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Abstract.

Ambient concentrations of ice-forming particles measured during ship expeditions are collected and summarized with the

aim of establishing a spatial distribution and variability of ice nuclei in oceanic regions. The presented data from literature

and previously unpublished data from over 23 months of ship-based measurements stretch from the Arctic to the Southern

Ocean and include a circumnavigation of Antarctica. In comparison to continental observations, ship-based measurements of5

ambient ice nuclei show one to two order of magnitude lower mean concentrations. To quantify the geographical variability in

oceanic areas, the concentration range of potential ice nuclei in different climate zones is analysed by meridionally dividing the

expedition tracks into: tropical, temperate and polar climate zones. We find that concentrations of ice nuclei in these meridional

zones follow temperature spectra with similar slope, but vary in absolute concentration. Typically, the frequency with which

specific concentrations of ice nuclei are observed at a certain temperature follows a log-normal distribution. A consequence of10

the log-normal distribution is that the mean concentration is higher than the most frequently measured concentration. Finally,

the potential contribution of ship exhaust to the measured ice nuclei concentration on board of research-vessels is analysed as

function of temperature. We find a sharp onset of the influence at approximately -36 ◦C, but none at warmer temperatures that

could bias ship-based measurements.
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1 Introduction

A small fraction of atmospheric aerosol particles possesses properties that induce the nucleation of ice. Herein the term ice

nuclei (IN) is used to describe these, without specificity about their nature, equivalent to the proposed term ice nucleating

particles (Vali et al., 2015). The concentration of IN active at a certain temperature affects the extent of ice crystal formation

in clouds. Thereby, IN have an effect on precipitation formation, cloud optical properties and cloud persistence (e.g. DeMott5

et al., 2010). Stratiform clouds are more affected by the IN concentration than convective clouds because of differences in

cloud water content and dynamics (Zeng et al., 2009). Since the ratio between stratiform and convective cloud amount changes

meridionally, with more stratiform clouds towards higher latitudes, the effect of IN concentration on cloud properties increases

from the tropical to polar regions (Zeng et al., 2009). The most important ice nucleation mechanism for mixed-phase clouds

is immersion freezing. The temperature range of immersion freezing, in which IN are first immersed in supercooled droplets10

before triggering ice formation, is limited at the lower end by the onset temperature of homogeneous ice nucleation (-38 ◦C)

below which droplets freeze without the necessity for catalysing IN. At the high end, exceptionally efficient, biological IN are

known to nucleate ice at temperatures as high as -1.3 ◦C (Schnell and Vali, 1972) whereas, for example, sub-micron desert dust

IN typically show high activity only below -25 ◦C (Boose et al., 2016). After the onset of immersion freezing, the glaciation

of mixed-phase clouds can be enhanced by secondary ice formation, a cascade process where supercooled droplets freeze and15

shatter on contact with ice crystals (Mason and Maybank, 1960) or by ejection of ice splinters during the formation of rime on

graupel (Hallett and Mossop, 1974).

To describe the atmospheric IN population comprehensively, IN concentrations in the entire temperature range of immersion

freezing (0 ◦C to -38 ◦C), their temporal fluctuation and geographical variation should be considered. The first summary and

parametrization of the change in IN concentration as a function of temperature was given by Fletcher (1962), based on a20

collection of ambient measurements available at the time. Even before Fletcher’s parametrization, efforts had been made to

quantify the concentration of atmospheric IN dependent upon air mass origin and weather conditions. For example, Findeisen

and Schulz (1944) determined an IN temperature spectrum for Central Europe on the basis of 8 years of aircraft and ground

based observations. The spatially most comprehensive measurements so far have been achieved by coordinated, ground-based

measurements (e.g. Bigg and Stevenson, 1970), aircraft campaigns (e.g. DeMott et al., 2010) and ship-based observations in25

the Southern Ocean between Australia and Antarctica (Bigg, 1973). As 71% of earth’s surface is covered by oceans, ship-based

observations offer an effective way to cover large areas. The Bigg (1973) data set, averaging three years of observations (shown

in Fig. 1), has been used as a reference on which modelled IN concentrations have been validated (e.g. Vergara-Temprado et al.,

2017).

We present a summary of ship-based measurements from the literature and extend this data set with unpublished data dating30

back as far as 1996 and measurements from several recent ship expeditions. Definition of expedition acronyms and a description

of expedition objectives can be found in Appendix A. The recent data-sets were obtained during expeditions in the Arctic

(PS106), the Southern Ocean (ACE) and during Atlantic transects (ACE, PS95 and PS79). Previously unpublished -15 ◦C data
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include observations from the Pacific (SHIPPO, ACAPEX), Southern Ocean (Tan1502) and central Arctic Ocean (AOE-96,

AOE-2001).

