
Dear Editor,  

According to the reviewers’ comments and suggestions, we have made major revision to 

our manuscript. The main changes in the manuscript are as follows:  

1) As suggested by one reviewer, we add an analysis of uncertainty reduction and add a new 

section of “uncertainty reduction”.  

2) We reorganize Section 2.1 to further clarify the differences between GCASv1 and GCASv2. 

3) We add more discussions about the use of 1-week assimilation window. 

4) We added 4 sensitivity experiments for the year of 2010 to test the impact of assimilation 

window, spurious signals, and uncertainty in fossil fuel carbon emissions on the inverted global 

and regional BIO carbon fluxes. 

The point-by-point response to the reviews and the detailed changes are listed in the 

attachments. Many thanks to you and the referees for the time and effort you expend on this 

paper.  

 

Best Regards,  

 

Sincerely yours,  

Fei Jiang  



Referee #1 

 

We would like to thank the anonymous referee for his/her comprehensive review and valuable 

suggestions. These suggestions help us to present our results more clearly. In response, we 

have made changes according to the referee’s suggestions and replied to all comments point 

by point. All the page and line number for corrections are referred to the revised manuscript, 

while the page and line number from original reviews are kept intact. 

 

General comments. 

Authors present estimates of regional carbon dioxide flux variability based on assimilating 

GOSAT satellite observations of CO2 with ensemble-based data assimilation system. The 

estimated CO2 fluxes where evaluated by comparison to indexes of climate variability, and 

published top-down and bottom-up estimates. The analysis of the carbon cycle variability and 

comparison with data on climate variability makes a strong point of the study. On the other 

hand, the description of the ensemble-based data assimilation system can be improved. The 

paper is well written and can be accepted after minor revisions addressing the review 

suggestions. 

 

Detailed comments. 

Lines 130-139 Suggest clarifying, what becomes a state vector to optimize, currently it is 

implicit. Some details emerge much later on Lines 358-366, when uncertainties are discussed. 

Response: Thank you for this suggestion. In this study, the terrestrial ecosystem (BIO) and 

ocean (OCN) carbon fluxes are treated as state vector and optimized. Indeed, as you said, the 

state variables had been mentioned in two places in the article. The first place is in the section 

of system description, and the second is in the section of “Experimental Design”. In the first 

place, we are introducing the current system (GCASv2) that we have improved, we set 4 state 

vector schemes in this system for different applications: 1) only the BIO flux is state vector; 

2) both BIO and OCN fluxes are treated as state vectors; 3) the BIO, OCN and FOSSIL fluxes 

are optimized at the same time; and 4) only net flux is optimized. In this study, we chose to 

optimize both BIO and OCN, which were introduced in the section of “Experimental Design”. 

To further clarify the state vector of this study, we added a sentence of “In this study, the 

second scheme was selected.” at the end of the 2nd paragraph in section 2.1 (see Line 178, 

Page 7). 

 

Lines 232-236 The logic behind selecting 1-week data assimilation window doesn’t look 

solid, as the other ensemble-based assimilation systems use longer window in order of 12 

weeks, (Peters et al. 2005, Feng et al. 2009, Jacobson et al. 2020. The notice that there was a 

problem reproducing CO2 growth rate with a longer window in Zhang et al (2015) doesn’t 

look like a strong argument, if considered in comparison with other studies. 

Response: Many thanks for this suggestion. We have added more discussions about the 

assimilation window, and shown the mean observation (only GOSAT XCO2) number (Figure 

S2) during the study period that each grid could have within the 1 week assimilation window  

and the 3000 km localization scale. We also conduct a test in the year of 2010 for different 

DA windows (1, 2 and 4 weeks) and evaluate the posterior results using surface observations 



(see Table 1). We have revised that paragraph (see Lines 303-307, Lines 309-340, Pages 11-

12) as follows:  

 

“The DA window is set to one week in GCASv2, which is the same as before. Theoretically, a 

longer DA window is better, because CO2 is a stable species. The longer window, the farther 

CO2 will be transported. In this way, more observation stations will sense the flux change of 

one area, and thus more observations can be used to optimize the flux of that place. Therefore, 

many previous ensemble-based assimilation systems used a longer DA window (e.g., Peters et 

al. 2005, Feng et al. 2009, Jacobson et al. 2020). However, the farther away, the weaker signal 

the stations can sense. Bruhwiler et al. (2005) clearly shown that a pulse traveling from a 

faraway place would contribute relatively little signal compared to recent pulses from nearby 

source regions. In addition, Limited by the method of EnKF, this weak signal will be masked 

by the method's own unphysical signal (spurious correlation), and in order to reduce this 

influence, we must increase the ensembles, thereby greatly increasing the computational cost. 

Miyazaki et al. (2011) tested the differences of 3 days and 7 days DA windows, and pointed 

that with a longer DA window, more observation data will be available to constrain the 

surface flux, but a longer window can make the effect of model error more obvious. Thus, the 

assimilation result can be improved as long as the observations with spurious correlations can 

be neglected. However, spurious correlations can be more serious with increases in the DA 

window, because of a limited number of ensembles. As a result, a longer window is not 

necessarily better than a shorter window system. To avoid the influence of spurious signals, 

Kang et al. (2012) used a very short DA window (6 hours) in their assimilation system 

(LETKF_C) and pointed out that the flux inversion with a long window (3 weeks) is not as 

accurate as the one obtained with a 6 h DA window, particularly in smaller-scale structures. 

During the development of GCASv1, Zhang et al. (2015) tested different DA windows and 

found that the longer the window, the larger optimized terrestrial carbon sink will be, resulting 

in a smaller optimized annual atmospheric CO2 growth rate as compared to the observed rate. 

Considering the fact that at present, due to the release of satellite XCO2 retrievals like GOSAT 

and OCO-2, the atmospheric CO2 observations and coverages have increased significantly 

compared to before, which means that we do not need to extend the DA window to include 

more observation data now. Figure S2 shows the mean super observation (see section 2.1.1, 

only GOSAT XCO2) numbers during the study period that each grid could have within the 1-

week DA window and a localization scale (3000 km, see the next paragraph). In most land 

areas and pan-tropical waters, each grid can already have more than 3 super observations. On 

average, each grid over the land could has 4 super observations. Two sensitivity tests in 2010 

were conducted using 2- and 4- weeks DA windows but the same localization scale, the 

results are shown in Table S3. When the length of DA window increases from 1 week to 4 

weeks, the mean super observation number increases from 4 to 9, accordingly, the inverted 

global BIO flux increased from -4.16 PgC yr-1 to -4.49 PgC yr-1, resulting in a larger deviation 

of the simulated and observed atmospheric CO2 growth rate (AGR) and larger simulation 

error against the surface observations. Therefore, we still use the 1-week DA window in 

GCASv2.” 

 



 

Figure 1. Mean observation numbers within a DA window (1 week) during May 2009 ~ Dec 

2015 (This figure has been added in the revised Supporting Information, and named as Figure 

S2) 

 

Table 1. Results of sensitivity tests in the year of 2010 (1week, 2weeks and 4weeks are three 

additional experiments using 1 week, 2 weeks, and 4 weeks assimilation windows, 

respectively) (This Table has been added in the revised Supporting Information, and named as 

Table S4) 

    Prior 1 week 2 weeks 4 weeks 

Super Obs. 

Num. per 

window 

Total  - 730 1039 1360 

Each grid over land - 4 6 9 

Global Flux 

(PgC/yr) 

BIO -2.07 -4.16 -4.46 -4.49 

OCN -2.08 -2.33 -2.32 -2.35 

FOSSIL 9.07 9.07 9.07 9.07 

Net 7.25 4.91 4.62 4.55 

Regional 

Flux 

(PgC/yr) 

North America Boreal -0.29 -0.43 -0.41 -0.35 

North America 

Temperate 
-0.42 -1.25 -1.75 -2.41 

Tropical South America -0.17 -0.26 -0.32 -0.27 

Temperate South 

America 
-0.24 -0.4 -0.36 -0.19 

Northern Afirca 0.21 0.32 0.36 0.62 

Southern Africa 0.22 -0.3 -0.59 -1.04 

Boreal Asia -0.4 -0.46 -0.3 0.11 

Temperate Asia -0.3 -0.29 -0.15 -0.06 



Southeast Asia -0.29 -0.23 -0.21 -0.2 

Australia -0.17 -0.4 -0.48 -0.53 

Europe -0.19 -0.41 -0.21 -0.12 

independent 

evaluation 

BIAS 1.43 -0.44 -0.4 -0.38 

MAE 1.92 1.37 1.39 1.51 

RMSE 2.36 2.11 2.18 2.39 

Deviation from the observed AGR 

(PgC yr-1) 
2.08 -0.26 -0.55 -0.62 

 

 

Technical corrections 

Lines 119-120 Need to clarify, written that fluxes “are perturbed with a Gaussian random 

distribution” – better add more detail on whether perturbation is applied independently to 

each grid or over regions. 

Response: Thank you! We have rewritten that sentence (see Lines 123-124, Page 5), as 

follows: 

“the prior fluxes of Xb in each grid are independently perturbed with a Gaussian random 

distribution” 

 

Line 216 As resolutions of the transport model and fluxes are apparently different, suggest 

writing which of them are referred as ‘model grids’. 

Response: Thanks for this suggestion. We have changed ‘model grids’ as ‘transport model 

grids’ (see Lines 268 and 269, Page 10). 

 

Line 584 Revise ‘a very stronger carbon sink’ as ‘a stronger carbon sink’ or ‘a very strong 

carbon sink’ 

Response: Thanks! We have changed ‘a very stronger carbon sink’ as ‘a very strong carbon 

sink’ (see Line 857, Page 29). 

 

Line 594 Suggest revising ‘weak’ to ‘weaker’ 

Response: Thanks! We have changed ‘weak’ to ‘weaker’ (see Line 870, Page 30). 

