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Abstract. The Amazon basin is important for understanding the global climate botisleesfits carbon

cycle and as a laboratory fobtaining basic knowledge of the continental background atmosphere.
Aerosol particles play an important role in the climate and weather, and knowledge of their compositions
and mixing states is necessary talerstand their influence on the climate. For this study, we collected
aerosol particles from the Amazon basin during the Green Ocean Amazon (GoAmazon2014/5) campaigi
(February to March 2014t the T3 sitewhich locates about 70 km from Manausnd analyged using
transmission electron microscopy (TEMEM has better spatial resolution than other instruments, which
enables us tanalysdahe occurrences of components that attadr tove embedded withwther particles.

Based on the TEM results of moreath10,000 particles from several transport evehis studyshows

the occurrences of individual particles includo@mpositionssize distributions, number fractigrend
possible sources of materidlsat mix withother particles. Aerosol particles thg the wet season were

from bothnatural sources such#é®Amazon forest, Saharan desert, Atlantic Ocean, and African biomass
burning and anthropogenic sources such as Manaus and local emiEs&s®s particles mix together at

an individual particle sde. The number fractions of mineral dust and-sah particles increased almost
threefold when longrange transport (LRT) from the African continent occurred. Nearly 20% of mineral
dust and primary biological aerosol particles attached sea salts on their surfaces. Sulfates were als
internally mixed wih seasalt and mineral dust particles. The TEM element mapping images showed that
several components wittizes ofhundredf nanometesfrom different sources commonly occur within
individual LRT aerosol particles. We conclude that many aerosol partrclen natural sources change

their compositions by mixing during transport. The compositions and mixing stakese particleafter
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emission result in changes in their hygroscopic and optical properties and should be considered whe

assessing their f&fcts on climate.

1 Introduction

The Amazon basin caexhibit clean atmospheric conditions at times during the wet season and thus is
uniquely useful for understanding aerosol particles from natural background sources (Martin et al., 2010a
2016). Natural aerosol particles are important for meteorological and diogiatd influences on this
region. Knowledgeof background atmospheric conditions is critical for understandingngtestrial
conditions and, in turn, the climate changes caused by human activity (Andreae 2007; Carslaw et al.
2013; Wang et al., 2016a)oTunderstand the sources, abundances, sizes, and compositions of Amazon
aerosol particles, various atmospheric measurentegnte beenconducted such as the Amazonian
Aerosol Characterization Experiment 2008 (AMA2HO08), South American Biomass Burning Arsga
(SAMBBA), and the Green Ocean Amazon (GoAmazon2014/5) campaigns (Andreae et al., 2015;
Bateman et al., 2013rito et al., 2014Cirino et al., 2018Martin et al., 2010a, 2016, 2017). As a result,
long-range transport (LRT) from Africa and the AttenOcean was established as an important pathway
for mineral dust (hereafter mineral) and sea salt to the Amazon during the wet season (Artaxo et al., 199(
1995; Formenti et al., 2001; Krejci et al., 2005; Mezartoaga et al., 2018; Wang et al., 2018kgrobiec

et al., 2007). Biological emissions are also being recognized as passilides oinorganicsalt particle
containing elementsuch as K and Na (Pohlker et al., 2012; China et al., 20h8%e particles are mixed
within individual particles, iad thus, observations of their occurrencsiaes ofhundredf nanometes

or smaller are needed to understand their mixing processes in the atmosphere.

Aerosol particles coagulate and can become coatedolstile organic compounds or acigas
condensation. Such changes affect particle mixing states and compositions (Adachi et al., 2008). Th
mixing states can significantly affect particle hygroscopicaptical properties, and compositions
(Adachi et al., 2010, 2011; Cappa, et al., 2012; Fraund et al., 2017). It is important to understand anc
evaluate particle mixing states to accurately simulate the influences of aerosol partitieslonate
(Oshimaet al., 2009).

