in air quality to policy measures RS:by comparing an "expected" level of air pollution under given meteorological

conditions to actual observations (e.g., Cermak and Knutti, 2009),RS: and may help which may help political decision makers

develop and implement effective clean-air policies. Future efforts could also combine the statistical model framework with

short-term weather forecasts, which would allow to provide an air quality forecast based on the predictions of the statistical

models, taking into account expected meteorological conditions. This study could be extended in the future, e.g. by including520

information on anthropogenic emissions or further stations down- and upwind of SIRTA, which would allow further analysis

of dominant advection patterns. Furthermore, information on emissions or meteorology in the source region of air masses e.g.,

using satellite-based observations, might be helpful to better reproduce particle transport patterns. This could be complemented

by incorporating synoptic variables, e.g., the North Atlantic Oscillation (NAO) index.

Data availability. SIRTA-ReOBS data can be accessed online (https://sirta.ipsl.fr/reobs.html), ACSM data are available upon request.525

27



Figure A1. Scatterplot for MLH [m agl] measured at Sirta vs. MLH measured at Charles de Gaulle airport .

Figure A2. Histogram showing the frequency of occurrence for MLH [m agl] measured at Sirta (red) vs. MLH measured at Charles de Gaulle

airport (black).

Appendix A: Comparison of mixed layer height (MLH) measured at Sirta and Charles de Gaulle airport

As mentioned in section 2.2, ca. 90 missing MLH values in 2016 were replaced with measurements conducted at the Charles de

Gaulle airport (see Fig. 1). Figs A2 and A1 summarize MLH values for 2016 when measurements from both sites are available

(afternoon period). As shown in Fig. A1, measurements at both sites generally agree well, except for some outliers. Spearman’s

rank coefficient is significant (p-value < 0.05) and has a value of 0.51.530

A comparison of the frequency of occurrence is shown as histogram in Fig. A1 and indicates good agreement as well.
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