2 Sampling and measurement

Ship-based measurements of IN concentration record the abundance of potential IN in the marine boundary layer, some meters

above sea level. Much of available literature data are limited to IN concentrations at -15 ◦C or -20 ◦C, because of instrumental5

limitations and a focus on the influence of IN abundance on precipitation formation. During recent expeditions, emphasis was

put on collecting data covering a broad temperature range (0 ◦C to -38 ◦C), because of a shift in focus to the cloud radiative

effect and the realization that already low IN concentrations can have a large effect by triggering secondary ice formation (e.g.

Sullivan et al., 2018). Additionally to the importance for cloud microphysics, observations over a broader temperature range

allow the construction of IN temperature spectra, providing information on the abundance of potential IN sources from their10

slope (e.g. Welti et al., 2018).

Two measurement techniques are used for recent ship-based measurements. First, continuous flow diffusion chambers (CFDCs),

e.g., CSU CFDC measuring during CAPRICORN (McCluskey et al., 2018a) or SPIN (SPectrometer for Ice Nuclei, DMT, see

Garimella et al., 2016, for technical details) measuring during PS95 and PS106. CFDCs cover the low temperature range from

approximately -38 ◦C to -24 ◦C. Secondly, drop freezing techniques, using aerosol collected on filters during expeditions. Drop15

freezing techniques typically cover the temperature range from -26 ◦C to 0 ◦C.

For the new data sets in the Arctic, Atlantic and Southern Ocean (marked as circles in Fig. 1), sampling was conducted on board

the research vessels Polarstern (expeditions indicated with PS) and Academic Tryoshnikov (during ACE). For a description

of the ACE and PS106 (PASCAL) expeditions we refer to Schmale et al. (2019) and Wendisch et al. (2018), respectively. On

board both vessels we used the upper deck (monkey bridge), about 30 m above the ocean surface, to install sampling devices.20

SPIN sampled from within a container through a whole-air inlet system with subsequent drying of the aerosol. The SPIN

measurement strategy was to sample half hourly intervals at a constant temperature (selected between -38 ◦C and -24 ◦C) and

constant relative humidity (85%, 95% or 103% with respect to water). Each sampling condition was repeated three times within

24 h. This allowed measurements of IN concentrations at different temperatures and relative humidity with a high spatial cov-

erage. Measurements above water saturation, representing the immersion freezing mode, are reported here. Filter samples were25

collected in 8 h intervals using a Low Volume Aerosol Sampler (DPA14, Digitel) with PM10 inlet during ACE and PS106.

24 h filter samples were collected during PS79 and PS95 using a High Volume Aerosol Sampler (DHA-80, Digitel) with PM1

inlet. The latter used 150 mm quartz fiber filters, from each of which 103 sub-samples were extracted. IN concentration was

examined in a drop freezing array setup, similar to the technique used by Conen et al. (2012) and previously described in

Welti et al. (2018). With the Low Volume Sampler, 8 h samples were collected on 47 mm-diameter Nuclepore polycarbonate30

membranes (Whatman) with a pore size of 0.2 µm. Field blanks, which had undergone the same handling except for aerosol

collection, were collected regularly to determine the filter background. Filters were stored in a -20 ◦C cold room on board and

kept cool during transport home before storage at -20 ◦C until analysis. To determine IN concentrations, membrane filters are
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immersed in 10 m` ultra pure water to extract collected particles and 96 aliquots (each 50 µ`) of the sample solution were sub-

sequently examined in a drop freezing assay. IN concentrations are estimated from the number of frozen aliquots at a specific

temperature according to Vali (1971). -15 ◦C data from AOE, TAN1502, ACAPEX, SHIPPO were also obtained from filter

samples. TAN1502, ACAPEX and SHIPPO filters were analysed using the Colorado State University Ice Spectrometer (IS)

(Hill et al., 2016). Collection (open-faced, 0.2 µm filters) and processing protocols for the IS are as described in McCluskey5

et al. (2018a, b). During these expeditions IN concentrations have been measured over a broader temperature range, and results

will be reported elsewhere. A discussion of the membrane filter technique used to determine IN concentrations during AOE can

be found in Bigg (1990). Tab. A1 provides an overview on the location, on-board equipment, sampling time intervals and sam-

pled air volume during expeditions from which data are included. An analysis showing that contamination from ship exhaust

had no influence on ship-based IN concentration measurements during PS106 and ACE, is presented in Sec. 6 and Appx. C.10