Transmission electron microscopy (TEM) is well suited for determining the shapes, mixing states, and
compositions of individual particles smaller thas n(Li et al., 2016). TEM measurements have both
advantages and limitations relativeotiber analytical methods. The advantages of TEM analyses are that
they can measure particles smaller than several hundred naesymiich is the dominant size terms
of particle number concentration. To date, studies laamadysedndividual particlecompositions from
samples collected from the Amazon basin using scanning electron microscopy (SEM), scanning
transmission Xay microscopy (STXM), and electron proberdy microanalysis (EPMA) (e.g.,
Worobiec et al., 2007; Fraund et al., 2017; Krejci et2005; China et al., 201Btuffman et al. 2012;
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Wu et al., 2019). Although each instrument has its advantages and limitations, TEM has better spatia
resolution(~0.1 nm; Li et al. (2016)han other instruments, which enables uartalysethe shapes ash
compositionsof components witlsizes oftens to hundreds of nanomestithat attach to other particles.
Furthermore, TEM analyses can image the internal structures of individual particles. TEM can also
measure refractory materials that are difficultrapossible to detect using other methods, for example,
certain types of offine aerosol mass spectrometry. Limitations of TEM measurement include that it can
only be used for particles on substrates, resulting in a loss of volatile matgiad samplingand

analyss, interference from the substrate, and a lower time resolutiortibanfon-line instruments.

The GoAmazon2014/5 campaign was conducted in 2014 anda2dhfined to address questions related

to climate processes, perturbations from humadiviies, and the terrestrial ecosystem in the Amazon
basin(Martin et al., 2016)Our study focused on TEM samples collected during intensive observation
period (IOP) 1 froml February td31 March, 2014. The goals of this study are to characterize individual
aerosol particles collected from the central Amazon basin during the weh sas$ to measure these
particle occurrences and detailed mixing states at an individuiitle level for implications regarding
their regional emissions, regiorathemispheric scale transport, particle mixing processes, and climate

effects.

2 Methods

2.1 Campaign and sampling

During the GoAmazon2014/5 campaign, atmospheric measurements were conducted at nine research
sites and using two aircraft (Martin et al., 2016). We mainly collected TEM samples at the T3 site
(3.2133S, 60.5987W), which is 70 knefin Manaus and was the most comprehensively instrumented
site including théAtmospheric Radiation Measurement (ARMbbile Facility One (AMF1) and the

ARM Mobile Aerosol Observing System (MAOS) (Mather and Voyles, 2013). The details of the

campaign are desbed in Martin et al. (2016).

TEM sampling during IOP1 was conducted at the MAOS container using a shared inlet. We used a
TEM aerosol sampler (A%6W, Arios, Tokyo, Japan) with two impactor stages that collect particles

with ~0.2:0.7-e m a er o dy atexr (0% cutdffidiameter) onthefmeo de st age and >
the coarsenode stage. In this study, we used fatage samples to focus on fimede particles that are
abundant in numbdaut have not been analyzed in deitaithis areausingTEM. The ampler can

mount 16 TEM grids (200 mesh Cu grids with lacey carbon substrates (TedJ2elldSA, Type

01881)) attached to atuminumplate that rotates with a peet timer.The lacey carbon substrates
minimizeinterference fromhesubstrate during thearticle composition measurements and a spread of

liquid particles ovethe substrateWe used 3@nin collection times at a 1.0 L/min flow ratie have
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appropriate particle number concentration on the substisollected samples with5 h interval,
i.e., eight samples per day frdhebruary t@31 March, 2014 (~500 TEM samples total).

