
Reviewer	#1	
Comments	 from	 the	 reviewer	 are	 in	 blue,	 and	 answers	 in	 black	 (text	 citations	
and	 modifications	 are	 highlighted	 in	 italics).	 Note	 that	 following	 the	
recommendation	 of	 the	 other	 reviewer,	 we	 added	 three	 new	 meteorological	
features	 (surface	 net	 solar	 radiation,	 surface	 solar	 radiation	 downwards,	
downward	UV	 radiation	 at	 the	 surface)	 and	updated	 all	 the	 figures,	 tables	 and	
corresponding	text.	The	impact	on	the	results	is	relatively	small	so	the	discussion	
remains	essentially	the	same.	
	
The	 article	 under	 review	 here	 aims	 to	 quantify	 the	 impact	 of	 the	 Covid-19	
lockdown	 measures	 in	 Spain	 on	 air	 quality.	 The	 topic	 is	 interesting	 from	 the	
point	of	view	of	air	quality	practitioners	and	the	general	public,	but	it	also	raises	
substantial	 scientific	 challenges.	 Even	 if	 economic	 activities	were	 substantially	
reduced	during	the	lock	down	period,	the	impact	of	meteorological	factors	on	air	
quality	precludes	a	simple	comparison	with	previous	years.	Instead,	the	authors	
mobilize	innovative	machine	learning	approaches	to	tackle	the	issue.	The	quality	
of	 the	 presentation,	 scientific	 quality,	 and	 societal	 relevance	 are	 excellent,	 and	
publication	 in	ACP	 is	 therefore	recommended.	 I	am	nevertheless	proposing	the	
following	minor	suggestions	that	could	help	further	strengthen	the	paper.	
We	are	thankful	to	the	reviewer	for	his/her	positive	feedbacks	and	comments.		
	
General	comment:	
The	 authors	 should	 be	 encouraged	 to	 extent	 the	 coverage	 of	 their	 study.	
Applying	the	method	over	the	whole	of	Europe	is	certainly	the	scope	for	another	
paper.	But	an	extension	of	the	temporal	coverage	up	to	the	end	of	the	lockdown	
in	Spain	would	be	interesting.	
We	 agree	 that	 an	 extension	 over	 Europe	 is	 interesting,	 and	 we	 are	 currently	
collaborating	 on	 another	 study	 addressing	 the	 question	 at	 this	 larger	 scale	
(focusing	 on	 the	 largest	 European	 cities).	 Concerning	 the	 extension	 of	 the	
temporal	 coverage	 of	 the	 present	 study,	we	 took	 into	 account	 the	 time	 period	
with	data	available	at	the	time	of	preparation/submission	of	this	study.	Although	
it	would	have	been	nice	to	cover	the	entire	period	of	the	lockdown,	we	are	here	
considering	 a	 period	 already	 quite	 extended	 (41	 days),	 comprising	 the	 most	
stringent	phase	of	the	lockdown.	To	our	opinion,	although	interesting,	extending	
the	study	would	require	to	substantially	reshape	the	first	draft,	without	bringing	
much	more	 scientific	 knowledge.	 In	 addition,	 even	 at	 the	 time	 of	 this	 revision	
(August	25th),	 the	situation	cannot	be	considered	as	normal	since	many	people	
across	Spain	are	still	working	from	home	in	Spain	(and	some	parts	of	the	country	
have	been	recently	confined	again).		
	
Specific	comments:	

• L24,	 L403:	 the	 coronavirus	 is	 SARS-COV-2	 not	 COVID-19.	 Indeed,	 the	
reviewer	is	right,	according	to	the	World	Health	Organization,	COVID-19	
designates	the	coronavirus	disease,	while	SARS-COV-2	refers	to	the	virus	
itself.	To	be	consistent	with	this	terminology,	we	added	the	term	“disease”	
in	the	text.	

• L36:	without	supporting	reference,	it	is	wiser	to	state	that	“the	impact	on	
industry	is	*presumably*	more	contrasted”.	Corrected.	



• L50:	in	the	motivation	of	the	work,	the	authors	could	add	that	this	type	of	
analysis	will	serve	to	validate	the	model-based	assessment	using	emission	
scenarios	 derived	 from	 activity	 data	 during	 the	 lockdown.	We	 added	 in	
the	 conclusion	 :	 “The	 results	 of	 the	 present	 study	 provide	 a	 valuable	
reference	for	validating	similar	assessments	of	the	impact	of	the	COVID-19	
lockdown	on	air	quality	based	on	chemistry	transport	models	and	emission	
scenarios	derived	 from	activity	data	during	 the	 lockdown	 (e.g.	Guevara	et	
al.,	2020a;	Menut	et	al.,	2020).”	with	the	corresponding	references	:	

o Menut,	 L.,	 Bessagnet,	 B.,	 Siour,	 G.,	 Mailler,	 S.,	 Pennel,	 R.,	 and	
Cholakian,	 A.:	 Impact	 of	 lockdown	measures	 to	 combat	 Covid-19	
on	 air	 quality	 over	 western	 Europe,	 Science	 of	 The	 Total	
Environment,	 741,	 140	 426,	
https://doi.org/10.1016/j.scitotenv.2020.140426,	
https://linkinghub.elsevier.com/retrieve/pii/S004896972033948
6,	2020.	

o Guevara,	M.,	 Jorba,	O.,	Soret,	A.,	Petetin,	H.,	Bowdalo,	D.,	Serradell,	
K.,	 Tena,	 C.,	 Denier	 van	 der	 Gon,	 H.,	 Kuenen,	 J.,	 Peuch,	 V.-H.,	 and	
Pérez	 García-Pando,	 C.:	 Time-resolved	 emission	 reductions	 for	
atmospheric	chemistry	modelling	 in	Europe	during	the	COVID-19	
lockdowns	 (in	 review),	 Atmospheric	 Chemistry	 and	 Physics	
Discussions,	https://doi.org/10.5194/acp-2020-686,	2020a.	

• L69:	 where	 is	 the	 GHOST	 data	 available	 ?	 If	 GHOST	 database	 is	 not	
publicly	open,	the	reference	of	the	availability	of	the	data	should	remain	
EEA’s	AQ	e-reporting	database.	GHOST	is	a	BSC	internal	on-going	project	
currently	not	publicly	available	and	a	publication	describing	the	dataset	is	
in	preparation.	As	explained	in	the	text,	GHOST	is	not	another	database,	it	
ingests	 different	 air	 quality	 publicly	 available	 databases	 (including	 the	
EEA	AQ	eReporting	database	used	in	this	study)	and	provides	consistent	
and	 extended	metadata	 to	 ensure	 the	 quality	 of	 the	 observational	 data.	
Although	 neglected	 by	 many	 studies,	 we	 consider	 that	 this	 quality	
assurance	screening	is	an	essential	part	of	the	data	preprocessing.	This	is	
why	we	consider	that	it	is	worth	mentioning	and	explaining	it	in	detail	in	
the	manuscript,	while	to	our	opinion,	the	reference	to	the	use	of	the	EEA	
AQ	eReporting	database	is	already	clear	enough	in	the	text.	

• L75:	the	formal	deadline	for	2019	AQ	e-reporting	data	to	be	delivered	as	
E1a	is	September	2020,	what	is	the	fraction	of	2019	data	already	E1a	at	
the	date	of	submission?	Regarding	the	September	deadline,	it	seems	that	
many	countries	are	actually	delivering	E1a	data	earlier	(sometimes	bit	by	
bit	 through	the	year).	We	added	the	 following	text	 :	 “The	fraction	of	E1a	
data	is	0%	in	2020,	99%	in	2019	and	100%	in	2013-2018.”	

• L125:	please	clarify	what	you	mean	by	“unique	values”,	is	the	date	index	
the	 Julian	 day,	 and	 if	 so	 why	 would	 it	 be	 unique?	 There	 is	 here	 a	
misunderstanding.	As	explained	in	L119,	the	date	index	is	the	number	of	
days	since	2013/01/01	(i.e.	unique	values	going	from	0	for	2013/01/01	
to	2677	 for	2020/04/30),	while	 the	 Julian	date	(going	 from	1	to	365)	 is	
another	feature.	We	added	this	to	the	sentence	:	“Including	such	a	feature	
with	unique	values	(going	from	0	for	2013/01/01	to	2677	for	2020/04/30)	
is	not	expected	[…]”	



• L145:	 hyperparameters	 should	 be	 defined	 and	 discussed	 either	 in	 the	
main	 text	 or	 in	 the	 annex.	 Further	 details	 would	 be	 appreciated	 in	 the	
annex	on	how	the	choice	of	 those	hyperparameters	are	related	with	 the	
problem	 at	 hand	 (density	 and	 spread	 of	 observations,	 number	 and	
diversity	of	predictors	etc.).	The	 tuning	strategy	 is	explained	 in	detail	 in	
Appendix	C.	The	hyperparameters	selected	here	are	very	common	to	any	
ML	exercise	with	 the	gradient	boosting	machine	and	are	not	 tailored	 to	
our	 specific	 problem.	 For	 each	 of	 these	 hyperparameters,	 we	 defined	 a	
reasonably	 large	 range	 of	 possible	 values	 to	 be	 tested	 through	 a	
randomized	search,	following	again	the	idea	we	have	about	the	common	
practices	in	the	field	(and	the	computational	resources	available	for	these	
calculations).	We	are	not	arguing	here	that	this	tuning	strategy	optimizes	
the	best	the	performance	but	the	performance	obtained	was	found	to	be	
acceptable	for	the	present	study.		

• L245:	 include	 the	 value	 of	 the	 uncertainty	 interval,	 it	 is	 difficult	 to	
compare	 percentages	 in	 3.2	 and	 ppbv	 intervals	 in	 2.3.3.	 Actually,	 both	
should	not	be	compared	because	they	are	not	directly	comparable.	There	
is	here	 a	misunderstanding	 since	 the	uncertainty	 intervals	 of	 Sect.	 2.3.3	
correspond	 to	 the	 uncertainties	 of	 the	 ML	 predictions	 at	 the	 daily	 and	
weekly	 scales	 (i.e.	 the	 uncertainties	 of	 the	daily	 or	weekly	 average	NO2	
concentrations).		

• L255:	 the	 impact	 of	 the	 LEZ	 could	 actually	 be	 an	 increase	 of	 NO2	 at	
stations	in	the	outskirts	of	that	zone.	As	also	explained	in	our	answer	to	
the	 first	 reviewer,	 although	 the	 reviewer	 is	 right	 in	 principle,	 to	 our	
opinion,	 the	 3	 reasons	 already	mentioned	 here	 in	 the	 text	 (namely	 the	
very	limited	area	of	this	LEZ	zone	(5	km2),	the	rather	large	distance	to	the	
stations	 selected	 and	 last	 but	 not	 least,	 the	 expected	 progressive	
transition	to	a	new	traffic	pattern,	given	the	absence	of	fines	before	April	
1st,	 now	 postponed	 to	 September	 15th	 2020),	 combined	 together,	
reasonably	justify	our	assumption	that	only	a	“limited	impact	is	expected”	
in	Madrid.	

• Figure	 2:	 N	 seems	 to	 be	missing	 from	 the	 plot.	 Thanks,	we	 corrected	 it	
(this	was	an	old	version	of	the	legend).	

• L266:	 clarify	 if	 the	 confidence	 interval	 is	 taken	 from	 the	 distribution	 of	
daily	differences.	We	are	not	sure	to	properly	understand	what	should	be	
clarified	 here.	 The	 uncertainties	 used	 here	 correspond	 to	 the	
uncertainties	 at	 weekly	 scale	 (computed	 based	 on	 the	 differences	
between	 NO2	 observations	 and	 predictions	 weekly	 averaged,	 as	
explained	in	Sect.	2.3.3).	If	the	reviewer	is	talking	about	the	uncertainties	
at	daily	scale,	they	are	indeed	obtained	from	the	distribution	of	the	daily	
differences.	

• L325	and	L344:	could	there	be	a	role	of	background	ozone	in	the	relation	
between	 NOx	 emission	 changes	 and	 NO2	 concentrations	 that	 would	
appear	 through	 this	 latitudinal	 gradient?	 The	 NO2	 reductions	 obtained	
tend	to	be	stronger	 in	the	southern	half	of	Spain,	but	there	 is	not	a	very	
clear	 latitudinal	 gradient	 that	 apply	 to	 all	 provinces.	 For	 instance,	
relatively	 lower	 NO2	 reductions	 are	 found	 along	 the	 southern	 coast	 of	
Spain.	Ozone	and	other	chemical	compounds	may	in	principle	impact	the	



NO2	concentrations	(directly	or	indirectly)	but	we	do	not	have	any	clear	
evidence	for	this	at	this	stage.	

• L365:	 clarify	 which	 reduction	 is	 for	 urban	 and	 traffic	 stations.	 We	
modified	 the	 text	 as	 follows	 :	 “On	average	over	 this	 set	 of	 provinces,	 the	
NO2	 reduction	 is	 -44	 and	 -53%	 at	 the	 urban	 background	 and	 traffic	
stations,	respectively	[…]”	

• L412:	 also	 mention	 day	 of	 the	 week	 in	 the	 predictors,	 which	 is	
presumably	very	important	for	NO2.	We	modified	the	sentence	as	follows	
:	 “To	tackle	 this	 issue,	we	used	ML	models	 fed	by	meteorological	data	and	
time	variables	(Julian	date,	day	of	week	and	date	index)	to	estimate	[…]”	

	
	

Reviewer	#2	
Comments	 from	 the	 reviewer	 are	 in	 blue,	 and	 answers	 in	 black	 (text	 citations	
and	modifications	are	highlighted	in	italics).	
	
This	 work	 by	 Petetin	 et	 al.,	 deals	 with	 the	 hot	 topic	 of	 variation	 of	 pollutants	
during	the	lockdown	measures	against	the	COVID19	pandemic.	More	specifically	
it	focuses	on	the	NO2	and	the	area	of	the	Spanish	state.	Transports	are	the	main	
source	 of	NO2	 in	 the	 troposphere,	 thus	 the	 reduction	 of	 traffic	 is	 estimated	 to	
lower	significantly	the	emissions.	Though	the	decrease	of	the	emissions	was	very	
clear	 during	 the	 lockdown,	 the	 actual	 concentration	 in	 various	 areas	 is	 also	
dependent	 on	 meteorological	 parameters	 that	 rule	 the	 dispersion	 and	 the	
chemical	 processes	 of	 the	 gas.	 In	 order	 to	 better	 estimate	 the	 expected	
concentrations,	based	on	meteorology,	authors	have	trained	a	machine	learning	
algorithm,	 to	 simulate	 the	 business	 as	 usual	 conditions,	 using	 as	 input	
meteorological	 variables.	 The	work	 is	 generally	 well	 presented	 and	 should	 be	
accepted	for	publication	in	ACP	after	minor	revisions.	
We	thank	the	reviewer	for	his/her	constructive	comments.		
	
Specific	comments		

• L10	 It	 would	 be	 better	 to	 provide	 some	 quantitative	 measure	 of	 the	
performance	of	the	model.	We	modified	the	sentence	:	“The	ML	predictive	
models	 were	 found	 to	 perform	 remarkably	 well	 in	 most	 locations,	 with	
overall	 bias,	 root-mean-squared	 error	 and	 correlation	 of	 +4%,	 29%	 and	
0.86.”	