 

 



Referee #2 

 

We thank the anonymous referee for his/her valuable comments and constructive suggestions. 

We have made changes according to the referee’s suggestions and replied to all comments point 

by point. All the page and line number for corrections are referred to the revised manuscript, 

while the page and line number from original reviews are kept intact. The references related to 

the responses are listed in the end of this document.  

 

General comments:  

In this study, Jiang et al. upgraded the Global Carbon Assimilation System (GCAS) with new 

assimilation algorithms, a localization scheme, and a higher assimilation parameter resolution, 

namely GCASv2. The global terrestrial ecosystem (BIO) and ocean (OCN) carbon fluxes 

from 2009 to 2015 were constrained by the GOSAT ACOS XCO2 retrievals. Following this, 

the posterior carbon fluxes from 2010 to 2015 were evaluated using 52 surface flask 

observations. The errors in the posterior carbon fluxes in the new inversion system were 

compared to those in a previous version. The authors indicated that the pattern of regional 

carbon sinks was significantly different from previous studies (CT2017). The inter-annual 

variations of carbon fluxes in most land regions, and the relationship with the changes of 

severe drought area the plant indexes, and drought were re-visited. These results are 

interesting. However, the improvement of the inversion methodology is not presented, and the 

reduction of the uncertainty by the inversions remains unclear (Figure 3) in the current paper. 

I, therefore, recommend that this work cannot be published before the following comments 

are addressed. 

 

Specific comments:  

Figure 3: What is the source for error bars in these two plots? Are they coming from the 

uncertainty in the prior and posterior estimates? If yes, it seems that the uncertainty is not 

reduced from the prior estimates to the posterior estimates. One main purpose of inversion is 

to reduce the uncertainty in the prior estimates. If the uncertainty is not reduced, the 

effectiveness of the inversions should be evaluated. 

Response: Thank you for this suggestion. The error bars represent the standard deviations of 

all biases at each latitude and each site, respectively. Indeed, the uncertainty reduction is very 

important for an inversion study. We analyzed the uncertainty reduction rate (UR), and added 

a section of “4.2 Uncertainty reduction” in the revised manuscript (see Lines 663 – 705, Pages 

21 - 23). The annual mean URs of the BIO fluxes over different TRANSCOM regions are in 

the range of 6% ~ 27%, with global mean of 17%. The highest monthly UR is 51% in 

temperate South America. 

 

Figures 4/5: Evaluation of the reduction of the uncertainty from the prior estimates to the 

posterior estimates is more important than evaluation of the bias itself for an inversion 

system. 



Response: Thank you for this suggestion. We have analyzed the reductions of the 

uncertainties from the prior estimates to the posterior estimates and added a section of “4.2 

Uncertainty reduction” in the revised manuscript (see Lines 663 – 705, Pages 21 - 23). 

 

Tables 2/3: What is the uncertainty for the prior and posterior estimates? 

Response: Thank you! We have added the uncertainties of the prior and posterior estimates in 

the revised manuscript (see Lines 719 – 723, Page 24 and Line 828, Page 28). 

 

Line 473-488: What is the uncertainty for the estimates from this study? To evaluate the 

effectiveness of an inversion system, the uncertainty of the posterior estimates is more 

important than the central value. Such information is missing in the current manuscript, which 

is better considered / discussed in previous studies (e.g. the literature cited in line 586). 

Response: Thank you for this suggestion! As shown above, we have analyzed the uncertainty 

reductions and added a section of “4.2 Uncertainty reduction” in the revised manuscript (see 

Lines 663 – 705, Pages 21 - 23).  

 

Figures 7/9/10: What is the uncertainty for the prior and posterior estimates? 

Response: Thank you for this suggestion. We have added the prior and posterior uncertainties 

in Figures 7, 9 and 10, which are named as Figure 8, 10 and 11 in the revised manuscript (see 

Lines 893-896, Page 31; Lines 934-937, Page 33; and Lines 1045-1049, Page 37).  

 

Figure 1: The authors suggested that a new assimilation scheme is developed in this paper. 

Why not directly compare the flow charts between the GCAS and GCASv2 systems and show 

the difference? 

Response: Many thanks for this suggestion. We have modified Figure 1 and given the 

differences in the flow charts between GCASv1 and GCASv2 (see Lines 147-148, Page 6). 

 

Line 124: It seems that a major advance of GCASv2 against GCAS is that “In the second 

step, the MOZART-4 model is run again using the optimized fluxes of Xa, to generate new 

CO2 concentrations for the initial field of the next DA window. This DA flow chart is 

different from the previous version of GCAS, which runs the MOZART-4 model only once, 

and optimizes the fluxes and the initial field of the next window synchronously.” However, I 

do not understand how this improves the inversion system. The old GCAS system produces 

the posterior global gridded carbon fluxes, which were used as prior fluxes as input to any 

other forward models to simulate the CO2 field. If the difference of GCASv2 was just that the 

posterior global gridded carbon fluxes were used by MOZART-4 to simulate the CO2 field, I 

cannot see how and why the inversing methodology is improved. 

Response: Thank you for this comment. Indeed, as you said, the descriptions of the 

differences between GCASv2 and GCASv1 are rather vague. We have revised Section 2.1 to 

further clarify their differences. The main differences between GCASv2 and GCASv1 are as 

follows: 

1) Optimization of the initial field of each window. In GCASv1, it is directly optimized using 

the observations, while in GCASv2, it is simulated using the posterior fluxes of the previous 

window. The advantage of this method in GCASv2 is that the assimilation errors could be 



transported from one window to the next. If the fluxes are overestimated in one window 

because of some reasons, by this method, they will affect the concentrations of the next 

window, thereby the posterior fluxes of the next window will compensate the 

overestimations. While in GCASv1, since the initial field of each window is directly 

optimized using the observations, which means in each window, there are relatively perfect 

initial fields, the inversions of each window are independent, and the amount of 

overestimation or underestimation in one window will continue to accumulate until the end, 

leading to an overall overestimation or underestimation. In addition, due to the perfect initial 

field, the differences between the simulated and observed concentrations are only contributed 

by the errors in the prior fluxes of current window, resulting in a relatively smaller model – 

data mismatch, so as to weaken the assimilation benefits on fluxes. This difference is given in 

Lines 128 – 143, Page 5 in the revised manuscript. 

2) State vector. In GCASv1, only BIO is state vector, while in GCASv2, we set 4 state vector 

schemes for different applications: 1) only the BIO flux is state vector; 2) both BIO and OCN 

fluxes are treated as state vectors; 3) the BIO, OCN and FOSSIL fluxes are optimized at the 

same time; and 4) only net flux is optimized. This difference is given in Lines 172 – 178, 

Page 7 in the revised manuscript. 

3) Resolution of the state vectors. In GCASv1, the scaling factor λ is defined in different land 

and ocean areas based on 22 TRANSCOM regions (Gurney et al., 2002) and 19 Olson 

ecosystem types, as in CarbonTracker (Peters et al., 2007), while in GCASv2, we change to 

use a λ in each grid, meaning that for each grid, the perturbations of prior fluxes are 

independent, and the grid cell of λ could be set freely. This difference is given in Lines 

154-161, Page 6 in the revised manuscript. 

4) observation data. In GCASv1, only flask/in situ observations were assimilated, while in 

GCASv2, we added a module to assimilate the satellite XCO2 retrievals, and allow users to 

simultaneously or separately assimilate the flask/in situ concentrations and the XCO2 

retrievals. See Lines 186 – 201, Pages 7 -8 in the revised manuscript. Besides, a ‘super-

observation’ approach is also adopted in GCASv2, See Lines 202-215, Page 8 in the revised 

manuscript. 

5) assimilation algorithm, in GCASv2, we added another EnKF algorithm, i.e., EnSRF. See 

Lines 223-227, Page 9. 

 

Line 143: It seems that the carbon emission from cement production, a large part of CO2 

source, is missed in this inversion system. This could be a big weakness of the current system. 

Response: Sorry, that description is not accurate enough. The carbon emission from cement 

production has been included in this study. The fossil fuel carbon emissions are obtained from 

NOAA's CarbonTracker, version CT2017, which is an average of the Carbon Dioxide 

Information Analysis Center (CDIAC) product (Andres et al., 2011) and the Open-source 

Data Inventory of Anthropogenic CO2 (ODIAC) emission product (Oda et al., 2018). We 

have checked the document of CT2017 and the introduction of CDIAC database, compared 

the annual global fossil fuel emissions in our system with the global emissions from the 

CDIAC website (https://cdiac.ess-dive.lbl.gov/), and confirmed that the carbon emission from 



cement production has been included in this study. We have changed the sentence of “… 

atmosphere and ocean (OCN) carbon exchange, fossil fuel (FOSSIL) carbon emission and 

biomass burning (FIRE) carbon emission…” to “… atmosphere and ocean (OCN) carbon 

exchange, fossil fuel and cement production (FOSSIL) carbon emission and biomass burning 

(FIRE) carbon emission…” (see Lines 166-167, Page 7) 

 

Line 143: What is the relationship between BIO and FIRE? Biomass sequestrates carbon from 

the atmosphere, and releases CO2 in biomass burning. Should FIRE be a part of BIO? 

