Reviewer #1

Comments from the reviewer are in blue, and answers in black (text citations
and modifications are highlighted in italics). Note that following the
recommendation of the other reviewer, we added three new meteorological
features (surface net solar radiation, surface solar radiation downwards,
downward UV radiation at the surface) and updated all the figures, tables and
corresponding text. The impact on the results is relatively small so the discussion
remains essentially the same.

The article under review here aims to quantify the impact of the Covid-19
lockdown measures in Spain on air quality. The topic is interesting from the
point of view of air quality practitioners and the general public, but it also raises
substantial scientific challenges. Even if economic activities were substantially
reduced during the lock down period, the impact of meteorological factors on air
quality precludes a simple comparison with previous years. Instead, the authors
mobilize innovative machine learning approaches to tackle the issue. The quality
of the presentation, scientific quality, and societal relevance are excellent, and
publication in ACP is therefore recommended. | am nevertheless proposing the
following minor suggestions that could help further strengthen the paper.

We are thankful to the reviewer for his/her positive feedbacks and comments.

General comment:

The authors should be encouraged to extent the coverage of their study.
Applying the method over the whole of Europe is certainly the scope for another
paper. But an extension of the temporal coverage up to the end of the lockdown
in Spain would be interesting.

We agree that an extension over Europe is interesting, and we are currently
collaborating on another study addressing the question at this larger scale
(focusing on the largest European cities). Concerning the extension of the
temporal coverage of the present study, we took into account the time period
with data available at the time of preparation/submission of this study. Although
it would have been nice to cover the entire period of the lockdown, we are here
considering a period already quite extended (41 days), comprising the most
stringent phase of the lockdown. To our opinion, although interesting, extending
the study would require to substantially reshape the first draft, without bringing
much more scientific knowledge. In addition, even at the time of this revision
(August 25t), the situation cannot be considered as normal since many people
across Spain are still working from home in Spain (and some parts of the country
have been recently confined again).

Specific comments:

e L[24, L403: the coronavirus is SARS-COV-2 not COVID-19. Indeed, the
reviewer is right, according to the World Health Organization, COVID-19
designates the coronavirus disease, while SARS-COV-2 refers to the virus
itself. To be consistent with this terminology, we added the term “disease”
in the text.

e L36: without supporting reference, it is wiser to state that “the impact on
industry is *presumably* more contrasted”. Corrected.



L50: in the motivation of the work, the authors could add that this type of
analysis will serve to validate the model-based assessment using emission
scenarios derived from activity data during the lockdown. We added in
the conclusion : “The results of the present study provide a valuable
reference for validating similar assessments of the impact of the COVID-19
lockdown on air quality based on chemistry transport models and emission
scenarios derived from activity data during the lockdown (e.g. Guevara et
al, 2020a; Menut et al,, 2020).” with the corresponding references :

o Menut, L., Bessagnet, B. Siour, G. Mailler, S, Pennel, R, and
Cholakian, A.: Impact of lockdown measures to combat Covid-19
on air quality over western Europe, Science of The Total
Environment, 741, 140 426,
https://doi.org/10.1016/j.scitotenv.2020.140426,
https://linkinghub.elsevier.com/retrieve/pii/S004896972033948
6,2020.

o Guevara, M,, Jorba, 0., Soret, A., Petetin, H., Bowdalo, D., Serradell,
K. Tena, C., Denier van der Gon, H., Kuenen, ]., Peuch, V.-H., and
Pérez Garcia-Pando, C.: Time-resolved emission reductions for
atmospheric chemistry modelling in Europe during the COVID-19
lockdowns (in review), Atmospheric Chemistry and Physics
Discussions, https://doi.org/10.5194 /acp-2020-686, 2020a.

L69: where is the GHOST data available ? If GHOST database is not
publicly open, the reference of the availability of the data should remain
EEA’s AQ e-reporting database. GHOST is a BSC internal on-going project
currently not publicly available and a publication describing the dataset is
in preparation. As explained in the text, GHOST is not another database, it
ingests different air quality publicly available databases (including the
EEA AQ eReporting database used in this study) and provides consistent
and extended metadata to ensure the quality of the observational data.
Although neglected by many studies, we consider that this quality
assurance screening is an essential part of the data preprocessing. This is
why we consider that it is worth mentioning and explaining it in detail in
the manuscript, while to our opinion, the reference to the use of the EEA
AQ eReporting database is already clear enough in the text.

L75: the formal deadline for 2019 AQ e-reporting data to be delivered as
Ela is September 2020, what is the fraction of 2019 data already Ela at
the date of submission? Regarding the September deadline, it seems that
many countries are actually delivering Ela data earlier (sometimes bit by
bit through the year). We added the following text : “The fraction of Ela
data is 0% in 2020, 99% in 2019 and 100% in 2013-2018.”

L125: please clarify what you mean by “unique values”, is the date index
the Julian day, and if so why would it be unique? There is here a
misunderstanding. As explained in L119, the date index is the number of
days since 2013/01/01 (i.e. unique values going from 0 for 2013/01/01
to 2677 for 2020/04/30), while the Julian date (going from 1 to 365) is
another feature. We added this to the sentence : “Including such a feature
with unique values (going from 0 for 2013/01/01 to 2677 for 2020/04/30)
is not expected |...]"



L145: hyperparameters should be defined and discussed either in the
main text or in the annex. Further details would be appreciated in the
annex on how the choice of those hyperparameters are related with the
problem at hand (density and spread of observations, number and
diversity of predictors etc.). The tuning strategy is explained in detail in
Appendix C. The hyperparameters selected here are very common to any
ML exercise with the gradient boosting machine and are not tailored to
our specific problem. For each of these hyperparameters, we defined a
reasonably large range of possible values to be tested through a
randomized search, following again the idea we have about the common
practices in the field (and the computational resources available for these
calculations). We are not arguing here that this tuning strategy optimizes
the best the performance but the performance obtained was found to be
acceptable for the present study.

L245: include the value of the uncertainty interval, it is difficult to
compare percentages in 3.2 and ppbv intervals in 2.3.3. Actually, both
should not be compared because they are not directly comparable. There
is here a misunderstanding since the uncertainty intervals of Sect. 2.3.3
correspond to the uncertainties of the ML predictions at the daily and
weekly scales (i.e. the uncertainties of the daily or weekly average NO2
concentrations).

L255: the impact of the LEZ could actually be an increase of NO2 at
stations in the outskirts of that zone. As also explained in our answer to
the first reviewer, although the reviewer is right in principle, to our
opinion, the 3 reasons already mentioned here in the text (namely the
very limited area of this LEZ zone (5 km?), the rather large distance to the
stations selected and last but not least, the expected progressive
transition to a new traffic pattern, given the absence of fines before April
1st, now postponed to September 15t 2020), combined together,
reasonably justify our assumption that only a “limited impact is expected”
in Madrid.

Figure 2: N seems to be missing from the plot. Thanks, we corrected it
(this was an old version of the legend).

L266: clarify if the confidence interval is taken from the distribution of
daily differences. We are not sure to properly understand what should be
clarified here. The uncertainties used here correspond to the
uncertainties at weekly scale (computed based on the differences
between NOZ2 observations and predictions weekly averaged, as
explained in Sect. 2.3.3). If the reviewer is talking about the uncertainties
at daily scale, they are indeed obtained from the distribution of the daily
differences.

L325 and L344: could there be a role of background ozone in the relation
between NOx emission changes and NO2 concentrations that would
appear through this latitudinal gradient? The NO2 reductions obtained
tend to be stronger in the southern half of Spain, but there is not a very
clear latitudinal gradient that apply to all provinces. For instance,
relatively lower NO2 reductions are found along the southern coast of
Spain. Ozone and other chemical compounds may in principle impact the



NO2 concentrations (directly or indirectly) but we do not have any clear
evidence for this at this stage.

* L365: clarify which reduction is for urban and traffic stations. We
modified the text as follows : “On average over this set of provinces, the
NO2 reduction is -44 and -53% at the urban background and traffic
stations, respectively |...]"”

* L412: also mention day of the week in the predictors, which is
presumably very important for NO2. We modified the sentence as follows
: “To tackle this issue, we used ML models fed by meteorological data and
time variables (Julian date, day of week and date index) to estimate |...]"

Reviewer #2
Comments from the reviewer are in blue, and answers in black (text citations
and modifications are highlighted in italics).

This work by Petetin et al., deals with the hot topic of variation of pollutants
during the lockdown measures against the COVID19 pandemic. More specifically
it focuses on the NO2 and the area of the Spanish state. Transports are the main
source of NO2 in the troposphere, thus the reduction of traffic is estimated to
lower significantly the emissions. Though the decrease of the emissions was very
clear during the lockdown, the actual concentration in various areas is also
dependent on meteorological parameters that rule the dispersion and the
chemical processes of the gas. In order to better estimate the expected
concentrations, based on meteorology, authors have trained a machine learning
algorithm, to simulate the business as usual conditions, using as input
meteorological variables. The work is generally well presented and should be
accepted for publication in ACP after minor revisions.

We thank the reviewer for his/her constructive comments.

Specific comments

e L10 It would be better to provide some quantitative measure of the
performance of the model. We modified the sentence : “The ML predictive
models were found to perform remarkably well in most locations, with
overall bias, root-mean-squared error and correlation of +4%, 29% and
0.86.”

* L77 Please provide some bibliographical reference for the uncertainty of
these NOZ measurements. We added some information regarding the
measurement uncertainties : “All NO: measurements taken into account
here are operated using chemiluminescence with an internal Molybdenum
converter. Although predominantly used over Europe for measuring NO:,
this measurement technique is well known to be have strong positive
artifacts due to interferences of NO. compounds (eg. nitric acid,
peroxyacetyl nitrates, organic nitrates), especially during daytime when
these species are photo-chemically formed, up to a factor of 2-4 as observed
during summertime in urban atmospheres (e.g. Dunlea et al,, 2007; Villena
et al, 2012). In our case, the positive artifacts at urban background
stations are probably lower since the period of study (late winter and early



spring) is less photo-chemically active than summertime. Even lower
interferences are expected at traffic stations where the NO,/NOx ratio is
typically lower due to the proximity to fresh NOx emissions. In any case, the
present study focuses on the relative changes of NO; due to the lockdown, so
biases in the NO; measurements are of lower importance.” with the
corresponding references are :

o Dunlea, E. J.,, Herndon, S. C., Nelson, D. D., Volkamer, R. M., San
Martini, F., Sheehy, P. M., Zahniser, M. S., Shorter, J. H., Wormhoudyt,
J. C, Lamb, B. K,, Allwine, E. ]., Gaffney, ]. S., Marley, N. A., Grutter,
M., Marquez, C., Blanco, S., Cardenas, B., Retama, A., Ramos Villegas,
C. R, Kolb, C. E,, Molina, L. T., and Molina, M. ].: Evaluation of
nitrogen dioxide chemiluminescence monitors in a polluted urban
environment, Atmos. Chem. Phys., 7, 2691-2704, doi:10.5194 /acp-
7-2691-2007, 2007.

o Villena, G., Bejan, 1., Kurtenbach, R., Wiesen, P., and Kleffmann, ]J.:
Interferences of commercial NO2 instruments in the urban
atmosphere and in a smog chamber, Atmos. Meas. Tech., 5, 149-
159, doi:10.5194 /amt-5-149-2012, 2012.