3 Worldwide coverage of maritime observations

Fig. 1 summarizes all available data at -15±1 ◦C from the literature and recent expeditions. This temperature is chosen to

include observations from the literature (e.g. Bigg, 1973; Schnell, 1977; Borys, 1983; Rosinski et al., 1986, 1988, 1995), for

some of which only -15 ◦C data are available. Literature data covers the Southern Ocean, North Atlantic off the coast of Nova

Scotia, Greenland Sea, Pacific Ocean, Gulf of Mexico and the East China Sea. Note that although the spatial coverage of the15

literature data is broad, the number of data points reported is low and often only average values were given. Recent expeditions

added data from the Atlantic, Pacific, Southern and Arctic Ocean. So far unexplored in terms of ship-based measurements of

IN concentration remain e.g., the Indian Ocean, the Southeast Pacific or the Mediterranean Sea.

4 Geographic variability

Regional variations of IN concentrations on the continents coincide with strong local sources (e.g. Isono et al., 1959; DeMott20

et al., 2003) or IN generating events (e.g. McCluskey et al., 2014; Suski et al., 2018). In remote maritime environments the

sources of the most common IN type by concentration can be long range transport of mineral dust (e.g. Bigg, 1973) or oceans

themselves. Oceans have been identified as a source of IN (e.g. by Brier and Kline, 1959; Schnell and Vali, 1975; Ickes et al.,

2020) able to produce IN active in a broad temperature range (DeMott et al., 2016). Based on numerical simulations, Burrows

et al. (2013) suggested that in remote oceanic areas, the absence of mineral dust means that maritime IN determine the impact25

of heterogeneous ice formation on clouds. McCluskey et al. (2019) reported that the contribution of mineral dust or maritime

aerosol changes depending on season and altitude, with strong variations from day to day. During AOE-91 and AOE-96, Bigg

and Leck (2001) found evidence for a microbiological, marine source of Arctic IN, in a strong seasonal dependence of IN

concentration and a correlation with the concentration of dimethyl sulfide (DMS), a metabolite in some marine algae. They

observed IN concentrations to start decreasing very rapidly after mid September to virtually zero by late October.30

Due to the different conditions (wind speed, temperature) and location (e.g. proximity to desert) of different parts of the world’s
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Figure 1. World map showing the locations where IN concentration data at -15 ◦C are available from ship-based measurements. Literature

data from Bigg (1973); Schnell (1977); Borys (1983); Rosinski et al. (1986, 1988, 1995); DeMott et al. (2016); McCluskey et al. (2018a);

Creamean et al. (2019) and unpublished data from AOE, Tan1502, ACAPEX and SHIPPO are marked as crosses. Data from ACE, PS79,

PS95 and PS106 are marked as circles. The symbols are colour coded according to the colour bar below the map, indicating the measured

IN concentrations. Locations where the observed IN concentration was below the detection limit (< 0.1 m−3) are marked in black. Climate

zones are divided by horizontal lines, their fraction of the earth surface area can be found in Tab. B1.

seas and oceans, meridional variations in the IN temperature spectrum (Sec. 5) could be expected. Effects of atmospheric

transport and local sources include, for example, the westward transport of large amounts of dust from the Sahara desert,

higher biological productivity along coasts and in higher latitudes, and furious storm tracks or sea ice cover that promote or

prevent wave-derived aerosol generation.

A comparison of continental and maritime IN concentrations observed at -15 ◦C, from the surface-based measurements in the5

study of Bigg and Stevenson (1970) and meridional averages of ship-based data from Fig. 1, is shown in Fig. 2. Averaging

zones of Fig. 2(b) are indicated in Fig. 1 and defined in Tab. B1. Concentrations over the Ocean are lower than the reported

average concentrations over continents and the variation is higher. The continental data set consists of measurements taken

in the same year and season with one type of sampling device and analysis method, while ship-based measurements are a

compendium of data obtained with different methods over decades, which could add to the variability in the ship-based data10
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Figure 2. (a) Regionally averaged continental IN concentrations at -15 ◦C (surface-based measurements, Bigg and Stevenson, 1970); (b)

Meridional averaged maritime IN concentrations at -15 ◦C (shown as dots). Vertical bars indicate the concentration range where 80% of

observations lay, excluding the 10% highest and 10% lowest values. Most frequently measured (mode) concentration is indicated by crosses.