2.2 TEM analysis

We used a 120 kV transmission electron microscope {1&00, JEOL, Tokyo, Japan) with a scanning
mode (scanning transmission electroicnescopy; STEM) equipped with an enerdjgpersive Xray
spectrometer (EDS;-¥hax 80, Oxford Instruments, Tokyo, Japan). d¥éinedrepresentative TEM
images of all grid samples (~30 TEM images per sample)., Bdesamples were selectixt

individual particle analysebased on the TEM images to cover the sampling periods with high mineral
particle fractions and other periods of interest (e.g., pollution period and primary biological aerosol
(PBA)-dominant periods). These periods were compared with tlideinexperiments and the
observations using a higiesolution timeof-flight aerosol masspectrometefde S4 et al., 2018) and
were classified into LRT, pollution, and background periods (Fig. 1).

Semtautomategarticle analysis with 20 seconds of EB®asurement was used for individual particle
analyses. The same measurements yielded particle sizegdaiealent diameters) from segmented
binary imagesAs some particles (e.g., sulfate) can be damaged by an electron beam exposure during
the EDS analyis, we used the STEM images taken before the EDS measurements for the size
measurementsiere, the geometric diameters (area equivalent diameter) can be larger than the
aerodynamic diameters when particles are flat or have low densities, and bouncitigefomarse

stage to the fine stage is possible (Bateman et al., 2017). As aakbkaligh the sampler collects

particles with an aerodynamic diameterof 0.1 7, wem have parti cl-egeivalanp t o
diameter. During the STEMEDS analysesveanalysedill particles larger than 180 nm to measure

>200 particles per sampM/e randomly chose two to seven ardag do not have too many particles

with amagnificationof 6,000 (23x23 m) to avoid particles that overlapn the substraté&ach field of

view includes ~74 particlesn average, resulting in ~7% of particle area among the field of views. As a
result,we reduced the chance to analpaeticles thatagglomerat on the substratédNevertheless, it is

still possible that some partés overlapped on the substrates. We evaluate thavérestimatiorior

the number fraction measurements of internally mixed particles is less than 10% based on the patrticle
area fractionsDetailed information of the analysis is also described in Adatchi. (2018; 2019) and

Ching et al. (2019).

Measured particles were classified into seven categories based on their compositions, i.e., particles
containing both Al and Fe as a proxy of mineral particldse&ing particles as a proxy of PBA

particles Na-bearing particles as a proxy of sea salt and biological sh#aBng particles as a proxy of
sulfate, kbearing particles as a proxy of potassium salic particles as a proxy of carbonaceous

particles, and others (Fig. S1). As-Nearing parties can include both marine and biological sources,



as proposed by China et al. (2018), we use QAse
140 (0.05<Mg/Na<0.3) (Fig. S1). Particles that fall into more than two types (e.g., mineral + sulfate) were
classified into the upper categories in the flow chpdsentedn Fig. S1. We checked their shapes
individually and confirmed that most particles were classified appropriately. Exceptions that were
categori zedleh8% df alltprtelescandtihodd anktal, fly ash, and mineral particles
without Al and Fe (Fig2). Nanosphere soot $500) particles are definelly their aggregated
145 nanosphere structure and the grapHikie microstructures observed using TEM (Buseck et al., 2014).
They are grougd into the carbonaceous category because they do not have characteristic elements othe
than C.

2.3 Model description
We used the Meteorological Research Institute Earth System Model version E@MR; Yukimoto
150 et al., 20190shima et al., 209Qo evalate the LRT periods and the sources and transport of LRT
mineral particles to the Amazon basin @ig§and4). For this study, we modified the original model
configuration and useohly atmospheri¢the atmospheric general circulation model (AGCM) with land
processes (MRAGCM3.5)) and aerosalthe Model of Aerosol Species in the Global Atmosphere
mark-2 (MASINGAR mk2)) component models’he model employs horizontal resolutions with an
155 approximately 12&km grid (TL159) and 80 vertical layers from the surface to a model top of 0.01 hPa
in a hybrid sigmaoressure coordinate system. The model simulation was performed from January 2008
to December 2015 after aykar spirup run using the prescribed sea aoef temperature data (Ishii et
al., 2005). In the model simulation, the horizontal wind fields in the AGCM were nioyaddsthe 6
houtlly Japanese 5%ear Reanalysis dafKobayashi et al. 2015). We used the monthly anthropogenic
160 emissions dataset by Lamgue et al. (2010) and the daily biontassning emissions from the global
fire assimilation system dataset by Kaiser et al. 2Z20dlineral (dustland sessalt emissions were
calculated depending on the meteorological conditions in the model (Tanakhidagd 2005;
Yumimoto et al., 2017).