L100 The selection of variables to feed the ML algorithm is very crucial
and implies the physical and chemical processes that should be associated
with the gas’ concentration. My thought is that the photochemical cycle is
implied by cloud coverage, which indirectly influences the irradiance
which drive the photolysis. Since daily values are used, it is imperfectly
fed to the algorithm, since nighttime cloud coverage would no affect NO2
concentration. Thus, some irradiance related variable from ERA-5 seems
a better choice (SSI is a good one to investigate first). Since the results are
satisfactory even using the cloud coverage proxy, I suggest to add some
discussion on the selection of the variables and probable investigate other
ones in the future. The reviewer here raises an interesting point, and we
agree that including such information is susceptible to improve the ML-
based predictions. We thus re-run our analysis adding the ERA5 surface
net solar radiation, surface solar radiation downwards and the downward
UV radiation at the surface to the set of features. The impact on the
statistical results is generally positive although relatively small (error and
correlation very slightly improved, and bias very slightly increased). On
average, the importance of these new features is 4, 4 and 5%,
respectively, which demonstrates their usefulness for predicting NO2
concentrations. We updated the entire document (figures, tables and text)
with the results obtained with this new set of features. Note that most
changes are minor, so the discussion remains the same. We thank the
reviewer for helping us further improving the results.

Figure 1.1 think it is somehow difficult to understand the map, probably a
different selection of color bar would make it easier to figure out the
conditions. The viridis default color bar in Python matplotlib library
presents a number of well recognized advantages over most of the
existing color bars (e.g. color-blind friendly, perceptually uniform when
printed in black and white). We thus decided to keep it but we modified
the number of colors in order to make Figs. 1 and 6 easier to read.



L119 ERA-5 spatial resolution is around 30km. Are there stations that
correspond to the same grid point of the database? Please discuss the
uncertainty introduced by the problem of non-colocation of ERA-5 and
actual measuring stations. Given the ERA5 spatial resolution, urban
background and traffic stations within a same city typically belong to the
same ERAS grid cell. We are not sure to perfectly understand the point
raised here by the reviewer given that ERAS5, as gridded data, can always
be collocated with any measuring stations. After that, considering
numerical meteorological data over a volume (the grid cell) as a proxy of
the meteorological conditions occurring at a point (the air quality station)
indeed necessarily comes with some uncertainties. The uncertainties (e.g.
of representativeness) related to the relatively coarse resolution of ERAS
for representing accurately the meteorological conditions at the different
stations are already discussed (L216-226 in the first version) in the initial
manuscript, so we think that there is not much more useful information to
add concerning this point.

L130 Is that the case in any of the data used here? Are there any stations
with significant trends in the training period? To our opinion, the 3-years
training period is too short to compute meaningful trends. Over the
period 2013-2019, a simple linear trend analysis on annual mean NO2
mixing ratios indicates that 21 over 75 stations show significant trends,
with a median of -5%/year.

L141 Following the arguments deployed in previous paragraphs, it seems
preferable to test the validity in the same period of the year, as the one of
interest (March-May), than in January -February. The reviewer is raising
here an important point that deserves more discussion. In the revised
version of the paper, we greatly reshaped Table 1 and the corresponding
discussion.

As explained in the text, at each station, several ML experiments have
been conducted, including the reference one with training over 2017-
2019 and testing in 2020 (hereafter referred to as the EXP2020
experiment), and the four other experiments based on past data and used
for quantifying the uncertainties of our NO2 predictions (hereafter
referred to as the EXP2o16, EXP2017, EXP2018, and EXP2019 experiments).
Only the ML models obtained from the reference EXP2020 experiment are
used for estimating the business-as-usual NO2 during the COVID-19
lockdown, which explains why we initially focused on them for the
statistical evaluation. Since the lockdown period in 2020 can evidently
not be used for evaluation, this constrained us to restrict the evaluation to
the period 01/01/2020-13/03/2020. However, we agree that the
performance of the ML models may be different during the lockdown
period. In the revised version of the paper, we now also discuss the
performance obtained with the four other experiments (EXP2016-2019),
which allows to check the performance during the period of the year of
the lockdown. Besides Table 1, the text in this section is modified as
follows :

“The performance of the ML predictions in each Spanish province and
station type is shown in Fig. 2, and the statistics over all Spanish provinces
reported in Table 1. Statistical results in Table 1 are given for both the



reference ML experiment (EXP2020) and the other experiments combined
together (EXP2016, EXP2017, EXP2018 and EXP2019, hereafter referred to
as EXP2016-2019). Besides providing a broader view of the performance of
our modeling strategy, considering these past experiments also allows
assessing the performance of the ML predictions during the period of the
year of the lockdown (14/03-30/04, for years 2016 to 2019), which may be
important given the potential seasonality of prediction errors. Statistics
obtained at urban background and traffic stations are given in Table A2 in
Appendix. Results are evaluated using the following metrics, calculated
based on daily NO2 mixing ratios : mean bias (MB), normalized mean bias
(nMB), root mean square error (RMSE), normalized root mean square error
(nRMSE) and Pearson correlation coefficient (PCC).

For information purposes, we included the statistical results obtained
over the training dataset (2017/01/01-2019/12/31 in EXPz029). Checking
results over the training data may be useful for highlighting obvious
situations of overfitting, when the performance is almost perfect. At both
urban background and traffic stations, results show no bias, low nRMSE
(always below 35%, 19% when considering all provinces), and a high PCC of
0.96. Similar results are obtained when considering the ensemble of all past
experiments (EXPz016-2019). Although such a performance obtained is very
good, there are no clear signs of too prejudicial overfitting at this stage.

On the test dataset of the EXPzoz0 reference experiment (2020/01/01-
2020/03/13, before the lockdown), the performance remains reasonably
good in most provinces. Over all Spanish provinces, the nMB increases to
+4%, the nRMSE to 29% and the PCC is reduced to 0.86, in very close
agreement with the performance obtained with EXP2016-2020 (nMB of +1%,
nRMSE of 28% and PCC of 0.86). In comparison, the performance obtained
in EXP2016-2019 during the period of the year of the lockdown (14/03-30/04)
is a bit lower but remains reasonable, with a nMB of +4%, a nRMSE of 37%
and a PCC of 0.80. Although moderate, such a deterioration of the
performance after mid-March might reflect some seasonality in the ML
model errors and/or could be related to the presence of trends in the NOZ2
concentrations. Concerning this last point, as previously discussed in Sect.
2.3.2, including the date index feature in the ML model aims at limiting this
potential issue but likely cannot completely solve it. Generally, only minor
differences of performance are found between urban background and
traffic stations.

Results of EXPzo20 per province (Fig. 2) highlight some inter-regional
variability of the performance, with poorer statistics in some provinces, at
least for one type of station. At most stations, the bias remains below #20%
while nRMSE ranges between 15 and 45% (highest nRMSE around 50% in
Teruel, Tenerife and Fuerteventura). Most provinces show PCC around 0.6-
0.9, with only a few exceptions below 0.6 (urban background sites in
Bizkaia, Fuerteventura, Huesca and traffic sites in Granada and Gran
Canaria).” Note that we also added a Table A2 in the Appendix with
detailed statistics on urban background and traffic stations.

L159 Figure 1 shows that a number of stations have mean concentrations
~5ppvb. Thus these intervals are very huge, making the result not
reliable. I suggest to present these intervals in a different way and not



averaging all that data. In this study, the uncertainties affecting our ML
predictions are estimated using the most conservative approach,
precisely in order to ensure the reliability of the NO2 reductions
highlighted. These uncertainty intervals provided are indeed large but
correspond to the uncertainties of the ML predictions at the daily scale
(between January and April). Therefore, they cannot be compared to the
(multi-) annual NO; averages shown for instance in Figure 1. As already
explained in the manuscript, and as expected due to error compensations,
the longer the time scale, the shorter these uncertainties. Therefore, the
reviewer is here misleading his interpretation of the numbers provided in
the text. We modified the sentence to avoid confusion : “Averaged over all
Spanish provinces, the uncertainty interval of ML predictions at the daily
scale is [-5.1, +5.3] ppbv at urban background stations, and [-6.6, +6.7] ppbv
at traffic stations.” (Note that the uncertainty intervals are here slightly
modified compared to the initial manuscript as they correspond to the
results obtained with the extended set of features).

L167-168 This argument is not clear. Please explain in detail. Here we
simply mean that errors at the daily scale can at least partly compensate
each other, which implies that averaging the ML-based predictions of
daily NO2 mixing ratios to longer time scales (a week for instance) is
expected to reduce the uncertainty. This is quite common, also for
traditional chemistry transport models (reproducing the daily mean NO2
concentrations always goes with stronger uncertainties than the weekly,
monthly or annual mean NO2 concentrations). We modified the sentence:
“These uncertainties are suited for our ML-based daily NOZ predictions.
Because these daily uncertainties are likely at least partly uncorrelated,
NOZ2 daily predictions averaged over periods longer than one day are
expected to have smaller uncertainties due to error compensations.”

Tablel The test cases N seems very low, are these implying number of
stations or total number of test days for all stations? Table 1 in the initial
version of the manuscript gives the “the statistics averaged over all
Spanish provinces”, so the test cases N corresponds to neither the number
of stations, nor the total number of test days, but the number of test days
per station (on average over all stations). For each station in each Spanish
province, training is performed over 2017-2019 (maximum N for training
is therefore 3x365 = 1,095 points per station) and testing over 2020
before lockdown (maximum N for testing is therefore 31+28+14 = 73
points per station). In this Table, statistics were first computed for each
station individually, and then averaged together to give the numbers
provided in Table 1. Results at individual stations are still visible in Fig. 2.
In the updated version of the manuscript, we greatly reshaped all this
discussion, following a previous comment of the reviewer. Table 1 now
gives the overall statistical results, computed over the entire data (i.e.
combining all provinces together), which gives a broader view of the
performance obtained by the ML-based predictive models.

L255 In some cities, such zones, resulted in much higher traffic in
peripheral road networks. Thus the stations at 3 and 9 km, might
experiencing heavier traffic due to LEZ in the center. This should be
answered locally by explaining the main routes and the traffic of each city.



Investigating in more detail the traffic pattern of Madrid is far beyond the
scope of this paper. Although the reviewer is right in principle, to our
opinion, the three reasons already mentioned here in the text - namely
the very limited area of this LEZ zone (5 km?), the rather large distance to
the stations selected and last but not least, the expected progressive
transition to a new traffic pattern, given the absence of fines before April
1st (and postponed to September 15t 2020 due to the COVID-19 situation
(we added this new element of information in the revised manuscript : “In
our case, we expect a limited impact because the LEZ was still in its
transition phase (strict enforcement through fines to offending motorists
was not expected until April 15t and was finally postponed to September 15t
2020 due to the COVID-19 situation) and the two stations selected in
Madrid province are located outside the LEZ (at 9 and 3 km from the city
center).”) — combined together, reasonably justify our assumption that
only a “limited impact is expected” in Madrid.

L263 “Statistically significant” should not be used without proper
definition and explanation. Explain which significance tests you used,
what was the outcome and then provide such conclusions. Here we did
not use any statistical test. Uncertainties of daily (weekly) NO; mixing
ratios were computing empirically as the 5% and 95t percentiles of the
daily (weekly) residuals obtained over past experiments. They are thus
expected (by construction) to represent the 90% confidence interval. We
modified the sentence : “The uncertainty at weekly scale is here used as an
estimate of the uncertainty at 90% confidence level (by construction, given
that they are computed as the 5% and 95t percentiles of the weekly
residuals, see Sect. 2.3.3) affecting the mean NOZ change.”