Response: Yes, biomass burning carbon emission is a part of terrestrial ecosystem carbon 

flux. Terrestrial ecosystems uptake carbon through photosynthesis (GPP) and release carbon 

through respiration (ER) and biomass combustion (FIRE). The BIO flux defined in this study 

is the net flux of GPP and ER (ER-GPP). In many previous inversion studies, it is directly 

defined as net ecosystem exchange [NEE = ecosystem respiration (ER) − gross primary 

production (GPP)] (e.g., Hu et al., 2019; Peters et al., 2007, 2010), and the sum of NEE and 

FIRE is defined as net biosphere exchange (NBE, Liu et al., 2017). In the revised manuscript, 

we have changed the sentence of “… name terrestrial ecosystem (BIO) carbon flux, …” to 

“namely terrestrial ecosystem (BIO) carbon flux (i.e., net ecosystem exchange (NEE) = 

ecosystem respiration (ER) − gross primary production (GPP)), …” (see Lines 163-166, 

Pages 6-7) 

 

Line 147: “FOSSIL and FIRE fluxes are assumed to have no errors, only BIO and OCN 

fluxes are optimized in an assimilation system”. I do not think that this is the case in other 

inversion systems: (1) It needs clear justification by summarizing and tabulating the 

methodology in the literature. (2) The difference relative to a system with errors considered 

for FOSSIL and FIRE need to be calculated to show how much the conclusion of the present 

study are sensitive to this assumption. 

Response: Thank you for this comment. Yes, there are considerable uncertainties for the fossil 

fuel and biomass burning carbon emissions, which are about 6% and 20% for global mean, 

respectively. Ideally, we would like the inversion to partition the deviations from the a-priori 

fluxes among all the four type of carbon fluxes. NEE and ocean fluxes can, since they are 

geographically separated, readily be accounted for in statistically independent deviation 

terms. However, the inversion cannot be expected to distinguish between land biosphere 

fluxes and fossil fuel emissions, because both are inextricably localized on land, and the CO2 

data alone do not discern fossil and non-fossil carbon (Rödenbeck et al., 2003). Therefore, 

most inversion studies for surface carbon fluxes focused on the NEE and ocean fluxes, and 

the fossil fuel and biomass burning were prescribed (e.g., Gurney et al., 2002, 2003; Peters et 

al., 2007; Nassar et al., 2011; Feng et al., 2009; Monteil et al., 2020). As shown in Table 1, we 

have reviewed a lot of studies, in which only Deng et al. (2014, 2015) considered the 

uncertainties of fossil fuel and biomass burning carbon emissions, Liu et al. (2019) and Kang 

et al. (2012) directly optimized the net carbon flux, and Some studies (Monteil et al., 2020, 

Scholze et al., 2019) only optimized the NEE. Although Deng et al. (2014)’s state vector 

includes emissions of CO2 from fossil fuel combustion, when they reported their posteriori 

flux estimates, they removed the a priori fossil fuel estimate from the reported total land flux.  

 



As shown in section 2.1, we have added a scheme to simultaneously the fossil fuel and 

cement production carbon emissions in GCASv2. We have tried to use it to optimize the 

fossil fuel emissions in China. We tested different emission inventories, but GCASv2 did not 

make them converge, but only made the emissions of each inventory slightly lower. 

Therefore, we think that under the current resolution of atmospheric transport model, spatial 

coverage of observational data, and the assimilation settings, GCASv2 cannot optimize it 

well.  

 

According to your suggestion, we added a sensitivity test for optimizing fossil fuel carbon 

emissions, using the same localization scheme as BIO and OCN, giving fossil fuels a global 

uncertainty of 5%. The results showed that the impact on both the inverted global and 

regional scale BIO fluxes are very small (Table 2). 

 

The following sentences has been added in the revised manuscript: 

 

“… and the FOSSIL and FIRE carbon emissions are kept intact (the impact of this assumption 

on both the inverted global and regional BIO fluxes are very small (Table S4)). Following 

Wang et al. (2019), …” (see Lines 558-560, Pages 16-17) 

 

Table 1. a summary of the inversion methodology in the literature. 

System Name 
Transport 

model/Res. 

Assimilati

on method 
Obs. 

State 

Vector* 
Reference 

CT/CTE/CT-

China 

TM5,global 

3x2, region, 1x1 
EnSRF obspack NEE, OCN 

Peters et al., 2007; 

Peters et al., 2010; 

Zhang et al., 2014 

UoE 
GEOS‐

Chem,4x5 
EnKF 

in situ or 

GOSAT 
NEE, OCN 

Feng et al., 2009, 

2016, 2017 

CAMS CO2 

inversion 

system 

LMDz,3.75x1.8

75 
variational 

surface 

observations, 

GOSAT, OCO-

2 

NEE, OCN 
Chevallier, et al., 

2019 

CCDAS TM3,4x5 4D-Var 

in situ CO2, 

SM, and L-

VOD 

NEE 
Scholze et al., 

2019 

 Jena 

CarboScope 
TM3,4x5 

time-

independe

nt 

Bayesian 

inversion 

surface 

observations 

NBE, 

OCN 

Rödenbeck, 2005;  

Rödenbeck et al., 

2003 

TransCom 3 

inversions 

16 Atmospheric 

Transport 

Models,2.0x2.5 

to 7.5x7.5 

Bayesian 

synthesis 

inversion 

GLOBALVIEW 

data 

NEE，

OCN 

Baker et al., 2006; 

Gurney et al., 

2002, 2003 



Nasser et al., 

2011 

GEOS-

Chem,2x2.5 

time-

independe

nt 

Bayesian 

inversion 

TES and surface 

flask 

measurements 

NEE, OCN Nassar et al., 2011 

EUROCOM 

(include 6 

systems) 

CHIMERE, 

FLEXPART, 

STILT, TM5, 

NAME/0.5x0.5 

~1x1 

 

Variational

, EnKF, 

MCMC 

flask 

NEE 

OCN (4 

prescribed) 

Monteil et al., 

2020 

Deng et al., 

2007 
NIES,2.5x2.5 

Time-

dependent 

Bayesian 

synthesis 

GLOBALVIEW 

data 
NEE, OCN Deng et al., 2007 

Niwa et al., 

2012 

NICAM-

TM,~240 km 

Time-

dependent 

Bayesian 

synthesis 

GLOBALVIEW

, CONTRAIL 
NEE, OCN Niwa et al., 2012 

Miyazaki et al., 

2011 
AGCM,2.8x2.8 LETKF 

OSSEs 

(GOSAT, 

CONTRAIL, 

and surface 

sites) 

NEE, OCN 
Miyazaki et al., 

2011 

TM5-4DVAR 

inversion 

system 

TM5,6x4  4D-Var GOSAT NEE, OCN Basu et al., 2013 

GEOS-Chem-

4DVAR 

inversion 

system 

GEOS-

Chem,4x5 
4D-Var GOSAT, Flask 

NEE, 

OCN, 

FOSSIL, 

FIRE 

Deng et al., 2014; 

2016 

CMS-Flux 

inversion 

framework 

GEOS-

Chem,4x5 
4D-Var 

GOSAT, OCO-

2, SIF 

NBE, 

OCN 
Liu et al., 2017 

LETKF_C 
GEOS-

Chem,4x5 
LETKF 

OSSEs 

(GOSAT, 

CONTRAIL, 

and surface 

sites) 

Net flux 
Liu et al., 2019; 

Kang et al., 2012 

*NEE: net ecosystem exchange, ecosystem respiration (ER) − gross primary production 

(GPP); NBE: net biosphere exchange, NEE + biomass burning carbon emission (FIRE); 

OCN: atmosphere - ocean carbon exchange; FOSSIL: fossil fuel and cement production 

carbon emission; Net flux: NEE + OCN + FOSSIL+ FIRE 

 

Table 2. Results of sensitivity tests in the year of 2010 (Wfossil is an experiment with the 



FOSSIL carbon emissions being synchronously optimized) (This Table has been added in the 

revised Supporting Information) 

    Prior 1 week Wfossil 

Super Obs. 

Num. per 

window 

Total  - 730 730 

 Each grid could use - 4 4 

Global Flux 

(PgC/yr) 

BIO -2.07 -4.16 -4.15 

OCN -2.08 -2.33 -2.31 

FOSSIL 9.07 9.07 9.05 

AGR 7.25 4.91 4.92 

Regional Flux 

(PgC/yr) 

North America Boreal -0.29 -0.43 -0.44 

North America Temperate -0.42 -1.25 -1.21 

Tropical South America -0.17 -0.26 -0.27 

Temperate South America -0.24 -0.4 -0.41 

Northern Afirca 0.21 0.32 0.34 

Southern Africa 0.22 -0.3 -0.29 

Boreal Asia -0.4 -0.46 -0.48 

Temperate Asia -0.3 -0.29 -0.27 

Southeast Asia -0.29 -0.23 -0.24 

Australia -0.17 -0.4 -0.4 

Europe -0.19 -0.41 -0.43 

independent 

evaluation 

BIAS 1.43 -0.44 -0.43 

MAE 1.92 1.37 1.35 

RMSE 2.36 2.11 2.08 

Deviation from the observed AGR (PgC yr-1) 2.08 -0.26 -0.25 

 

 

Line 209: How does GCASv2 consider the spatial representativeness errors in the inversion 

system? 

Response: Many thanks for this question. GCASv2 do not consider the spatial 

representativeness errors for the GOSAT XCO2 retrievals in this study. Generally, the spatial 

representation error must be considered when the resolution of the model grid is inconsistent 

with the spatial range represented by the observation data. In this study, we only use the 

XCO2 retrievals. The reason of why we do not consider the spatial representativeness errors is 

that, first, the XCO2 retrieval is a column averaged atmospheric CO2 concentration, which is 

the result of full atmosphere mixing; 2) before we use the GOSAT data in GCASv2, it has 

been averaged within the grid cell of 1°×1°. 3) a ‘super-observation’ approach is adopted 

based on the optimal estimation theory (Miyazaki et al., 2012). A super-observation is 

generated by averaging all observations located within the same model grid within a DA 

window. Therefore, we believe that the spatial representation of the re-grided and averaged 

XCO2 data can match the grid of the model. In addition, the model-data mismatch error of 

XCO2 is constructed using the GOSAT retrieval error, which has been uniformly inflated by a 

factor of 1.9 with lowest error fixed as 1 ppm. Therefore, we did not consider the spatial 

representation error in this study. 



 

Line 238: How many sites are subject to this spurious noise? Are these sites excluded from 

the inversion system? How much does removing data at these sites influence the inversion 

fluxes? 