Continental concentrations in (a) are higher, with a lower variability than maritime IN concentrations in (b).

set. In Fig. 2(b), with the exception of clearly lower IN concentrations in the S-Polar zone, the average IN concentration further

north (S-Temperate to N-Polar), shows low zonal dependence at -15 ◦C. In accordance, surprisingly similar concentrations on

different continents have been found in the coordinated attempt to measure IN concentrations globally (simultaneous sample

collection in 44 locations; Bigg and Stevenson, 1970). However, some contemporary data (e.g. Mason et al., 2016; DeMott

et al., 2017) suggest that the values from Bigg and Stevenson (1970) may underestimate the present magnitude and range5

typifying the boundary layer over continental North America and Europe by a factor of 3 or more, while other data, e.g., in the

Eastern Mediterranean region remain consistent with the prior assessment (Gong et al., 2019).

In general, the highest concentrations of an ice active aerosol are found at its source and concentrations decrease with increasing

distance away from the source due to random dilution with IN-free air during transport (Anderson et al., 2003). An increase

in dilution time can have the same effect as transport. Random dilution causes concentration to vary even at a fixed position10

relative to the source (Ott, 1990). The higher concentration and smaller variation range of continental IN concentrations could

indicate vicinity to the sources (minimal dilution), while the IN population on the ocean is more diffuse, suggesting extended,

random dilution during transport or low, fluctuating source strength.

5 Temperature spectra

The ship-based data are used to construct zonal temperature spectra of the IN concentration and to investigate the frequency15

with which concentrations are measured (shown in Fig. 3). The ambient temperature spectrum at any location is a superposition

of IN contributions from several sources activating at specific temperatures. As different sources can contribute IN active at
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different temperatures, a change of nearby sources and source strength, can generate a change in the temperature spectrum

shape (cf. Bigg (1961); Welti et al. (2018) for a discussion of temperature spectrum features). In the ship-based data, examples

of non-monotonic temperature spectra with step-like features were observed close to continents, e.g. elevated IN concentration

at -15 ◦C in the vicinity of harbors in Fig. 1. An increased slope at about -10 ◦C in the meridional averaged temperature spectra

is found in the tropics (measurements 350 km - 680 km off the coast of West Africa, see Fig. 1), suggesting a local source that5

sometimes contributes IN in this temperature range. Excluding these occasional observations of steps in temperature spectra

(occurring in≤ 5% of observations, see Fig. 3), we find a consistent exponential increase of the IN concentration with decreas-

ing temperature, in all climate zones, with only a small variation in slope on a log-scale.

On the left side column of Fig. 3, the meridional separated temperature spectra of data collected during PS79, PS95, PS106, and

ACE are shown. Data measured with the CSU CFDC during CAPRICORN are included in the S-Temperate zone. At -15 ◦C IN10

concentrations from all additional data sets (cf. Tab. A1) are also shown to compare the range in which ambient concentrations

vary. The normalized frequency with which concentrations occur at each temperature in the temperature spectra is shown in

the right column of Fig. 3. The symmetry of contours in Fig. 3 and the offset of mean concentrations from the centers of the

ranges in Fig. 2(b) suggest that concentrations follow normal distributions when plotted on a log-scale, indicating an underlying

log-normal distribution. It has previously been noted that the frequency with which specific IN concentrations are observed15

follows such a distribution (described in Isaac and Douglas, 1971; Welti et al., 2018). Two consequences of the log-normal

frequency distribution can be seen in Fig. 3. While the complete data set (left column of Fig. 3) shows a spread over 3 to 4

orders of magnitude, frequently measured concentration (≥ 20%) are confined to less than one order of magnitude fluctuation

(reddish colours in right column of Fig. 3). Note that at temperatures where data is sparse, high occurrence frequency is biased

towards the available data points, which may compromise its reliability. Within the range of the most frequent concentrations20

(yellow and reddish colours) the temperature dependent change in IN concentration, i.e., the slope of the IN concentration

versus temperature, is similar for all five meridional zones and the absolute concentration changes by less than two orders of

magnitude between zones. The skewed (log-normal) frequency distribution causes the mode (most frequently measured IN

concentration) to be less than the arithmetic mean. Therefore, individual concentration measurements are often below average

concentrations.25

The temperature above which it becomes most probable to measure no IN in a sample of approximately 10 m3 (highest fre-

quency on zero-line in the right column of Fig. 3) is at -14 ◦C in N- and S-Polar and the S-Temperate zone. By contrast, the

temperature threshold in the Tropical and N-Temperate climate zone is found between -10 ◦C to -9 ◦C.
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Figure 3. Top-down, maritime data are stratified into N-Polar, N-Temperate, Tropical, S-Temperate, S-Polar (zones are indicated in Fig. 1).