3.3 I think it is important to present some representative cases of other
stations’ time series in figures similar to 3 and 4. These provide a very
clear picture of the conditions during the lockdown phases. Are there any
periods of higher than business as usual concentration, probably in the
stations with low mean values (Granada and Murcia probably)? Besides
the time series for Madrid and Barcelona (Figs. 3 and 4), we are now
providing the Supplement the time series obtained in all other Spanish
provinces (Figs. S1-48), in order to allow the reader to check the results
obtained in specific locations. Results obtained in the other provinces are
generally consistent with those already discussed in Madrid and
Barcelona. Thus, we do not think that it is particularly useful to present
and discuss other cases in the manuscript.

To answer the specific question of the reviewer, it is indeed possible to
encounter observed NO2 concentrations higher to the ML-based
business-as-usual concentrations on specific days, although it rarely
happens. With the updated results obtained with the extended set of
features, over all daily data available during the lockdown, only 4% (110
points over 2844) of the daily NO2 exceed the predicted business-as-
usual NO2 estimates. Over these points, the observed NO2 mixing ratios
are on average 1.3 ppbv higher than the business-as-usual (20% in
relative). For information purpose, we included in the text: “Results
highlight that the reduction previously described in Madrid and Barcelona



extends to most Spanish provinces, although with some inter-regional
variability in the extent of the change and the degree of statistical
significance. During the lockdown period, 96% (2734 points over 2844) of
the observed daily NO2Z mixing ratios are lower than the ML-based business-
as-usual NOZ estimates.”. Note that the corresponding observed NOZ2
mixing ratios are not particularly low since their average reaches 7.8
ppbv (compared to 5.4 ppbv for the entire NO2 observational dataset).
Note also that additional information can already be found in Table 2
where we provided the maximum NOZ changes (among all provinces)
during the three different phases and the entire lockdown period : in the
revised version of the manuscript, you can see that the maximum NO2
changes (i.e. in our case, the changes closest to zero since values are
negative) are all negative or close to zero (-14% during phases I[+II+III for
both urban background and traffic stations, -14 and -1% during phase I
for urban background and traffic stations, respectively, etc.). This means
that although observed NO2Z can be higher than the business-as-usual
NO2 on specific days, this is never the case along an entire phase
(otherwise results would show some increases of NO2 during specific
phases).

It is worth noting here that as explained in the manuscript, when
selecting the stations, we required at least 10% of daily data during the
entire lockdown period (41 days), which represents 4 days. However, we
did not apply a similar criteria at the smaller scale of the individual
lockdown phases. Although the data coverage in Madrid and Barcelona is
very good, in some other provinces, the average NO2 reductions
computed during specific lockdown phases can be based on very few data.
This can now be seen in the Supplement. If we consider for instance the
urban background station in Murcia, data are available during 7, 5 and 5
days in phases I, II and III, respectively (therefore quite well balanced).
However, at the urban background station in Granada, data are available
during 1, 1 and 9 days in phase I, II and III, respectively. More
importantly, the only daily data available in phase I is on the first day of
the phase (March 15t%), i.e. at the very beginning of the lockdown, which
likely explains the low increase of NO2 highlighted during phase I (see
Fig. A1 in Appendix). The data coverage in these two provinces is almost
complete for the traffic station. Over all Spanish provinces, largest data
gaps during the lockdown period are found at background stations in
Fuerteventura, Granada, Albacete, Alicante, Cuidad Real, Cadiz, Mallorca,
Menorca, Murcia and Salamanca, and at traffic stations in Cadiz and
Huelva.

We realize now that this can bring some confusion regarding the
representativeness of the NO2 reductions highlighted in the paper.
Therefore, in the revised version of the manuscript, we now require at
least 3 days of available data during each lockdown phase. For computing
the NO2 change during phases [+II+II], we required data available during
at least 2 over 3 phases, to avoid cases where data is actually available
only during one specific phase. As a consequence, some provinces during



specific lockdown phases have been removed in Figs. 5 and A1-A4. The
overall discussion remains unchanged.

3.5 A figure showing all three time series (climatological, business as
usual and measured) would be very useful, at least for some
representative stations. Following the suggestion of the reviewer, we
added the monthly climatological mean NOZ2 in the time series plots (Figs.
3, 4 and Figs. S1-48 in the Supplement), as well as the NO2 changes
obtained with the climatological average approach in Figs. 5 and Figs. A1-
A4 in the Appendix.

L.384-387 This is a very important finding at should be highlighted more
and included in the conclusions, because it is general for future
application of climatological values. We added the following sentence in
the conclusion : “We also demonstrated the benefits of our meteorology-
normalization approach compared to a simple climatological-based
approach, especially at smaller temporal and spatial scales.”

L445 It is not clear if all the flagged data were removed for the process or
if different flags were treated differently. All the flagged data were indeed
removed. We added a sentence at the end of this paragraph: “All the
corresponding measurements were removed from the dataset.”

Other modifications
Given the recent publication of a few new relevant studies on the topic (focusing
on Spain), we updated some sentences in the manuscript :

“While such an extraordinary situation has obviously impacted the levels of
air pollution in the country, as seen in both surface and satellite
observations (Tobias et al, 2020, Bauwens et al.,, 2020), the extent of such
reductions remains uncertain.”

“Actually, the lockdown offers unique opportunities for so-called dynamical
CTM evaluations (Rao et al, 2011), i.e,, testing the ability of CTMs to
reproduce the observed changes of concentrations under unusually different
emissions (Guevara et al,, 2020a; Menut et al, 2020).”

“A more detailed analysis of the activity data in these different emission
sectors is required to better quantify how the emission forcing has been
modified by the lockdown (Guevara et al, 2020a) and to understand the
reductions of NOZ obtained in this study.”

“In a separate study, our meteorology-normalized estimates are used to
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Abstract. The spread of the new coronavirus SARS-COV-2 causing COVID-19 forced the Spanish Government to implement
extensive lockdown measures to reduce the number of hospital admissions, starting on March 14" 2020. Over the following
days and weeks, strong reductions of nitrogen dioxide (NO3) pollution were reported in many regions of Spain. A substantial
part of these reductions is obviously due to decreased local and regional anthropogenic emissions. Yet, the confounding effect
of meteorological variability hinders a reliable quantification of the lockdown impact upon the observed pollution levels. Our
study uses machine learning (ML) models fed by meteorological data along with other time features to estimate the "business-
as-usual" NOy mixing ratios that would have been observed in the absence of the lockdown. We then quantify the so-called
meteorology-normalized NOy reductions induced by the lockdown measures by comparing the business-as-usual with the
actually observed NO, mixing ratios. We applied this analysis for a selection of urban background and traffic stations covering
the more than 50 Spanish provinces and islands.

The ML predictive models were found to perform remarkably well in most locations, with overall bias, root-mean-squared
error and correlation of +4%, 29% and 0.86, respectively. During the period of study, going from the enforcement of the state
of alarm in Spain on March 14" to April 23", we found the lockdown measures to be responsible for a 50% reduction of NOy
levels on average over all provinces and islands. The lockdown in Spain has gone through several phases with different levels of
severity in the mobility restrictions. As expected the meteorology-normalized change of NO> was found to be stronger during
the phases II (the most stringent one) and III than during phase I. In the largest agglomerations where both urban background
and traffic stations were available, a stronger meteorology-normalized NO5 change is highlighted at traffic stations compared to
urban background ones. Our results are consistent with foreseen (although still uncertain) changes in anthropogenic emissions
induced by the lockdown. We also show the importance of taking into account the meteorological variability for accurately
assessing the impact of the lockdown on NO, levels, in particular at fine spatial and temporal scales.
Meteorology-normalized estimates such as the ones presented here are crucial to reliably quantify the health implications of

the lockdown due to reduced air pollution.
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1 Introduction

The rapid spread of the new coronavirus SARS-COV-2 that causes COVID-19 has led numerous countries worldwide to put
their citizens on various forms of lockdown, with measures ranging from light social distancing to almost complete restrictions
on mobility (Anderson et al., 2020). Spain has been among the countries most severely affected by COVID-19, and where pro-
portional (and therefore drastic) containment measures have been implemented. Spanish authorities declared the constitutional
state of alarm on March 13" 2020, to be enforced on the 14", During this period (phase I) residents had to remain in their pri-
mary residences except for purchasing food and medicines, work or attend emergencies. Non-essential shops and businesses,
including bars, restaurants, and commercial businesses had to close. Due to the persistent rise in hospital admissions, an even
more severe second phase (phase II) of the lockdown was implemented between March 30" and April 9", when only essential
activities including food trade, pharmacy, and some industries were authorized. A third phase (phase III) started on April 10",
when some non-essential sectors, including construction and industry, were allowed to return to work.

The shutdown of both social and economic activities in Spain has reduced anthropogenic pollutant emissions. Among the
sectors presumably most affected, road transport, which is a dominant source of air pollution in urban areas, and air traffic
have fallen to unprecedentedly low levels. The impact on the industrial sector is presumably more contrasted, as some essential
industries (e.g. fuel and energy related, petrochemical) were authorized to continue their production, while some others were
forced to halt their activity.

While such an extraordinary situation has obviously impacted the levels of air pollution in the country, as seen in both surface
and satellite observations (Tobias et al., 2020; Bauwens et al., 2020), the extent of such reductions remains uncertain. Besides
emissions, air pollution is strongly influenced by meteorological conditions driving their dispersion and short- to long-range
transport, and affecting their removal and chemical evolution. As highlighted by Tobias et al. (2020) in Barcelona, this makes
the quantification of air pollution reductions during the lockdown unreliable when solely based on the analysis of in-situ ob-
servations. Chemistry-transport models (CTMs) are an essential tool for investigating both actual and alternative states of the
atmosphere under different emission scenarios. Actually, the lockdown offers unique opportunities for so-called dynamical
CTM evaluations (Rao et al., 2011), i.e., testing the ability of CTMs to reproduce the observed changes of concentrations
under unusually different emissions (Guevara et al., 2020a; Menut et al., 2020). However, given the difficulty of accurately
estimating the changes in emissions induced by the lockdown along with the inherent limitations of CTMs, particularly in
urban areas, estimating the reductions with this method remains a complex task sullied by substantial uncertainties that are
difficult to quantify.

The need for attributing changes in pollutant concentrations to changes in emissions recently motivated the development of so-
called weather normalisation techniques based on machine learning (ML) algorithms (Grange et al., 2018; Grange and Carslaw,
2019). The idea consists in training ML models to predict pollutant concentrations at air quality (AQ) monitoring stations based
a set of features including meteorological data and other time variables. This allows for the building of ML models that learn
the influence of meteorology upon pollutant concentrations under a given average emission forcing. These ML models can

then be used for predicting pollutant concentrations under a range of meteorological conditions, with the associated average
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referred to as meteorology-normalized time series in Grange et al. (2018) and Grange and Carslaw (2019). In addition, such
ML models can be used for predicting business-as-usual pollutant concentrations during periods with presumably different
emissions, i.e., estimating the pollutant concentrations that would have been experienced without the change in emissions.

Following the ideas introduced in Grange et al. (2018) and Grange and Carslaw (2019), the present study uses ML models
to investigate the reduction of nitrogen dioxide (NOg) concentrations in Spain due to the COVID-19 lockdown. Since road
transport and industry are major sources of NO5 emissions, the impact of the lockdown on this primary pollutant is expected
to be strong and thus easier to detect and quantify. Due to its short lifetime and relatively simple chemistry, NOs is likely more
directly impacted by meteorological conditions than other pollutants like particulate matter that depend upon more numerous

and complex processes.