3 Resultsand discussion

165 3.1 Model simulation
The model simulation characterized six LRT periods that have mineral dust conceipeakegreater
t han 2 6uring OPIn{Fig3). The LRT periods cover tHegh-mineral particle samples of the
TEM analysis, and we identify these TEM samples as LRT samples. These periods also generally
overlap those of Moraduloage et al. (2018), who measured aerosol mass concentrations from 1 to 10
170 em ( coar s e nargod €a) Towdr ObsdrvatoryA(AT TO) during the campaign,aed
consistent with the dust events from MODIS satellite observations
(https://worldview.earthdata.nasa.gowhe model simulatioshows thathie horizontal distributions of
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mineral dust corentration at the surface level during the six LRT periods and the vertical distributions
on7 March, when the largest LRT periods occurred during IG®{. 4). The model results indicate
that these mineral dust particles originated from the Saharan,dellewed by easterly transport in the

lower troposphere over the Atlantic Ocean to the Amazon basin.

3.2 Shapes, compositions, and sizes of aerosol particles

Representative particle images with elemental meps, Figs. S210), size distributions, angize
dependent number fractions for each particle category ffFigereanalysedvith TEM. Here, we show
thesizes, shapes, and mixing states of individual particles for each particle type.

3.2.1 Mineral particles

Tens of Tgper year of mineral particles from the Saharan desert are transported to the Amazon basin
(Graham et al., 2003; Swap et al., 1992; Wang et al., 2016b; Yu et al., 2015) and provide Fe and P
nutrients for forests (Bristow et al., 2010). Such mineral pagtialso contribute to ieeucleating

particles (INPs) to form ice clouds (Prennei et al., 2009).

Mineral particles were definembk those containing both Al and Fe, although Na, Si, Ca, S, or K were
also detected in most mineral particles (F&and S2)These particlesre typically crystalline, appear
darkerthan other particleand haverregular edges in TEM images (F&§). They have a broad size
distribution with a relatively large modal peak (~L8&¢ nin areaequivalent diameter) (Fi¢). The
number fractions sporadically increase (Fig. 1), coordinating with LRT from Africa in the model (Fig
3 and4).

Most mineral particles consist of Adnd Sibearing clay minerals (e.g., illite and kaolinitEhese
mineralsare aggregated with other minerals such as quar@)S{-feldspar (kAl-Si), and small

(=100 nm) grains that contain Fe and O or Ca and S @& S2). The average weight % of Al and

Si in mineral particles in each sample shows a positive cormelf@iccamples frombothLRT and other
periods (Fig.7). The values for Si/Al between 1.5 and 3 for LRT period samples are roughly consistent
with bulk measurements of Amazon aerosol in other studies (Artaxo et al., 2002; Caquineau et al.,
1998; Martin et b, 2010b; MorarZuloaga et al., 2018; Rizzolo et al., 2017). More than half of the
mineral particlesre within thisSi/Al range, and their possible source is the Saharan desert judging
from our and other model studies (e.g., MeZaroaga et al., 2018Dn the other hand, the average

ratios of Si/Al in several nehRT samples (e.g., the sample from 26 March, 16:11) are lower than those
in the LRT samples (Fig.). This result suggests that the mineralogy and compositions of mineral
particles are differertietween LRT and other periods and that the lattehave local sources around

the sampling site (e.g., farm and road).