• L77	Please	provide	some	bibliographical	reference	for	the	uncertainty	of	
these	 NO2	 measurements.	 We	 added	 some	 information	 regarding	 the	
measurement	 uncertainties	 :	 “All	 NO2	measurements	 taken	 into	 account	
here	are	operated	using	chemiluminescence	with	an	 internal	Molybdenum	
converter.	 Although	 predominantly	 used	 over	 Europe	 for	 measuring	 NO2,	
this	 measurement	 technique	 is	 well	 known	 to	 be	 have	 strong	 positive	
artifacts	 due	 to	 interferences	 of	 NOz	 compounds	 (e.g.	 nitric	 acid,	
peroxyacetyl	 nitrates,	 organic	 nitrates),	 especially	 during	 daytime	 when	
these	species	are	photo-chemically	formed,	up	to	a	factor	of	2-4	as	observed	
during	summertime	in	urban	atmospheres	(e.g.	Dunlea	et	al.,	2007;	Villena	
et	 al.,	 	 2012).	 In	 our	 case,	 the	 positive	 artifacts	 at	 urban	 background	
stations	are	probably	lower	since	the	period	of	study	(late	winter	and	early	



spring)	 is	 less	 photo-chemically	 active	 than	 summertime.	 Even	 lower	
interferences	 are	 expected	 at	 traffic	 stations	 where	 the	 NOz/NOx	 ratio	 is	
typically	lower	due	to	the	proximity	to	fresh	NOx	emissions.	In	any	case,	the	
present	study	focuses	on	the	relative	changes	of	NO2	due	to	the	lockdown,	so	
biases	 in	 the	 NO2	 measurements	 are	 of	 lower	 importance.”	 with	 the	
corresponding	references	are	:		

o Dunlea,	 E.	 J.,	 Herndon,	 S.	 C.,	 Nelson,	 D.	 D.,	 Volkamer,	 R.	 M.,	 San	
Martini,	F.,	Sheehy,	P.	M.,	Zahniser,	M.	S.,	Shorter,	J.	H.,	Wormhoudt,	
J.	C.,	Lamb,	B.	K.,	Allwine,	E.	 J.,	Gaffney,	 J.	S.,	Marley,	N.	A.,	Grutter,	
M.,	Marquez,	C.,	Blanco,	S.,	Cardenas,	B.,	Retama,	A.,	Ramos	Villegas,	
C.	 R.,	 Kolb,	 C.	 E.,	 Molina,	 L.	 T.,	 and	 Molina,	 M.	 J.:	 Evaluation	 of	
nitrogen	dioxide	chemiluminescence	monitors	in	a	polluted	urban	
environment,	Atmos.	Chem.	Phys.,	7,	2691–2704,	doi:10.5194/acp-
7-2691-2007,	2007.	

o Villena,	G.,	Bejan,	 I.,	Kurtenbach,	R.,	Wiesen,	P.,	 and	Kleffmann,	 J.:	
Interferences	 of	 commercial	 NO2	 instruments	 in	 the	 urban	
atmosphere	 and	 in	 a	 smog	 chamber,	Atmos.	Meas.	Tech.,	 5,	 149–
159,	doi:10.5194/amt-5-149-2012,	2012.	

• L100	The	selection	of	variables	 to	 feed	 the	ML	algorithm	 is	very	 crucial	
and	implies	the	physical	and	chemical	processes	that	should	be	associated	
with	the	gas’	concentration.	My	thought	is	that	the	photochemical	cycle	is	
implied	 by	 cloud	 coverage,	 which	 indirectly	 influences	 the	 irradiance	
which	drive	 the	photolysis.	 Since	daily	 values	 are	used,	 it	 is	 imperfectly	
fed	to	the	algorithm,	since	nighttime	cloud	coverage	would	no	affect	NO2	
concentration.	Thus,	some	irradiance	related	variable	from	ERA-5	seems	
a	better	choice	(SSI	is	a	good	one	to	investigate	first).	Since	the	results	are	
satisfactory	even	using	 the	cloud	coverage	proxy,	 I	 suggest	 to	add	some	
discussion	on	the	selection	of	the	variables	and	probable	investigate	other	
ones	in	the	future.	The	reviewer	here	raises	an	interesting	point,	and	we	
agree	 that	 including	such	 information	 is	 susceptible	 to	 improve	 the	ML-
based	predictions.	We	thus	re-run	our	analysis	adding	the	ERA5	surface	
net	solar	radiation,	surface	solar	radiation	downwards	and	the	downward	
UV	 radiation	 at	 the	 surface	 to	 the	 set	 of	 features.	 The	 impact	 on	 the	
statistical	results	is	generally	positive	although	relatively	small	(error	and	
correlation	very	 slightly	 improved,	 and	bias	very	 slightly	 increased).	On	
average,	 the	 importance	 of	 these	 new	 features	 is	 4,	 4	 and	 5%,	
respectively,	 which	 demonstrates	 their	 usefulness	 for	 predicting	 NO2	
concentrations.	We	updated	the	entire	document	(figures,	tables	and	text)	
with	 the	 results	 obtained	with	 this	 new	 set	 of	 features.	 Note	 that	most	
changes	 are	 minor,	 so	 the	 discussion	 remains	 the	 same.	 We	 thank	 the	
reviewer	for	helping	us	further	improving	the	results.	

• Figure	1.	I	think	it	is	somehow	difficult	to	understand	the	map,	probably	a	
different	 selection	 of	 color	 bar	 would	 make	 it	 easier	 to	 figure	 out	 the	
conditions.	 The	 viridis	 default	 color	 bar	 in	 Python	 matplotlib	 library	
presents	 a	 number	 of	 well	 recognized	 advantages	 over	 most	 of	 the	
existing	 color	 bars	 (e.g.	 color-blind	 friendly,	 perceptually	 uniform	when	
printed	in	black	and	white).	We	thus	decided	to	keep	it	but	we	modified	
the	number	of	colors	in	order	to	make	Figs.	1	and	6	easier	to	read.	



• L119	 ERA-5	 spatial	 resolution	 is	 around	 30km.	 Are	 there	 stations	 that	
correspond	 to	 the	 same	 grid	 point	 of	 the	 database?	 Please	 discuss	 the	
uncertainty	 introduced	 by	 the	 problem	 of	 non-colocation	 of	 ERA-5	 and	
actual	 measuring	 stations.	 Given	 the	 ERA5	 spatial	 resolution,	 urban	
background	and	traffic	stations	within	a	same	city	typically	belong	to	the	
same	ERA5	grid	 cell.	We	 are	not	 sure	 to	perfectly	understand	 the	point	
raised	here	by	the	reviewer	given	that	ERA5,	as	gridded	data,	can	always	
be	 collocated	 with	 any	 measuring	 stations.	 After	 that,	 considering	
numerical	meteorological	data	over	a	volume	(the	grid	cell)	as	a	proxy	of	
the	meteorological	conditions	occurring	at	a	point	(the	air	quality	station)	
indeed	necessarily	comes	with	some	uncertainties.	The	uncertainties	(e.g.	
of	representativeness)	related	to	the	relatively	coarse	resolution	of	ERA5	
for	representing	accurately	the	meteorological	conditions	at	the	different	
stations	are	already	discussed	(L216-226	in	the	first	version)	in	the	initial	
manuscript,	so	we	think	that	there	is	not	much	more	useful	information	to	
add	concerning	this	point.		

• L130	Is	that	the	case	in	any	of	the	data	used	here?	Are	there	any	stations	
with	significant	trends	in	the	training	period?	To	our	opinion,	the	3-years	
training	 period	 is	 too	 short	 to	 compute	 meaningful	 trends.	 Over	 the	
period	 2013-2019,	 a	 simple	 linear	 trend	 analysis	 on	 annual	mean	 NO2	
mixing	 ratios	 indicates	 that	21	over	75	stations	show	significant	 trends,	
with	a	median	of	-5%/year.		

• L141	Following	the	arguments	deployed	in	previous	paragraphs,	it	seems	
preferable	to	test	the	validity	in	the	same	period	of	the	year,	as	the	one	of	
interest	(March-May),	than	in	January	-February.	The	reviewer	is	raising	
here	 an	 important	 point	 that	 deserves	 more	 discussion.	 In	 the	 revised	
version	of	the	paper,	we	greatly	reshaped	Table	1	and	the	corresponding	
discussion.	
As	 explained	 in	 the	 text,	 at	 each	 station,	 several	 ML	 experiments	 have	
been	 conducted,	 including	 the	 reference	 one	 with	 training	 over	 2017-
2019	 and	 testing	 in	 2020	 (hereafter	 referred	 to	 as	 the	 EXP2020	
experiment),	and	the	four	other	experiments	based	on	past	data	and	used	
for	 quantifying	 the	 uncertainties	 of	 our	 NO2	 predictions	 (hereafter	
referred	to	as	the	EXP2016,	EXP2017,	EXP2018,	and	EXP2019	experiments).	
Only	the	ML	models	obtained	from	the	reference	EXP2020	experiment	are	
used	 for	 estimating	 the	 business-as-usual	 NO2	 during	 the	 COVID-19	
lockdown,	 which	 explains	 why	 we	 initially	 focused	 on	 them	 for	 the	
statistical	 evaluation.	 Since	 the	 lockdown	 period	 in	 2020	 can	 evidently	
not	be	used	for	evaluation,	this	constrained	us	to	restrict	the	evaluation	to	
the	 period	 01/01/2020-13/03/2020.	 However,	 we	 agree	 that	 the	
performance	 of	 the	 ML	 models	 may	 be	 different	 during	 the	 lockdown	
period.	 In	 the	 revised	 version	 of	 the	 paper,	 we	 now	 also	 discuss	 the	
performance	 obtained	 with	 the	 four	 other	 experiments	 (EXP2016-2019),	
which	allows	 to	check	 the	performance	during	 the	period	of	 the	year	of	
the	 lockdown.	 Besides	 Table	 1,	 the	 text	 in	 this	 section	 is	 modified	 as	
follows	:		
“The	 performance	 of	 the	 ML	 predictions	 in	 each	 Spanish	 province	 and	
station	type	is	shown	in	Fig.	2,	and	the	statistics	over	all	Spanish	provinces	
reported	 in	 Table	 1.	 Statistical	 results	 in	 Table	 1	 are	 given	 for	 both	 the	



reference	ML	 experiment	 (EXP2020)	 and	 the	 other	 experiments	 combined	
together	(EXP2016,	EXP2017,	EXP2018	and	EXP2019,	hereafter	referred	to	
as	EXP2016−2019).	Besides	providing	a	broader	view	of	the	performance	of	
our	 modeling	 strategy,	 considering	 these	 past	 experiments	 also	 allows	
assessing	 the	 performance	 of	 the	ML	 predictions	 during	 the	 period	 of	 the	
year	of	the	lockdown	(14/03-30/04,	for	years	2016	to	2019),	which	may	be	
important	 given	 the	 potential	 seasonality	 of	 prediction	 errors.	 Statistics	
obtained	at	urban	background	and	traffic	stations	are	given	in	Table	A2	in	
Appendix.	 Results	 are	 evaluated	 using	 the	 following	 metrics,	 calculated	
based	on	daily	NO2	mixing	ratios	:	mean	bias	(MB),	normalized	mean	bias	
(nMB),	root	mean	square	error	(RMSE),	normalized	root	mean	square	error	
(nRMSE)	and	Pearson	correlation	coefficient	(PCC).	
For	 	 information	 	purposes,	 	we	included	 	the	 	statistical	 	results	 	obtained		
over		the		training		dataset		(2017/01/01-2019/12/31		in	EXP2020).	Checking	
results	 over	 the	 training	 data	 may	 be	 useful	 for	 highlighting	 obvious	
situations	 of	 overfitting,	 when	 the	 performance	 is	 almost	 perfect.	 At	 both	
urban	 background	 and	 traffic	 stations,	 results	 show	 no	 bias,	 low	 nRMSE	
(always	below	35%,	19%	when	considering	all	provinces),	and	a	high	PCC	of	
0.96.	Similar	results	are	obtained	when	considering	the	ensemble	of	all	past	
experiments	 (EXP2016−2019).	 Although	 such	 a	 performance	 obtained	 is	 very	
good,	there	are	no	clear	signs	of	too	prejudicial	overfitting	at	this	stage.	
On		the		test		dataset		of		the		EXP2020	reference		experiment		(2020/01/01-
2020/03/13,		before		the		lockdown),		the		performance	remains	reasonably	
good	 in	most	 provinces.	 Over	 all	 Spanish	 provinces,	 the	 nMB	 increases	 to	
+4%,	 the	 nRMSE	 to	 29%	 and	 the	 PCC	 is	 reduced	 to	 0.86,	 in	 very	 close	
agreement	with	 the	performance	obtained	with	EXP2016−2020	 (nMB	of	+1%,	
nRMSE	of	28%	and	PCC	of	0.86).	In	comparison,	the	performance	obtained	
in	EXP2016−2019	during	the	period	of	the	year	of	the	lockdown	(14/03-30/04)	
is	a	bit	lower	but	remains	reasonable,	with	a	nMB	of	+4%,	a	nRMSE	of	37%	
and	 a	 PCC	 of	 0.80.	 Although	 moderate,	 such	 a	 deterioration	 of	 the	
performance	 after	 mid-March	 might	 reflect	 some	 seasonality	 in	 the	 ML	
model	errors	and/or	could	be	related	to	the	presence	of	trends	in	the	NO2	
concentrations.	 Concerning	 this	 last	 point,	 as	 previously	 discussed	 in	 Sect.	
2.3.2,	including	the	date	index	feature	in	the	ML	model	aims	at	limiting	this	
potential	 issue	but	 likely	 cannot	 completely	 solve	 it.	Generally,	 only	minor	
differences	 of	 performance	 are	 found	 between	 urban	 background	 and	
traffic	stations.		
Results	 of	 EXP2020	 per	 province	 (Fig.	 2)	 highlight	 some	 inter-regional	
variability	of	 the	performance,	with	poorer	statistics	 in	some	provinces,	at	
least	for	one	type	of	station.	At	most	stations,	the	bias	remains	below	±20%	
while	nRMSE	ranges	between	15	and	45%	(highest	nRMSE	around	50%	in	
Teruel,	Tenerife	and	Fuerteventura).	Most	provinces	show	PCC	around	0.6-
0.9,	 with	 only	 a	 few	 exceptions	 below	 0.6	 (urban	 background	 sites	 in	
Bizkaia,	 Fuerteventura,	 Huesca	 and	 traffic	 sites	 in	 Granada	 and	 Gran	
Canaria).”	 Note	 that	 we	 also	 added	 a	 Table	 A2	 in	 the	 Appendix	 with	
detailed	statistics	on	urban	background	and	traffic	stations.	

• L159	Figure	1	shows	that	a	number	of	stations	have	mean	concentrations	
∼5ppvb.	 Thus	 these	 intervals	 are	 very	 huge,	 making	 the	 result	 not	
reliable.	 I	 suggest	 to	 present	 these	 intervals	 in	 a	 different	way	 and	 not	



averaging	 all	 that	 data.	 In	 this	 study,	 the	 uncertainties	 affecting	 our	ML	
predictions	 are	 estimated	 using	 the	 most	 conservative	 approach,	
precisely	 in	 order	 to	 ensure	 the	 reliability	 of	 the	 NO2	 reductions	
highlighted.	 These	 uncertainty	 intervals	 provided	 are	 indeed	 large	 but	
correspond	 to	 the	 uncertainties	 of	 the	ML	predictions	 at	 the	 daily	 scale	
(between	January	and	April).	Therefore,	they	cannot	be	compared	to	the	
(multi-)	annual	NO2	averages	shown	for	 instance	 in	Figure	1.	As	already	
explained	in	the	manuscript,	and	as	expected	due	to	error	compensations,	
the	 longer	 the	 time	scale,	 the	shorter	 these	uncertainties.	Therefore,	 the	
reviewer	is	here	misleading	his	interpretation	of	the	numbers	provided	in	
the	text.	We	modified	the	sentence	to	avoid	confusion	:	“Averaged	over	all	
Spanish	 provinces,	 the	 uncertainty	 interval	 of	ML	 predictions	 at	 the	 daily	
scale	is	[-5.1,	+5.3]	ppbv	at	urban	background	stations,	and	[-6.6,	+6.7]	ppbv	
at	 traffic	 stations.”	 (Note	 that	 the	 uncertainty	 intervals	 are	 here	 slightly	
modified	 compared	 to	 the	 initial	 manuscript	 as	 they	 correspond	 to	 the	
results	obtained	with	the	extended	set	of	features).	