2 Data and methods
2.1 NO, data

This study primarily relies on hourly NOs measurements performed routinely in Spanish AQ surface monitoring stations.
We considered the time period going from 2013/01/01 to 2020/04/23. We used the NO, data available through the GHOST
(Globally Harmonised Observational Surface Treatment) project developed at the Earth Sciences Department of the Barcelona
Supercomputing Center. GHOST is a project dedicated to the harmonisation of global surface atmospheric observations and
metadata, for the purpose of facilitating quality-assured comparisons between observations and models within the atmospheric
chemistry community (Bowdalo, in preparation). GHOST ingests numerous publicly available AQ observational datasets. In
this study, we used the NO; data from the European Environmental Agency (EEA) AQ e-Reporting (EEA, 2020). We priori-
tized the validated data (Ela) and used the near-real time data (E2a) only when necessary. The fraction of Ela data is 0% in
2020, 99% in 2019 and 100% in 2013-2018.

All NOy measurements taken into account here are operated using chemiluminescence with an internal Molybdenum converter.
Although predominantly used over Europe for measuring NOs, this measurement technique is well known to have potentially
strong positive artifacts due to interferences of NO, compounds (e.g. nitric acid, peroxyacetyl nitrates, organic nitrates), espe-
cially during daytime when these species are photo-chemically formed, up to a factor of 2-4 as observed during summertime in
urban atmospheres (e.g. Dunlea et al., 2007; Villena et al., 2012). In our case, the positive artifacts at urban background stations
are probably lower since the period of study (late winter and early spring) is less photo-chemically active than summertime.
Even lower interferences are expected at traffic stations where the NO,/NO,, ratio is typically lower due to the proximity to
fresh NO,, emissions. In any case, the present study focuses on the relative changes of NOs due to the lockdown, so biases in
the NOy measurements are of lower importance.

GHOST provides a wide range of harmonized metadata and quality assurance (QA) flags for all pollutant measurements. In
this study, we took benefit of these flags to apply an exhaustive QA screening. More details on the QA flags used can be found
in Appendix A.
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NO;, measurements are available over the period 2013 to 2020 in 551 stations in Spain. This study aims at investigating the
reduction of NO; over a variety of environments and geographical locations. We thus designed an algorithm for automatically
selecting (when possible) one urban/suburban background station and one traffic station in each Nomenclature of Territorial
Units for Statistics level 3 (NUTS-3) (Ceuta and Melilla excluded), which corresponds to Spanish provinces over mainland
and individual islands over the Balearic and Canary Islands (hereafter referred to as provinces for convenience). After the QA
screening of NOy data, we set different thresholds for minimum data availability over different periods of interest, namely 50%
of daily data over the entire period of study, 50% over the period 2017/01/01-2019/01/01 (used for training the ML models, see
below), 25% over the period 2020/01/01-2020/03/13 (used for testing the ML models) and 10% during the lockdown period.
Stations in each province were then selected to maximize the surrounding population density (within a geodesic radius of 5 km)
and the data availability (both before and during the lockdown). The population density at AQ monitoring stations was retrieved
through GHOST, which ingests the Gridded Population of the World (GPW) version 4 dataset (Center for International Earth
Science Information Network - CIESIN - Columbia University, 2018). Stations fulfilling the different criteria were identified
in 50 provinces of Spain and are considered in this study (38 provinces with urban background stations and 37 provinces with
traffic stations). No appropriate stations were found in Palencia, Avila and some islands (La Palma, La Gomera, El Hierro,
Lanzarote, Eivissa and Formentera). A map of the entire NO2 monitoring network is shown in Fig. 1 together with the stations

selected in each Spanish province. Names and geographical locations of the stations are reported in Table Al in Appendix.
2.2 Meteorological data

Meteorological data are taken from the ERAS reanalysis dataset (Copernicus Climate Change Service (C3S), 2017). ERAS
data have a spatial resolution of about 31 km. At all AQ monitoring surface stations, we extracted the following variables
at the daily scale : daily mean 2-m temperature, minimum and maximum 2-m temperature, surface wind speed, normalized
10-m zonal and meridian wind speed components, surface pressure, total cloud cover, surface net solar radiation, surface solar

radiation downwards, downward UV radiation at the surface and boundary layer height.
2.3 Methodology

We implement and train ML models to estimate the daily NO, mixing ratios that would have been observed without the
implementation of the lockdown in each selected station, i.e. under business-as-usual emission forcing. Hereafter, we will refer

to these mixing ratios as business-as-usual NOs.
2.3.1 Machine learning model

In this study, we retain the Gradient Boosting Machine (GBM), a popular decision tree-based ensemble method belonging to
the boosting family (Friedman, 2001). More information on this model is given in Appendix B. ML models based on decision
trees offer several interesting attributes. First, they internally handle the process of feature selection, which allows including

potentially useless features without strong deterioration of the prediction skills. Second, they provide useful information about
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Figure 1. Mean NO2 mixing ratios [ppvb] (2013-2020) at all (circles) and selected (squares and triangles) stations. Administrative borders
show the NUTS-3 administrative units, which correspond to the Spanish provinces over mainland and to individual islands. Dark gray areas

indicate provinces and islands with a lack of stations that fulfill the selection criteria.

the importance of the different features. Third, in contrast to most parametric methods that derive a unique (more or less sophis-
ticated) function supposedly valid over the whole features’ space, non-parametric methods based on decision trees internally
rely on successive splitting operations (a mother branch being divided into two daughter branches), which may be convenient

for designing one single model able to work efficiently under different seasons and weather regimes.
2.3.2 Choice of features and modeling strategy

Following the work of Grange and Carslaw (2019), the idea here is to use past recent data to train a ML model able to reproduce
the NO5 mixing ratios based on a combination of meteorological features and other time features. The features used in this
study are : daily mean 2-m temperature, minimum and maximum 2-m temperature, surface wind speed, normalized 10-m zonal
and meridian wind speed components, surface pressure, total cloud cover, surface net solar radiation, surface solar radiation
downwards, downward UV radiation at the surface, boundary layer height, date index (days since 2013/01/01), Julian date
and weekday. All the data used in this study are daily. Some pollutant concentrations are known to strongly vary depending
on the season, day of week and hour of the day, notably due to the variability of emissions and chemistry. The two last time
features act as proxies for these processes and aim at representing their climatological variations. Over longer (multi-annual)
time scales, typically air pollutant concentrations cannot be considered as stationary due to substantial trends (especially in
emissions), which is intrinsically problematic for training ML models. Following Grange et al. (2018) and Grange and Carslaw

(2019), we introduced the date index as a proxy for this potential trend. Including such a feature with unique values (going
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from 0 for 2013/01/01 to 2669 for 2020/04/23) is not expected to directly help the ML model to learn about NO, variability.
However, it allows us to train one single ML model over a relatively long and thus potentially non-stationary time series. In
contrast to linear regression, GBM does not learn equations relating the target variable to the different features, but rather builds
non-parametric relationships between target and features. As a consequence, such a model will always make NO» predictions
within the range of NOy values used in the training, regardless of the inclusion of the aforementioned date index feature or
the feature values it takes for making the predictions. However, if NO strongly increases (decreases) with time in the training
dataset, the GBM model is able to split the data using the trend feature and therefore predict NO; in the range of the higher
(lower) mixing ratios reached by the end of the training period. We note that even with a trend feature, such a model is not
expected to stay valid very far in time relative to the training data when the training data is following a too strong trend. Our
sensitivity tests have clearly shown that the behaviour of the ML models substantially improves when including the trend
feature.

In our study, the GBM models are trained over the 3 last full years, namely 2017-2019 and then used for predicting business-as-
usual NOy mixing ratios over the 4 following months, from January to April 2020. This ML experiment is hereafter referred to
as EXPspsg. Such a duration for training is expected to allow capturing a substantial part of the inter-annual variability of NOo
mixing ratios and meteorological conditions and ensures some past data is available for quantifying the uncertainties of our
ML modeling strategy (as explained later in Sect. 2.3.3). Note that no improvement was found with extended training periods
of 4 or 5 years. Although our interest is to predict NOy during the lockdown period, the two and half preceding months were
kept to test the validity of our predictions and uncertainty estimates.

The machine learning modeling in this study is performed using the scikit-learn Python package (Pedregosa et al., 2011). The
GBM model comprises a number of hyperparameters to be tuned. Since features are temporal variables, instances cannot be
considered as independent due to autocorrelation. We thus tuned our ML models using the so-called time series cross-validation
with five splits, which corresponds to a rolling-origin cross-validation in which data used for the validation is always posterior
to the data used for the training (TimeSeriesSplit in scikit-learn). Over a selection of the most important hyperparameters, we
applied a so-called randomized search over a range of possible hyperparameter values. Compared to the so-called grid search
in which all combinations of hyperparameters are tested, the randomized approach tests only a certain number (20 in our case)
of tuning configurations chosen randomly. This allows to explore a large part of the hyperparameters space at a greatly reduced
computational cost, and tends to be less prone to overfitting. More details on the tuning of the GBM model can be found in

Appendix C.
2.3.3 Uncertainty estimation

In order to quantify our prediction uncertainty, we replicated four similar experiments over the past years since 2013, i.e., train-
ing ML models over 2013-2015, 2014-2016, 2015-2017 and 2016-2018, and testing them over the 4 first months of 2016, 2017,
2018 and 2019, respectively. These ML experiments are hereafter referred to as EXPsg14, EXPog17, EXPsp15 and EXPyg1g,
respectively. We obtained on average 538 daily residuals (predicted minus observed NO, daily mixing ratios) for each station

and we took the associated 5" and 95™ percentiles as the uncertainty interval for our ML-based predictions of daily NO,
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mixing ratios. Therefore, for each station, we obtained a fixed asymmetric 90% confidence interval used to characterize the
uncertainty of our predictions during the first 4 months of 2020. Averaged over all Spanish provinces, the uncertainty interval
is [-5.1, +5.3] ppbv at urban background stations, and [-6.6, +6.7] ppbv at traffic stations.

In 2020, the period before the lockdown, namely January 1° to March 13", is used to check the performance of the ML models
trained over 2017-2019 against the observed NO, mixing ratios, given the aforementioned uncertainty. Ideally, we expect the
differences between observed and predicted NO, mixing ratios to remain within the estimated uncertainty during that period.
Conversely, after April 14™, due to the reduction of NO, emissions caused by the lockdown, we expect the observed NO,
mixing ratios to quickly decrease compared to the business-as-usual NOy mixing ratios predicted by the ML model, eventually

down to a level at which the differences are statistically significant.

These uncertainties are suited for our ML-based daily NO predictions. Because these daily uncertainties are likely at least
partly uncorrelated, NOy daily predictions averaged over time periods longer than one day are expected to have smaller uncer-
tainties due to error compensations. We estimated the uncertainty affecting our ML predictions at the weekly scale. We used
a similar approach than previously described for the daily uncertainty, but based on the 7-day running average of the daily
residuals (by requiring a minimum of 5 over 7 days with available data). The 5" and 95" percentiles were computed based on
the entire set of residuals (514 residuals on average at each station over 2016-2019). On average over all provinces, the weekly
uncertainty interval obtained are [-3.8, +3.6] ppbv at urban background stations, and [-4.9, +4.7] ppbv at traffic stations, which
represents a reduction of 28% for both types of stations, with respect to the daily uncertainties.

Our main interest in this study is to quantify the mean NOs changes during the lockdown period. We decided to keep the
weekly scale uncertainties for the predictions of business-as-usual NOy mixing ratios averaged over its different phases (10-13
days each) and over the entire lockdown period (41 days). The use of weekly uncertainties is likely conservative when used for

the entire lockdown average, but accounts for potential data gaps, particularly when estimating the shorter phases therein.