Over halfof the mineral particleeaveNa-bearing particles such as NaCl,.8&x, or their mixtureon

their surfacesThe weight %valuesof Na-Cl and NaMg in the mineral particles show a positive

6
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correlation (Fig.7), and~26% of mineral particles from all samples are internally mixed witisatta
components. The values of Cl/ideelower thanthosein NaCl (Cl/Na ~1.5) because some Cl was
replaced by sulfate, forming B8Qs. LRT samples have higher Na, Cl, and fvlctionsthan other

samples (Fig7), suggesting that the LRT particles were mixed with sea salt during transport, possibly
whentravellingnear the surface of the Atlantic Ocean (Hig.Lidar measurements observed similar

LRT of dust and biomass burning from Africa in the lowermost 2kthe atmosphere during the

AMAZE -2008 campaign (Baars et al., 2012)ich mixing of mineral and sea salt in the Amazon basin

is consistent with studies using partiaheluced Xray emission (PIXE) for filter bulk measurements
(Artaxo et al., 1990) or aslectronprobe micr@analyse and a scanning electron microscope for
individualparticle measurements (e.g., Worobiec et al., 2007; Wu et al., 2019), and we show here that

sea salt occumsnthemineral particless grains several hundred nanormesein size(Figs. 6 and S6).

3.2.2 Primary biological aerosol (PBA) particles

PBA particles are important in the Amazon basin because of their abundance and contributions to the
regional climate and weather (Martin et al., 2010b; P&schl et al., 201@e Phdiclsinclude fungal

spores, pollen, bacteria, algae, protozoa, and fragments of plants and orgBeisonéstt al., 2012Li

et al., 202D and are known sources of K, Na, P, Cl, and Fe in the Amaasin(Artaxo et al., 1993;

Krejci et al., 2005; Wu et al2019). Biological sources in the Amazon can also emit K and Na salts as
fine aerosol particles and influence new particle formation and cloud formation, respectively (China et
al., 2016, 2018; Pohlker et al., 20120hd act as IN®(Prenniet al., 2009).

PBA particles mainly consist of C and O and contain P, S, N, K, Cl, and Na as minor components (Fig.
8). We used P as a tracer for PBA patrticles to distinguish them from other primary or secondary organic
aerosol particles. Elemental diswitions of PBA particles show that P occurs either uniformly within
particles (Fig8; Fig. S3) or as phosphate (F#4). PBA particle shapes depend on the types of

biological sources (Fid), although exact source identification requires measuremeastisastDNA

analysis. The size distribution ihe PBA particles has two peaks: ~600 nm and >2 um @JigPBA

particles >2 um show unique shapes (Bigwhereas small PBA patrticles can include fragmented

fungal spores (China et al., 201&he size distbutions and shapes of large PBA particles are

consistent with those described by Huffman et al. (2012), who measured PBA particles during the
AMAZE -08 campaign. Relative number fractions of PBA particles are higher durinigRibperiods

than LRT periodgFig. 2), given that they are emitted within the BaghBA number fractions also

show diurnal changese., they are high during the night (3 am in local time) and low during the day (3
pm) (Fig.8). Thenumber fractions oPBA particles during the nigleein beenhancedby high relative
humidity (RH), whichincreasesctive PBA particle emissions from plantgnd speed, and

temperaturefli et al., 2020Elbert et al., 2007; Graham et al., 2003; Huffman et al., 2012; Whitehead

et al., 2016). Various PBparticles are mixed with other materials such as minerals, sulfategdtang

7



particles, or nsoot (Fig.8 and S5). For example, PBA particlesHgs. 8 and S5 attach rsoot and
that in Fig.S3 attaches mineral particle. The number fractions of intdly mixed PBA particles with
sea salt are approximately 20% (Fi@). Na occurs on the PBA particle surface as coatings (Fig. S10)

245 or as particleconstituents (Fig8).