• L167-168	 This	 argument	 is	 not	 clear.	 Please	 explain	 in	 detail.	 Here	 we	
simply	mean	that	errors	at	the	daily	scale	can	at	least	partly	compensate	
each	 other,	 which	 implies	 that	 averaging	 the	 ML-based	 predictions	 of	
daily	 NO2	 mixing	 ratios	 to	 longer	 time	 scales	 (a	 week	 for	 instance)	 is	
expected	 to	 reduce	 the	 uncertainty.	 This	 is	 quite	 common,	 also	 for	
traditional	chemistry	transport	models	(reproducing	the	daily	mean	NO2	
concentrations	always	goes	with	stronger	uncertainties	than	the	weekly,	
monthly	or	annual	mean	NO2	concentrations).	We	modified	the	sentence:	
“These	 uncertainties	 are	 suited	 for	 our	 ML-based	 daily	 NO2	 predictions.	
Because	 these	 daily	 uncertainties	 are	 likely	 at	 least	 partly	 uncorrelated,	
NO2	 daily	 predictions	 averaged	 over	 periods	 longer	 than	 one	 day	 are	
expected	to	have	smaller	uncertainties	due	to	error	compensations.”	

• Table1	 The	 test	 cases	N	 seems	 very	 low,	 are	 these	 implying	 number	 of	
stations	or	total	number	of	test	days	for	all	stations?	Table	1	in	the	initial	
version	 of	 the	 manuscript	 gives	 the	 “the	 statistics	 averaged	 over	 all	
Spanish	provinces”,	so	the	test	cases	N	corresponds	to	neither	the	number	
of	stations,	nor	the	total	number	of	test	days,	but	the	number	of	test	days	
per	station	(on	average	over	all	stations).	For	each	station	in	each	Spanish	
province,	training	is	performed	over	2017-2019	(maximum	N	for	training	
is	 therefore	 3x365	 =	 1,095	 points	 per	 station)	 and	 testing	 over	 2020	
before	 lockdown	 (maximum	 N	 for	 testing	 is	 therefore	 31+28+14	 =	 73	
points	per	station).	 In	 this	Table,	 statistics	were	 first	computed	 for	each	
station	 individually,	 and	 then	 averaged	 together	 to	 give	 the	 numbers	
provided	in	Table	1.	Results	at	individual	stations	are	still	visible	in	Fig.	2.		
In	 the	 updated	 version	 of	 the	 manuscript,	 we	 greatly	 reshaped	 all	 this	
discussion,	 following	 a	 previous	 comment	 of	 the	 reviewer.	 Table	 1	 now	
gives	 the	 overall	 statistical	 results,	 computed	 over	 the	 entire	 data	 (i.e.	
combining	 all	 provinces	 together),	 which	 gives	 a	 broader	 view	 of	 the	
performance	obtained	by	the	ML-based	predictive	models.	

• L255	 In	 some	 cities,	 such	 zones,	 resulted	 in	 much	 higher	 traffic	 in	
peripheral	 road	 networks.	 Thus	 the	 stations	 at	 3	 and	 9	 km,	 might	
experiencing	 heavier	 traffic	 due	 to	 LEZ	 in	 the	 center.	 This	 should	 be	
answered	locally	by	explaining	the	main	routes	and	the	traffic	of	each	city.	



Investigating	in	more	detail	the	traffic	pattern	of	Madrid	is	far	beyond	the	
scope	 of	 this	 paper.	 Although	 the	 reviewer	 is	 right	 in	 principle,	 to	 our	
opinion,	 the	 three	 reasons	 already	mentioned	here	 in	 the	 text	 –	namely	
the	very	limited	area	of	this	LEZ	zone	(5	km2),	the	rather	large	distance	to	
the	 stations	 selected	 and	 last	 but	 not	 least,	 the	 expected	 progressive	
transition	to	a	new	traffic	pattern,	given	the	absence	of	fines	before	April	
1st	(and	postponed	to	September	15th	2020	due	to	the	COVID-19	situation	
(we	added	this	new	element	of	information	in	the	revised	manuscript	:	“In	
our	 case,	 we	 expect	 a	 limited	 impact	 because	 the	 LEZ	 was	 still	 in	 its	
transition	 phase	 (strict	 enforcement	 through	 fines	 to	 offending	 motorists	
was	not	expected	until	April	1st	and	was	finally	postponed	to	September	15th	
2020	 due	 to	 the	 COVID-19	 situation)	 and	 the	 two	 stations	 selected	 in	
Madrid	province	are	 located	outside	 the	LEZ	(at	9	and	3	km	from	the	city	
center).”)	 –	 combined	 together,	 reasonably	 justify	 our	 assumption	 that	
only	a	“limited	impact	is	expected”	in	Madrid.		

• L263	 “Statistically	 significant”	 should	 not	 be	 used	 without	 proper	
definition	 and	 explanation.	 Explain	 which	 significance	 tests	 you	 used,	
what	was	 the	outcome	and	 then	provide	 such	 conclusions.	Here	we	did	
not	 use	 any	 statistical	 test.	 Uncertainties	 of	 daily	 (weekly)	 NO2	 mixing	
ratios	were	 computing	 empirically	 as	 the	5th	 and	95th	 percentiles	 of	 the	
daily	 (weekly)	 residuals	 obtained	 over	 past	 experiments.	 They	 are	 thus	
expected	(by	construction)	to	represent	the	90%	confidence	interval.	We	
modified	the	sentence	:	“The	uncertainty	at	weekly	scale	is	here	used	as	an	
estimate	of	the	uncertainty	at	90%	confidence	level	(by	construction,	given	
that	 they	 are	 computed	 as	 the	 5th	 and	 95th	 percentiles	 of	 the	 weekly	
residuals,	see	Sect.	2.3.3)	affecting	the	mean	NO2	change.”	

• 3.3	 I	 think	 it	 is	 important	 to	present	some	representative	cases	of	other	
stations’	 time	 series	 in	 figures	 similar	 to	 3	 and	 4.	 These	 provide	 a	 very	
clear	picture	of	the	conditions	during	the	lockdown	phases.	Are	there	any	
periods	 of	 higher	 than	 business	 as	 usual	 concentration,	 probably	 in	 the	
stations	with	 low	mean	values	 (Granada	and	Murcia	probably)?	Besides	
the	 time	 series	 for	 Madrid	 and	 Barcelona	 (Figs.	 3	 and	 4),	 we	 are	 now	
providing	 the	 Supplement	 the	 time	 series	 obtained	 in	 all	 other	 Spanish	
provinces	(Figs.	S1-48),	 in	order	to	allow	the	reader	to	check	the	results	
obtained	in	specific	locations.	Results	obtained	in	the	other	provinces	are	
generally	 consistent	 with	 those	 already	 discussed	 in	 Madrid	 and	
Barcelona.	Thus,	we	do	not	 think	 that	 it	 is	particularly	useful	 to	present	
and	discuss	other	cases	in	the	manuscript.		
	
To	answer	 the	 specific	question	of	 the	 reviewer,	 it	 is	 indeed	possible	 to	
encounter	 observed	 NO2	 concentrations	 higher	 to	 the	 ML-based	
business-as-usual	 concentrations	 on	 specific	 days,	 although	 it	 rarely	
happens.	 With	 the	 updated	 results	 obtained	 with	 the	 extended	 set	 of	
features,	over	all	daily	data	available	during	the	lockdown,	only	4%	(110	
points	 over	 2844)	 of	 the	 daily	 NO2	 exceed	 the	 predicted	 business-as-
usual	NO2	estimates.	Over	 these	points,	 the	observed	NO2	mixing	ratios	
are	 on	 average	 1.3	 ppbv	 higher	 than	 the	 business-as-usual	 (20%	 in	
relative).	 For	 information	 purpose,	 we	 included	 in	 the	 text:	 “Results	
highlight	that	the	reduction	previously	described	in	Madrid	and	Barcelona	



extends	 to	 most	 Spanish	 provinces,	 although	 with	 some	 inter-regional	
variability	 in	 the	 extent	 of	 the	 change	 and	 the	 degree	 of	 statistical	
significance.	During	the	 lockdown	period,	96%	(2734	points	over	2844)	of	
the	observed	daily	NO2	mixing	ratios	are	lower	than	the	ML-based	business-
as-usual	 NO2	 estimates.”.	 Note	 that	 the	 corresponding	 observed	 NO2	
mixing	 ratios	 are	 not	 particularly	 low	 since	 their	 average	 reaches	 7.8	
ppbv	 (compared	 to	 5.4	 ppbv	 for	 the	 entire	 NO2	 observational	 dataset).	
Note	 also	 that	 additional	 information	 can	 already	 be	 found	 in	 Table	 2	
where	 we	 provided	 the	 maximum	 NO2	 changes	 (among	 all	 provinces)	
during	the	three	different	phases	and	the	entire	lockdown	period	:	in	the	
revised	 version	 of	 the	manuscript,	 you	 can	 see	 that	 the	maximum	NO2	
changes	 (i.e.	 in	 our	 case,	 the	 changes	 closest	 to	 zero	 since	 values	 are	
negative)	are	all	negative	or	close	to	zero	(-14%	during	phases	I+II+III	for	
both	urban	background	and	 traffic	 stations,	 -14	and	 -1%	during	phase	 I	
for	urban	background	and	traffic	stations,	respectively,	etc.).	This	means	
that	 although	 observed	 NO2	 can	 be	 higher	 than	 the	 business-as-usual	
NO2	 on	 specific	 days,	 this	 is	 never	 the	 case	 along	 an	 entire	 phase	
(otherwise	 results	 would	 show	 some	 increases	 of	 NO2	 during	 specific	
phases).	
	
It	 is	 worth	 noting	 here	 that	 as	 explained	 in	 the	 manuscript,	 when	
selecting	 the	stations,	we	required	at	 least	10%	of	daily	data	during	 the	
entire	lockdown	period	(41	days),	which	represents	4	days.	However,	we	
did	 not	 apply	 a	 similar	 criteria	 at	 the	 smaller	 scale	 of	 the	 individual	
lockdown	phases.	Although	the	data	coverage	in	Madrid	and	Barcelona	is	
very	 good,	 in	 some	 other	 provinces,	 the	 average	 NO2	 reductions	
computed	during	specific	lockdown	phases	can	be	based	on	very	few	data.	
This	can	now	be	seen	in	the	Supplement.	 If	we	consider	for	 instance	the	
urban	background	station	in	Murcia,	data	are	available	during	7,	5	and	5	
days	 in	phases	 I,	 II	 and	 III,	 respectively	 (therefore	quite	well	 balanced).	
However,	at	the	urban	background	station	in	Granada,	data	are	available	
during	 1,	 1	 and	 9	 days	 in	 phase	 I,	 II	 and	 III,	 respectively.	 More	
importantly,	the	only	daily	data	available	in	phase	I	is	on	the	first	day	of	
the	phase	(March	15th),	i.e.	at	the	very	beginning	of	the	lockdown,	which	
likely	 explains	 the	 low	 increase	 of	 NO2	 highlighted	 during	 phase	 I	 (see	
Fig.	A1	in	Appendix).	The	data	coverage	in	these	two	provinces	is	almost	
complete	 for	 the	 traffic	 station.	 Over	 all	 Spanish	 provinces,	 largest	 data	
gaps	 during	 the	 lockdown	 period	 are	 found	 at	 background	 stations	 in	
Fuerteventura,	Granada,	Albacete,	Alicante,	Cuidad	Real,	Cádiz,	Mallorca,	
Menorca,	 Murcia	 and	 Salamanca,	 and	 at	 traffic	 stations	 in	 Cádiz	 and	
Huelva.	
We	 realize	 now	 that	 this	 can	 bring	 some	 confusion	 regarding	 the	
representativeness	 of	 the	 NO2	 reductions	 highlighted	 in	 the	 paper.	
Therefore,	 in	 the	 revised	 version	 of	 the	manuscript,	we	 now	 require	 at	
least	3	days	of	available	data	during	each	lockdown	phase.	For	computing	
the	NO2	change	during	phases	I+II+III,	we	required	data	available	during	
at	 least	 2	 over	3	phases,	 to	 avoid	 cases	where	data	 is	 actually	 available	
only	during	one	specific	phase.	As	a	consequence,	some	provinces	during	



specific	 lockdown	phases	have	been	 removed	 in	 Figs.	 5	 and	A1-A4.	The	
overall	discussion	remains	unchanged.	

• 3.5	 A	 figure	 showing	 all	 three	 time	 series	 (climatological,	 business	 as	
usual	 and	 measured)	 would	 be	 very	 useful,	 at	 least	 for	 some	
representative	 stations.	 Following	 the	 suggestion	 of	 the	 reviewer,	 we	
added	the	monthly	climatological	mean	NO2	in	the	time	series	plots	(Figs.	
3,	 4	 and	 Figs.	 S1-48	 in	 the	 Supplement),	 as	 well	 as	 the	 NO2	 changes	
obtained	with	the	climatological	average	approach	in	Figs.	5	and	Figs.	A1-
A4	in	the	Appendix.	

• L.384-387	This	is	a	very	important	finding	at	should	be	highlighted	more	
and	 included	 in	 the	 conclusions,	 because	 it	 is	 general	 for	 future	
application	of	 climatological	values.	We	added	 the	 following	sentence	 in	
the	 conclusion	 :	 “We	also	 demonstrated	 the	 benefits	 of	 our	meteorology-
normalization	 approach	 compared	 to	 a	 simple	 climatological-based	
approach,	especially	at	smaller	temporal	and	spatial	scales.”	

• L445	It	is	not	clear	if	all	the	flagged	data	were	removed	for	the	process	or	
if	different	flags	were	treated	differently.	All	the	flagged	data	were	indeed	
removed.	 We	 added	 a	 sentence	 at	 the	 end	 of	 this	 paragraph:	 “All	 the	
corresponding	measurements	were	removed	from	the	dataset.”	

	
	

Other	modifications	
Given	the	recent	publication	of	a	few	new	relevant	studies	on	the	topic	(focusing	
on	Spain),	we	updated	some	sentences	in	the	manuscript	:	

• “While	such	an	extraordinary	situation	has	obviously	impacted	the	levels	of	
air	 pollution	 in	 the	 country,	 as	 seen	 in	 both	 surface	 and	 satellite	
observations	(Tobías	et	al.,	2020;	Bauwens	et	al.,	2020),	the	extent	of	such	
reductions	remains	uncertain.”	

• “Actually,	the	lockdown	offers	unique	opportunities	for	so-called	dynamical	
CTM	evaluations	(Rao	et	al.,	2011),	i.e.,	testing	the	ability	of	CTMs	to	
reproduce	the	observed	changes	of	concentrations	under	unusually	different	
emissions	(Guevara	et	al.,	2020a;	Menut	et	al.,	2020).”	

• “A	more	detailed	analysis	of	the	activity	data	in	these	different	emission	
sectors	is	required	to	better	quantify	how	the	emission	forcing	has	been	
modified	by	the	lockdown	(Guevara	et	al.,	2020a)	and	to	understand	the	
reductions	of	NO2	obtained	in	this	study.”	

• “In	a	separate	study,	our	meteorology-normalized	estimates	are	used	to	
quantify	the	circumstantial	reduction	in	the	mortality	attributable	to	the	
short-term	effects	of	NO2	during	the	lockdown	(Achebak	et	al.,	2020).”	

	
With	the	corresponding	references	:		

• Achebak,	H.,	Petetin,	H.,	Quijal-Zamorano,	M.,	Bowdalo,	D.,	García-Pando,	
C.	P.,	and	Ballester,	J.:	Reduction	in	air	pollution	and	attributable	mortality	
due	to	COVID-19	lockdown,	The	Lancet	Planetary	Health,	4,	e268,	
https://doi.org/10.1016/S2542-5196(20)30148-0,	
https://linkinghub.elsevier.com/retrieve/pii/S2542519620301480,	
2020.	



• Bauwens,	M.,	Compernolle,	S.,	Stavrakou,	T.,	Müller,	J.,	Gent,	J.,	Eskes,	H.,	
Levelt,	P.	F.,	van	der	A,	R.,	Veefkind,	J.	P.,	Vlietinck,	J.,	Yu,	H.,	and	Zehner,	C.:	
Impact	of	Coronavirus	Outbreak	on	NO	2	Pollution	Assessed	Using	
TROPOMI	and	OMI	Observations,	Geophysical	Research	Letters,	47,	
https://doi.org/10.1029/2020GL087978,	
https://onlinelibrary.wiley.com/doi/abs/10.1029/2020GL087978,	2020.	