Left column shows meridional temperature spectra of observed IN concentrations. Data from recent ACE and Polarstern expeditions are

shown as circles. In the S-Temperate zone, CSU CFDC data from CAPRICORN are shown as crosses. Literature data at -15 ◦C (the same

shown as crosses in Fig. 1) is overlaid as orange triangles for comparison. Right column, frequency of occurrence of measured concentrations

at each temperature (1 ◦C temperature bins) is shown. While the total variation in IN concentration at a certain temperature is large, there

is a range of approximately one order of magnitude containing most frequently (≥ 20%) measured concentrations (reddish colors). Only

small, meridional differences in absolute IN concentration and slope of the temperature dependent change can be identified. Three often used

parametrization from Fletcher (1962); Cooper (1986); Meyers et al. (1992) are given for comparison.8
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Figure 4. IN vs. soot concentration (10s averages) measured during PS106. Dashed 1:1 lines indicate equal soot and IN concentration.

Temperature at which the IN concentration is measured is indicated in the upper left corner of each sub-figure and Pearson correlation of

soot and IN concentration is given on top. Moderate correlation is found at -36 ◦C.

6 Contamination from ship exhaust

To avoid contamination during ship-based measurements, the aerosol inlet and filter sampling devices are placed in front of the

ship’s chimney towards the bow of the ship. In situations with wind speed from the rear exceeding the speed of the ship, i.e.

relative wind direction from the chimney towards the sampling location, high number concentrations of ship exhaust aerosol

particles are encountered. Moderate contamination by turbulent mixing is also observed at relative wind speed close to zero.5

The potential contribution of ship exhaust particles is determined by comparing IN concentration measured with SPIN to

soot particle concentration measured with a single particle soot photometer (SP2, DMT). Fig. 4 shows the concentration of

soot versus IN concentration, both binned to common 10 s intervals. Moderate correlation is found at -36 ◦C, whereas soot

concentration is higher than the IN concentrations at higher temperatures and lower at lower temperatures. Comparing the

temperature spectra in Fig. 3, where a distinct increase in IN concentration at -36 ◦C can be seen, confirms that ship exhaust10

potentially distorts the ambient temperature spectrum at and below -36 ◦C, but not above. Increased concentrations at -38 ◦C

could be caused by the onset of homogeneous freezing. This gives confidence that the effect of contamination from ship

exhaust on the immersion freezing experiments with filter samples is negligible. Fig. C1 in Appendix C confirms no effect of

sampling air coming from the direction of the chimney of the ship on filter measurements at T ≥ -20 ◦C. It can be argued that

at temperatures above -36 ◦C, the effect of soot if any should be a suppression in activity of other particles by covering their15

ice active sites (Mossop and Thorndike, 1966). Note that the present analysis is valid for the RV Polarstern exhaust. Other type

of fuel or ship engine might yield a different result (Thomson et al., 2018). However, Schnell (1977) also tested a possible

contamination from the exhaust of the USNS Hayes by purposely exposing membrane filters to the exhaust plumes from galley

and engines and found no IN from either source active at -15 ◦C. Also McCluskey et al. (2018a) found no statistical significant

difference due to varying black carbon levels from exhaust contamination at temperatures between -16 ◦C and -26 ◦C on board20

the RV Investigator during the CAPRICORN campaign.
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7 Discussion

The maritime IN concentration data presented here can be used to predict the temperature spectra in a range of oceanic regions.

This can help the future development of measurement techniques and sampling strategies. As an example, to avoid artefacts

from the sensitivity range of measurement techniques, sample volume and probed temperature range need to be matched. In

the current data set, the narrowing of variation below -20 ◦C in the filter measurements from the temperate climate zone (Fig. 3,5

right column), is an artefact caused by the upper limit of detectable concentration and can be avoided by sampling smaller vol-

umes and by using dilutions of filter suspensions. In general, the sample volume and sampling time over which concentration

is averaged to one data point, affects the absolute value and the variability between measurements. Smaller sample volumes

result in larger scattering of the data within experimental detection limits, including measurements of practically zero alternat-

ing with high concentrations at the upper detection limit. The smaller the sample volume the higher the limit of detection and10

vice versa, i.e. larger, sampled air volumes allow the detection of low concentrations, while smaller sample volumes are more

suitable for accessing high concentrations.

To develop parametrizations, concentrations averaged to scales required for the application should be used (Gultepe et al.,

2001). Grid-box scales in numerical models are much larger than the practical sampling volume of ambient measurements. As

averaging any distribution of concentrations by means of probing larger air volumes or averaging collected samples over time15

converges to the arithmetic mean concentration, the mean IN concentration (shown in Fig. 2(b) for -15 ◦C in five climatic zones

and in Fig. 5(a) averaged over each hemisphere) is the correct input value for large scale numerical models, even if it is not the

most frequently measured (mode) concentration. This also underscores the importance to use sufficiently large data-sets for

parametrization development to avoid bias.