3.2.3 Sessalt particles
Seasalt particles are emitted from the ocean and act as efficientctmaensation nuclei (CCN). Na,
Mg, and CI are commonly used tracers ofsalh particles, although Cl can be replaced by sulfate and
nitrate in the atmosphere (Adachi and Buseckp2@lard et al., 1998; Yoshizue et al., 2019). In this
250 study, although the sampling site is far from the ocean (>1,000 km), we commonly obsesatl sea
particles and their mixtures with mineral particles (lBignd S6), sulfate (Fid.1), and PBA partias
(Fig. S10). Nebearing particles, which include both marine and biological sources, have a broad size
distribution, with a mode size of ~600 nm (F&). Number fractions of N@earing particles are more
abundant during LRT periods than in other perigdg. 2). The deformed shapes of aaring
255 particles on the substrate suggest that they were hydnatieel atmosphere amh the substrateshen
collected (Figl11).

The weight% ratios among Na and Mg within Mearing particles show that more th&34«is sea salt
that hasa Mg/Na weight % between 0.05 and 0.3 (Hiff). Some remaining particles can be sea salt
because the Mg weigPt is lower than the detection limit (~0.1 weight %) within Neebearing

260 particles having relatively low Na weight %.sfoichiometry calculation using S and Cl weight %
indicates that 74 % in mol fractionsof Cl was replaced with sulfatlitrate can also react with NaCl
and form sodium nitrateHoweverwe did not observe it in this study because of lower concentsation
of nitratethan sulfateduring the campaig(de Séet al., 2018) anthsensitivity of nitrate detection in
the current TEM analysi$nternally mixed seaalt fractions are higher in satep from LRT periods

265 than those in other periods (FiX).

3.2.4 K-bearing particles
Potassiunis one of the key elements in the Amazon b#si actsas a seed to form secondary organic
aerosol particles (Pohlker et al., 2012). Potassiearing partiles have a modal peak at 400 nm, and
their number fractions are similar between LRT periods and other periodS)(fvtany K-bearing

270 particles consist of inorganic salts and include S as sulfate (Fig. S7), Gasts organic matter (Fig.
S7), Cl azhloride (Fig. S5), or their mixtures. In addition, K occurs in mineral dust particles §Figs.
and S2) and PBA (F&ggS3 and S4) as a minor component. Potassium is a common constituent of
mineral dust such as-feldspar and an essential component of lgmlal species and was detected in

~80% of all ouranalysedarticles, mostly as minor fractions.
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Pohlker et al. (2012) found K in nearly all particles abdervedhat the K mass fraction increased for
smaller particles in samples collected at the ATTO site, which has a negligible influence from Manaus.
Theauthorssuggested that the K was from biogenic sources but not biomass burning because of a lack
of nssoot f@rticles. In contrast, our samples includé&aring particles with rsoot particles (Fig. S7),

and the mixing state is similar to that in biomass burning (Li et al., 2003; Wu et al., 2019; Yokelson et
al., 2007). Thus, although there were few wildfirasing the wet season, biomass burning from LRT,

local biofuel burning, and other anthropogenic sources can contribute telmariig particles

collectedat the T3 site.

3.2.5 Sulfate

Nearly 10% of all particles are classified as sulfate Bigalthoudn S was detected from ~90% of all
analysedatrticles as a minor component of mineral, PBA, andaXd K-bearing particles. The size
distribution of sulfate has a maljeak at ~400 nm (Fid). Nearly80% of sulfate particles include N,

K (<2 weight%), a both, suggesting that they are mostly ammonium or potassium sulfate (Fig. S8).
Anthropogenic pollutants including sulfate from Manaus were sporadically transported to the T3 site
(de Sa et al., 2017). For example, during the period that was classifietiuasd conditions from
Manaus (de Sa et al., 2018), the TEM samples Appeoximatelhthree times higher sulfate number
fractions than those from background periods (BigSulfate in the Amazon can be formed by the
reactions of S@ dimethyl sulfidg DMS), H:S, or CS emitted from local sources (e.g., plants,
microorganisrs, and anthropogenic emissions) and LRT sources (e.g., biomass burning and
anthropogenic emissions from Africa and the Atlantic Ocean) (Martin et al., 2010b).