• Guevara,	M.,	Jorba,	O.,	Soret,	A.,	Petetin,	H.,	Bowdalo,	D.,	Serradell,	K.,	Tena,	
C.,	Denier	van	der	Gon,	H.,	Kuenen,	J.,	Peuch,	V.-H.,	and	Pérez	García-
Pando,	C.:	Time-resolved	emission	reductions	for	atmospheric	chemistry	
modelling	in	Europe	during	the	COVID-19	lockdowns	(in	review),	
Atmospheric	Chemistry	and	Physics	Discussions,	
https://doi.org/10.5194/acp-2020-686,	2020a	

• Menut,	L.,	Bessagnet,	B.,	Siour,	G.,	Mailler,	S.,	Pennel,	R.,	and	Cholakian,	A.:	
Impact	of	lockdown	measures	to	combat	Covid-19	on	air	quality	over	
western	Europe,	Science	of	The	Total	Environment,	741,	140	426,	
https://doi.org/10.1016/j.scitotenv.2020.140426,	
https://linkinghub.elsevier.com/retrieve/pii/S0048969720339486,	
2020.	

	
Complete	list	of	changes	:	

• Title	 :	 “Meteorology-normalized	 impact	 of	 the	 COVID-19	 lockdown	 upon	
NO2	pollution	in	Spain”	

• Affiliations	:	“ICREA,	Catalan	Institution	for	Research	and	Advanced	Studies,	
Barcelona,	Spain”	

• L1	 :	 “The	 spread	 of	 the	 new	 coronavirus	 SARS-COV-2	 causing	 COVID-19	
forced	the	Spanish	Government	[…]”	

• L10	:	“The	ML	predictive	models	were	found	to	perform	remarkably	well	in	
most	locations,	with	overall	bias,	root-mean-squared	error	and	correlation	
of	+4%,	29%	and	0.86,	respectively.”	

• L24	 :	 “The	 rapid	 spread	 of	 the	 new	 coronavirus	 SARS-COV-2	 that	 causes	
COVID-19	[…]”	

• L39	 :	 “While	 such	 an	 extraordinary	 situation	 has	 obviously	 impacted	 the	
levels	 of	 air	 pollution	 in	 the	 country,	 as	 seen	 in	 both	 surface	 and	 satellite	
observations	(Tobias	et	al.,	2020;	Bauwens	et	al.,	2020),	the	extent	of	such	
reductions	remains	uncertain.”	

• L45	:	“[…]	testing	the	ability	of	CTMs	to	reproduce	the	observed	changes	of	
concentrations	under	unusually	different	emissions	(Guevara	et	al.,	2020b;	
Menut	et	al.,	2020).”	

• L75	 :	 “The	 fraction	of	E1a	data	 is	0%	in	2020,	99%	in	2019	and	100%	in	
2013-2018.”	

• L76	 :	 “All	 NO2	measurements	 taken	 into	 account	 here	 are	 operated	 using	
chemiluminescence	 with	 an	 internal	 Molybdenum	 converter.	 Although	
predominantly	 used	 over	 Europe	 for	 measuring	 NO2,	 this	 measurement	
technique	 is	 well	 known	 to	 be	 have	 strong	 positive	 artifacts	 due	 to	
interferences	 of	 NOz	 compounds	 (e.g.	 nitric	 acid,	 peroxyacetyl	 nitrates,	
organic	nitrates),	especially	during	daytime	when	these	species	are	photo-
chemically	formed,	up	to	a	factor	of	2-4	as	observed	during	summertime	in	
urban	 atmospheres	 (e.g.	 Dunlea	 et	 al.,	 2007;	 Villena	 et	 al.,	 	 2012).	 In	 our	
case,	the	positive	artifacts	at	urban	background	stations	are	probably	lower	



since	 the	 period	 of	 study	 (late	 winter	 and	 early	 spring)	 is	 less	 photo-
chemically	active	than	summertime.	Even	lower	interferences	are	expected	
at	 traffic	 stations	 where	 the	 NOz/NOx	 ratio	 is	 typically	 lower	 due	 to	 the	
proximity	to	fresh	NOx	emissions.	In	any	case,	the	present	study	focuses	on	
the	 relative	 changes	 of	 NO2	 due	 to	 the	 lockdown,	 so	 biases	 in	 the	 NO2	
measurements	are	of	lower	importance.”	

• L100	 :	 “	 […]	 total	 cloud	 cover,	 surface	 net	 solar	 radiation,	 surface	 solar	
radiation	downwards,	downward	UV	radiation	at	the	surface	and	boundary	
layer	height.”	

• L114	:	“Choice	of	features	and	modeling	strategy”	
• L118	 :	 “[…]	 total	 cloud	 cover,	 surface	 net	 solar	 radiation,	 surface	 solar	

radiation	 downwards,	 downward	 UV	 radiation	 at	 the	 surface,	 boundary	
layer	height	[…]”	

• L124	:	“Including	such	a	feature	with	unique	values	(going	from	0	for	
2013/01/01	to	2669	for	2020/04/23)”	

• L136	:	“This	ML	experiment	is	hereafter	referred	to	as	EXP2020.”	
• L155	:	“These	ML	experiments	are	hereafter	referred	to	as	EXP2016,	EXP2017,	

EXP2018	and	EXP2019,	respectively.”	
• L159	 :	 “Averaged	over	all	 Spanish	provinces,	 the	uncertainty	 interval	 is	 [-

5.1,	+5.3]	ppbv	at	urban	background	stations,	and	[-6.6,	+6.7]	ppbv	at	traffic	
stations.”	

• L167	 :	 “Because	 these	 daily	 uncertainties	 are	 likely	 at	 least	 partly	
uncorrelated,	NO2	daily	predictions	averaged	over	time	periods	longer	than	
one	 day	 are	 expected	 to	 have	 smaller	 uncertainties	 due	 to	 error	
compensations.”		

• L172	 :	 “On	 average	 over	 all	 provinces,	 the	 weekly	 uncertainty	 interval	
obtained	are	[-3.8,	+3.6]	ppbv	at	urban	background	stations,	and	[-4.9,	+4.7]	
ppbv	at	traffic	stations,	which	represents	a	reduction	of	28%	for	both	types	
of	stations,	with	respect	to	the	daily	uncertainties.”	

• L179	:	“Note	that	these	ancillary	ML	experiments	used	here	for	quantifying	
the	 uncertainties	 also	 allow	 to	 evaluate	 the	 performance	 of	 our	modeling	
strategy	during	the	period	of	the	year	of	the	lockdown	(as	explained	later	in	
Sect.	3.1).”	

• L181	 :	 “Time	series	 in	 the	other	48	Spanish	provinces	can	be	 found	 in	 the	
Supplement.”	

• L186	 :	 “The	 performance	 of	 the	ML	 predictions	 in	 each	 Spanish	 province	
and	 station	 type	 is	 shown	 in	 Fig.	 2,	 and	 the	 statistics	 over	 all	 Spanish	
provinces	 reported	 in	 Table	 1.	 Statistical	 results	 in	 Table	 1	 are	 given	 for	
both	 the	 reference	 ML	 experiment	 (EXP2020)	 and	 the	 other	 experiments	
combined	 together	 (EXP2016,	EXP2017,	EXP2018	and	EXP2019,	 hereafter	
referred	 to	 as	 EXP2016−2019).	 Besides	 providing	 a	 broader	 view	 of	 the	
performance	of	our	modeling	strategy,	considering	these	past	experiments	
also	 allows	 assessing	 the	 performance	 of	 the	 ML	 predictions	 during	 the	
period	of	the	year	of	the	lockdown	(14/03-30/04,	for	years	2016	to	2019),	
which	may	be	important	given	the	potential	seasonality	of	prediction	errors.	
Statistics	 obtained	 at	 urban	 background	 and	 traffic	 stations	 are	 given	 in	
Table	A2	in	Appendix.”	

• L190	 :	 “For	 	 information	 	 purposes,	 	we	 included	 	 the	 	 statistical	 	 results		
obtained	 	 over	 	 the	 	 training	 	 dataset	 	 (2017/01/01-2019/12/31	 	 in	



EXP2020).	 Checking	 results	 over	 the	 training	 data	 may	 be	 useful	 for	
highlighting	 obvious	 situations	 of	 overfitting,	 when	 the	 performance	 is	
almost	perfect.	At	both	urban	background	and	traffic	stations,	results	show	
no	 bias,	 low	 nRMSE	 (always	 below	 35%,	 19%	 when	 considering	 all	
provinces),	 and	 a	 high	 PCC	 of	 0.96.	 Similar	 results	 are	 obtained	 when	
considering	the	ensemble	of	all	past	experiments	(EXP2016−2019)."	

• L195	 :	 “On	 	 the	 	 test	 	 dataset	 	 of	 	 the	 	 EXP2020	 reference	 	 experiment		
(2020/01/01-2020/03/13,	 	 before	 	 the	 	 lockdown),	 	 the	 	 performance	
remains	reasonably	good	in	most	provinces.	Over	all	Spanish	provinces,	the	
nMB	increases	to	+4%,	the	nRMSE	to	29%	and	the	PCC	is	reduced	to	0.86,	in	
very	close	agreement	with	the	performance	obtained	with	EXP2016−2020	(nMB	
of	+1%,	nRMSE	of	28%	and	PCC	of	0.86).	 In	comparison,	 the	performance	
obtained	 in	 EXP2016−2019	 during	 the	 period	 of	 the	 year	 of	 the	 lockdown	
(14/03-30/04)	is	a	bit	lower	but	remains	reasonable,	with	a	nMB	of	+4%,	a	
nRMSE	of	37%	and	a	PCC	of	0.80.	Although	moderate,	such	a	deterioration	
of	 the	performance	after	mid-March	might	 reflect	 some	 seasonality	 in	 the	
ML	model	 errors	 and/or	 could	be	 related	 to	 the	presence	 of	 trends	 in	 the	
NO2	 concentrations.	 Concerning	 this	 last	 point,	 as	 previously	 discussed	 in	
Sect.	2.3.2,	including	the	date	index	feature	in	the	ML	model	aims	at	limiting	
this	 potential	 issue	 but	 likely	 cannot	 completely	 solve	 it.	 Generally,	 only	
minor	differences	of	performance	are	found	between	urban	background	and	
traffic	stations.	Results	of	EXP2020	per	province	(Fig.	2)	highlight	some	inter-
regional	 variability	 of	 the	 performance,	 with	 poorer	 statistics	 in	 some	
provinces,	at	least	for	one	type	of	station.	At	most	stations,	the	bias	remains	
below	 ±20%	 while	 nRMSE	 ranges	 between	 15	 and	 45%	 (highest	 nRMSE	
around	50%	 in	Teruel,	 Tenerife	 and	 Fuerteventura).	Most	 provinces	 show	
PCC	 around	 0.6-0.9,	 with	 only	 a	 few	 exceptions	 below	 0.6	 (urban	
background	 sites	 in	 Bizkaia,	 Fuerteventura,	 Huesca	 and	 traffic	 sites	 in	
Granada	and	Gran	Canaria).”	

• L225 : “like	in	the	Canary	Islands	(e.g.	Tenerife	and	Fuerteventura).”	
• L233 :	“89%	(4240	points	over	4788)”	
• L246	:	“(nMB	of	-3	and	+6%,	nRMSE	of	19	and	22%,	PCC	of	0.87	and	0.85,	

respectively).”	
• L254	:	“(strict	enforcement	through	fines	to	offending	motorists	was	not	

expected	until	April	1st	and	was	finally	postponed	to	September	15th	2020	
due	to	the	COVID-19	situation)”	

• L265	:	“The	uncertainty	at	weekly	scale	is	here	used	as	an	estimate	of	the	
uncertainty	at	90%	confidence	level	(by	construction,	given	that	they	are	
computed	as	the	5th	and	95th	percentiles	of	the	weekly	residuals,	see	Sect.	
2.3.3)	affecting	the	mean	NO2	change.”	

• L267	:	“-7[-13,-1]	ppbv”	
• L268	:	“-39[-74,-4]%”	
• L269	:	“-10[-15,-5]	ppbv,	or	-59[-87,-30]%”	
• L276	:	“(nRMSE	of	25%)	and	correlations	(PCC	of	0.72)”	
• L276	:	“The	positive	bias	in	the	traffic	station	started	in	early	February	and	

persisted	during	the	following	weeks”	
• L277	:	“(+0%),	and	reaches	+8%”	



• L284	:	“start	before	April	1st	(postponed	to	September	15th	2020	due	to	the	
COVID-19	situation).”	

• L304	:	“decreased	by	-7[-12,-2]	ppbv	(-47[-78,-16]%)”	
• L306	:	“-15[-20,-10]	ppbv	(-61[-80,-38]%).”	
• L317	:	“significance.	During	the	lockdown	period,	96%	(2734	points	over	

2844)	of	the	observed	daily	NO2	mixing	ratios	are	lower	than	the	ML-based	
business-as-usual	NO2	estimates.”	

• L318	:	“-4[-8,-0]	ppbv	(-49[-95,-0]%	in	relative	terms)”	
• L320	:	“and	-1	ppbv	(-31%).”	
• L321	:	“22	out	of	38	provinces,”	
• L322	:	“-7[-11,-2]	ppbv	(or	-50[-91,-8]%),	and	26	out	of	37	stations”	
• L329	:	“about	-42%	at	both	station	types,	and	further	increased	to	about	-

54%	during	phases	II	and	III.”	
• L332	:	“between	-20	and	-40%	depending	on	the	type	of	station	during	

phases	II	and	III,	compared	to	only	-9	to	-19%	during	phase	I.”	
• L337	:	“Barcelona	Supercomputing	Center	(Guevara	et	al.,	2020b).”	
• L353	:	“lockdown	(Guevara	et	al.,	2020a)”	
• L364	:	“-44	and	-53%	at	the	urban	background	and	traffic	stations,	

respectively”	
• L367	:	“-50	and	-63%	at	urban	background	and	traffic	stations”	
• L368	:	“NO2	reductions	of	-43	and	-60%”	
• L382	:		“The	NO2	changes	obtained	with	the	climatological	average	

approach	are	reported	on	Fig.	5	(and	for	the	different	phases	in	Figs.	A1,	A2,	
A3,	A4	in	Appendix).”	

• L391	:	“biased	by	+27%.”	
• L395	:	“+12,	+2.3	and	+1.8%”	
• L396	:	“-21/+52,	-34/+44	and	-41/+36%	during	phases	I,	II	and	III,	

respectively.	For	the	case	of	Barcelona	province,	these	relative	biases	are	
+35,	+19	and	22%.”	

• L412	:	“fed	by	meteorological	data	and	time	variables	(Julian	date,	day	of	
week	and	date	index)”	

• L417	:	“We	also	demonstrated	the	benefits	of	our	meteorology-
normalization	approach	compared	to	a	simple	climatological-based	
approach,	especially	at	smaller	temporal	and	spatial	scales.”	

• L440	:	“The	results	of	the	present	study	provide	a	valuable	reference	for	
validating	similar	assessments	of	the	impact	of	the	COVID-19	lockdown	on	
air	quality	based	on	chemistry	transport	models	and	emission	scenarios	
derived	from	activity	data	during	the	lockdown	(e.g.	Guevara	et	al.,	2020a;	
Menut	et	al.,	2020).”	

• L441	:	“during	the	lockdown	(Achebak	et	al.,	2020).”	
• L442	:	“EEA	AQ	e-Reporting,”	
• L458	:	“All	the	corresponding	measurements	were	removed	from	the	

dataset.”	
	
Figures	and	tables	:		

• We	modified	the	color	bar	of	Figs	1	and	6	
• We	reshaped	Table	1	and	its	legend	



• We	added	monthly	climatological	NO2	mixing	ratios	on	Figs.	3	and	4,	and	
modified	the	legend	:	“The	climatological	monthly	averages	computed	over	
the	period	2017-2019	are	also	shown	(in	black).	The	vertical	black	line	
identifies	the	beginning	of	the	lockdown,	the	next	dotted	lines	separate	the	
different	lockdown	phases	(phase	I	:	2020/03/14-2020/03/29,	phase	II	:	
2020/03/30-2020/04/09,	phase	III	:	2020/04/10-2020/04/23).”	