Note that these ancillary ML experiments used here for quantifying the uncertainties also allow to evaluate the performance of

our modeling strategy during the period of the year of the lockdown (as explained later in Sect. 3.1).

3 Results and Discussion

In this section, we first evaluate the ML-based predictions of business-as-usual NO2 mixing ratios (Sect. 3.1). We then illustrate
our methodology in the two provinces with largest population density, namely Madrid and Barcelona (Sect. 3.2). Time series
in the other 48 Spanish provinces can be found in the Supplement. We then analyze the meteorology-normalized changes of
NO,, obtained in all Spanish provinces (Sect. 3.3). We discuss in Sect. 3.4 the potential relationships with emission reductions.
Finally, we discuss in Sect. 3.5 the advantages of our ML-based approach for estimating the baseline NO2 pollution compared

to the climatological approach.
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3.1 Evaluation of ML predictions

The performance of the ML predictions in each Spanish province and station type is shown in Fig. 2, and the statistics over
all Spanish provinces are reported in Table 1. The statistical results in Table 1 are given for both the reference ML experiment
(EXP5020) and the other experiments combined together (EXPsg16, EXPsg17, EXPog1g and EXPsg19, hereafter referred to as
EXPsp16-2019)- Besides providing a broader view of the performance of our modeling strategy, considering these past experi-
ments also allows assessing the performance of the ML predictions during the period of the year of the lockdown (14/03-30/04
for years 2016 to 2019), which may be important given the potential seasonality of prediction errors. The statistics obtained
at urban background and traffic stations are given in Table A2 in Appendix. Results are evaluated using the following metrics,
calculated based on daily NO» mixing ratios : mean bias (MB), normalized mean bias (nMB), root mean square error (RMSE),
normalized root mean square error (nRMSE) and Pearson correlation coefficient (PCC).

For information purposes, we included the statistical results obtained over the training dataset (2017/01/01-2019/12/31 in
EXP5p20). Checking results over the training data may be useful for highlighting obvious situations of overfitting, when the
performance is almost perfect. At both urban background and traffic stations, results show no bias, low nRMSE (always below
35%, 19% when considering all provinces), and a high PCC of 0.96. Similar results are obtained when considering the ensem-
ble of all past experiments (EXPsp16-2019)- Although such a performance obtained is very good, there are no clear signs of too
prejudicial overfitting at this stage.

On the test dataset of the EXPyg9 reference experiment (2020/01/01-2020/03/13, before the lockdown), the performance re-
mains reasonably good in most provinces. Over all Spanish provinces, the nMB increases to +4%, the nRMSE to 29% and the
PCC is reduced to 0.86, in very close agreement with the performance obtained with EXPsg16_2020 (nMB of +1%, nRMSE
of 28% and PCC of 0.86). In comparison, the performance obtained in EXPsy16_2019 during the period of the year of the
lockdown (14/03-23/04) is a bit lower but remains reasonable, with a nMB of +4%, a nRMSE of 37% and a PCC of 0.80.
Although moderate, such a deterioration of the performance after mid-March might reflect some seasonality in the ML model
errors and/or could be related to the presence of trends in the NOy concentrations. Concerning this last point, as previously
discussed in Sect. 2.3.2, including the date index feature in the ML model aims at limiting this potential issue but likely cannot
completely solve it. Generally, only minor differences of performance are found between urban background and traffic stations
(Table A2).

Results of EXPs(5¢ per province (Fig. 2) highlight some inter-regional variability of the performance, with poorer statistics in
some provinces, at least for one type of station. At most stations, the bias remains below +=20% while nRMSE ranges between
15 and 45% (highest nRMSE around 50% in Teruel, Tenerife and Fuerteventura). Most provinces show PCC around 0.6-0.9,
with only a few exceptions below 0.6 (urban background sites in Bizkaia, Fuerteventura, Huesca and traffic sites in Granada

and Gran Canaria).

Several factors may explain the poorer statistical results obtained at some stations. First and foremost, it may be due to

deficiencies in the ML modeling, and in particular to some overfitting. This seems to be the case of Fuerteventura and Huesca,
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Table 1. Performance of the ML predictions of NO2 mixing ratios. Results are shown for both the reference experiment EXP2020 and the

ensemble of past experiments combined together (EXP2016—2019).

Experiments Dataset  Period of the year MB [ppbv] RMSE [ppbv] PCC N
(day/month) (nMB [%]) (nRMSE [%])

EXP2020 Training 01/01-31/12 -0.0 (-0%) 2.2 (19%) 096 72983
Test 01/01-13/03 0.6 (4%) 3.8 (29%) 0.86 4788

EXP2p16—2019  Training 01/01-31/12 0.0 (0%) 2.2 (18%) 0.96 297609
Test 01/01-13/03 0.1 (1%) 4.0 (28%) 0.86 19178

14/03-23/04 0.5 (4%) 4.0 (37%) 0.80 11097

01/01-23/04 0.2 2%) 4.0 31%) 0.85 30275

given the good performances obtained with the training data (note also that the data availability of test data in Fuerteventura
is among the poorest). Since we are considering numerous stations in this study, we need a fixed procedure applied similarly
to all ML models to be trained. As described in Sect. 2.3.2, we designed our training and tuning procedure in order to limit
as much as possible this common issue, through rolling-origin cross-validation and randomized search in the hyperparameters
space. Overall results are satisfactory but some overfitting can still persist in some cases.

Second, although moderately, some of the biases and errors may be partly due to trends and/or inter-annual variability of NOs.
As previously explained (Sect. 2.3.2), by model design, if NO; levels in the first months of 2020 are outside of the NO5 range
in the 2017-2019 training dataset, our predictions over the lockdown period could be equally biased. The different NOy time
series indeed show some cases where NO, mixing ratios are lower than in the past years (since 2013). In the frame of our
study, it is important to mention that, although the lockdown was officially implemented on March 14%, the COVID-19 started
to perturb the business-as-usual situation in the days/weeks before, first through the cancellation of numerous events and, later,
through unusual movements of a part of the population (e.g. to second homes). Although complicated to assess more precisely
in each of the Spanish provinces, this likely explains part of the biases noticed in the second half of the test period.

Third, poor performances at some stations may be due to weaker relationships between meteorological input data and NO2
mixing ratios. This points to uncertainties in the ERA5 meteorology data. For example, the relatively coarse spatial resolution
(31 km) of ERAS data may only capture part of the meteorological variability existing at a given station. This is especially true
when considering stations located in urban areas where the complex urban morphology (e.g. presence of buildings, canyon
streets) is known to locally distort the mesoscale circulation. Decision-tree based ML methods like GBM offer some inter-
pretability by providing a measure of the importance of the different features included as input data. In our case, on average
over all ML models, the most important feature is the boundary layer height (18£6%) followed by the surface wind speed
(12+5%). These two parameters drive the ventilation and dispersion of the pollutants emitted at the surface, and their variabil-
ity at some stations may be only partly captured by the ERAS data at some urban stations. Also, the ERAS data may poorly

capture the meteorological conditions in some stations located on small islands with complex orography, like in the Canary
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Islands (e.g. Tenerife and Fuerteventura).

The chosen training and tuning procedures applied in this study were designed to limit some of these different sources of
uncertainty, but persistent errors cannot be excluded. This is why we added another layer of analysis in which we estimated
the uncertainties of our ML predictions by replicating exactly the same procedure over the past years since 2013 (as explained
in Sect. 2.3.3). Computed as the 5" and 95" percentiles of the daily residuals obtained over a large test period extending over
several years (2016-2019), the uncertainty intervals are expected to cover most (90%) of the errors caused by these different
sources of uncertainties. Indeed, considering all stations, our results indicate that 89% (4240 points over 4788) of the daily
NO;, observations in 2020 before the lockdown fall within the corresponding prediction uncertainty interval at each station,
thus very close to 90%. This demonstrates that the daily uncertainty estimated in this study is well quantified.

All in all, we have shown that our ML predictions and associated uncertainties are qualified for estimating the business-as-usual

NO; mixing ratios during the lockdown.
3.2 TIllustration of the results in specific provinces
3.2.1 Madrid

The daily NOy mixing ratios observed and predicted in the province of Madrid are shown in Fig. 3 for both the urban back-
ground station and the traffic station, with station codes-names ES1941A-Ensanche de Vallecas and ES1938A-Castellana,
respectively. The NOy mixing ratios observed over the past years since 2013 are also included. Since days of week are not
consistent from one year to the other, we also show the NOy 7-day running mean time series where a minimum of 5 over 7
days is required to compute the average.

In Madrid, the ML reproduces remarkably well the variability of NOy mixing ratios at the urban background and traffic stations
before the lockdown (nMB of -3 and +6%, nRMSE of 19 and 22%, PCC of 0.87 and 0.85, respectively). Importantly, prediction
errors remain within the uncertainty interval. The two sub-periods with lower NO, mixing ratios, during the second half of

January and early March occur concomitantly with strong wind speeds in Madrid, above 6 m s~!

on a daily average (above the
95" percentile of the ERAS daily wind speed over 2013-2020 during this season), and relatively high boundary layer heights
(up to 1000-1500 m on a daily average). It is worth mentioning that a low emission zone (LEZ) with relatively strict vehicle
restrictions applied for entering a limited area of about 5 km? corresponding to the heart of the city center was implemented
in early January 2020. Such a change in emissions may in principle directly impact the performance of the ML predictions by
inducing a positive bias (since the ML models are designed precisely for highlighting such events). In our case, we expect a
limited impact because the LEZ was still in its transition phase (strict enforcement through fines to offending motorists was not
expected until April 1% and was finally postponed to September 15" 2020 due to the COVID-19 situation) and the two stations
selected in Madrid province are located outside the LEZ (at 9 and 3 km from the city center).

After the implementation of the lockdown, the observed NOy mixing ratios decreased down to about 11 and 7 ppbv on aver-

age, and reached daily minimum mixing ratios of 6 and 3 ppbv, respectively, over the entire period. Compared to the previous

10
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Figure 2. Statistical results of the ML-predicted business-as-usual NO2 mixing ratios (EXP2g20 reference experiment) over training dataset
(2017-2019, in grey) and test dataset before lockdown (2020/01/01-2020/03/13, in blue). Metrics are mean bias (MB), normalized mean
bias (nMB), root mean square error (RMSE), normalized root mean square error (1(RMSE) and Pearson correlation coefficient (PCC). For

information purposes, the uncertainties (90% confidence interval) at the daily scale are added to MB (horizontal blue bars).

years, the NO, mixing ratios at the urban background site are clearly in the lower tail of the distribution. In the traffic site,
never NOjy levels had been so low for such an extended period of time at least since 2013. In comparison, business-as-usual
NO; mixing ratios at these two sites would have remained around 17-18 ppbv on average. After the lockdown, the differences
between the observed and business-as-usual NOy are found to progressively increase, becoming more and more statistically
significant. This demonstrates unambiguously that the lockdown considerably reduced the NO; pollution in Madrid, regardless
of the meteorological conditions, which points to a drastic decrease of the business-as-usual emission forcing.