Response: We have conducted an additional assimilation for the year of 2010, in which we do 

not remove the spurious signals, namely all the data with the correlation coefficient with the 

perturbed fluxes greater than zero were used for assimilation. As shown in Table 3, on 

average, 87% of the observations were spurious noise and removed in this study. The spurious 

observations will increase the inverted global land sink and enlarge the deviation of the 

simulated and observed atmospheric CO2 growth rate. For different TRANSCOM regions, the 

impact for the BIO fluxes could be in the range of -32% to 40%. We have added the following 

sentences in the revised manuscript (see Lines 351-355, Page 12) and added Table 3 in the 

revised Supporting Information. 

 

“…Otherwise, the relationship is assumed to be spurious noise. On average, 87% of the 

observations were spurious noise and removed in this study. The spurious observations will 

increase the inverted global land sink and enlarge the deviation of the simulated and observed 

AGR. For different TRANSCOM regions, the impact for the BIO fluxes could be in the range 

of -32% to 40% (Table S4). The scale of 3000 km …” 

 

Table 3. Results of sensitivity tests in the year of 2010 (Wnoise is the experiment with 

spurious signals included) 

    Prior Posterior Wnoise 

Super Obs. 

Num. per 

window 

Total  - 730 730 

Each grid could use - 4 28 

Global Flux 

(PgC/yr) 

BIO -2.07 -4.16 -4.31 

OCN -2.08 -2.33 -2.42 

AGR 7.25 4.91 4.67 

Regional Flux 

(PgC/yr) 

North America Boreal -0.29 -0.43 -0.42 

North America Temperate -0.42 -1.25 -1.41 

Tropical South America -0.17 -0.26 -0.3 

Temperate South America -0.24 -0.4 -0.37 

Northern Afirca 0.21 0.32 0.28 

Southern Africa 0.22 -0.3 -0.42 

Boreal Asia -0.4 -0.46 -0.33 

Temperate Asia -0.3 -0.29 -0.31 

Southeast Asia -0.29 -0.23 -0.27 

Australia -0.17 -0.4 -0.4 

Europe -0.19 -0.41 -0.28 

independent 

evaluation 

BIAS 1.43 -0.44 -0.41 

MAE 1.92 1.37 1.4 

RMSE 2.36 2.11 2.2 

Deviation from the observed AGR (PgC yr-1) 2.08 -0.26 -0.5 



 

Technical corrections: 

Line 38: “BIAS” is not defined before it is used. 

Response: Thanks! We have changed “BIAS” to “bias” in the revised manuscript (see Line 

38, Page 2). 

 

Line 63: “However, their carbon uptakes have significant spatial differences and interannual 

variations.” References are needed. 

Response: Thanks for this suggestion. We have added three references, namely Bousquet et 

al. (2000), Takahashi et al. (2009) and Piao et al. (2020). (see Lines 65-66, Page 3) 

 

Line 95: “However, so far, on the one hand, most studies focused on the impact of GOAST 

XCO 2 retrievals on the inversion of surface carbon fluxes, but in many regions, there are still 

large divergences for carbon sinks between different inversions with the same GOSAT data or 

between inversions with GOSAT and in situ observations (Chevallier et al., 2014)”. Is only 

one study considered and cited? 

Response: Many thanks for this suggestion. We have added two references in the revised 

manuscript, i.e., Wang et al. (2018) and Feng et al. (2016). The sentence has been revised as 

follows (see Line 102, page 4 in the revised manuscript): 

“…between inversions with GOSAT and in situ observations (e.g., Chevallier et al., 2014; 

Feng et al., 2016; Wang et al., 2018), on the other hand, …” 

 

Line 102. References are needed. 

Response: Thank you! We have added two references, namely Feng et al. (2017) and Byrne et 

al., (2019). See Line 106, Page 4 in the revised manuscript. 

 

Line 255: The references for the two emission inventories of FOSSIL and FIRE are out of 

date. ODIAC and GFEDv4 have been updated recently. 

Response: We have revised the reference of ODIAC “Oda and Maksyutov (2011)” as “Oda et 

al. (2018)”, and the references of GFEDv4 “van der Werf et al. (2010) and Giglio et al. 

(2013)” as “Randerson et al., 2017” (see Lines 377 and 379, Page 13) 

 

Line 270: “The BIO carbon flux, which is the most important prior carbon flux”. Why is the 

prior carbon flux of BIO more important than FOSSIL and FIRE to an inversion system? 

Response: This statement is problematic. From the perspective of the carbon cycle, the carbon 

flux of terrestrial ecosystems is not more important than others. In fact, what we want to 

express is that because the carbon flux of terrestrial ecosystems has the greatest uncertainty 

and the most significant interannual variation, when using observational data to optimize 

surface carbon flux, the carbon flux of terrestrial ecosystems is the most concerned. We have 

modified that sentence to “The BIO carbon flux, which is one of the most concerned prior 

carbon fluxes in an assimilation system” in the revised manuscript. (see Line 389, Page 13) 

 

Line 340: When the averages of the modeled and the observational values/retrievals are equal, 

BIAS is zero, even if all data are distant to the 1:1 line in the comparison. BIAS cannot 



effectively evaluate the performance of the model by showing how much the modeled 

values/retrievals agree with the observational values/retrievals. The average of absolute 

difference between the modeled and the observational values/retrievals is needed. 

Response: Thank you! We have added the mean absolute error (MAE) between the modeled 

and the observational values/retrievals in the revised manuscript. (see Line 532, Page 15; 

Lines 577-579, Page 17; Lines 599-601, Page 18; and Lines 614 – 616, Page 19) 

 

 

Line 360: Does the study of Wang et al. (2019) account for the uncertainty in FOSSIL and 

FIRE? 

Response: No, Wang et al. (2019) only optimized the terrestrial ecosystem and ocean carbon 

fluxes. 

 

Line 448: What is “impact of accumulation”? 

Response: As shown in the following figure (Figure 1), we find that there is a significant 

increasing trend for the annual BIAS between the simulated CO2 concentration with the 

posterior flux and the observed concentration. We believe that this increasing trend is due to 

the accumulation of errors in the assimilation system, which may be caused by the slight 

overestimates of land sink in each year. 

 

Figure 1. Annual mean BIAS between the surface flask observations and the simulations with 

posterior fluxes, the △BIAS means the difference in BIAS between two consecutive years, 

for example, the △BIAS in 2011 means the BIAS in 2011 minus the one of 2010. 

 

Figures 3/4: “Biases” in the caption is easily confused with “BIAS” defined in equation 10. 

Response: Thank you! We have modified the “Biases” in the caption Figures 3/4 to “BIAS”. 

(see Line 595, page 18 and Line 605, page 19) 

 

Table 1: BIAS cannot evaluate the performance of the model by showing how much the 

modeled values/retrievals agree with the observed values/retrievals. 

Response: Thank you for this suggestion! According to this suggestion, we have added the 

mean absolute error (MAE) in Table 1 in the revised manuscript. (see Line 532, Page 15; 

Lines 577-579, Page 17; Lines 599-601, Page 18; and Lines 614 – 616, Page 19) 
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Abstract 27 

Satellite XCO2 retrievals could help to improve carbon flux estimation because of 28 

their good spatial coverage. In this study, to assimilate the GOSAT XCO2 retrievals, 29 

the Global Carbon Assimilation System (GCAS) is upgraded with new assimilation 30 

algorithms, procedures and a localization scheme, a higher assimilation parameter 31 

resolution and so on, and hence is named as GCASv2. Based on this new system, the 32 

global terrestrial ecosystem (BIO) and ocean (OCN) carbon fluxes from May 1, 2009 33 

to Dec 31, 2015 are constrained using the GOSAT ACOS XCO2 retrievals (Version 7.3). 34 

The posterior carbon fluxes from 2010 to 2015 are independently evaluated using CO2 35 

observations from 52 surface flask sites. The results show that the posterior carbon 36 

fluxes could significantly improve the modeling of atmospheric CO2 concentrations, 37 

with global mean bias decreases from a prior value of 1.6±1.8 ppm to -0.5±1.8 ppm. 38 

The uncertainty reduction (UR) of the global BIO flux is 17%, and the highest monthly 39 

regional UR could reach 51%. Globally, the mean annual BIO and OCN carbon sinks 40 

and their interannual variations inferred in this study are very close to the estimates of 41 

CT2017 during the study period, and the inferred mean atmospheric CO2 growth rate 42 

and its interannual changes are also very close to the observations. Regionally, over the 43 

northern lands, there are the strongest carbon sinks in North America Temperate, 44 

followed by Europe, Boreal Asia, and Temperate Asia; and in tropics, there are strong 45 

sinks in Tropical South America and Tropical Asia, but a very weak sink in Africa. This 46 

pattern is significantly different from the estimates of CT2017, but the estimated carbon 47 

sinks in each continent and some key regions like Boreal Asia and Amazon are 48 

comparable or in the range of previous bottom-up estimates. The inversion also changes 49 

the interannual variations of carbon fluxes in most TRANSCOM land regions, which 50 

have a better relationship with the changes of severe drought area or LAI, or are more 51 

consistent with previous estimates for the impact of drought. These results suggest that 52 

the GCASv2 system works well with the GOSAT XCO2 retrievals, and has a good 53 

performance in estimating the surface carbon fluxes, meanwhile, our results also 54 

indicate that the GOSAT XCO2 retrievals could help to better understand the 55 

删除了: BIAS 56 
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interannual variations of regional carbon fluxes. 57 

1. Introduction 58 

Atmospheric carbon dioxide (CO2) is one of the most important greenhouse gases, 59 

and fossil fuel burning and land use change are mostly responsible for its increase from 60 

the preindustrial concentration. Terrestrial ecosystems and oceans play very important 61 

roles in regulating the atmospheric CO2 concentration. In the past half century, about 62 