3.2.6 Carbonaceous pdicles

Carbonaceous particles include secondary or primary organic aerosol (SOA and POA, respectively)
tarball, and nsoot particles (Fig. S9)The vapor pressure of volatile and sewmiatile organic
compounds was too high to retain them in plagticles after sampling and during the TEM analysis
resulting in the loss of the volatile fraction from tharticles collected on the TEM grid§hus, the

carbonaceous particle fractions can be underestimated, and we focus only onvbktieriractions.

Carbonaceous particles have higher fractions at smaller sizes for both the LRT period and other sample
(Fig.5). SOA particles are organic particles having round shapes with deformation on the substrate wher
collected(e.g.,Fig 11). These paticles form through oxidation of lowolatile organicmatteremitted

from both natural and anthropogenic sources (de Sa et al., 20a8y et al. (2018 showedhatsmall
particles are transported from the free troposphere into the boundaryyayerical transportsluring
precipitation eventsand such particles can be nuclei of the SOA particles in the background condition.
Tarballs originate from biomass burning and have an amorphous structure and spherical shapes on tt

substrate (Adachi et al., 29), and their number fractions are <1% in our samplesoNsparticles that
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are internally mixed with Kbearing particles can originate from LRT (Saturno et al., 2018) or local
biofuel burningfor cookingor brick kilns (Martin et al., 2016) Other nssoot particles can be from
anthropogenic sources such as Manausraighbouing cities (Glicker et al., 2019). Nsot particles
are attached to or embedded within the mineral, sulfate, organigndak-bearing, or PBA particles
(Figs.6, 8, S2, S5, an&7). As nssoot particles absorb light, they can change the optical properties of

these mixed particles into more lighibsorbingparticles

3.3Possible mixing processes and implications the climate

Number fractions of aerosol particle types as a function of sizes largely differ between the LRT period
and other samples (Fif). The sze-dependent number fractioabsamples from other period are roughly
consistent with the results during the AMAZIB campaign RPoschl et a).2010) At large particle sizes

>2 em), mi ner al and PBA particl e srespectigelyghemndasn a n:
carbonaceous particles dominate in fine particles for both periods. During the LRT periods, mecst mi

and biomass burning particles such abdfring and nsoot particles could originate from the African
continent, and the sesalt particles came from the Atlantic Ocean. We assume that these particles were

coagulated or condensed during transpag. (E2).

Many Nabearing particles are internally mixed with mineral and PBA patrticles (Fig. S6)tbeon
surfaces of biological particles (Fig. S10). In the LRT samples, more than 2@%&naheral and PBA
particles contain sea salt. Sulfate particles@mmonly coagulated or condensed with o#tezosol
componentso formvariousinternal mixtures. We found correlations of sample average weight % of S
between Naearing and mineral particles (Fi3). The results suggest that mixing with sulfate

occured during LRT over the Atlantic Ocean and above the Amazon basin rather than at their source

regions (Figl12).

In the Amazon forest, the RH commonly exceeds >80% during the night. The mixing states of mineral
and PBA particles suggest that hygroscopidiples such as NaCl and (WeEBOQw deliquesce on the
surface of these host particlesder high RH conditionandthusthey increase their sizes by absorbing

water.