We computed the meteorology-normalized change of NOy during the lockdown period covered by this study (from March

11
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14" to April 23") as the mean difference between ML-based business-as-usual and observed NO daily mixing ratios. The
uncertainty at weekly scale is here used as an estimate of the uncertainty at 90% confidence level (by construction, given that
they are computed as the 5" and 95" percentiles of the weekly residuals, see Sect. 2.3.3) affecting the mean NO, change.
On average over the entire lockdown period, NOs levels have decreased by -7[-13,-1] ppbv at the urban background station,
which corresponds to -39[-74,-4]% in relative terms. The impact is faster, stronger and more statistically significant at the
traffic station than in the urban background one, with a mean NOs reduction of -10[-15,-5] ppbv, or -59[-87,-30]% in relative
terms. This result is consistent with a lockdown affecting most strongly the sector of traffic emissions. At the daily scale, the
reduction of NO; in Madrid reached its maximum at the end of the second and more stringent lockdown phase, while a strong

reduction persisted during the third phase.
3.2.2 Barcelona

Figure 4 presents the results in Barcelona for both the urban background and traffic stations, with station codes-names
ES1396A-Sants and ES1480A-L’Eixample, respectively. Compared to Madrid, the ML predictions in Barcelona have rela-
tively similar errors (nRMSE of 25%) and correlations (PCC of 0.72). The bias is very low at the urban background station
(+0%), and reaches +8% at the traffic station, which largely remains within the uncertainty interval. The positive bias in the
traffic station started in early February and persisted during the following weeks, particularly after the second week of February.
The ML model failed at reproducing these low NO5 mixing ratios notably because some of the observed NOs mixing ratios
during that period were lower than during the previous years. As in Madrid, a LEZ was implemented in Barcelona, starting
in early January 2020, with less stringent vehicle restrictions but over a larger area (95 km?). Both the urban background and
traffic stations selected in Barcelona are included in this LEZ. The potentially stronger effect of the LEZ at traffic stations could
explain at least partly this positive bias. As in the case of Madrid, fines for non-compliance with the LEZ restrictions were not
planned to start before April 1% (postponed to September 15" 2020 due to the COVID-19 situation). Therefore the effect of
the LEZ is expected to be progressive, which is consistent with the absence of bias in the beginning of the period. In addition,
the 2020™ edition of the World Mobile Congress (the largest annual event in Barcelona, with 109,000 visitors in 2019) that
takes place every year by the end of February was officially canceled by the organizers due to the risks posed by the emerging
COVID-19 pandemic. We therefore hypothesize this cancellation contributed to the reduction of NO3 levels in the city and to
the slight positive bias of the ML prediction before the lockdown.

After the lockdown, NOy mixing ratios decreased down to 8 and 11 ppbv on average at the urban background and traffic
stations, respectively, both reaching minimum daily mixing ratios of 4 ppbv. Results highlight strong and statistically signif-
icant differences with the business-as-usual situation in which NO; levels would have remained around 15-21 ppbv during
that period. As in Madrid, the strongest differences are found in April, during the phases II and III of the lockdown. Note that
these differences exceed by large the aforementioned positive bias encountered after February. Interestingly, besides the strong
reduction, observed NO> mixing ratios followed a very similar variability than business-as-usual NOs, which highlights the
major influence of meteorological conditions on the levels of pollution, as previously mentioned by Tobias et al. (2020). For

instance, the increase of NOy mixing ratios between April 6 and April 9 appears linked to unusually low wind speeds over

12
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Figure 3. NO> mixing ratios in Madrid province. The two top panels show the daily mean and 7-day running mean at the urban background
station, respectively. The two bottom panels show the time series at the traffic station. Each panel displays the NO2 mixing ratios observed in
2020 (in blue) and during the past years (2013-2019, in grey), and predicted in 2020 by the ML model (business-as-usual (BAU), in green).
The uncertainties of the ML predictions are given at a 90% confidence level at the daily (light green) and weekly scales (medium green).
The climatological monthly averages computed over the period 2017-2019 are also shown (in black). The vertical black line identifies
the beginning of the lockdown, the next dotted lines separate the different lockdown phases (phase I : 2020/03/14-2020/03/29, phase II :
2020/03/30-2020/04/09, phase III : 2020/04/10-2020/04/23).

Barcelona, 1.7 m.s~! on average over these days, which is slightly below the climatological (2013-2020) 5" percentile of wind
speed in April (1.8 m.s~1). Without the lockdown, this stagnant situation associated with the business-as-usual emission forc-
ing would have increased NOg by about 5-10 ppbv, according to the ML predictions. Observed NOy also slightly increased
during the episode of stagnant meteorological conditions, but due to the lockdown, NOs remained at very low levels. This
event illustrates the usefulness of considering a ML model fed by meteorological data for quantifying the baseline air pollution
during the lockdown.

Over the entire lockdown period, NO5 in Barcelona decreased by -7[-12,-2] ppbv (-47[-78,-16]%) at the urban background

station, regardless of the meteorological conditions. As in Madrid, a stronger reduction is found at the traffic station, with -15[-

13



20,-10] ppbv (-61[-80,-38]%). Therefore, in relative terms, the lockdown has induced a relatively similar decrease of NOy in
both Madrid and Barcelona.
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Figure 4. Similar to Fig. 3 in Barcelona province.

3.3 Meteorology-normalized changes of NO, mixing ratios over Spain

345 We computed the meteorology-normalized changes of NOx, for all the selected stations. Results are presented in Fig. 5, together
with the weekly uncertainty of our ML predictions (colored lines). For information purposes, we also display the daily uncer-
tainty (black lines). Results are colored as a function of their degree of significance, here computed as the distance between the
NO3 change best estimate and the upper limit of the weekly uncertainty interval, normalized by the distance between the best
estimate and zero. A degree of significance of 1 thus indicates a NOy change significant at a 90% confidence level. Statistics

350 over the changes of NO; obtained in all provinces are reported in Table 2. A map of best estimates of NO2 changes at each
station is also given in Fig. 6.

Results highlight that the reduction previously described in Madrid and Barcelona extends to most Spanish provinces, although

with some inter-regional variability in the extent of the change and the degree of statistical significance. During the lockdown
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period, 96% (2734 points over 2844) of the observed daily NOs mixing ratios are lower than the ML-based business-as-usual
NOg estimates. On average over all urban background stations during the entire lockdown period, NO2 has decreased by -4[-
8,-0] ppbv (-49[-95.-0]% in relative terms), independently from the meteorological conditions. The 5" and 95" percentiles
(computed based on the mean NO> changes obtained in all provinces) are -7 ppbv (-65%) and -1 ppbv (-31%). The NO,
change is significant with more than 90% confidence in 22 out of 38 provinces, with many of the remaining ones being rel-
atively close to that confidence level. A similar, yet more statistically significant reduction is found at traffic stations, with a
mean NO; decrease of -7[-11,-2] ppbv (or -50[-91,-8]%), and 26 out of 37 stations exceeding the 90% confidence level. The
spread of NO, change between the different provinces is also quite similar between the two types of stations, with 5" and
95" percentiles of -69 and -29%, respectively. Generally, the meteorology-normalized NO, reductions in the provinces of the
southern half of the country appear stronger and in more cases statistically significant.

As previously observed in Madrid and Barcelona, results in Table 2 highlight noticeable differences between the different
phases of the lockdown. The corresponding figures (with both absolute and relative changes) can be found in Appendix (Figs.
Al, A2, A3 and A4). The mean reduction of NO, during phase I was about -42% at both station types, and further increased
to about -54% during phases II and III. The lower reduction during the first phase is partly explained by the fact that NOo
concentrations started at their business-as-usual levels and took a few days to reach their minimum. During the two last phases,
NO; was found to be reduced in many more provinces, as shown by the 95" percentile that ranges between -20 and -40%

depending on the type of station during phases II and III, compared to only -9 to -19% during phase I.
3.4 Relationship to emission reductions

We contrasted our results with a detailed NOy anthropogenic emission inventory at 4km x 4km resolution over Spain avail-
able through the bottom-up module of the HERMESv3 emission model, developed at the Earth Sciences Department of the
Barcelona Supercomputing Center (Guevara et al., 2020b). Averaged over the different stations considered in this study, road
transport emissions are the dominant source, with 66 and 69% of the total NOx emissions in the vicinity of urban background
and traffic stations, respectively. The other emission sources are the residential/commercial combustion sector (14 and 15%),
industrial point sources (8 and 13%) and shipping and port activities (11 and 3%). In Spain, the public agency in charge of mon-
itoring traffic (Direccion General del Trdfico) reported progressive reductions in total traffic down to levels about -60 to -90%
lower than usual, with substantial day-to-day variability and strongest reductions during weekends. Assuming to first order a
linear relationship between NOs urban background mixing ratios and local surrounding NOy emissions (within a 4km x 4km
cell) and applying a 70% (80%) reduction of road transport would lead to a NOg reduction of about 47% (54%), which is con-
sistent with our findings. Our knowledge about the impact of the lockdown on the other emission sectors remains at this stage
quite limited. NOy emissions from industry likely also decreased but quantifying this reduction, even roughly, is more complex
as some industries were considered as essential and thus not affected by the lockdown. Although 9-13% of the surrounding
emissions (in the 4km x 4km cell of the inventory) are associated to this sector, the impact of idling industrial activities on the
pollution levels observed at the selected stations may be relatively small considering that none of these stations are classified

as "industrial". The residential/commercial emission sector represents another unknown since the expected emission increment
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Table 2. Meteorology-normalized changes of NO2 mixing ratios in Spain during the lockdown (phase I : 2020/03/14-2020/03/29, phase
IT : 2020/03/30-2020/04/09, phase III : 2020/04/10-2020/04/23). Statistics are computed based on the mean NO» changes in the different

Spanish provinces.

Change Metric Phases I+11+111 Phase I Phase 11 Phase I1I
Background Traffic Background Traffic Background Traffic Background Traffic
absolute (ppbv)  mean -4.1 -6.5 -3.4 -5.6 -5.2 -7.4 -4.3 -6.8
[-7.8,-0.3] [-11.1,-1.6] [-7.1,0.4] [-10.2,-0.7] [-8.9,-1.4] [-11.9,-2.4] [-7.9,-0.4] [-11.3,-2.0]
std 2.0 34 1.8 32 24 3.6 22 3.7
min -10.0 -15.5 -8.4 -13.3 -10.8 -16.1 -10.9 -16.8
p05 -7.1 -12.8 -6.3 -11.5 -9.2 -14.2 =17 -13.5
pl0 -6.8 -11.4 -5.5 -10.9 -8.3 -12.8 -7.0 -12.3
p25 -53 -1.4 -4.8 -6.9 -6.8 -8.2 -5.3 -9.5
p50 -3.9 -6.1 -3.2 -5.0 -4.7 -7.0 -3.8 -5.9
p75 -2.6 -4.5 -2.0 -39 -3.2 -5.0 -2.5 -4.3
p90 2.1 -2.6 -1.5 -1.7 -2.9 -3.3 -1.9 -2.6
p95 -1.4 -2.0 -1.2 -0.6 -2.5 2.4 -1.2 -2.3
max -0.8 -0.8 -0.5 -0.0 -1.1 -1.6 -0.7 -0.7
relative (%) mean -49 -50 -41 -42 -55 -53 -53 -55
[-95,-0] [-91,-8] [-89,8] [-82,-0] [-95,-11] [-90,-13] [-100,-1] [-97,-11]
std 13 12 14 17 9 11 15 13
min =72 -71 -65 -67 -69 -73 -76 -73
p05 -65 -69 -62 -63 -68 -71 -73 =72
pl0 -64 -63 -59 -60 -67 -68 -70 -70
p25 -58 -58 -53 -55 -65 -60 -65 -65
p50 -51 -52 -41 -46 -54 -54 -55 -56
p75 -39 -43 -29 -38 -47 -46 -42 -51
p90 -34 -33 -24 -14 -43 -35 -36 -39
p95 -31 -29 -19 -9 -40 -34 -20 -31
max -14 -14 -14 -1 -39 -27 -12 -12
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Figure 5. Meteorology-normalized mean NO2 changes at urban background (squares) and traffic (triangles) stations during the COVID-19
lockdown. Changes are shown during the entire lockdown period and during the second and most stringent phase. Best estimates and weekly
uncertainties are colored according to the degree of significance (a value of 1 indicates a change statistically significant at a 90% confidence
level, see text for more details). For information purposes, daily uncertainties are also indicated (black lines). For comparison, the mean NO3

changes obtained using the climatological average (over 2017-2019) rather than ML-based business-as-usual NOy concentration are also

(%)

(%)

(%)

shown (stars), as well as the relative difference between both approaches (circles).

caused by a population spending more time at home may be compensated by the closure of most shops, schools and offices.