60% of the anthropogenic CO2 emissions have been absorbed by the terrestrial 63 

ecosystems and oceans (IPCC, 2014). However, their carbon uptakes have significant 64 

spatial differences and inter-annual variations (Bousquet et al., 2000; Takahashi et al., 65 

2009; Piao et al., 2020). Therefore, it is very important to quantify the global and 66 

regional carbon fluxes.  67 

Atmospheric inversion is an effective method for estimating the surface CO2 fluxes 68 

using the globally distributed atmospheric CO2 concentration observations (Enting and 69 

Newsam, 1990; Gurney et al., 2002). It has robust performance on global or hemisphere 70 

scale carbon budget estimates (Houweling et al., 2015), but on regional scales, due to 71 

the uneven distribution of in situ observations, the reliability of inversion results varies 72 

greatly in different regions. Generally, the inversions have large uncertainties in tropics, 73 

southern hemisphere oceans and most continental interiors such as South America, 74 

Africa, and Boreal Asia (Peylin el al., 2013). Satellite observation has a better spatial 75 

coverage, especially over remote regions, and studies show that it can be used to 76 

improve the carbon flux estimates (e.g., Chevallier et al., 2007; Miller et al., 2007; 77 

Hungershoefer et al., 2010). The Greenhouse Gases Observing Satellite (GOSAT) 78 

(Kuze et al., 2009), being the first satellite mission dedicated to observing CO2 from 79 

space, was launched in 2009. Many inversions have utilized the GOSAT retrievals for 80 

column-averaged dry air mole fractions of CO2 (XCO2) to infer surface carbon fluxes 81 

(e.g., Basu et al., 2013; Maksyutov et al., 2013; Saeki et al., 2013a; Chevallier et al., 82 

2014; Deng et al., 2014; Deng et al, 2016; Wang et al., 2018a; Wang et al., 2019). Takagi 83 

et al. (2011) found that GOSAT XCO2 retrievals could significantly reduce the 84 

uncertainties in estimates of surface CO2 fluxes for regions in Africa, South America, 85 
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and Asia, where the sparsity of the surface monitoring sites is most evident. Basu et al. 86 

(2013) shown that assimilating only GOSAT data can well reproduce the observed CO2 87 

time series at the surface and TCCON sites in the tropics and the northern extra-tropics, 88 

but enhance seasonal cycle amplitudes in the southern extra-tropics. Wang et al. (2019) 89 

also showed that GOSAT XCO2 retrievals can effectively improve carbon flux 90 

estimation, and the performance of the inversion with GOSAT data only was 91 

comparable with the one using in situ observations. Meanwhile, based on the inversions 92 

with GOSAT XCO2 retrievals, Liu et al. (2018) quantified the impacts of the 2011 and 93 

2012 droughts on terrestrial ecosystem carbon uptake anomalies over the contiguous 94 

US, Deng et al. (2016) compared the distributions of drought and posterior carbon 95 

fluxes in South America for 2010-2012, Detmers et al. (2015) studied the impact of the 96 

strong La Niña episode on the carbon fluxes in Australia from the end of 2010 to early 97 

2012. However, so far, on the one hand, most studies focused on the impact of GOAST 98 

XCO2 retrievals on the inversion of surface carbon fluxes, but in many regions, there 99 

are still large divergences for carbon sinks between different inversions with the same 100 

GOSAT data or between inversions with GOSAT and in situ observations (e.g., 101 

Chevallier et al., 2014; Feng et al., 2016; Wang et al., 2018a), on the other hand, 102 

although some studies reported the impact of drought or extreme wetness on the 103 

changes of carbon fluxes using inversions based on GOSAT, few studies have 104 

comprehensively investigated the impacts of GOSAT data on the interannual variations 105 

of inverted land sinks in different regions (Feng et al., 2017; Byrne et al., 2019). 106 

In this study, we present a 6-year inversion from 2010 to 2015 for the global and 107 

regional carbon fluxes using only the GOSAT XCO2 retrievals. The Global Carbon 108 

Assimilation System (GCAS) is employed to conduct this inversion, which was 109 

developed in China in 2015 (Zhang et al., 2015) and updated in this study with a new 110 

scheme to assimilate XCO2 retrievals. The inverted multi-year averaged carbon fluxes 111 

for the globe, global land and ocean, each TRANSCOM region (Gurney et al., 2002) as 112 

well as some key areas are shown and compared with previous top-down and bottom-113 

up (Jiang et al., 2016) estimates. The estimated interannual variations of carbon fluxes 114 
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in each TRANSCOM region are given and discussed against changes in drought and 115 

LAI. This manuscript is organized as follows: Section 2 details the GCASv2 system as 116 

well as the prior fluxes, GOSAT retrievals and uncertainty settings. Section 3 briefly 117 

introduces the experimental design. Results and discussions are presented in Section 4, 118 

and Conclusions are given in Section 5. 119 

2. Method and Data 120 

2.1 A new version of the Global Carbon Assimilation System (GCASv2) 121 

 Figure 1 shows the flow chart of the GCASv2 system. In each data assimilation 122 

(DA) window, there are two steps. The first step, the prior fluxes of 𝑋𝑏 in each grid 123 

are independently perturbed with a Gaussian random distribution, and put into the 124 

global atmospheric chemical transport model MOZART-4 to simulate CO2 125 

concentrations, which are then sampled according to the locations and times of CO2 126 

observations. The sampled data are used in the assimilation module together with the 127 

CO2 observations to generate the optimized fluxes of 𝑋𝑎 . In the second step, the 128 

MOZART-4 model is run again using the optimized fluxes of 𝑋𝑎, to generate new CO2 129 

concentrations for the initial field of the next DA window. By this method, if the flux 130 

in one window is overestimated because of some reasons, it will affect the 131 

concentrations of the next window, thereby the posterior flux of the next window will 132 

compensate the overestimation. This DA flow chart is different from the previous 133 

version of GCAS (GCASv1), which runs the MOZART-4 model only once, and 134 

optimizes the fluxes and the initial field of the next window synchronously, namely in 135 

each window, there is relatively perfect initial field (directly optimized using 136 

observations), the inversions of each window are independent, and the amount of 137 

overestimation or underestimation in one window will continue to accumulate until the 138 

end, leading to an overall overestimation or underestimation. In addition, due to the 139 

relatively perfect initial field, the differences between the simulated and observed 140 

concentrations are only contributed by the errors in the prior fluxes of current window, 141 

resulting in a relatively smaller model – data mismatch, so as to weaken the assimilation 142 

benefits on fluxes. 143 

删除了: . 144 

删除了: In this study, we find the synchronous dual 145 

optimizations will weaken the assimilation benefits on fluxes. 146 
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 147 

Figure 1. Flow chart of the GCASv2 system 148 

 The perturbation of 𝑋𝑏  represents the uncertainty of the prior carbon flux, which 149 

is calculated using the following function. 150 

𝑿𝒊
𝒃 = 𝑿𝟎

𝒃 + λ × δ𝑖 × 𝑿𝟎
𝒃 , i = 1, 2, ... , N      (1) 151 

where 𝛿𝑖  represents random perturbation samples, which is drawn from Gaussian 152 

distributions with mean zero and standard deviation of one. N is the ensemble size. λ is 153 

a set of scaling factors, which represents the uncertainty of each prior flux. In GCASv1, 154 

λ is defined in different land and ocean areas based on 22 TRANSCOM regions 155 

(Gurney et al., 2002) and 19 Olson ecosystem types, as in CarbonTracker (CT, Peters 156 

et al., 2007). This means that in the same area, the error of a prior flux is the same. 157 

Through assimilation, the flux will be integrally enlarged or reduced. In GCASv2, we 158 

change to use a λ in each grid, meaning that for each grid, the perturbations of prior 159 

fluxes are independent. In addition, the grid cell of λ is different from those of the prior 160 

flux and the transport model, which could be set freely. 𝑋0
𝑏  is prior carbon flux. 161 

Generally, there are 4 types of carbon fluxes, namely terrestrial ecosystem (BIO) carbon 162 

flux (i.e., net ecosystem exchange (NEE) = ecosystem respiration (ER) − gross primary 163 

删除了: previous version GCAS164 

删除了: terrestrial ecosystem165 
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production (GPP)), atmosphere and ocean (OCN) carbon exchange, fossil fuel and 166 

cement production (FOSSIL) carbon emission and biomass burning (FIRE) carbon 167 

emission, which are used to drive the transport model to simulate the atmospheric CO2 168 

concentration. And in general, FOSSIL and FIRE fluxes are assumed to have no errors, 169 

only BIO and OCN fluxes are optimized in an assimilation system (e.g., Gurney et al., 170 

2002; Peters, et al., 2007; Nassar et al., 2011; Jiang et al., 2013; Chevallier, et al., 2019). 171 

In GCASv1, only the BIO flux was treated as state vector and optimized, the OCN flux 172 

was directly from the output of CarbonTraker (CT). In GCASv2, it is set to be an 173 

optional item. Four schemes are set (Functions 2 - 5). The first one is the same as the 174 

previous version, only the BIO flux is optimized; the second one is the same as general, 175 

namely both BIO and OCN fluxes are state vectors; the third one is that BIO, OCN and 176 

FOSSIL fluxes are optimized at the same time; and the fourth one is that only net flux 177 

is optimized. In this study, the second scheme was selected. 178 
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For the CO2 observations, in GCASv1, only the flask and in situ observations were 186 

assimilated. In GCASv2, we added a module to use satellite XCO2 retrievals. With this 187 

module, simulated CO2 concentration profiles are converted to XCO2 concentrations, 188 

and users can choose to assimilate flask/in situ observations or satellite XCO2 retrievals 189 

alone, or simultaneously assimilate these two data. The simulated CO2 concentration 190 
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profiles are mapped into the satellite retrieval levels and then vertically integrated based 195 

on satellite averaging kernel according to the following equation (Connor, et al., 2008). 196 