• NO2	changes	in	Table	2	have	been	slightly	modified,	according	to	the	new	
results	obtained	with	the	extended	set	of	features.	

• We	added	the	NO2	changes	obtained	with	the	climatological	average	
approach	in	Fig.	5	and	modified	the	legend	:	“For	comparison,	the	mean	
NO2	changes	obtained	using	the	climatological	average	(over	2017-2019)	
rather	than	ML-based	business-as-usual	NO2	concentration	are	also	shown	
(stars),	as	well	as	the	relative	difference	between	both	approaches	(circles).”	

	
Appendix	:	

• Figs	A1-A4	have	been	modified	(we	added	information	regarding	NO2	
changes	obtained	with	the	climatological	average	approach)	

• Table	A2	added	(with	detailed	information	about	the	statistical	results	
obtained	at	urban	background	and	traffic	stations)	

	
Supplement	:	We	included	the	time	series	(similar	to	Figs.	3	and	4)	for	48	
Spanish	provinces.	
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Abstract. The spread of the new coronavirus SARS-COV-2 causing COVID-19 forced the Spanish Government to implement

extensive lockdown measures to reduce the number of hospital admissions, starting on March 14th 2020. Over the following

days and weeks, strong reductions of nitrogen dioxide (NO2) pollution were reported in many regions of Spain. A substantial

part of these reductions is obviously due to decreased local and regional anthropogenic emissions. Yet, the confounding effect

of meteorological variability hinders a reliable quantification of the lockdown impact upon the observed pollution levels. Our5

study uses machine learning (ML) models fed by meteorological data along with other time features to estimate the "business-

as-usual" NO2 mixing ratios that would have been observed in the absence of the lockdown. We then quantify the so-called

meteorology-normalized NO2 reductions induced by the lockdown measures by comparing the business-as-usual with the

actually observed NO2 mixing ratios. We applied this analysis for a selection of urban background and traffic stations covering

the more than 50 Spanish provinces and islands.10

The ML predictive models were found to perform remarkably well in most locations, with overall bias, root-mean-squared

error and correlation of +4%, 29% and 0.86, respectively. During the period of study, going from the enforcement of the state

of alarm in Spain on March 14th to April 23rd, we found the lockdown measures to be responsible for a 50% reduction of NO2

levels on average over all provinces and islands. The lockdown in Spain has gone through several phases with different levels of

severity in the mobility restrictions. As expected the meteorology-normalized change of NO2 was found to be stronger during15

the phases II (the most stringent one) and III than during phase I. In the largest agglomerations where both urban background

and traffic stations were available, a stronger meteorology-normalized NO2 change is highlighted at traffic stations compared to

urban background ones. Our results are consistent with foreseen (although still uncertain) changes in anthropogenic emissions

induced by the lockdown. We also show the importance of taking into account the meteorological variability for accurately

assessing the impact of the lockdown on NO2 levels, in particular at fine spatial and temporal scales.20

Meteorology-normalized estimates such as the ones presented here are crucial to reliably quantify the health implications of

the lockdown due to reduced air pollution.
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1 Introduction

The rapid spread of the new coronavirus SARS-COV-2 that causes COVID-19 has led numerous countries worldwide to put

their citizens on various forms of lockdown, with measures ranging from light social distancing to almost complete restrictions25

on mobility (Anderson et al., 2020). Spain has been among the countries most severely affected by COVID-19, and where pro-

portional (and therefore drastic) containment measures have been implemented. Spanish authorities declared the constitutional

state of alarm on March 13th 2020, to be enforced on the 14th. During this period (phase I) residents had to remain in their pri-

mary residences except for purchasing food and medicines, work or attend emergencies. Non-essential shops and businesses,

including bars, restaurants, and commercial businesses had to close. Due to the persistent rise in hospital admissions, an even30

more severe second phase (phase II) of the lockdown was implemented between March 30th and April 9th, when only essential

activities including food trade, pharmacy, and some industries were authorized. A third phase (phase III) started on April 10th,

when some non-essential sectors, including construction and industry, were allowed to return to work.

The shutdown of both social and economic activities in Spain has reduced anthropogenic pollutant emissions. Among the

sectors presumably most affected, road transport, which is a dominant source of air pollution in urban areas, and air traffic35

have fallen to unprecedentedly low levels. The impact on the industrial sector is presumably more contrasted, as some essential

industries (e.g. fuel and energy related, petrochemical) were authorized to continue their production, while some others were

forced to halt their activity.

While such an extraordinary situation has obviously impacted the levels of air pollution in the country, as seen in both surface

and satellite observations (Tobías et al., 2020; Bauwens et al., 2020), the extent of such reductions remains uncertain. Besides40

emissions, air pollution is strongly influenced by meteorological conditions driving their dispersion and short- to long-range

transport, and affecting their removal and chemical evolution. As highlighted by Tobías et al. (2020) in Barcelona, this makes

the quantification of air pollution reductions during the lockdown unreliable when solely based on the analysis of in-situ ob-

servations. Chemistry-transport models (CTMs) are an essential tool for investigating both actual and alternative states of the

atmosphere under different emission scenarios. Actually, the lockdown offers unique opportunities for so-called dynamical45

CTM evaluations (Rao et al., 2011), i.e., testing the ability of CTMs to reproduce the observed changes of concentrations

under unusually different emissions (Guevara et al., 2020a; Menut et al., 2020). However, given the difficulty of accurately

estimating the changes in emissions induced by the lockdown along with the inherent limitations of CTMs, particularly in

urban areas, estimating the reductions with this method remains a complex task sullied by substantial uncertainties that are

difficult to quantify.50

The need for attributing changes in pollutant concentrations to changes in emissions recently motivated the development of so-

called weather normalisation techniques based on machine learning (ML) algorithms (Grange et al., 2018; Grange and Carslaw,

2019). The idea consists in training ML models to predict pollutant concentrations at air quality (AQ) monitoring stations based

a set of features including meteorological data and other time variables. This allows for the building of ML models that learn

the influence of meteorology upon pollutant concentrations under a given average emission forcing. These ML models can55

then be used for predicting pollutant concentrations under a range of meteorological conditions, with the associated average
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referred to as meteorology-normalized time series in Grange et al. (2018) and Grange and Carslaw (2019). In addition, such

ML models can be used for predicting business-as-usual pollutant concentrations during periods with presumably different

emissions, i.e., estimating the pollutant concentrations that would have been experienced without the change in emissions.

Following the ideas introduced in Grange et al. (2018) and Grange and Carslaw (2019), the present study uses ML models60

to investigate the reduction of nitrogen dioxide (NO2) concentrations in Spain due to the COVID-19 lockdown. Since road

transport and industry are major sources of NO2 emissions, the impact of the lockdown on this primary pollutant is expected

to be strong and thus easier to detect and quantify. Due to its short lifetime and relatively simple chemistry, NO2 is likely more

directly impacted by meteorological conditions than other pollutants like particulate matter that depend upon more numerous

and complex processes.65

2 Data and methods

2.1 NO2 data

This study primarily relies on hourly NO2 measurements performed routinely in Spanish AQ surface monitoring stations.

We considered the time period going from 2013/01/01 to 2020/04/23. We used the NO2 data available through the GHOST70

(Globally Harmonised Observational Surface Treatment) project developed at the Earth Sciences Department of the Barcelona

Supercomputing Center. GHOST is a project dedicated to the harmonisation of global surface atmospheric observations and

metadata, for the purpose of facilitating quality-assured comparisons between observations and models within the atmospheric

chemistry community (Bowdalo, in preparation). GHOST ingests numerous publicly available AQ observational datasets. In

this study, we used the NO2 data from the European Environmental Agency (EEA) AQ e-Reporting (EEA, 2020). We priori-75

tized the validated data (E1a) and used the near-real time data (E2a) only when necessary. The fraction of E1a data is 0% in

2020, 99% in 2019 and 100% in 2013-2018.

All NO2 measurements taken into account here are operated using chemiluminescence with an internal Molybdenum converter.

Although predominantly used over Europe for measuring NO2, this measurement technique is well known to have potentially

strong positive artifacts due to interferences of NOz compounds (e.g. nitric acid, peroxyacetyl nitrates, organic nitrates), espe-80

cially during daytime when these species are photo-chemically formed, up to a factor of 2-4 as observed during summertime in

urban atmospheres (e.g. Dunlea et al., 2007; Villena et al., 2012). In our case, the positive artifacts at urban background stations

are probably lower since the period of study (late winter and early spring) is less photo-chemically active than summertime.

Even lower interferences are expected at traffic stations where the NOz/NOx ratio is typically lower due to the proximity to

fresh NOx emissions. In any case, the present study focuses on the relative changes of NO2 due to the lockdown, so biases in85

the NO2 measurements are of lower importance.

GHOST provides a wide range of harmonized metadata and quality assurance (QA) flags for all pollutant measurements. In

this study, we took benefit of these flags to apply an exhaustive QA screening. More details on the QA flags used can be found

in Appendix A.
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NO2 measurements are available over the period 2013 to 2020 in 551 stations in Spain. This study aims at investigating the90

reduction of NO2 over a variety of environments and geographical locations. We thus designed an algorithm for automatically

selecting (when possible) one urban/suburban background station and one traffic station in each Nomenclature of Territorial

Units for Statistics level 3 (NUTS-3) (Ceuta and Melilla excluded), which corresponds to Spanish provinces over mainland

and individual islands over the Balearic and Canary Islands (hereafter referred to as provinces for convenience). After the QA

screening of NO2 data, we set different thresholds for minimum data availability over different periods of interest, namely 50%95

of daily data over the entire period of study, 50% over the period 2017/01/01-2019/01/01 (used for training the ML models, see

below), 25% over the period 2020/01/01-2020/03/13 (used for testing the ML models) and 10% during the lockdown period.

Stations in each province were then selected to maximize the surrounding population density (within a geodesic radius of 5 km)

and the data availability (both before and during the lockdown). The population density at AQ monitoring stations was retrieved

through GHOST, which ingests the Gridded Population of the World (GPW) version 4 dataset (Center for International Earth100

Science Information Network - CIESIN - Columbia University, 2018). Stations fulfilling the different criteria were identified

in 50 provinces of Spain and are considered in this study (38 provinces with urban background stations and 37 provinces with

traffic stations). No appropriate stations were found in Palencia, Ávila and some islands (La Palma, La Gomera, El Hierro,

Lanzarote, Eivissa and Formentera). A map of the entire NO2 monitoring network is shown in Fig. 1 together with the stations

selected in each Spanish province. Names and geographical locations of the stations are reported in Table A1 in Appendix.105

2.2 Meteorological data

Meteorological data are taken from the ERA5 reanalysis dataset (Copernicus Climate Change Service (C3S), 2017). ERA5

data have a spatial resolution of about 31 km. At all AQ monitoring surface stations, we extracted the following variables

at the daily scale : daily mean 2-m temperature, minimum and maximum 2-m temperature, surface wind speed, normalized

10-m zonal and meridian wind speed components, surface pressure, total cloud cover, surface net solar radiation, surface solar110

radiation downwards, downward UV radiation at the surface and boundary layer height.

2.3 Methodology

We implement and train ML models to estimate the daily NO2 mixing ratios that would have been observed without the

implementation of the lockdown in each selected station, i.e. under business-as-usual emission forcing. Hereafter, we will refer

to these mixing ratios as business-as-usual NO2.115

2.3.1 Machine learning model

In this study, we retain the Gradient Boosting Machine (GBM), a popular decision tree-based ensemble method belonging to

the boosting family (Friedman, 2001). More information on this model is given in Appendix B. ML models based on decision

trees offer several interesting attributes. First, they internally handle the process of feature selection, which allows including

potentially useless features without strong deterioration of the prediction skills. Second, they provide useful information about120
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Figure 1. Mean NO2 mixing ratios [ppvb] (2013-2020) at all (circles) and selected (squares and triangles) stations. Administrative borders

show the NUTS-3 administrative units, which correspond to the Spanish provinces over mainland and to individual islands. Dark gray areas

indicate provinces and islands with a lack of stations that fulfill the selection criteria.

the importance of the different features. Third, in contrast to most parametric methods that derive a unique (more or less sophis-

ticated) function supposedly valid over the whole features’ space, non-parametric methods based on decision trees internally

rely on successive splitting operations (a mother branch being divided into two daughter branches), which may be convenient

for designing one single model able to work efficiently under different seasons and weather regimes.

2.3.2 Choice of features and modeling strategy125

Following the work of Grange and Carslaw (2019), the idea here is to use past recent data to train a ML model able to reproduce

the NO2 mixing ratios based on a combination of meteorological features and other time features. The features used in this

study are : daily mean 2-m temperature, minimum and maximum 2-m temperature, surface wind speed, normalized 10-m zonal

and meridian wind speed components, surface pressure, total cloud cover, surface net solar radiation, surface solar radiation

downwards, downward UV radiation at the surface, boundary layer height, date index (days since 2013/01/01), Julian date130

and weekday. All the data used in this study are daily. Some pollutant concentrations are known to strongly vary depending

on the season, day of week and hour of the day, notably due to the variability of emissions and chemistry. The two last time

features act as proxies for these processes and aim at representing their climatological variations. Over longer (multi-annual)

time scales, typically air pollutant concentrations cannot be considered as stationary due to substantial trends (especially in

emissions), which is intrinsically problematic for training ML models. Following Grange et al. (2018) and Grange and Carslaw135

(2019), we introduced the date index as a proxy for this potential trend. Including such a feature with unique values (going
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from 0 for 2013/01/01 to 2669 for 2020/04/23) is not expected to directly help the ML model to learn about NO2 variability.

However, it allows us to train one single ML model over a relatively long and thus potentially non-stationary time series. In

contrast to linear regression, GBM does not learn equations relating the target variable to the different features, but rather builds

non-parametric relationships between target and features. As a consequence, such a model will always make NO2 predictions140

within the range of NO2 values used in the training, regardless of the inclusion of the aforementioned date index feature or

the feature values it takes for making the predictions. However, if NO2 strongly increases (decreases) with time in the training

dataset, the GBM model is able to split the data using the trend feature and therefore predict NO2 in the range of the higher

(lower) mixing ratios reached by the end of the training period. We note that even with a trend feature, such a model is not

expected to stay valid very far in time relative to the training data when the training data is following a too strong trend. Our145

sensitivity tests have clearly shown that the behaviour of the ML models substantially improves when including the trend

feature.

In our study, the GBM models are trained over the 3 last full years, namely 2017-2019 and then used for predicting business-as-

usual NO2 mixing ratios over the 4 following months, from January to April 2020. This ML experiment is hereafter referred to

as EXP2020. Such a duration for training is expected to allow capturing a substantial part of the inter-annual variability of NO2150

mixing ratios and meteorological conditions and ensures some past data is available for quantifying the uncertainties of our

ML modeling strategy (as explained later in Sect. 2.3.3). Note that no improvement was found with extended training periods

of 4 or 5 years. Although our interest is to predict NO2 during the lockdown period, the two and half preceding months were

kept to test the validity of our predictions and uncertainty estimates.

The machine learning modeling in this study is performed using the scikit-learn Python package (Pedregosa et al., 2011). The155

GBM model comprises a number of hyperparameters to be tuned. Since features are temporal variables, instances cannot be

considered as independent due to autocorrelation. We thus tuned our ML models using the so-called time series cross-validation

with five splits, which corresponds to a rolling-origin cross-validation in which data used for the validation is always posterior

to the data used for the training (TimeSeriesSplit in scikit-learn). Over a selection of the most important hyperparameters, we

applied a so-called randomized search over a range of possible hyperparameter values. Compared to the so-called grid search160

in which all combinations of hyperparameters are tested, the randomized approach tests only a certain number (20 in our case)

of tuning configurations chosen randomly. This allows to explore a large part of the hyperparameters space at a greatly reduced

computational cost, and tends to be less prone to overfitting. More details on the tuning of the GBM model can be found in

Appendix C.