A more detailed analysis of the activity data in these different emission sectors is required to better quantify how the emission

390
study.

Concerning traffic stations, although HERMESV3 gives a quite similar contribution of the different emission sectors compared
to urban background stations, a larger contribution of road transport emissions is evidently expected since measurement instru-

ments are deployed under the direct influence of vehicles. As a consequence, assuming that road transport is the emission sector
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forcing has been modified by the lockdown (Guevara et al., 2020a) and to understand the reductions of NO5 obtained in this
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Figure 6. Meteorology-normalized mean NO2 changes at selected urban background and traffic stations during the COVID-19 lockdown in

Spain. The size of symbols is proportional to the annual average NO> mixing ratio (over 2013-2020).

most impacted by the lockdown (together with air traffic, but this last sector does not emit strong amounts of NOy around our
set of stations), we could expect a stronger relative reduction of NOs, at traffic stations, compared to urban background stations.
At first glance, Table 2 does not highlight such a difference between the two types of stations. This seems to be due to the fact
that we here gather urban background and traffic stations not always collocated in the same cities, and/or located in cities of
very different sizes. In both Madrid and Barcelona provinces, the two selected stations are located in the same agglomeration,
and results do highlight substantial differences of NOs reductions (Sect. 3.2). In total, urban background and traffic stations
are collocated in the same agglomeration in 16 provinces. On average over this set of provinces, the NO, reduction is -44 and
-53% at the urban background and traffic stations, respectively, thus showing a noticeable but still relatively small difference.
Focusing on the 6 largest cities within this group of provinces (Madrid, Barcelona, Valencia, Sevilla, Mdlaga and Mallorca),
the difference of NOg reductions increases, with -50 and -63% at urban background and traffic stations, respectively. Focusing
on the 2 largest cities, namely Madrid and Barcelona, the discrepancy further increases, with the NOy reductions of -43 and
-60%, respectively. Therefore, results suggest that the lockdown has impacted more strongly the business-as-usual NO, levels

at traffic stations than at urban background ones, and that this difference tends to be stronger in the largest cities.
3.5 ML-based business-as-usual NO5 versus climatological average NO-

We developed the ML-based approach arguing that it allows avoiding a potentially erroneous assessment of the lockdown-
related NO, changes caused by the variability of meteorological conditions. In this section, we illustrate quantitatively the
benefits of our method. Besides the business-as-usual NO, daily concentrations obtained with our ML-based approach, we
consider here the mean NOy concentrations observed in 2017-2019 at this period of the year (this approach being hereafter

referred to as the climatological average approach). We compared the mean NO, concentrations obtained in each province with
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both approaches during the different phases of the lockdown. Taking the ML-based approach as the reference, we computed
the bias of the climatological average approach. In this frame, in a given province, a small bias between the two approaches
should indicate that the meteorological conditions prevailing during a given phase of the lockdown are relatively close to their
climatological values at this time of the year. For convenience, both urban background and traffic stations are gathered in this
analysis.

The NO; changes obtained with the climatological average approach are reported on Fig. 5 (and for the different phases in
Figs. Al, A2, A3, A4 in Appendix). Considering the entire lockdown period, the mean business-as-usual NO2 mixing ratios
predicted by the ML models averaged over all provinces is 10.3 ppbv, in close agreement with the corresponding climatological
mean NO; that is 10.6 ppbv. This corresponds to a mean bias (of the climatological average approach) of only +0.3 ppbv (or
+2% in relative terms). This shows that under a business-as-usual scenario, the NO, concentrations during the lockdown period
should have been close to the values typically observed at this time of the year. However, this holds at a relatively large temporal
(the entire lockdown period in this case, i.e. 41 days) and spatial (all Spanish provinces) scale. These relative biases between
both approaches are shown for all stations in Fig. 5 (black circles). Among the different provinces, they range between -41
and +33%, with 5™ and 95" percentiles of -22 and +27%, thus greatly larger than its average of +2%. This highlights the
presence of substantial departures from the climatology at the province scale. For instance, in Barcelona province, the ML-
based business-as-usual and climatological mean urban background NO5y mixing ratios during the lockdown period are 15
and 19 ppbv, respectively, which corresponds to a climatological approach positively biased by +27%. Such a result is not
surprising since encountering climatological conditions simultaneously in all Spanish provinces is very unlikely.

Higher when considered at the province scale, the bias of the climatological average approach can also further increase when
computed over shorter time periods. Indeed, during the 3 phases of the lockdown, it gets to +12, +2.3 and +1.8%, respectively,
when averaged over all provinces. Among the different provinces, the corresponding 5"/95" percentiles reach -21/+52, -34/+44
and -41/+36% during phases I, II and III, respectively. For the case of Barcelona province, these relative biases are +35, +19
and 22%.

This analysis demonstrates the need to take into account (with ML or other techniques) the meteorological variability to
accurately estimate the baseline pollution and assess the changes of pollution induced by an altered emission forcing, which

appears all the more crucial when pollution changes are investigated at a fine temporal and/or spatial scale.

4 Conclusions

The fast spread of the COVID-19 coronavirus disease pushed Spanish authorities to implement a severe lockdown of the pop-
ulation, with drastic restrictions of social and economic activities starting on March 14™ 2020. Such a situation had an impact
on the anthropogenic emissions from numerous activity sectors, some of them unambiguously (road transport and air traffic,
and to a lesser extent the industrial sector), others with still unclear response (residential/commercial sector). Concomitantly,
a reduction of NO5 mixing ratios was reported in many locations, based on in-situ NO, measurements operated by air quality

monitoring stations or space-based remote sensing (e.g. TROPOMI). Part of the reduction of NOs pollution is likely explained
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by the modified emission forcing caused by the lockdown. However, the potential confounding impact of the meteorologi-
cal variability (a major driver of the NOy variability) prevents to directly relate the reduction of NOy mixing ratios to the
lockdown-related reduction of emissions.

To tackle this issue, we used ML models fed by meteorological data and time variables (Julian date, day of week and date in-
dex) to estimate the NOg mixing ratios that would have been normally observed during the COVID-19 lockdown period under
a business-as-usual emission forcing and meteorological conditions prevailing during that period. We also estimated (conser-
vative) uncertainties affecting our ML predictions. This allowed us to quantify the changes of NO- during the lockdown that
are not directly related to the variability of meteorological conditions. On average over Spain, NOy mixing ratios at urban
background and traffic stations were found to decrease by about -50% due to the lockdown, with stronger reductions in phases
II and III (about -55%) than in phase I (about -40%). We also demonstrated the benefits of our meteorology-normalization
approach compared to a simple climatological-based approach, especially at smaller temporal and spatial scales.

Due to the peculiarities of NO5 (e.g. primary pollutant, short chemical lifetime, simple chemistry), we expect these changes to
be mainly driven by the reduction of NOy anthropogenic emissions. Considering that the lockdown also impacted the emissions
of numerous other chemical compounds, an alteration of the business-as-usual chemical fate of NO, (through a modification
of its oxidation into nitric acid) cannot be excluded. However, we are considering here urban stations located close to the NOx
emission sources, where this effect is likely small compared to the reduction of direct emissions.

Regarding our methodology, we note that the COVID-19 lockdown and the associated changes of pollutants like particu-
late matter should have also altered the meteorological conditions by perturbing the radiative fluxes and clouds. Indeed, this
methodology precludes the remote and local influences of lockdown-related air pollution changes upon local weather. In any
case, given the chaotic nature of the atmosphere and the long duration of the lockdown, it would be indeed impossible to know
the weather conditions that would had been observed during the lockdown in a business-as-usual scenario.

It is also worth noting that the quality of the ERAS5 meteorological data may have deteriorated due to the lockdown through the
strong reduction of air traffic. Indeed, although satellites remain the dominant provider of meteorological observations, com-
mercial aircraft provide valuable amounts of in-situ meteorological observations in the troposphere and lower stratosphere,
especially for wind speed. However, some meteorological services are currently operating additional atmospheric soundings to
compensate this loss of data. In any case, the impact on the meteorological conditions close to the surface is probably limited.
In this work, we analyzed the NO- data available in Spain over the first 41 days of lockdown, which includes the phase of
most stringent lockdown in early April. At the date of submission of this study, the lockdown was still on-going in Spain, with
restrictions planned to be progressively relaxed until late June at least. Indeed, the impact of the lockdown upon air pollution
levels will likely extend way beyond the period considered in this study. Besides the direct effects of the lockdown-related
restrictions, the foreseen economic downturn whose size, length and characteristics are still uncertain may also substantially
affect the levels of NO; pollution, as already observed following the 2008-2009 economic recession, with one-year recession-
driven NOs reductions of 10-30% across Spain and Europe (Castellanos and Boersma, 2012).

The results of the present study provide a valuable reference for validating similar assessments of the impact of the COVID-19

lockdown on air quality based on chemistry transport models and emission scenarios derived from activity data during the
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lockdown (e.g. Guevara et al., 2020a; Menut et al., 2020).
In a separate study, our meteorology-normalized estimates are used to quantify the circumstantial reduction in the mortality

attributable to the short-term effects of NO, during the lockdown (Achebak et al., 2020).

Code and data availability. The EEA AQ e-Reporting, ERAS5 and Gridded Population of the World (GPW) version 5 datasets used in this
study are publicly available. The HERMESv3_BU (Bottom-Up) code package with its documentation is publicly available at the following
gitlab repository: https://earth.bsc.es/gitlab/es/hermesv3_bu (https://doi.org/10.5281/zenodo.3521897, Guevara et al., 2019).

Appendix A: Quality Assurance (QA) applied to NO, dataset

Using the information provided by GHOST (Globally Harmonised Observational Surface Treatment; Bowdalo, in preparation),
we applied numerous QA screening to the NOo dataset, in order to remove : missing measurements (flag 0), infinite values
(flag 1), negative measurements (flag 2), zero measurements (flag 4), measurements associated with data quality flags given
by the data provider which have been decreed by the GHOST project architects to suggest the measurements are associated
with substantial uncertainty or bias (flag 6), measurements for which no valid data remains to average in temporal window after
screening by key QA flags (flag 8), measurements showing persistently recurring values (rolling 7 out of 9 data points; flag 10),
concentrations greater than a scientifically feasible limit (above 5000 ppbv) (flag 12), measurements detected as distributional
outliers using adjusted boxplot analysis (flag 13), measurements manually flagged as too extreme (flag 14), data with too coarse
reported measurement resolution (above 1.0 ppbv) (flag 17), data with too coarse empirically derived measurement resolution
(above 1.0 ppbv) (flag 18), measurements below the reported lower limit of detection (flag 22), measurements above the re-
ported upper limit of detection (flag 25), measurements with inappropriate primary sampling for preparing NO, for subsequent
measurement (flag 40), measurements with inappropriate sample preparation for preparing NO, for subsequent measurement
(flag 41) and measurements with erroneous measurement methodology (flag 42). All the corresponding measurements were

removed from the dataset.