𝑋𝐶𝑂2
𝑚 = 𝑋𝐶𝑂2

𝑎 + ∑ ℎ𝑗𝑎𝑗(𝐴(𝑥) − 𝑦𝑎,𝑗)𝑗                    (6) 197 

where j denotes the retrieval level; x is the simulated CO2 profile, and A(x) is a 198 

mapping matrix; XCO2
a is the prior XCO2; hj is a pressure weighting function, aj and 199 

ya are the satellite column averaging kernel and the prior CO2 profile for retrieval, 200 

respectively. 201 

To reduce the computational cost and the influence of representative errors, a 202 

‘super-observation’ approach is also adopted in GCASv2 based on the optimal 203 

estimation theory (Miyazaki et al., 2012). A super-observation is generated by 204 

averaging all observations located within the same model grid within a DA window. 205 

We assume that the observation errors of different stations at different times are 206 

independent of each other. The standard deviation of the jth observation 𝑦𝑗 is 𝑟𝑗. The 207 

super-observation 𝑦𝑛𝑒𝑤 , standard deviation 𝑟𝑛𝑒𝑤  and corresponding simulations 208 

𝑥𝑛𝑒𝑤,𝑖 from one perturbed prior flux 𝑋𝑖
𝑏 are calculated: 209 

 1
𝑟𝑛𝑒𝑤2⁄ = ∑ 1

𝑟𝑗
2⁄

𝑚
𝑗=1  (7) 210 

  𝑦𝑛𝑒𝑤 = ∑ 𝑤𝑗
𝑚
𝑗=1 𝑦𝑗 ∑ 𝑤𝑗

𝑚
𝑗=1⁄  (8) 211 

  𝑥𝑛𝑒𝑤,𝑖 = ∑ 𝑤𝑗
𝑚
𝑗=1 𝑥𝑗,𝑖 ∑ 𝑤𝑗

𝑚
𝑗=1⁄  (9) 212 

where 𝑤𝑗 =
1
𝑟𝑗
2⁄  is the weighting factor; m is the number of observations within a 213 

super-observation grid. The super-observation error decreases as the number of 214 

observations used for the super-observation increases. 215 

  216 

2.1.1 EnSRF assimilation algorithm 217 
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Besides the Local Ensemble Transform Kalman Filter (LETKF), which has been 223 

implemented in GCASv1, to avoid storing and inverting very large matrices during 224 

analysis, in GCASv2, we added another assimilation algorithm, namely the Ensemble 225 

square root filter (EnSRF) algorithm (Whitaker and Hamill, 2002), which has been 226 

successfully used in CT (Peters et al., 2005). EnSRF obviates the need to perturb the 227 

observations in contrast to the traditional EnKF algorithm and assimilates observations 228 

in a sequential way. It has a better performance than the method to assimilate 229 

observations simultaneously as long as the observation errors are uncorrelated 230 

(Houtekamer and Mitchell, 2001). The implementation process and setup are detailed 231 

below. 232 

After obtaining an ensemble of state vectors as described in Section 2.1, ensemble 233 

runs of MOZART-4 are conducted to propagate these errors in the model with each 234 

ensemble sample of a state vector. The background error covariance 𝑷𝒃 is calculated 235 

based on the forecast ensemble from Eq. (7): 236 

𝑷𝒃 =
1

𝑛−1
∑ (𝑿𝒊

𝒃 − �̅�𝒃)𝑛
𝑖=1 (𝑿𝒊

𝒃 − �̅�𝒃)𝑇                (10) 237 

where �̅�𝒃  represents the mean of the ensemble samples. Based on the background 238 

error covariance, the response of the uncertainty in the simulated concentrations to the 239 

uncertainty in emissions is obtained. Combing observational vector y, the state vector 240 

is updated according to the following formulations: 241 

𝑿 = 𝑿𝒃 + 𝐊(𝐲 − 𝑯𝑿𝒃)                    (11) 242 

 𝐊 = 𝑷𝒃𝑯𝑇(𝑯𝑷𝒃𝑯𝑇 + 𝑹)−1  (12) 243 

 δ𝑿𝒊
 = δ𝑿𝒊

𝒃 − �̃�𝑯δ𝑿𝒊
𝒃  (13) 244 

While employing sequential assimilation and independent observations 245 

 �̃� = (1 + √𝑹 𝑯𝑷𝒃𝑯𝑇 + 𝑹⁄ )−1𝐊  (14) 246 

where H is the observation operator that maps the state variable from model space to 247 
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observation space. K is the Kalman gain matrix of ensemble mean depending on 256 

background and observation error covariance R, representing the relative contributions 257 

to analysis. �̃� is the Kalman gain matrix of ensemble perturbation, and then emission 258 

perturbations after inversion δ𝑿𝑖
  can be calculated. At the analysis step, the ensemble 259 

mean 𝑿  is taken as the best estimate of the carbon flux. 260 

2.1.2 Atmospheric transport model 261 

Same as the GCASv1 (Zhang et al., 2015), the global chemical transport Model for 262 

OZone And Related chemical Tracers (MOZART-4; Emmons et al., 2010) is adopted 263 

as the atmospheric transport model in GCASv2. MOZART-4 is a flexible model, it can 264 

be run at essentially any resolution, and can be driven by essentially any meteorological 265 

data set and with any emission inventories (Emmons et al., 2010). In this system, we 266 

preset two horizontal resolutions for MOZART runs, one being approximately 267 

2.8°×2.8°, with transport model grids of 128 × 64, and another being approximately 268 

1.0°×1.0°, with the model grids of 360 × 180. In the vertical direction, we use 28 layers. 269 

The ERA-Interim reanalysis datasets from the European Centre for Medium-Range 270 

Weather Forecasts (ECMWF) are used to drive the model. ERA-Interim data set 271 

includes as many as 128 meteorological variables, and has the highest spatial resolution 272 

of approximately 80 km (T255 spectral) on 60 vertical levels from the surface up to 0.1 273 

hPa. Only the variables required for MOZART-4 with a spatial resolution of 1.0°×1.0°, 274 

and 28 vertical levels for 3-D variables from the surface to approximately 2.5 hPa are 275 

selected in this system. The selected variables and vertical levels are shown in Table S1 276 

and S2 in the supporting information. 277 

2.1.3 DA window and localization 278 

 The DA window is set to one week in GCASv2, which is the same as before. 279 

Theoretically, a longer DA window is better, because CO2 is a stable species. The longer 280 

window, the farther CO2 will be transported. In this way, more observation stations will 281 

sense the flux change of one area, and thus more observations can be used to optimize 282 

the flux of that place. Therefore, many previous ensemble-based assimilation systems 283 
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1
𝑟𝑛𝑒𝑤
2⁄ = ∑ 1

𝑟𝑗
2⁄

𝑚
𝑗=1 (7)296 

𝑦𝑛𝑒𝑤 = ∑ 𝑤𝑗
𝑚
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where 𝑤𝑗 =
1
𝑟𝑗
2⁄  is the weighting factor; m is the number of 299 

observations within a super-observation grid. The super-300 
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used a longer DA window (e.g., Peters et al. 2005, Feng et al. 2009, Jacobson et al. 304 

2020). However, the farther away, the weaker signal the stations can sense. Bruhwiler 305 

et al. (2005) clearly shown that a pulse traveling from a faraway place would contribute 306 

relatively little signal compared to recent pulses from nearby source regions. In addition, 307 

Limited by the method of EnKF, this weak signal will be masked by the method's own 308 

unphysical signal (spurious correlation), and in order to reduce this influence, we must 309 

increase the ensembles, thereby greatly increasing the computational cost. Miyazaki et 310 

al. (2011) tested the differences of 3 days and 7 days DA windows, and pointed that 311 

with a longer DA window, more observation data will be available to constrain the 312 

surface flux, but a longer window can make the effect of model error more obvious. 313 

Thus, the assimilation result can be improved as long as the observations with spurious 314 

correlations can be neglected. However, spurious correlations can be more serious with 315 

increases in the DA window, because of a limited number of ensembles. As a result, a 316 

longer window is not necessarily better than a shorter window system. To avoid the 317 

influence of spurious signals, Kang et al. (2012) used a very short DA window (6 hours) 318 

in their assimilation system (LETKF_C) and pointed out that the flux inversion with a 319 

long window (3 weeks) is not as accurate as the one obtained with a 6 h DA window, 320 

particularly in smaller-scale structures. During the development of GCASv1, Zhang et 321 

al. (2015) tested different DA windows and found that the longer the window, the larger 322 

optimized terrestrial carbon sink will be, resulting in a smaller optimized annual 323 

atmospheric CO2 growth rate (AGR) as compared to the observed rate. Considering the 324 

fact that at present, due to the release of satellite XCO2 retrievals like GOSAT and OCO-325 

2, the atmospheric CO2 observations and coverages have increased significantly 326 

compared to before, which means that we do not need to extend the DA window to 327 

include more observation data now. Figure S2 shows the mean super observation (see 328 

section 2.1.1, only GOSAT XCO2) numbers during the study period that each grid 329 

(3°×3°) could have within a 1-week DA window and a localization scale (3000 km, see 330 

the next paragraph). In most land areas and pan-tropical waters, each grid can already 331 

have more than 3 super observations. On average, each grid over the land could has 4 332 
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super observations. Two sensitivity tests in 2010 were conducted in this study using 2- 333 

and 4-weeks DA windows but a same localization scale, the results are shown in Table 334 

S4. When the length of DA window increases from 1 week to 4 weeks, the mean super 335 

observation number increases from 4 to 9, accordingly, the inverted global BIO flux 336 

increased from -4.16 PgC yr-1 to -4.49 PgC yr-1, resulting in a larger deviation of the 337 

simulated and observed AGR and larger simulation error against the surface 338 

observations. Therefore, we still use the 1-week DA window in GCASv2. 339 

 As discussed before, in the EnKF method, there are inevitably spurious correlations. 340 