2.3.3 Uncertainty estimation165

In order to quantify our prediction uncertainty, we replicated four similar experiments over the past years since 2013, i.e., train-

ing ML models over 2013-2015, 2014-2016, 2015-2017 and 2016-2018, and testing them over the 4 first months of 2016, 2017,

2018 and 2019, respectively. These ML experiments are hereafter referred to as EXP2016, EXP2017, EXP2018 and EXP2019,

respectively. We obtained on average 538 daily residuals (predicted minus observed NO2 daily mixing ratios) for each station

and we took the associated 5th and 95th percentiles as the uncertainty interval for our ML-based predictions of daily NO2170
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mixing ratios. Therefore, for each station, we obtained a fixed asymmetric 90% confidence interval used to characterize the

uncertainty of our predictions during the first 4 months of 2020. Averaged over all Spanish provinces, the uncertainty interval

is [-5.1, +5.3] ppbv at urban background stations, and [-6.6, +6.7] ppbv at traffic stations.

In 2020, the period before the lockdown, namely January 1st to March 13th, is used to check the performance of the ML models

trained over 2017-2019 against the observed NO2 mixing ratios, given the aforementioned uncertainty. Ideally, we expect the175

differences between observed and predicted NO2 mixing ratios to remain within the estimated uncertainty during that period.

Conversely, after April 14th, due to the reduction of NO2 emissions caused by the lockdown, we expect the observed NO2

mixing ratios to quickly decrease compared to the business-as-usual NO2 mixing ratios predicted by the ML model, eventually

down to a level at which the differences are statistically significant.

180

These uncertainties are suited for our ML-based daily NO2 predictions. Because these daily uncertainties are likely at least

partly uncorrelated, NO2 daily predictions averaged over time periods longer than one day are expected to have smaller uncer-

tainties due to error compensations. We estimated the uncertainty affecting our ML predictions at the weekly scale. We used

a similar approach than previously described for the daily uncertainty, but based on the 7-day running average of the daily

residuals (by requiring a minimum of 5 over 7 days with available data). The 5th and 95th percentiles were computed based on185

the entire set of residuals (514 residuals on average at each station over 2016-2019). On average over all provinces, the weekly

uncertainty interval obtained are [-3.8, +3.6] ppbv at urban background stations, and [-4.9, +4.7] ppbv at traffic stations, which

represents a reduction of 28% for both types of stations, with respect to the daily uncertainties.

Our main interest in this study is to quantify the mean NO2 changes during the lockdown period. We decided to keep the

weekly scale uncertainties for the predictions of business-as-usual NO2 mixing ratios averaged over its different phases (10-13190

days each) and over the entire lockdown period (41 days). The use of weekly uncertainties is likely conservative when used for

the entire lockdown average, but accounts for potential data gaps, particularly when estimating the shorter phases therein.

Note that these ancillary ML experiments used here for quantifying the uncertainties also allow to evaluate the performance of

our modeling strategy during the period of the year of the lockdown (as explained later in Sect. 3.1).195

3 Results and Discussion

In this section, we first evaluate the ML-based predictions of business-as-usual NO2 mixing ratios (Sect. 3.1). We then illustrate

our methodology in the two provinces with largest population density, namely Madrid and Barcelona (Sect. 3.2). Time series

in the other 48 Spanish provinces can be found in the Supplement. We then analyze the meteorology-normalized changes of

NO2 obtained in all Spanish provinces (Sect. 3.3). We discuss in Sect. 3.4 the potential relationships with emission reductions.200

Finally, we discuss in Sect. 3.5 the advantages of our ML-based approach for estimating the baseline NO2 pollution compared

to the climatological approach.
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3.1 Evaluation of ML predictions

The performance of the ML predictions in each Spanish province and station type is shown in Fig. 2, and the statistics over

all Spanish provinces are reported in Table 1. The statistical results in Table 1 are given for both the reference ML experiment205

(EXP2020) and the other experiments combined together (EXP2016, EXP2017, EXP2018 and EXP2019, hereafter referred to as

EXP2016�2019). Besides providing a broader view of the performance of our modeling strategy, considering these past experi-

ments also allows assessing the performance of the ML predictions during the period of the year of the lockdown (14/03-30/04

for years 2016 to 2019), which may be important given the potential seasonality of prediction errors. The statistics obtained

at urban background and traffic stations are given in Table A2 in Appendix. Results are evaluated using the following metrics,210

calculated based on daily NO2 mixing ratios : mean bias (MB), normalized mean bias (nMB), root mean square error (RMSE),

normalized root mean square error (nRMSE) and Pearson correlation coefficient (PCC).

For information purposes, we included the statistical results obtained over the training dataset (2017/01/01-2019/12/31 in

EXP2020). Checking results over the training data may be useful for highlighting obvious situations of overfitting, when the

performance is almost perfect. At both urban background and traffic stations, results show no bias, low nRMSE (always below215

35%, 19% when considering all provinces), and a high PCC of 0.96. Similar results are obtained when considering the ensem-

ble of all past experiments (EXP2016�2019). Although such a performance obtained is very good, there are no clear signs of too

prejudicial overfitting at this stage.

On the test dataset of the EXP2020 reference experiment (2020/01/01-2020/03/13, before the lockdown), the performance re-

mains reasonably good in most provinces. Over all Spanish provinces, the nMB increases to +4%, the nRMSE to 29% and the220

PCC is reduced to 0.86, in very close agreement with the performance obtained with EXP2016�2020 (nMB of +1%, nRMSE

of 28% and PCC of 0.86). In comparison, the performance obtained in EXP2016�2019 during the period of the year of the

lockdown (14/03-23/04) is a bit lower but remains reasonable, with a nMB of +4%, a nRMSE of 37% and a PCC of 0.80.

Although moderate, such a deterioration of the performance after mid-March might reflect some seasonality in the ML model

errors and/or could be related to the presence of trends in the NO2 concentrations. Concerning this last point, as previously225

discussed in Sect. 2.3.2, including the date index feature in the ML model aims at limiting this potential issue but likely cannot

completely solve it. Generally, only minor differences of performance are found between urban background and traffic stations

(Table A2).

Results of EXP2020 per province (Fig. 2) highlight some inter-regional variability of the performance, with poorer statistics in

some provinces, at least for one type of station. At most stations, the bias remains below ±20% while nRMSE ranges between230

15 and 45% (highest nRMSE around 50% in Teruel, Tenerife and Fuerteventura). Most provinces show PCC around 0.6-0.9,

with only a few exceptions below 0.6 (urban background sites in Bizkaia, Fuerteventura, Huesca and traffic sites in Granada

and Gran Canaria).

Several factors may explain the poorer statistical results obtained at some stations. First and foremost, it may be due to235

deficiencies in the ML modeling, and in particular to some overfitting. This seems to be the case of Fuerteventura and Huesca,
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Table 1. Performance of the ML predictions of NO2 mixing ratios. Results are shown for both the reference experiment EXP2020 and the

ensemble of past experiments combined together (EXP2016�2019).

Experiments Dataset Period of the year MB [ppbv] RMSE [ppbv] PCC N

(day/month) (nMB [%]) (nRMSE [%])

EXP2020 Training 01/01-31/12 -0.0 (-0%) 2.2 (19%) 0.96 72983

Test 01/01-13/03 0.6 (4%) 3.8 (29%) 0.86 4788

EXP2016�2019 Training 01/01-31/12 0.0 (0%) 2.2 (18%) 0.96 297609

Test 01/01-13/03 0.1 (1%) 4.0 (28%) 0.86 19178

14/03-23/04 0.5 (4%) 4.0 (37%) 0.80 11097

01/01-23/04 0.2 (2%) 4.0 (31%) 0.85 30275

given the good performances obtained with the training data (note also that the data availability of test data in Fuerteventura

is among the poorest). Since we are considering numerous stations in this study, we need a fixed procedure applied similarly

to all ML models to be trained. As described in Sect. 2.3.2, we designed our training and tuning procedure in order to limit

as much as possible this common issue, through rolling-origin cross-validation and randomized search in the hyperparameters240

space. Overall results are satisfactory but some overfitting can still persist in some cases.

Second, although moderately, some of the biases and errors may be partly due to trends and/or inter-annual variability of NO2.

As previously explained (Sect. 2.3.2), by model design, if NO2 levels in the first months of 2020 are outside of the NO2 range

in the 2017-2019 training dataset, our predictions over the lockdown period could be equally biased. The different NO2 time

series indeed show some cases where NO2 mixing ratios are lower than in the past years (since 2013). In the frame of our245

study, it is important to mention that, although the lockdown was officially implemented on March 14th, the COVID-19 started

to perturb the business-as-usual situation in the days/weeks before, first through the cancellation of numerous events and, later,

through unusual movements of a part of the population (e.g. to second homes). Although complicated to assess more precisely

in each of the Spanish provinces, this likely explains part of the biases noticed in the second half of the test period.

Third, poor performances at some stations may be due to weaker relationships between meteorological input data and NO2250

mixing ratios. This points to uncertainties in the ERA5 meteorology data. For example, the relatively coarse spatial resolution

(31 km) of ERA5 data may only capture part of the meteorological variability existing at a given station. This is especially true

when considering stations located in urban areas where the complex urban morphology (e.g. presence of buildings, canyon

streets) is known to locally distort the mesoscale circulation. Decision-tree based ML methods like GBM offer some inter-

pretability by providing a measure of the importance of the different features included as input data. In our case, on average255

over all ML models, the most important feature is the boundary layer height (18±6%) followed by the surface wind speed

(12±5%). These two parameters drive the ventilation and dispersion of the pollutants emitted at the surface, and their variabil-

ity at some stations may be only partly captured by the ERA5 data at some urban stations. Also, the ERA5 data may poorly

capture the meteorological conditions in some stations located on small islands with complex orography, like in the Canary
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Islands (e.g. Tenerife and Fuerteventura).260

The chosen training and tuning procedures applied in this study were designed to limit some of these different sources of

uncertainty, but persistent errors cannot be excluded. This is why we added another layer of analysis in which we estimated

the uncertainties of our ML predictions by replicating exactly the same procedure over the past years since 2013 (as explained

in Sect. 2.3.3). Computed as the 5th and 95th percentiles of the daily residuals obtained over a large test period extending over265

several years (2016-2019), the uncertainty intervals are expected to cover most (90%) of the errors caused by these different

sources of uncertainties. Indeed, considering all stations, our results indicate that 89% (4240 points over 4788) of the daily

NO2 observations in 2020 before the lockdown fall within the corresponding prediction uncertainty interval at each station,

thus very close to 90%. This demonstrates that the daily uncertainty estimated in this study is well quantified.

All in all, we have shown that our ML predictions and associated uncertainties are qualified for estimating the business-as-usual270

NO2 mixing ratios during the lockdown.

3.2 Illustration of the results in specific provinces

3.2.1 Madrid

The daily NO2 mixing ratios observed and predicted in the province of Madrid are shown in Fig. 3 for both the urban back-

ground station and the traffic station, with station codes-names ES1941A-Ensanche de Vallecas and ES1938A-Castellana,275

respectively. The NO2 mixing ratios observed over the past years since 2013 are also included. Since days of week are not

consistent from one year to the other, we also show the NO2 7-day running mean time series where a minimum of 5 over 7

days is required to compute the average.

In Madrid, the ML reproduces remarkably well the variability of NO2 mixing ratios at the urban background and traffic stations

before the lockdown (nMB of -3 and +6%, nRMSE of 19 and 22%, PCC of 0.87 and 0.85, respectively). Importantly, prediction280

errors remain within the uncertainty interval. The two sub-periods with lower NO2 mixing ratios, during the second half of

January and early March occur concomitantly with strong wind speeds in Madrid, above 6 m s�1 on a daily average (above the

95th percentile of the ERA5 daily wind speed over 2013-2020 during this season), and relatively high boundary layer heights

(up to 1000-1500 m on a daily average). It is worth mentioning that a low emission zone (LEZ) with relatively strict vehicle

restrictions applied for entering a limited area of about 5 km2 corresponding to the heart of the city center was implemented285

in early January 2020. Such a change in emissions may in principle directly impact the performance of the ML predictions by

inducing a positive bias (since the ML models are designed precisely for highlighting such events). In our case, we expect a

limited impact because the LEZ was still in its transition phase (strict enforcement through fines to offending motorists was not

expected until April 1st and was finally postponed to September 15th 2020 due to the COVID-19 situation) and the two stations

selected in Madrid province are located outside the LEZ (at 9 and 3 km from the city center).290

After the implementation of the lockdown, the observed NO2 mixing ratios decreased down to about 11 and 7 ppbv on aver-

age, and reached daily minimum mixing ratios of 6 and 3 ppbv, respectively, over the entire period. Compared to the previous
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Figure 2. Statistical results of the ML-predicted business-as-usual NO2 mixing ratios (EXP2020 reference experiment) over training dataset

(2017-2019, in grey) and test dataset before lockdown (2020/01/01-2020/03/13, in blue). Metrics are mean bias (MB), normalized mean

bias (nMB), root mean square error (RMSE), normalized root mean square error (nRMSE) and Pearson correlation coefficient (PCC). For

information purposes, the uncertainties (90% confidence interval) at the daily scale are added to MB (horizontal blue bars).

years, the NO2 mixing ratios at the urban background site are clearly in the lower tail of the distribution. In the traffic site,

never NO2 levels had been so low for such an extended period of time at least since 2013. In comparison, business-as-usual

NO2 mixing ratios at these two sites would have remained around 17-18 ppbv on average. After the lockdown, the differences295

between the observed and business-as-usual NO2 are found to progressively increase, becoming more and more statistically

significant. This demonstrates unambiguously that the lockdown considerably reduced the NO2 pollution in Madrid, regardless

of the meteorological conditions, which points to a drastic decrease of the business-as-usual emission forcing.

We computed the meteorology-normalized change of NO2 during the lockdown period covered by this study (from March
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14th to April 23th) as the mean difference between ML-based business-as-usual and observed NO2 daily mixing ratios. The300

uncertainty at weekly scale is here used as an estimate of the uncertainty at 90% confidence level (by construction, given that

they are computed as the 5th and 95th percentiles of the weekly residuals, see Sect. 2.3.3) affecting the mean NO2 change.

On average over the entire lockdown period, NO2 levels have decreased by -7[-13,-1] ppbv at the urban background station,

which corresponds to -39[-74,-4]% in relative terms. The impact is faster, stronger and more statistically significant at the

traffic station than in the urban background one, with a mean NO2 reduction of -10[-15,-5] ppbv, or -59[-87,-30]% in relative305

terms. This result is consistent with a lockdown affecting most strongly the sector of traffic emissions. At the daily scale, the

reduction of NO2 in Madrid reached its maximum at the end of the second and more stringent lockdown phase, while a strong

reduction persisted during the third phase.

3.2.2 Barcelona

Figure 4 presents the results in Barcelona for both the urban background and traffic stations, with station codes-names310

ES1396A-Sants and ES1480A-L’Eixample, respectively. Compared to Madrid, the ML predictions in Barcelona have rela-

tively similar errors (nRMSE of 25%) and correlations (PCC of 0.72). The bias is very low at the urban background station

(+0%), and reaches +8% at the traffic station, which largely remains within the uncertainty interval. The positive bias in the

traffic station started in early February and persisted during the following weeks, particularly after the second week of February.