The frequency distributions in the right column of Fig. 3 illustrate that within the sample volumes where IN concentrations20

can be measured, low values are more frequent than high values. Averaging concentrations from a skewed (log-normal) fre-

quency distribution results in mean concentrations higher than the most frequently measured concentration. Fig. 5 depicts the

temperature spectra of a) average and b) most frequently measured IN concentration in the north and southern hemisphere.

The discrepancy between averaged and most frequently measured concentrations is most pronounced for low concentrations.

Within the sensitivity limits of measurements presented here, most frequently no IN are detected above -15 ◦C in 10 m3 of25

maritime air.

Between -25 ◦C and -30 ◦C, a jump in the N-hemisphere temperature spectra can be seen in Fig. 5. It could be speculated that

the jump coincides with the temperature where mineral dust particles start to exert a strong influence (e.g. Boose et al., 2016)

and the N-S difference could be due to more dust emitting land masses in the north. Another reason for the jump could be

that it is an artefact from the combination of filter measurements reaching their upper detection limit with SPIN measurements30

reaching their lower detection limit in this range of IN concentration. Further measurements and the development of measure-

ment techniques that can bridge this gap are needed.

In Fig. 1 a clear change towards lower IN concentrations measured recently in the Southern Ocean and the literature values

from Bigg (1973) can be seen. Bigg reported averaged concentrations measured in 5x5 degree sectors. Noting the log-normal
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Figure 5. (a) comparison of the average IN concentration between the northern and southern hemisphere oceanic regions; (b) comparison of

the most frequent observed IN concentration in the northern and southern hemisphere oceanic regions. Parametrization from Fletcher (1962);

Cooper (1986); Meyers et al. (1992) are given for comparison. The average IN concentrations over both hemispheres shown in (a) can be

approximated by: IN(m−3) = (T (◦C)+ a) · (−b · exp(c/(T (◦C)+ d))), with a = 5◦C, b = 10−5 m−3◦C−1, c = 500◦C,d = 60◦C, for

−36◦C < T <−5◦C.

frequency distribution of observed IN concentrations, the offset between the average and most frequently occurring concen-

tration at -15 ◦C (see Fig. 5) could be one factor helping to explain the difference. A decline in IN abundance in the Southern

Ocean over the last decades (suggested by Bigg, 1990) could be another reason.

8 Conclusions

Ship-based observations are an efficient strategy to obtain measurements with a wide spatial coverage representing IN charac-5

teristics over the (remote) maritime environment, distant from continental sources. The present study provides a summary of

IN concentrations observed during ship expeditions in the last 50 years, in different oceanic regions. This overview can be used

to validate parametrizations of IN concentrations in numerical climate models (see data availability below) and to plan future

expeditions.

In the data presented here, the lowest IN concentrations are observed in polar regions and highest in the temperate climate10

zones. The overall geographical variation in maritime IN concentration is surprisingly small (below two order of magnitudes).

A zonal difference was found in the temperature above which most frequently no IN are detected (-9 ◦C in N-Temperate, -10 ◦C

in Tropical, but much colder at -14 ◦C in S-Temperate, N-, and S-Polar climate). The largest difference between northern, and

southern hemisphere is found at temperatures below -28 ◦C, where IN concentration is higher in the northern hemisphere. This

coincides with the temperature range where desert dust particles become especially active ice nuclei.15

A comparison of ship emitted soot and IN concentration in this and other studies shows that contamination from ship exhaust

during expeditions does not bias IN concentration measurements at temperatures above -36 ◦C.

Recent, maritime ice nucleation measurements show lower IN concentrations compared to reported mean values from the
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1970s and 80s. Apart from the possibility of an actual decrease in the maritime IN concentration, the log-normal frequency

distribution of measured IN concentrations could account for some of the difference in this direction. Individual observations

from a variable following a log-normal frequency distribution are most frequently lower than the arithmetic mean. This can also

be one reason for the difference between recent observations and e.g. the Fletcher (1962) parametrization for IN concentration

which is based on older data that has been reported as mean values.5

To establish an unbiased climatology of IN concentration in the maritime environment, measurements pursuing to extend the

spatial coverage and to capture the temporal variability of IN are needed, e.g. to capture the dependence on marine productivity,

season, meteorology, special aerosol emissions and to identify IN sources. To achieve these goals a continued effort to include

ice nucleation measurements as important observations on board of scientific expeditions is needed.