The detailed mixing states of individual particles are important to understand their contributions to the
climate. In our samples, most particles consist of several components from sourcedfsidmazon
forest, Saharan desert, Atlantic Ocean, andcAfribiomass burning, some of which are separated by
thousands dkilometres (Fig.12). Although such complex mixing states are common for anthropogenic
aerosol particlese(g.,Ching et al., 2019), we found that particles from natural sources can also be
mixed during LRT and form internally mixed particlessulting in different hygroscopicity and optical

properties
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4 Conclusions

The compositions and mixing states of individual particles from natural sources in the Amazon basin
are important for understdimg their roles in cloud formation and radiative forcing as well as for
transport and removal processes. It is difficult to evaluate the compositions and mixing states of
refractory particles using dime instruments. In contraghe TEM results show tht primary particles,
including minerals, sea salt, and PBA, dominatthe fine mode particles durirtige wet season, and

their number fractions vary depending on whether they originate from LRT or local sources. This study
shows the mixing states of $eparticles, focusing on the occurrences of individual components on
particles with sizes rangingfrom hundreds of nanome# to several micromess. Seasalt and sulfate
particles commonly occur on the surfaces of mineral and PBA par#dddlel RT particles have

more processeahixed particleghan other background particles, we interpret that the mixings mainly
occurred during the LRThrough coagulatiorcondensationor both Theelement mappingnages also
showed that K and Na occurretlher as attached inorganic salts or as constituents of PBA and mineral
particles. Our model simulation suggests that mineral particles during LRT periods originated from the
Saharan desert. Although mineral particles are originally hydrophobic, thenif€Tal particles can
becomehygroscopic by mixing with sesalt and sulfate particles.

This study focuses on individual particles from samples collected during the wet season in the Amazon
basin. Many patrticles are internally mixed with other componersan have different hygroscopicity

and optical properties from their original sources/states. Although previous studies suggested possible
local biological sources for K and Na, our observations show that they could originate from sources of
both LRT andocal sources. We conclude that many primary particles from natural sources become
internally mixed and change compositions wirigeellingacross long distances and various
environments. When mineral particl@sother hydrophiligorimary particlesaremixed with sea salt or
sulfate, they can absorb water efficiently, resulting in increasing CCN activity, chahgmygfical

properties, and accelerating their removal from the atmosphere, all of which should be taken into

account when considering thegtaal occurrence in the atmospha&ryeevaluate their climate influences

Data and code availability

The data sets used in this publication are available at the ARM Climate Research Facility database for th
GoAmazon2014/5 experimenihttps://www.arm.gov/research/campaigns/amf2014goamazon). The
TEM data and the simulation data used in this publication are available upon request (adachik@mri
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Figure 1. Number fractions of each aerosol particle type foaa#llysedsamplega) and the
representative TEM images of each particle type (b). Scale bars for Mineral, PB&aNiag, and
sulfate are I m, and those for ¥oearing and carbonaceous a@® 2im.Compositions and low
695 magnification images of these particles are shown in Fig. S2 (mineral), Fig. S5 (PBA), (fig:
bearing), Fig. S7 (Kearing), Fig S8 (sulfate), and Fig. S7 (carbonace®ashples were divided into
LRT and other periodéars inthe panel (a)) Other periods were further divided into pollution periods
(14, 15, and 26 Margl2014) and backgroungkriods (all other periods except the pollution periods and
2 February2014) based on the classification by de Sa et al. (2018). Samples collected on 2 February
700 were ousideof the measurement period by de S et al.
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Figure 5. Sizedistributiors and number fractions of each aerosol type. (a) Size distributions of each

aerosol particle type among all samples. Thax¥ shows the number fractions for each bin. N=2519
(mineral), 557 (PBAoarticle), 1806 (Ndearingparticlg, 2223 (kbearing particle), 1120 (sulfate), 2289
(carbonaceous patrticle), and 221 (other; not shown)-d&pendent number fractions of each aerosol
particle type for (b) LRT periods and (c) other samp\es/ 769 (RT periods) and 296&therperiods).
Size bins are shown on a log scale, and the size ranges are <0.2530,25320.40, 0.460.50, 0.50
0.63, 0.620.79, 0.791.00, 1.001.26, 1.261.58, 1.582.00, and >2.06 m
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