The ML model failed at reproducing these low NO2 mixing ratios notably because some of the observed NO2 mixing ratios315

during that period were lower than during the previous years. As in Madrid, a LEZ was implemented in Barcelona, starting

in early January 2020, with less stringent vehicle restrictions but over a larger area (95 km2). Both the urban background and

traffic stations selected in Barcelona are included in this LEZ. The potentially stronger effect of the LEZ at traffic stations could

explain at least partly this positive bias. As in the case of Madrid, fines for non-compliance with the LEZ restrictions were not

planned to start before April 1st (postponed to September 15th 2020 due to the COVID-19 situation). Therefore the effect of320

the LEZ is expected to be progressive, which is consistent with the absence of bias in the beginning of the period. In addition,

the 2020th edition of the World Mobile Congress (the largest annual event in Barcelona, with 109,000 visitors in 2019) that

takes place every year by the end of February was officially canceled by the organizers due to the risks posed by the emerging

COVID-19 pandemic. We therefore hypothesize this cancellation contributed to the reduction of NO2 levels in the city and to

the slight positive bias of the ML prediction before the lockdown.325

After the lockdown, NO2 mixing ratios decreased down to 8 and 11 ppbv on average at the urban background and traffic

stations, respectively, both reaching minimum daily mixing ratios of 4 ppbv. Results highlight strong and statistically signif-

icant differences with the business-as-usual situation in which NO2 levels would have remained around 15-21 ppbv during

that period. As in Madrid, the strongest differences are found in April, during the phases II and III of the lockdown. Note that

these differences exceed by large the aforementioned positive bias encountered after February. Interestingly, besides the strong330

reduction, observed NO2 mixing ratios followed a very similar variability than business-as-usual NO2, which highlights the

major influence of meteorological conditions on the levels of pollution, as previously mentioned by Tobías et al. (2020). For

instance, the increase of NO2 mixing ratios between April 6th and April 9th appears linked to unusually low wind speeds over
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Figure 3. NO2 mixing ratios in Madrid province. The two top panels show the daily mean and 7-day running mean at the urban background

station, respectively. The two bottom panels show the time series at the traffic station. Each panel displays the NO2 mixing ratios observed in

2020 (in blue) and during the past years (2013-2019, in grey), and predicted in 2020 by the ML model (business-as-usual (BAU), in green).

The uncertainties of the ML predictions are given at a 90% confidence level at the daily (light green) and weekly scales (medium green).

The climatological monthly averages computed over the period 2017-2019 are also shown (in black). The vertical black line identifies

the beginning of the lockdown, the next dotted lines separate the different lockdown phases (phase I : 2020/03/14-2020/03/29, phase II :

2020/03/30-2020/04/09, phase III : 2020/04/10-2020/04/23).

Barcelona, 1.7 m.s�1 on average over these days, which is slightly below the climatological (2013-2020) 5th percentile of wind

speed in April (1.8 m.s�1). Without the lockdown, this stagnant situation associated with the business-as-usual emission forc-335

ing would have increased NO2 by about 5-10 ppbv, according to the ML predictions. Observed NO2 also slightly increased

during the episode of stagnant meteorological conditions, but due to the lockdown, NO2 remained at very low levels. This

event illustrates the usefulness of considering a ML model fed by meteorological data for quantifying the baseline air pollution

during the lockdown.

Over the entire lockdown period, NO2 in Barcelona decreased by -7[-12,-2] ppbv (-47[-78,-16]%) at the urban background340

station, regardless of the meteorological conditions. As in Madrid, a stronger reduction is found at the traffic station, with -15[-

13



20,-10] ppbv (-61[-80,-38]%). Therefore, in relative terms, the lockdown has induced a relatively similar decrease of NO2 in

both Madrid and Barcelona.

Figure 4. Similar to Fig. 3 in Barcelona province.

3.3 Meteorology-normalized changes of NO2 mixing ratios over Spain

We computed the meteorology-normalized changes of NO2 for all the selected stations. Results are presented in Fig. 5, together345

with the weekly uncertainty of our ML predictions (colored lines). For information purposes, we also display the daily uncer-

tainty (black lines). Results are colored as a function of their degree of significance, here computed as the distance between the

NO2 change best estimate and the upper limit of the weekly uncertainty interval, normalized by the distance between the best

estimate and zero. A degree of significance of 1 thus indicates a NO2 change significant at a 90% confidence level. Statistics

over the changes of NO2 obtained in all provinces are reported in Table 2. A map of best estimates of NO2 changes at each350

station is also given in Fig. 6.

Results highlight that the reduction previously described in Madrid and Barcelona extends to most Spanish provinces, although

with some inter-regional variability in the extent of the change and the degree of statistical significance. During the lockdown
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period, 96% (2734 points over 2844) of the observed daily NO2 mixing ratios are lower than the ML-based business-as-usual

NO2 estimates. On average over all urban background stations during the entire lockdown period, NO2 has decreased by -4[-355

8,-0] ppbv (-49[-95,-0]% in relative terms), independently from the meteorological conditions. The 5th and 95th percentiles

(computed based on the mean NO2 changes obtained in all provinces) are -7 ppbv (-65%) and -1 ppbv (-31%). The NO2

change is significant with more than 90% confidence in 22 out of 38 provinces, with many of the remaining ones being rel-

atively close to that confidence level. A similar, yet more statistically significant reduction is found at traffic stations, with a

mean NO2 decrease of -7[-11,-2] ppbv (or -50[-91,-8]%), and 26 out of 37 stations exceeding the 90% confidence level. The360

spread of NO2 change between the different provinces is also quite similar between the two types of stations, with 5th and

95th percentiles of -69 and -29%, respectively. Generally, the meteorology-normalized NO2 reductions in the provinces of the

southern half of the country appear stronger and in more cases statistically significant.

As previously observed in Madrid and Barcelona, results in Table 2 highlight noticeable differences between the different

phases of the lockdown. The corresponding figures (with both absolute and relative changes) can be found in Appendix (Figs.365

A1, A2, A3 and A4). The mean reduction of NO2 during phase I was about -42% at both station types, and further increased

to about -54% during phases II and III. The lower reduction during the first phase is partly explained by the fact that NO2

concentrations started at their business-as-usual levels and took a few days to reach their minimum. During the two last phases,

NO2 was found to be reduced in many more provinces, as shown by the 95th percentile that ranges between -20 and -40%

depending on the type of station during phases II and III, compared to only -9 to -19% during phase I.370

3.4 Relationship to emission reductions

We contrasted our results with a detailed NOx anthropogenic emission inventory at 4km x 4km resolution over Spain avail-

able through the bottom-up module of the HERMESv3 emission model, developed at the Earth Sciences Department of the

Barcelona Supercomputing Center (Guevara et al., 2020b). Averaged over the different stations considered in this study, road

transport emissions are the dominant source, with 66 and 69% of the total NOx emissions in the vicinity of urban background375

and traffic stations, respectively. The other emission sources are the residential/commercial combustion sector (14 and 15%),

industrial point sources (8 and 13%) and shipping and port activities (11 and 3%). In Spain, the public agency in charge of mon-

itoring traffic (Dirección General del Tráfico) reported progressive reductions in total traffic down to levels about -60 to -90%

lower than usual, with substantial day-to-day variability and strongest reductions during weekends. Assuming to first order a

linear relationship between NO2 urban background mixing ratios and local surrounding NOx emissions (within a 4km x 4km380

cell) and applying a 70% (80%) reduction of road transport would lead to a NO2 reduction of about 47% (54%), which is con-

sistent with our findings. Our knowledge about the impact of the lockdown on the other emission sectors remains at this stage

quite limited. NOx emissions from industry likely also decreased but quantifying this reduction, even roughly, is more complex

as some industries were considered as essential and thus not affected by the lockdown. Although 9-13% of the surrounding

emissions (in the 4km x 4km cell of the inventory) are associated to this sector, the impact of idling industrial activities on the385

pollution levels observed at the selected stations may be relatively small considering that none of these stations are classified

as "industrial". The residential/commercial emission sector represents another unknown since the expected emission increment
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Table 2. Meteorology-normalized changes of NO2 mixing ratios in Spain during the lockdown (phase I : 2020/03/14-2020/03/29, phase

II : 2020/03/30-2020/04/09, phase III : 2020/04/10-2020/04/23). Statistics are computed based on the mean NO2 changes in the different

Spanish provinces.

Change Metric Phases I+II+III Phase I Phase II Phase III

Background Traffic Background Traffic Background Traffic Background Traffic

absolute (ppbv) mean -4.1 -6.5 -3.4 -5.6 -5.2 -7.4 -4.3 -6.8

[-7.8,-0.3] [-11.1,-1.6] [-7.1,0.4] [-10.2,-0.7] [-8.9,-1.4] [-11.9,-2.4] [-7.9,-0.4] [-11.3,-2.0]

std 2.0 3.4 1.8 3.2 2.4 3.6 2.2 3.7

min -10.0 -15.5 -8.4 -13.3 -10.8 -16.1 -10.9 -16.8

p05 -7.1 -12.8 -6.3 -11.5 -9.2 -14.2 -7.7 -13.5

p10 -6.8 -11.4 -5.5 -10.9 -8.3 -12.8 -7.0 -12.3

p25 -5.3 -7.4 -4.8 -6.9 -6.8 -8.2 -5.3 -9.5

p50 -3.9 -6.1 -3.2 -5.0 -4.7 -7.0 -3.8 -5.9

p75 -2.6 -4.5 -2.0 -3.9 -3.2 -5.0 -2.5 -4.3

p90 -2.1 -2.6 -1.5 -1.7 -2.9 -3.3 -1.9 -2.6

p95 -1.4 -2.0 -1.2 -0.6 -2.5 -2.4 -1.2 -2.3

max -0.8 -0.8 -0.5 -0.0 -1.1 -1.6 -0.7 -0.7

relative (%) mean -49 -50 -41 -42 -55 -53 -53 -55

[-95,-0] [-91,-8] [-89,8] [-82,-0] [-95,-11] [-90,-13] [-100,-1] [-97,-11]

std 13 12 14 17 9 11 15 13

min -72 -71 -65 -67 -69 -73 -76 -73

p05 -65 -69 -62 -63 -68 -71 -73 -72

p10 -64 -63 -59 -60 -67 -68 -70 -70

p25 -58 -58 -53 -55 -65 -60 -65 -65

p50 -51 -52 -41 -46 -54 -54 -55 -56

p75 -39 -43 -29 -38 -47 -46 -42 -51

p90 -34 -33 -24 -14 -43 -35 -36 -39

p95 -31 -29 -19 -9 -40 -34 -20 -31

max -14 -14 -14 -1 -39 -27 -12 -12
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Figure 5. Meteorology-normalized mean NO2 changes at urban background (squares) and traffic (triangles) stations during the COVID-19

lockdown. Changes are shown during the entire lockdown period and during the second and most stringent phase. Best estimates and weekly

uncertainties are colored according to the degree of significance (a value of 1 indicates a change statistically significant at a 90% confidence

level, see text for more details). For information purposes, daily uncertainties are also indicated (black lines). For comparison, the mean NO2

changes obtained using the climatological average (over 2017-2019) rather than ML-based business-as-usual NO2 concentration are also

shown (stars), as well as the relative difference between both approaches (circles).

caused by a population spending more time at home may be compensated by the closure of most shops, schools and offices.

A more detailed analysis of the activity data in these different emission sectors is required to better quantify how the emission

forcing has been modified by the lockdown (Guevara et al., 2020a) and to understand the reductions of NO2 obtained in this390

study.

Concerning traffic stations, although HERMESv3 gives a quite similar contribution of the different emission sectors compared

to urban background stations, a larger contribution of road transport emissions is evidently expected since measurement instru-

ments are deployed under the direct influence of vehicles. As a consequence, assuming that road transport is the emission sector
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Figure 6. Meteorology-normalized mean NO2 changes at selected urban background and traffic stations during the COVID-19 lockdown in

Spain. The size of symbols is proportional to the annual average NO2 mixing ratio (over 2013-2020).

most impacted by the lockdown (together with air traffic, but this last sector does not emit strong amounts of NOx around our395

set of stations), we could expect a stronger relative reduction of NO2 at traffic stations, compared to urban background stations.

At first glance, Table 2 does not highlight such a difference between the two types of stations. This seems to be due to the fact

that we here gather urban background and traffic stations not always collocated in the same cities, and/or located in cities of

very different sizes. In both Madrid and Barcelona provinces, the two selected stations are located in the same agglomeration,

and results do highlight substantial differences of NO2 reductions (Sect. 3.2). In total, urban background and traffic stations400

are collocated in the same agglomeration in 16 provinces. On average over this set of provinces, the NO2 reduction is -44 and

-53% at the urban background and traffic stations, respectively, thus showing a noticeable but still relatively small difference.

Focusing on the 6 largest cities within this group of provinces (Madrid, Barcelona, Valencia, Sevilla, Málaga and Mallorca),

the difference of NO2 reductions increases, with -50 and -63% at urban background and traffic stations, respectively. Focusing

on the 2 largest cities, namely Madrid and Barcelona, the discrepancy further increases, with the NO2 reductions of -43 and405

-60%, respectively. Therefore, results suggest that the lockdown has impacted more strongly the business-as-usual NO2 levels

at traffic stations than at urban background ones, and that this difference tends to be stronger in the largest cities.

3.5 ML-based business-as-usual NO2 versus climatological average NO2

We developed the ML-based approach arguing that it allows avoiding a potentially erroneous assessment of the lockdown-

related NO2 changes caused by the variability of meteorological conditions. In this section, we illustrate quantitatively the410

benefits of our method. Besides the business-as-usual NO2 daily concentrations obtained with our ML-based approach, we

consider here the mean NO2 concentrations observed in 2017-2019 at this period of the year (this approach being hereafter

referred to as the climatological average approach). We compared the mean NO2 concentrations obtained in each province with
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both approaches during the different phases of the lockdown. Taking the ML-based approach as the reference, we computed

the bias of the climatological average approach. In this frame, in a given province, a small bias between the two approaches415

should indicate that the meteorological conditions prevailing during a given phase of the lockdown are relatively close to their

climatological values at this time of the year. For convenience, both urban background and traffic stations are gathered in this

analysis.

The NO2 changes obtained with the climatological average approach are reported on Fig. 5 (and for the different phases in

Figs. A1, A2, A3, A4 in Appendix). Considering the entire lockdown period, the mean business-as-usual NO2 mixing ratios420

predicted by the ML models averaged over all provinces is 10.3 ppbv, in close agreement with the corresponding climatological

mean NO2 that is 10.6 ppbv. This corresponds to a mean bias (of the climatological average approach) of only +0.3 ppbv (or

+2% in relative terms). This shows that under a business-as-usual scenario, the NO2 concentrations during the lockdown period

should have been close to the values typically observed at this time of the year. However, this holds at a relatively large temporal

(the entire lockdown period in this case, i.e. 41 days) and spatial (all Spanish provinces) scale. These relative biases between425

both approaches are shown for all stations in Fig. 5 (black circles). Among the different provinces, they range between -41

and +33%, with 5th and 95th percentiles of -22 and +27%, thus greatly larger than its average of +2%. This highlights the

presence of substantial departures from the climatology at the province scale. For instance, in Barcelona province, the ML-

based business-as-usual and climatological mean urban background NO2 mixing ratios during the lockdown period are 15

and 19 ppbv, respectively, which corresponds to a climatological approach positively biased by +27%. Such a result is not430

surprising since encountering climatological conditions simultaneously in all Spanish provinces is very unlikely.

Higher when considered at the province scale, the bias of the climatological average approach can also further increase when

computed over shorter time periods. Indeed, during the 3 phases of the lockdown, it gets to +12, +2.3 and +1.8%, respectively,

when averaged over all provinces. Among the different provinces, the corresponding 5th/95th percentiles reach -21/+52, -34/+44

and -41/+36% during phases I, II and III, respectively. For the case of Barcelona province, these relative biases are +35, +19435

and 22%.

This analysis demonstrates the need to take into account (with ML or other techniques) the meteorological variability to

accurately estimate the baseline pollution and assess the changes of pollution induced by an altered emission forcing, which

appears all the more crucial when pollution changes are investigated at a fine temporal and/or spatial scale.

4 Conclusions440

The fast spread of the COVID-19 coronavirus disease pushed Spanish authorities to implement a severe lockdown of the pop-

ulation, with drastic restrictions of social and economic activities starting on March 14th 2020. Such a situation had an impact

on the anthropogenic emissions from numerous activity sectors, some of them unambiguously (road transport and air traffic,

and to a lesser extent the industrial sector), others with still unclear response (residential/commercial sector). Concomitantly,

a reduction of NO2 mixing ratios was reported in many locations, based on in-situ NO2 measurements operated by air quality445

monitoring stations or space-based remote sensing (e.g. TROPOMI). Part of the reduction of NO2 pollution is likely explained
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by the modified emission forcing caused by the lockdown. However, the potential confounding impact of the meteorologi-

cal variability (a major driver of the NO2 variability) prevents to directly relate the reduction of NO2 mixing ratios to the

lockdown-related reduction of emissions.