Therefore, a localization scale, which determines that only measurements located 341 

within a certain distance (cutoff radius) from a grid point will influence the analysis of 342 

this grid, must be set to reduce the effect of spurious correlations. The localization 343 

technique in this study is based on both the distance between one site and one grid cell 344 

of λ, and the linear correlation coefficient between the simulated concentrations and the 345 

perturbed fluxes for each parameter (λ)/observation pair. If the distance is less than 500 346 

km and the correlation coefficient is greater than zero, the observations will be accepted 347 

for assimilation, and if the distance is greater than/equal to 500 km and less than 3000 348 

km and the relationship between a parameter deviation and its modeled observational 349 

impact is statistically significant (p<0.05), then that relationship is retained. Otherwise, 350 

the relationship is assumed to be spurious noise. On average, 87% of the observations 351 

were spurious noise and removed in this study. The spurious observations will increase 352 

the inverted global land sink and enlarge the deviation of the simulated and observed 353 

AGR. For different TRANSCOM regions, the impact for the inverted BIO fluxes could 354 

be in the range of -32% to 40% (Table S4). The scale of 3000 km is set simply according 355 

to the globally-averaged 80-m wind speed during the day (4.96 m/s, Archer and 356 

Jacobson, 2005) and the length of DA window (1 week). 357 

2.2 Prior carbon fluxes 358 

 As described in Section 2.1, there are 4 types of prior carbon fluxes in GCASv2. 359 

In this study, FOSSIL carbon emissions are obtained from NOAA's CT, version 2017 360 

(CT2017, Peters et al. 2007, with updates documented at http://carbontracker.noaa.gov), 361 
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which is an average of the Carbon Dioxide Information Analysis Center (CDIAC) 375 

product (Andres et al., 2011) and the Open-source Data Inventory of Anthropogenic 376 

CO2 (ODIAC) emission product (Oda et al., 2018). The FIRE CO2 emissions are also 377 

taken from CT2017, which are the average of the Global Fire Emissions Database 378 

version 4.1 (GFEDv4) (Randerson et al., 2017) and the Global Fire Emission Database 379 

from the NASA Carbon Monitoring System (GFED_CMS). The OCN CO2 exchange 380 

is from the pCO2-Clim prior of CT2017, which is derived from the Takahashi et al. 381 

(2009) climatology of seawater pCO2. In addition, as shown in Figure 7 of the 382 

CarbonTracker Documentation CT2017 release (https://www.esrl.noaa.gov/gmd/ccgg/ 383 

carbontracker/CT2017/, accessed on 4 Mar, 2020), there are no data in many seas like 384 

Japan Sea, Mediterranean, Gulf of Mexico, East China Sea, and so on, and therefore, 385 

the fluxes in 2009 modeled using the global ocean circulation (OPA) and the 386 

biogeochemistry model (PISCES–T) (Buitenhuis et al., 2006; Jiang et al., 2013) is used 387 

to fill the no data areas. 388 

The BIO carbon flux, which is one of the most concerned prior carbon fluxes in an 389 

assimilation system, was simulated using the Boreal Ecosystems Productivity 390 

Simulator (BEPS) model (Chen et al., 1999; Ju et al., 2006) in this study. BEPS is a 391 

process-based, remote sensing data driven, and mechanistic ecosystem model. In this 392 

study, BEPS model was run starting from 2000. To simplify the initialization, the initial 393 

values of the different carbon pools are from a previous BEPS simulation (Chen et al., 394 

2019). In short, all carbon pools were assumed to be in a state of dynamic equilibrium 395 

from 1901 to 1910. And all carbon pools were determined by solving a set of equations 396 

describing the dynamics of carbon pools (Chen et al., 2003). Then the simulation 397 

forwarded using historical data. Due to the lack of historical data of remote sensed LAI 398 

data, the averaged LAI from 1982 to 1986 represented that over the 1901-1981 period. 399 

Then, all our initial carbon pools were set to states of carbon pools in 2000 according 400 

to Chen et al. (2019). The BEPS model was also driven by the 1°×1° ERA-Interim 401 

reanalysis datasets, including relative humidity, wind speed, air temperature, incoming 402 

solar radiation, and total precipitation. The other data include LAI data and clumping 403 
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index. LAI was inverted from surface reflectance datasets of Moderate Resolution 407 

Imaging Spectroradiometer (MODIS) (Liu et al., 2012), and the clumping index was 408 

derived from the MODIS Bidirectional Reflectance Distribution Function (BRDF) 409 

products, which provided the finest pseudo multi-angular data for the land surface, 410 

according to Normalized Difference between Hotspot and Darkspot (NDHD) (Chen et 411 

al., 2005, He et al., 2012).  412 

2.3 GOSAT XCO2 retrievals 413 

 The GOSAT XCO2 retrievals of the ACOS Version 7.3 Level 2 Lite product 414 

(O’Dell et al., 2012; Crisp et al., 2012) at the pixel level during May 2009 ~ Dec 2015 415 

is used in this study, which is bias-corrected (Wunch et al., 2011). In order to achieve 416 

the most extensive spatial coverage with the assurance of using best quality data 417 

available, before being used in the inversion system, the XCO2 retrievals are filtered 418 

with two parameters of warn_levels and xco2_quality_flag, which are provided along 419 

with the product. Only the data with xco2_quality_flag greater than 0 are selected. The 420 

selected data are then divided into three groups according the value of warn_levels, that 421 

are with warn_levels less than 8, greater than 9 and less than 12, and greater than 13, 422 

respectively. The group with smallest warn_levels has the best data quality, while that 423 

with the largest is the worst. Then, the pixel data are averaged within the grid cell of 424 

1°×1°, and in each grid, only the group with best data quality is selected and then 425 

averaged. The other variables like column-averaging kernel, retrieval error and so on 426 

which are provided along with the XCO2 product are also dealt with the same method. 427 

This process is the same as Wang et al. (2019). Except the XCO2, the other quantities 428 

provided along with the ACOS product were also filtered and averaged to 1°×1° grid 429 

according to the above method. 430 

2.4 Evaluation data and method 431 

 Generally, direct validation of the optimized flux is impossible, and instead, we 432 

indirectly evaluate the posterior flux by comparing the forward simulated atmospheric 433 

CO2 mixing ratios against measurements (e.g., Jin et al., 2018; Wang et al., 2019; Feng 434 
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et al., 2020). First, the simulated XCO2 are compared against the corresponding GOSAT 511 

XCO2 retrievals to test the effectiveness of the assimilation system (see Section 2.3 for 512 

the description of the GOSAT XCO2 retrieval). Second, Surface CO2 observations used 513 

for independent evaluations in this study are obtained from the 514 

obspack_co2_1_GLOBALVIEWplus_v5.0_2019-08-12 product. It is a subset of the 515 

Observation Package (ObsPack) Data Product (ObsPack, 2019), and contains a 516 

collection of discrete and quasi-continuous measurements at surface, tower and ship 517 

sites contributed by national and universities laboratories around the world. In this study, 518 

surface CO2 measurements from 52 flask sites are selected to evaluate the posterior CO2 519 

concentrations, which are all provided by the NOAA Global Monitoring Laboratory 520 

(with lab number of 1 in each filename). The locations of the 52 sites could be found in 521 

Figure 2 and the corresponding sites code as well as the information latitude and 522 

longitude are listed in Table S3 in the Supporting Information. 523 

During the evaluation, 4 basic statistical measures, namely mean bias (BIAS), 524 

mean absolute error (MAE), root mean square error (RMSE), and correlation 525 

coefficient (CORR), are calculated against the surface CO2 observations and GOSAT 526 

XCO2 retrievals, respectively. The BIAS, MAE, RMSE, and CORR reflect the overall 527 

model tendency, both the model bias and error variance, and the linear correspondence 528 

between the modeled and observational values/retrievals, respectively. The functions of 529 

these 4 basic statistical measures are expressed as:  530 

𝐵𝐼𝐴𝑆 =
1

𝑀
∑ (𝑥𝑗 − 𝑦𝑗) = �̅� − �̅�𝑀
𝑗=1              (15) 531 

𝑀𝐴𝐸 =
1

𝑀
∑ |𝑥𝑗 − 𝑦𝑗|
𝑀
𝑗=1                         (16) 532 

𝑅𝑀𝑆𝐸 = √
1

𝑀
∑ (𝑥𝑗 − 𝑦𝑗)

2𝑀
𝑗=1              (17) 533 

𝐶𝑂𝑅𝑅 =
∑ (𝑥𝑗−�̅�)(𝑦𝑗−�̅�)
𝑀
𝑗=1

√∑ (𝑥𝑗−�̅�)
2𝑀

𝑗=1 √∑ (𝑦𝑗−�̅�)
2𝑀

𝑗=1

             (18) 534 

where 𝑥𝑗  and 𝑦𝑗  denote the modeled and the observational values/retrievals, 535 
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respectively, at the jth out of M records, and the overbars denote averages.  541 

 542 

Figure 2. Distributions of the observation sites used in this study. Red solid circles are 543 

the 52 surface flask sites used for evaluations, the shaded shows the 11 TRANSCOM 544 

regions, the blue rectangle shows the Amazon region, which is defined the same as 545 

Botta et al. (2012) 546 

3. Experimental Design 547 

 The assimilation system was run from May 1, 2009 to Dec 31, 2015. Two forward 548 

simulations with the prior and posterior fluxes were also conducted from May 1, 2009 549 

to Dec 31, 2015, respectively. For both assimilation and forward runs, the initial field 550 

of 3-D CO2 concentrations at 00:00 UTC May 1, 2009 was from the product of CT2017 551 

as well, and the MOZART-4 model was run with the resolution of 2.8°×2.8°. The first 552 

8 months are considered as a spin-up run, and the results from Jan 1, 2010 to Dec 31, 553 