Data availability. Data sets are available from the authors upon request and can be obtained from the following repositories: Literature data,10
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data set (available from PJD), CAPRICORN (https://hdl.handle.net/10217/192127), PS106 data set (available from MH, doi in preparation),
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Table A1. List of ship expeditions on which IN concentrations were measured. References indicate publications that reported IN concentra-

tions.

[1] Schnell (1977), [2] Schacher (1976), [3] Bigg (1973), [4] Borys (1983), [5] Rosinski et al. (1986), [6] Rosinski et al. (1988), [7] Rosinski

et al. (1995), [8] Bigg (1996), [9] Bigg and Leck (2001) [10] McCluskey et al. (2018a), [11] Creamean et al. (2019), [*] new IN data set

Ref. Expedition Year Location (lat) Sampling Equipment Interval Volume

[1, 2] Marine fog cruise Jul.-Aug. 1975 40-46°N Filter 2-13 h 1.4-9.1 m3

[3] USARP 1969-72 20-78°S Filter 12 h 0.3-3 m3

[4] YMER-80 Aug.-Sep. 1980 79-83°N Filter 24 h 1 m3

[5] Marine Sinks of Atmospheric CO2 Feb.-May 1984 7°N-57°S Filter 2 h 0.6 m3

[6] On board of RV H-02 Jul.-Aug. 1986 19-29°N Filter 2 h 0.6 m3

[7] On board of RV Xiangyanghong 14 Apr.-May 1992 29-32°N Filter 10 min 0.1 m3

[*] ACE Nov. 2016 - Mar. 2017 53°N-78°S LowVol Filter 8 h 10 m3

[*] PS 106 May-Jul. 2017 53-80°N LowVol Filter 8 h 10 m3

SPIN 30 min 30 `

[*] PS 95 Oct.-Dec. 2015 53°N-34°S HiVol Filter 24 h 3 m3

SPIN 30 min 30 `

[*] PS 79 Apr.-May 2012 54°S - 53°N HiVol Filter 24 h 3 m3

[8] AOE-91 Aug.-Oct. 1991 75-90°N Filter 1-24 h 0.3-3 m3

[9, *] AOE-96 Jul.-Sep. 1996 75-90°N Filter 1-24 h 0.3-3 m3

[*] AOE-2001 Jun.-Aug. 2001 75-90°N Filter 1-24 h 0.3-3 m3

[*] TAN1502 Jan.-Mar. 2015 42-75°S Filter 24 h 8-20 m3

[*] ACAPEX Jan.-Mar. 2015 27-38°N Filter 24 h 4-5 m3

[*] SHIPPO Jul. 2012, 2014 63°N-43°S Filter 4-47 h 3-24 m3

[10] CAPRICORN Mar.-Apr. 2016 43-53°S Filter 21-63 h 19-55 m3

CSU CFDC 3-33 min (167x) 4-50 `

[11] INARCO Aug.-Sep. 2017 54-74°N Impactor 12-24 h 20.6-41.2 m3

Appendix A: Overview of expeditions contributing data

Tab. A1 gives an overview on all expeditions that contributed data sets, when and where they took place and how IN concen-

tration has been obtained. In the following, the expeditions from which IN concentration data are reported for the first time

(indicated by [∗] in Tab. A1) are briefly described. References to more detailed information on expeditions and expedition re-

ports are included.5

The Antarctic Circumnavigation Expedition - ACE from November 2016 to March 2017 was the first expedition carried out

by the Swiss Polar Institute. On board the Russian research vessel Akademik Tryoshnikov the voyage started with the transit

from Bremerhaven, DE to Cape Town, ZA from where on the Antarctic continent was circumnavigated in 3 legs. Leg 1 from
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Cape Town to Hobart, NZ; leg 2 Hobart to Punta Arenas, CL; leg 3 Punta Arenas to Cape Town. The final leg 4 was the return

from Cape Town to Bremerhaven. ACE included atmospheric, glaciological, oceanographic, biological and biochemical ob-

servations to better understand Antarctica’s ecosystem and the interplay of sea and atmosphere in the Southern Ocean (Walton

and Thomas, 2018).

The PS106 campaign to the Arctic (PS106/PASCAL in the framework of AC3, Wendisch et al., 2018) on board of the research5

vessel Polarstern was from May 23 to July 20, 2017. For the first leg of the campaign, Polarstern took off from Bremerhaven,

DE, towards the Arctic sea to establish an ice camp and drift with the ice shelf north of Svalbard. During the second leg

Polarstern crused the sea north-east of Svalbard. The expedition completed in Tromsø, NO. Oceanographic, atmospheric and

biological observations were conducted during both legs (Macke and Flores, 2018).