To tackle this issue, we used ML models fed by meteorological data and time variables (Julian date, day of week and date in-450

dex) to estimate the NO2 mixing ratios that would have been normally observed during the COVID-19 lockdown period under

a business-as-usual emission forcing and meteorological conditions prevailing during that period. We also estimated (conser-

vative) uncertainties affecting our ML predictions. This allowed us to quantify the changes of NO2 during the lockdown that

are not directly related to the variability of meteorological conditions. On average over Spain, NO2 mixing ratios at urban

background and traffic stations were found to decrease by about -50% due to the lockdown, with stronger reductions in phases455

II and III (about -55%) than in phase I (about -40%). We also demonstrated the benefits of our meteorology-normalization

approach compared to a simple climatological-based approach, especially at smaller temporal and spatial scales.

Due to the peculiarities of NO2 (e.g. primary pollutant, short chemical lifetime, simple chemistry), we expect these changes to

be mainly driven by the reduction of NOx anthropogenic emissions. Considering that the lockdown also impacted the emissions

of numerous other chemical compounds, an alteration of the business-as-usual chemical fate of NO2 (through a modification460

of its oxidation into nitric acid) cannot be excluded. However, we are considering here urban stations located close to the NOx

emission sources, where this effect is likely small compared to the reduction of direct emissions.

Regarding our methodology, we note that the COVID-19 lockdown and the associated changes of pollutants like particu-

late matter should have also altered the meteorological conditions by perturbing the radiative fluxes and clouds. Indeed, this

methodology precludes the remote and local influences of lockdown-related air pollution changes upon local weather. In any465

case, given the chaotic nature of the atmosphere and the long duration of the lockdown, it would be indeed impossible to know

the weather conditions that would had been observed during the lockdown in a business-as-usual scenario.

It is also worth noting that the quality of the ERA5 meteorological data may have deteriorated due to the lockdown through the

strong reduction of air traffic. Indeed, although satellites remain the dominant provider of meteorological observations, com-

mercial aircraft provide valuable amounts of in-situ meteorological observations in the troposphere and lower stratosphere,470

especially for wind speed. However, some meteorological services are currently operating additional atmospheric soundings to

compensate this loss of data. In any case, the impact on the meteorological conditions close to the surface is probably limited.

In this work, we analyzed the NO2 data available in Spain over the first 41 days of lockdown, which includes the phase of

most stringent lockdown in early April. At the date of submission of this study, the lockdown was still on-going in Spain, with

restrictions planned to be progressively relaxed until late June at least. Indeed, the impact of the lockdown upon air pollution475

levels will likely extend way beyond the period considered in this study. Besides the direct effects of the lockdown-related

restrictions, the foreseen economic downturn whose size, length and characteristics are still uncertain may also substantially

affect the levels of NO2 pollution, as already observed following the 2008-2009 economic recession, with one-year recession-

driven NO2 reductions of 10-30% across Spain and Europe (Castellanos and Boersma, 2012).

The results of the present study provide a valuable reference for validating similar assessments of the impact of the COVID-19480

lockdown on air quality based on chemistry transport models and emission scenarios derived from activity data during the
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lockdown (e.g. Guevara et al., 2020a; Menut et al., 2020).

In a separate study, our meteorology-normalized estimates are used to quantify the circumstantial reduction in the mortality

attributable to the short-term effects of NO2 during the lockdown (Achebak et al., 2020).

Code and data availability. The EEA AQ e-Reporting, ERA5 and Gridded Population of the World (GPW) version 5 datasets used in this485

study are publicly available. The HERMESv3_BU (Bottom-Up) code package with its documentation is publicly available at the following

gitlab repository: https://earth.bsc.es/gitlab/es/hermesv3_bu (https://doi.org/10.5281/zenodo.3521897, Guevara et al., 2019).

Appendix A: Quality Assurance (QA) applied to NO2 dataset

Using the information provided by GHOST (Globally Harmonised Observational Surface Treatment; Bowdalo, in preparation),

we applied numerous QA screening to the NO2 dataset, in order to remove : missing measurements (flag 0), infinite values490

(flag 1), negative measurements (flag 2), zero measurements (flag 4), measurements associated with data quality flags given

by the data provider which have been decreed by the GHOST project architects to suggest the measurements are associated

with substantial uncertainty or bias (flag 6), measurements for which no valid data remains to average in temporal window after

screening by key QA flags (flag 8), measurements showing persistently recurring values (rolling 7 out of 9 data points; flag 10),

concentrations greater than a scientifically feasible limit (above 5000 ppbv) (flag 12), measurements detected as distributional495

outliers using adjusted boxplot analysis (flag 13), measurements manually flagged as too extreme (flag 14), data with too coarse

reported measurement resolution (above 1.0 ppbv) (flag 17), data with too coarse empirically derived measurement resolution

(above 1.0 ppbv) (flag 18), measurements below the reported lower limit of detection (flag 22), measurements above the re-

ported upper limit of detection (flag 25), measurements with inappropriate primary sampling for preparing NO2 for subsequent

measurement (flag 40), measurements with inappropriate sample preparation for preparing NO2 for subsequent measurement500

(flag 41) and measurements with erroneous measurement methodology (flag 42). All the corresponding measurements were

removed from the dataset.

Appendix B: Decision tree-based ensemble methods

Among the myriad of ML models available nowadays, we opted for decision tree-based ensemble methods. The general idea

of ensemble methods is to combine an ensemble of independent base learners (or weak learners). Base learners here designate505

simple models that perform only slightly better than a random guessing. Decision trees are currently the base learner most

commonly used in ML ensemble methods (but other types of learners could be possible). Given a training dataset and a

regression problem, one characteristic of decision trees lies in the fact that it is always possible to reach a high accuracy (by

growing a large enough tree) but at the cost of very poor generalization skills. In ML terminology, such large trees are said

to have a small bias but a large variance. To be appropriate base learners, decision trees used in ensemble methods are thus510

constrained to have a low number of branches (sometimes referred to as trunks), which increases the bias but reduces the
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variance. The strength of ensemble methods then stems out from the fact that combining a sufficiently large number of base

learners (of quite poor performance individually) allows to reach an enhanced performance in addition to better generalization

skills, the corresponding ensemble being less unstable to the addition of new data.

Once the form of the base learner is chosen, a strategy is required for building this ensemble of independent base learners.515

Three main approaches have been proposed over the past: (i) bagging, (ii) boosting, (iii) random forests (RF). Bagging consists

in aggregating base learners trained on a bootstrap sample of the training dataset. Boosting consists in aggregating base learners

trained on different labels: the first base learner is trained on the dataset, the second on the errors left by the previous one, the

third on the errors left by the two previous ones, and so on. RF (used by Grange et al. (2018) and Grange and Carslaw (2019))

consists in aggregating base learners trained on random subsets of the training dataset based on a random subset of features.520

Appendix C: Tuning of the GBM model

The training of the model is conducted together with a search of the optimal hyperparameter tuning. We retained a so-called

randomized search in which a range of values is given for each hyperparameter of interest and a total number of hyperparame-

ters combinations to test (20 in our case). Compared to the so-called grid search in which all combinations of hyperparameters

are tested, this choice allows to explore a large part of the hyperparameters space for a greatly reduced computational cost, and525

is less prone to overfitting.

We used the scikit-learn Python package. The learning rate was fixed to 0.05 and the number of features to consider when look-

ing for the best split is fixed to the square root of the number of features (max_features in scikit-learn, set to "sqrt"). Besides

that, the tuning of the GBM model was done over the following set of hyperparameters: the tree maximum depth (max_depth

in the scikit-learn Python package: values from 1 to 5 by 1), the subsample (subsample : from 0.3 to 1.0 by 0.1), the number of530

trees (n_estimators: from 50 to 1000 by 50) and the minimum sample in terminal leaves (min_samples_leaf : from 1 to 30). The

maximum depth (or the maximum number of subsequent splits in the individual decision trees) controls how much interaction

between the features can be taken into account. The subsample hyperparameter represents the fraction of samples to be used for

fitting an individual base learner. Values below unity correspond to the so-called stochastic gradient boosting and usually allow

to decrease the variance at the cost of an increased bias (low values also allow to speed up the training phase). The minimum535

sample leaf hyperparameter controls the minimum number of samples to allow in a terminal node (larger values limiting the

risk of overfitting).
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Figure A1. Absolute and relative meteorology-normalized NO2 changes during phase I of the lockdown (2020/03/14-2020/03/29), at urban

background (left panels) and traffic stations (right panels). The uncertainties shown with colored bars correspond here to the 90% confidence

level interval computed at the weekly scale. For information purposes, the uncertainties affecting the ML-based daily predictions are also

shown (black bars).
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Figure A2. Similar to Fig. A1 for the phase II of the lockdown (2020/03/30-2020/04/09).
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Figure A3. Similar to Fig. A1 for the phase III of the lockdown (2020/04/10-2020/04/23).
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Figure A4. Similar to Fig. A1 for the entire lockdown period (2020/04/14-2020/04/23).
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Table A1. Stations selected in each Spanish province.

Province Urban background station Traffic station

A Coruña ES1957A Torre De Hércules (43.382800, -8.409200) ES1901A San Caetano (42.887800, -8.531100)

Albacete ES1535A Albacete (38.979300, -1.852100) -

Alicante / Alacant ES1915A Alacant-Florida-Babel (38.340278, -0.506667) ES1849A Elx-Parc De Bombers (38.259167, -0.717500)

Almería ES1549A El Ejido (36.769720, -2.810970) ES1393A Mediterráneo (36.841330, -2.446720)

Araba/Álava ES1544A Agurain (42.849000, -2.393700) ES1492A Tres Marzo (42.856070, -2.667790)

Asturias ES1974A Montevil (43.516600, -5.670700) ES1272A Constitución (43.529900, -5.673500)

Badajoz ES1819A Merida (38.907500, -6.338060) -

Barcelona ES1396A Barcelona (Sants) (41.378803, 2.133098) ES1438A Barcelona (L’Eixample) (41.385343, 2.153822)

Bizkaia ES1713A Parque Europa (43.254900, -2.902300) ES1244A Mazarredo (43.267500, -2.935200)

Burgos ES1598A Zalla (43.212910, -3.134400) ES1160A Burgos 1 (42.350830, -3.675560)

Cantabria ES1529A Tetuán (43.467780, -3.790280) ES1580A Santander Centro (43.460560, -3.808610)

Castellón / Castelló - ES1834A Castelló-Patronat D’Esports (39.988889, -0.026111)

Ciudad Real ES1857A Ciudad Real (38.993900, -3.937800) -

Cuenca ES1858A Cuenca (40.061900, -2.129700) -

Cáceres ES1997A Plasencia (40.077780, -6.147220) -

Cádiz ES1593A San Fernando (36.460590, -6.203070) ES1479A Avda. Marconi (36.506020, -6.268570)

Córdoba ES1799A Lepanto (37.892610, -4.762340) ES2047A Avda. Al-Nasir (37.892600, -4.780100)

Fuerteventura ES1978A Casa Palacio-Puerto Del Rosario (28.498380, -13.860830) -

Gipuzkoa - ES1494A Ategorrieta (43.322000, -1.960700)

Girona - ES1999A Girona (Escola De Música) (41.976386, 2.816547)

Gran Canaria ES1919A Parque De San Juan-Telde (28.003645, -15.411851) ES1573A Mercado Central (28.133732, -15.432823)

Granada ES1973A Ciudad Deportiva (37.135560, -3.619250) ES1560A Granada - Norte (37.196100, -3.612660)

Guadalajara ES1536A Azuqueca De Henares (40.571000, -3.264600) -

Huelva - ES1340A Pozo Dulce (37.253360, -6.935140)

Huesca ES2041A Monzón Centro (41.916140, 0.191101) ES1417A Huesca (42.136110, -0.403890)

Jaén ES1656A Ronda Del Valle (37.782550, -3.781570) -

La Rioja ES1602A La Cigüeña (42.464000, -2.428000) -

León ES1988A León 4 (42.575278, -5.566389) ES1161A Barrio Pinilla (42.603889, -5.587222)

Lleida - ES1225A Lleida (Irurita - Pius Xii) (41.615795, 0.615726)

Lugo - ES1905A Lugo-Fingoy (42.997900, -7.550900)

Madrid ES1941A Ensanche De Vallecas (40.372778, -3.611944) ES1938A Castellana (40.439722, -3.690278)

Mallorca ES1604A Bellver (39.563320, 2.620550) ES1610A Foners (39.570080, 2.655830)

Menorca ES1828A Ciutadella De Menorca (40.009440, 3.856480) -

Murcia ES1921A Mompean (37.603056, -0.975278) ES1633A San Basilio (37.993611, -1.144722)

Málaga ES1751A El Atabal (36.729560, -4.465530) ES2031A Avenida Juan Xxiii (36.707300, -4.446000)

Navarra ES1472A Iturrama (42.807220, -1.651390) ES1740A Plaza De La Cruz (42.812220, -1.640000)

Ourense - ES1096A Gomez Franqueira (42.353000, -7.877900)

Pontevedra - ES1137A Arenal (42.219000, -8.742100)

Salamanca ES1889A Salamanca 6 (40.960833, -5.639722) ES1618A Salamanca 5 (40.979167, -5.665278)

Segovia - ES1967A Segovia 2 (40.955556, -4.110556)

Sevilla ES1425A Principes (37.375250, -6.005580) ES0817A La Ranilla (37.384250, -5.959620)

Soria - ES1643A Soria (41.766667, -2.466667)

Tarragona ES1666A Tarragona (Parc De La Ciutat) (41.117388, 1.241650) ES1124A Tarragona (Sant Salvador) (41.159450, 1.239704)

Tenerife ES1975A Depósito Tristán-Sta Cruz De Tf (28.458160, -16.278776) -

Teruel ES1421A Teruel (40.336390, -1.106670) -

Toledo ES1818A Toledo2 (39.868100, -4.020800) -

Valencia / València ES1885A València-Politècnic (39.480300, -0.336400) ES1239A València-Pista De Silla (39.456111, -0.375833)

Valladolid - ES1631A Arco De Ladrillo Ii (41.645556, -4.730278)

Zamora - ES1927A Zamora 2 (41.509722, -5.746389)

Zaragoza ES1641A Renovales (41.635280, -0.893610) ES1418A Alagón (41.762780, -1.143330)
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Table A2. Performance of the ML predictions of NO2 mixing ratios. Results are shown for both the reference experiment EXP2020 and the

ensemble of past experiments combined together (EXP2016�2019).

Experiments Dataset Period of the year Type of station MB [ppbv] RMSE [ppbv] PCC N

(day/month) (nMB [%]) (nRMSE [%])

EXP2020 Training 01/01-31/12 Urban background 0.0 (0%) 1.8 (19%) 0.96 36371

Traffic -0.0 (-0%) 2.5 (19%) 0.95 36612

Any -0.0 (-0%) 2.2 (19%) 0.96 72983

Test 01/01-13/03 Urban background 0.3 (2%) 3.5 (31%) 0.85 2343

Traffic 0.9 (6%) 4.0 (27%) 0.85 2445

Any 0.6 (4%) 3.8 (29%) 0.86 4788

EXP2016�2019 Training 01/01-31/12 Urban background 0.0 (0%) 1.9 (20%) 0.95 146237

Traffic 0.0 (0%) 2.5 (17%) 0.95 151372

Any 0.0 (0%) 2.2 (18%) 0.96 297609

Test 01/01-13/03 Urban background 0.2 (2%) 3.7 (32%) 0.84 9437

14/03-23/04 Urban background 0.5 (6%) 3.6 (41%) 0.75 5408

01/01-23/04 Urban background 0.3 (3%) 3.6 (35%) 0.83 14845

01/01-13/03 Traffic 0.1 (0%) 4.3 (25%) 0.85 9741

14/03-23/04 Traffic 0.4 (3%) 4.4 (33%) 0.78 5689

01/01-23/04 Traffic 0.2 (1%) 4.3 (28%) 0.83 15430

01/01-13/03 Any 0.1 (1%) 4.0 (28%) 0.86 19178

14/03-23/04 Any 0.5 (4%) 4.0 (37%) 0.80 11097

01/01-23/04 Any 0.2 (2%) 4.0 (31%) 0.85 30275
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