Appendix B: Decision tree-based ensemble methods

Among the myriad of ML models available nowadays, we opted for decision tree-based ensemble methods. The general idea
of ensemble methods is to combine an ensemble of independent base learners (or weak learners). Base learners here designate
simple models that perform only slightly better than a random guessing. Decision trees are currently the base learner most
commonly used in ML ensemble methods (but other types of learners could be possible). Given a training dataset and a
regression problem, one characteristic of decision trees lies in the fact that it is always possible to reach a high accuracy (by
growing a large enough tree) but at the cost of very poor generalization skills. In ML terminology, such large trees are said
to have a small bias but a large variance. To be appropriate base learners, decision trees used in ensemble methods are thus

constrained to have a low number of branches (sometimes referred to as trunks), which increases the bias but reduces the
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variance. The strength of ensemble methods then stems out from the fact that combining a sufficiently large number of base
learners (of quite poor performance individually) allows to reach an enhanced performance in addition to better generalization
skills, the corresponding ensemble being less unstable to the addition of new data.

Once the form of the base learner is chosen, a strategy is required for building this ensemble of independent base learners.
Three main approaches have been proposed over the past: (i) bagging, (ii) boosting, (iii) random forests (RF). Bagging consists
in aggregating base learners trained on a bootstrap sample of the training dataset. Boosting consists in aggregating base learners
trained on different labels: the first base learner is trained on the dataset, the second on the errors left by the previous one, the
third on the errors left by the two previous ones, and so on. RF (used by Grange et al. (2018) and Grange and Carslaw (2019))

consists in aggregating base learners trained on random subsets of the training dataset based on a random subset of features.

Appendix C: Tuning of the GBM model

The training of the model is conducted together with a search of the optimal hyperparameter tuning. We retained a so-called
randomized search in which a range of values is given for each hyperparameter of interest and a total number of hyperparame-
ters combinations to test (20 in our case). Compared to the so-called grid search in which all combinations of hyperparameters
are tested, this choice allows to explore a large part of the hyperparameters space for a greatly reduced computational cost, and
is less prone to overfitting.

We used the scikit-learn Python package. The learning rate was fixed to 0.05 and the number of features to consider when look-
ing for the best split is fixed to the square root of the number of features (max_features in scikit-learn, set to "sqrt"). Besides
that, the tuning of the GBM model was done over the following set of hyperparameters: the tree maximum depth (max_depth
in the scikit-learn Python package: values from 1 to 5 by 1), the subsample (subsample : from 0.3 to 1.0 by 0.1), the number of
trees (n_estimators: from 50 to 1000 by 50) and the minimum sample in terminal leaves (min_samples_leaf: from 1 to 30). The
maximum depth (or the maximum number of subsequent splits in the individual decision trees) controls how much interaction
between the features can be taken into account. The subsample hyperparameter represents the fraction of samples to be used for
fitting an individual base learner. Values below unity correspond to the so-called stochastic gradient boosting and usually allow
to decrease the variance at the cost of an increased bias (low values also allow to speed up the training phase). The minimum
sample leaf hyperparameter controls the minimum number of samples to allow in a terminal node (larger values limiting the

risk of overfitting).
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Figure A1. Absolute and relative meteorology-normalized NO2 changes during phase I of the lockdown (2020/03/14-2020/03/29), at urban
background (left panels) and traffic stations (right panels). The uncertainties shown with colored bars correspond here to the 90% confidence
level interval computed at the weekly scale. For information purposes, the uncertainties affecting the ML-based daily predictions are also

shown (black bars).
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Figure A2. Similar to Fig. Al for the phase II of the lockdown (2020/03/30-2020/04/09).
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Figure A3. Similar to Fig. Al for the phase III of the lockdown (2020/04/10-2020/04/23).
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Figure A4. Similar to Fig. Al for the entire lockdown period (2020/04/14-2020/04/23).
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Table A1. Stations selected in each Spanish province.

Province

Urban background station

Traffic station

A Coruiia
Albacete
Alicante / Alacant
Almerfa
Araba/Alava
Asturias
Badajoz
Barcelona
Bizkaia
Burgos
Cantabria
Castellén / Castelld
Ciudad Real
Cuenca
Ciceres
Cidiz
Cérdoba
Fuerteventura
Gipuzkoa
Girona
Gran Canaria
Granada
Guadalajara
Huelva
Huesca
Jaén
La Rioja
Ledn
Lleida
Lugo
Madrid
Mallorca
Menorca
Murcia
Milaga
Navarra
Ourense
Pontevedra
Salamanca
Segovia
Sevilla
Soria
Tarragona
Tenerife
Teruel
Toledo
Valencia / Valéncia
Valladolid
Zamora

Zaragoza

ES1957A Torre De Hércules (43.382800, -8.409200)
ES1535A Albacete (38.979300, -1.852100)
ES1915A Alacant-Florida-Babel (38.340278, -0.506667)
ES1549A El Ejido (36.769720, -2.810970)
ES1544A Agurain (42.849000, -2.393700)
ES1974A Montevil (43.516600, -5.670700)
ES1819A Merida (38.907500, -6.338060)
ES1396A Barcelona (Sants) (41.378803, 2.133098)
ES1713A Parque Europa (43.254900, -2.902300)
ES1598A Zalla (43.212910, -3.134400)
ES1529A Tetudn (43.467780, -3.790280)

ES1857A Ciudad Real (38.993900. -3.937800)
ES1858A Cuenca (40.061900, -2.129700)
ES1997A Plasencia (40.077780, -6.147220)
ES1593A San Fernando (36.460590, -6.203070)
ES1799A Lepanto (37.892610, -4.762340)

ES1978A Casa Palacio-Puerto Del Rosario (28.498380, -13.860830)

ES1919A Parque De San Juan-Telde (28.003645, -15.411851)
ES1973A Ciudad Deportiva (37.135560, -3.619250)
ES1536A Azuqueca De Henares (40.571000, -3.264600)
ES2041A Monzén Centro (41.916140, 0.191101)
ES1656A Ronda Del Valle (37.782550. -3.781570)
ES1602A La Cigiiefia (42.464000, -2.428000)
ES1988A Leon 4 (42.575278, -5.566389)
ES1941A Ensanche De Vallecas (40.372778, -3.611944)
ES1604A Bellver (39.563320, 2.620550)
ES1828A Ciutadella De Menorca (40.009440, 3.856480)
ES1921A Mompean (37.603056, -0.975278)
ES1751A El Atabal (36.729560, -4.465530)
ES1472A Tturrama (42.807220, -1.651390)
ES1889A Salamanca 6 (40.960833, -5.639722)
ES1425A Principes (37.375250, -6.005580)

ES1666A Tarragona (Parc De La Ciutat) (41.117388, 1.241650)
ES1975A Depésito Tristin-Sta Cruz De Tf (28.458160, -16.278776)

ES1421A Teruel (40.336390, -1.106670)
ES1818A Toledo2 (39.868100, -4.020800)
ES1885A Valencia-Politecnic (39.480300, -0.336400)

ES1641A Renovales (41.635280, -0.893610)

ES1901A San Caetano (42.887800, -8.531100)
ES1849A Elx-Parc De Bombers (38.259167, -0.717500)
ES1393A Mediterrdneo (36.841330, -2.446720)
ES1492A Tres Marzo (42.856070, -2.667790)
ES1272A Constitucién (43.529900, -5.673500)
ES1438A Barcelona (L’Eixample) (41.385343, 2.153822)
ES1244A Mazarredo (43.267500, -2.935200)
ES1160A Burgos 1 (42.350830, -3.675560)
ES1580A Santander Centro (43.460560, -3.808610)
ES1834A Castellé-Patronat D’Esports (39.988889, -0.026111)
ES1479A Avda. Marconi (36.506020, -6.268570)
ES2047A Avda. Al-Nasir (37.892600, -4.780100)
ES1494A Ategorrieta (43.322000, -1.960700)
ES1999A Girona (Escola De Miisica) (41.976386, 2.816547)
ES1573A Mercado Central (28.133732, -15.432823)
ES1560A Granada - Norte (37.196100, -3.612660)
ES1340A Pozo Dulce (37.253360, -6.935140)
ES1417A Huesca (42.136110, -0.403890)
ES1161A Barrio Pinilla (42.603889, -5.587222)
ES1225A Lleida (Irurita - Pius Xii) (41.615795, 0.615726)
ES1905A Lugo-Fingoy (42.997900, -7.550900)
ES1938A Castellana (40.439722, -3.690278)
ES1610A Foners (39.570080, 2.655830)

ES1633A San Basilio (37.993611, -1.144722)
ES2031A Avenida Juan Xxiii (36.707300, -4.446000)
ES1740A Plaza De La Cruz (42.812220, -1.640000)
ES1096A Gomez Franqueira (42.353000, -7.877900)
ES1137A Arenal (42.219000, -8.742100)
ES1618A Salamanca 5 (40.979167, -5.665278)
ES1967A Segovia 2 (40.955556, -4.110556)
ES0817A La Ranilla (37.384250, -5.959620)
ES1643A Soria (41.766667, -2.466667)
ES1124A Tarragona (Sant Salvador) (41.159450, 1.239704)

ES1239A Valéncia-Pista De Silla (39.456111, -0.375833)
ES1631A Arco De Ladrillo Ii (41.645556, -4.730278)
ES1927A Zamora 2 (41.509722, -5.746389)
ES1418A Alagén (41.762780, -1.143330)

27



Table A2. Performance of the ML predictions of NO2 mixing ratios. Results are shown for both the reference experiment EXP202¢ and the

ensemble of past experiments combined together (EXP2016—2019).

Experiments Dataset  Period of the year Type of station MB [ppbv] RMSE [ppbv] PCC N

(day/month) (nMB [%]) (nRMSE [%])

EXP2020 Training 01/01-31/12 Urban background 0.0 (0%) 1.8 (19%) 0.96 36371
Traffic -0.0 (-0%) 2.5 (19%) 095 36612

Any -0.0 (-0%) 2.2 (19%) 096 72983

Test 01/01-13/03 Urban background 0.3 (2%) 3.5(31%) 0.85 2343

Traffic 0.9 (6%) 4.0 (27%) 0.85 2445

Any 0.6 (4%) 3.8 (29%) 0.86 4788
EXP2016—2019  Training 01/01-31/12 Urban background 0.0 (0%) 1.9 (20%) 095 146237
Traffic 0.0 (0%) 2.5 (17%) 095 151372
Any 0.0 (0%) 2.2 (18%) 0.96 297609

Test 01/01-13/03 Urban background 0.2 (2%) 3.7 (32%) 0.84 9437

14/03-23/04 Urban background 0.5 (6%) 3.6 (41%) 0.75 5408

01/01-23/04 Urban background 0.3 (3%) 3.6 (35%) 0.83 14845

01/01-13/03 Traffic 0.1 (0%) 4.3 (25%) 0.85 9741

14/03-23/04 Traffic 0.4 (3%) 4.4 (33%) 0.78 5689

01/01-23/04 Traffic 0.2 (1%) 4.3 (28%) 0.83 15430

01/01-13/03 Any 0.1 (1%) 4.0 (28%) 0.86 19178

14/03-23/04 Any 0.5 (4%) 4.0 37%) 0.80 11097

01/01-23/04 Any 0.2 (2%) 4.0 31%) 0.85 30275
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