The PS95 campaign on board of research vessel Polarstern was an Atlantic transit cruse (October 29 - December 3, 2015) from10

Bremerhaven, DE to Cape Town, ZA. Observations included biological oceanography, atmospheric aerosol and remote sensing

(Knust and Lochte, 2016).

The PS79 campaign (ANT-XXVIII/5) on board of research vessel Polarstern left Punta Arenas, CL on the April 11, 2012 to

cross the Atlantic and reach Bremerhaven, DE on May 16, 2012. The transect was used for biological, atmospheric and marine

observations and to measure sea-atmosphere fluxes (Bumke, 2012).15

AOE-96 was the Arctic Ocean Expedition departing from Gothenburg, SE on a Swedish research vessel, the icebreaker Oden.

The expedition lasted from July to September 1996. During the first leg observations were taken in the Barents Sea and the

pack ice of Nansen and Amundsen basins, including an ice camp. On the second leg the expedition reached the North Pole

before sailing back to Gothenburg. Observations included chemical and physical atmospheric measurements, meteorology,

biochemical measurements and seawater chemistry (Leck et al., 2001).20

AOE-2001 was an interdisciplinary Arctic Ocean Expedition on the Swedish research vessel Oden. Departing on June 29 from

Gothenburg, SE the cruise reached pack ice north of Svalbard and continued to the North Pole. A 3-week ice camp was es-

tablished on the way back and the expedition concluded on August 26. The observational program included marine biology,

atmospheric chemistry, aerosol chemistry and physics, meteorology, oceanography and seismology (Leck et al., 2004).

TAN1502 refers to the NZ-Australia Antarctic Marine Ecosystems Voyage of the NIWA RV Tangaroa vessel, which occurred25

from 28 January to 15 March, 2015, sailing from Wellington, NZ to the Ross Sea and back. The main objective of this voyage

was to gather baseline ecosystem information at the establishment of the world’s largest Marine Protected Area located in the

Ross Sea region of Antarctica in 2017 and legislated to be in place for 35 years. The voyage included underway oceanographic

and atmospheric observations.

ACAPEX was the U.S. Department of Energy’s Atmospheric Radiation Measurement (ARM) Cloud Aerosol Precipitation30

Experiment. Samples were collected on the NOAA RV Ronald H. Brown vessel, from 14 January 2015 to 10 March 2015,

while sailing between Honolulu, Hawaii and San Francisco, CA (DeMott and Hill, 2016).

SHIPPO, the SHIpborne Pole to Pole Observations included two campains, SHIPPO-2012 and SHIPPO-2014, both of which

occurred on the Korean Polar Research Institute’s ARAON vessel. SHIPPO-2012 was conducted in July 2012, sailing from

Incheon, KR to Nome, AK, USA (DeMott et al., 2016, see SI for data). SHIPPO-2014 sailed from Incheon to Christchurch, NZ.35
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Table B1. Latitudinal subdivision of datasets

Classification Dividing criteria, Fraction of

latitude earth surface area

N-Polar 66.5◦N - 90◦N 4.5%

N-Temperate 23.5◦N - 66.5◦N 25.5%

Tropical 23.5◦N - 23.5◦S 40%

S-Temperate 23.5◦S - 66.5◦S 25.5%

S-Polar 66.5◦S - 90◦S 4.5%

N-hemisphere equator - 90◦N 50%

S-hemisphere equator - 90◦S 50%

Appendix B: Latitudinal subdivision of ship-based observations

Along the cruise tracks, sample locations are subdivided into five general climate zones (Tab. B1) to investigate the average IN

concentration at -15 ◦C shown in Fig. 2 and zonal temperature spectra shown in Fig. 3. Differences between IN concentrations

over the northern and southern hemisphere in comparison to three often used parametrizations is shown in Fig. 5.5
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Figure C1. IN concentration vs. sampling time in ship exhaust. Measured IN concentration at -20°C, -15°C and -10°C show no correlation

to the time air was sampled from direction of the ships stack. Ships: RV Polarstern (PS106), Academic Tryoshnikov (ACE).

Appendix C: Influence of ship exhaust on IN concentration at T≤-20 ◦C

Duration of sampling time in wind direction of the ship exhaust emission is compared to the concentration of IN collected on 8

hour filter samples. Fig. C1 shows the IN concentration in dependence of duration of sampling from the ship exhaust, at -20 ◦C,

-15 ◦C and -10 ◦C. The data show no correlation, indicating that ship exhaust does not affect the measured IN concentration at

these temperatures. This is in accordance to the data in Fig. 4 showing that ship emissions only contribute to the IN temperature5

spectrum at temperatures below -36 ◦C.
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