2015 are analyzed and evaluated in this study.  554 

During the assimilation, the resolution of λ is the same as the transport model. For 555 

the state vector, the second scheme (Function 3) was adopted, namely the BIO CO2 556 

exchanges and OCN fluxes are optimized in this study, and the FOSSIL and FIRE 557 

carbon emissions are kept intact (the impact of this assumption on both the inverted 558 
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global and regional BIO fluxes are very small (Table S4)). Following Wang et al. 560 

(2019), global annual uncertainties of 100% and 40% are assigned to BIO and OCN 561 

CO2 exchanges, respectively. Accordingly, the uncertainties of the scaling factor (𝜆) 562 

for the prior BIO and OCN fluxes in each DA window at the grid cell level are assigned 563 

to 3 and 5, respectively. The model-data mismatch error of XCO2 is constructed using 564 

the GOSAT retrieval error, which is provided along with the ACOS product. According 565 

to the previous works of Wang et al. (2019) and Deng et al. (2014), all retrieval errors 566 

are also uniformly inflated by a factor of 1.9 in this study, which is the same as Wang 567 

et al. (2019), but a lowest error is added in this study, which is fixed as 1 ppm. 568 

4. Results and Discussions 569 

4.1 Evaluation for the inversion results 570 

4.1.1 Evaluation using assimilated GOSAT XCO2 retrievals 571 

 Figure 3a shows the zonal mean XCO2 model-data mismatch errors at different 572 

latitudes during the study period. Compared with the GOSAT XCO2 retrievals, basically 573 

all the zonal mean BIAS of the prior XCO2 in different latitudes are greater than 1 ppm, 574 

with a global mean of 1.8±1.3 ppm (average ± standard deviation), but for the posterior 575 

XCO2, most zonal average BIAS are within ±0.5 ppm, with global mean of -0.0±1.1 576 

ppm. The global mean MAE and RMSE between the simulated and GOSAT retrieved 577 

XCO2 concentrations also decreases from a prior value of 2.0 and 2.2 ppm to 0.8 and 578 

1.1 ppm, respectively (Table 1), indicating that the model-data mismatch errors between 579 

the simulated and retrieved XCO2 are significantly reduced. Overall, for both prior and 580 

posterior concentrations, the BIAS in the southern hemisphere is smaller than that in 581 

the northern hemisphere. In the same hemisphere, the BIAS at low latitudes is smaller 582 

than that at high latitudes. Figure 4 shows the spatial distribution of the posterior XCO2 583 

biases. It could be found that in most grids (~80%), the biases are within ±1ppm. In 584 

Tropical Pacific, North Pacific, North Atlantic and Tropical Land, most biases are 585 

positive, and in the northern extra-tropical lands, negative biases are dominant. This 586 
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pattern may be related to the retrieval errors, and the large BIAS in the high latitudes 589 

may be attributed to the large retrieval errors in those areas, which are caused by the 590 

lower solar elevation angle. Overall, this small posterior BIAS, which is less than the 591 

retrieval error (Crisp et al., 2012), indicates that the GCASv2 system works well with 592 

the GOSAT XCO2 retrievals in this study. 593 

 594 

Figure 3. BIAS at different latitudes (a, simulated and retrieved XCO2; b, simulated 595 

and observed CO2 mixing ratios; error bar represents the standard deviations of the 596 

biases at each latitude and each site, respectively) 597 

 598 

Table1. Statistics of the simulated surface CO2 and XCO2 concentrations against the 599 

surface flask observations and GOSAT retrievals, respectively 600 

 BIAS  MAE  RMSE  CORR 

Prior Post.  Prior Post. Prior Post. Prior Post. 

XCO2 1.8±1.3 -0.0±1.1  2.0 0.8  2.2 1.1  0.95 0.96 

Surface 

CO2 
1.6±1.8 -0.5±1.8 

 
2.1 1.4  2.4 1.9  0.96 0.96 

*mean ± standard deviation 601 

 602 
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 604 

Figure 4. Distributions of the BIAS of the posterior (cycle) surface CO2 and (grid 605 

shaded) XCO2 concentrations (simulations minus observations/retrievals) 606 

4.1.2 Evaluation using independent surface observations 607 

Figure 3b shows the mean biases of the simulated surface CO2 mixing ratios at each 608 

flask site at different latitudes. It could be found that the BIAS of the prior CO2 mixing 609 

ratios are basically greater than 1 ppm at different latitudes, with global mean of 1.6±1.8 610 

ppm, after constraining using the GOSAT XCO2 retrievals, the BIAS at most sites are 611 

within ±1 ppm, with a global mean of -0.5±1.8 ppm. These BIAS are similar to those 612 

of Basu et al. (2013), in which the average model–observation bias decreased from a 613 

prior value of 1.95 ppm to -0.55 ppm. The MAE and RMSE between the simulated and 614 

surface flask concentrations are also reduced in most sites, with the global mean MAE 615 

and RMSE decreasing from 2.1 and 2.4 to 1.4 and 1.9 ppm, respectively (Table 1). The 616 

BIAS in the northern hemisphere are significantly larger than those in southern 617 

hemisphere, because the carbon flux in the northern hemisphere is more complex than 618 

that of the southern hemisphere (Wang et al., 2019). In addition, the posterior BIAS in 619 

most sites are negative, especially in the middle latitudes in the northern hemisphere. 620 

The significant negative biases (less than 1 ppm) are mainly distributed in North 621 
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America, Europe, central Asia, while positive biases are mainly located along east 625 

Asian coast (Figure 4), indicating that the carbon sinks in North America and Europe 626 

might be overestimated in this study, while those in the upwind areas of east Asian 627 

coastal sites, mainly eastern China, may be underestimated.  628 

Moreover, it also could be found that the global mean prior BIAS of XCO2 (about 629 

1.8 ppm) is greater than the surface concentrations (1.6 ppm), while the BIAS of XCO2 630 

reduced by inversion (about 1.8 ppm) is less than the reduction of BIAS in the surface 631 

concentrations (about 2.1 ppm). This may be attributed to the fact that, on the one hand, 632 

although the GOSAT XCO2 retrievals were bias-corrected, there may still be some 633 

systematic deviations; on the other hand, the responses of surface observations to 634 

changes in the surface carbon flux is faster than the XCO2 concentrations, so that larger 635 

flux adjustments are needed to match XCO2 concentration with ground data. A similar 636 

situation was reported in Wang et al. (2019). In their study, GOSAT XCO2 retrievals 637 

were used to optimize the terrestrial carbon flux in 2015. Their inversion reduced the 638 

BIAS of simulated surface and XCO2 (compared against TCCON sites) concentrations 639 

by about 1.1 and 0.9 ppm, respectively. 640 

Figure 5 shows the time series of simulated and observed CO2 mixing ratios at four 641 

sites, i.e., mlo, nwr, tik, and nat. The mlo and nwr sites are two mountain stations located 642 

in the center of Pacific and western US, respectively, and nat and tik are two coastal 643 

sites located in Amazon and Siberia, respectively (Figure 2). Overall, the posterior 644 

mixing ratios have a better agreement with the observations at all 4 sites. The mlo site 645 

is an atmospheric baseline station. At mlo, the posterior mixing ratio well reproduces 646 

the observed concentration, while the prior concentrations are overestimated all the 647 

time since the summer of 2010, especially during the summertime every year. Besides, 648 

the posterior concentrations during the wintertime are underestimated, and the 649 

underestimation gradually increases along with time. A similar situation also could be 650 

found at the nat site as well as other sites located in tropical and southern hemisphere 651 

oceans (Figure not shown). Figure S1 shows the interannual variations of the global 652 

mean BIAS. Clearly, the biases of surface CO2 are gradually accumulated, leading to 653 
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the relatively large mean bias (-0.5 ppm). If we remove the impact of accumulation, the 656 

annual BIAS is about -0.1 ppm per year (about -0.2 PgC yr-1). There are no error 657 

accumulations at most land sites like nwr and tik. These indicate that the global net 658 

carbon sinks are slightly overestimated every year, but in different lands, there are 659 

interannual variations.  660 

 661 

Figure 5. Modeled and observed CO2 time series at four surface stations 662 

4.2 Uncertainty reduction 663 

The uncertainty reduction rate (UR) is another important quantity to evaluate the 664 

performance of GCASv2 and the effectiveness of GOSAT XCO2 retrievals in this 665 

system (Chevallier et al., 2007; Takagi et al., 2011). Following Chevallier et al. (2007), 666 

the UR is defined as 667 

𝑈𝑅 = (1 −
𝜎𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

𝜎𝑝𝑟𝑖𝑜𝑟
) × 100                   （19） 668 
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where 𝜎𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟  and 𝜎𝑝𝑟𝑖𝑜𝑟  are the posterior and prior uncertainties, respectively. 670 

The URs on regional carbon flux estimates vary significantly over time and space (Deng 671 

et al., 2014; Takagi et al., 2011). Table 2 lists the annual mean 1-σ URs relative to the 672 

prior uncertainties during 2010 ~ 2015, which were aggregated in the 22 TRANSCOM 673 

regions and 4 large-scale regions. It shows that over land regions, the annual mean URs 674 

are in the range of 6% ~ 27%. The regions with large UR are temperate South America, 675 

southern Africa, temperate North America, Europe. The UR over tropical and boreal 676 

regions are relatively small due to the lower spatial coverage of XCO2. This distribution 677 

is similar to the results of Deng et al. (2014), which are mainly related to the spatial 678 

coverage of GOSAT XCO2. For the monthly UR, in high latitudes, there are high URs 679 

in the warm season and very low ones in cold seasons; in mid-latitudes, the UR is 680 

significant throughout the year; and in tropical areas, it is related to the rainy season. In 681 

the rainy season, the URs are very low due to the massive cloud coverage, while in the 682 

dry season, the monthly UR are significant, with the highest UR reaching 25%. Figure 683 

6 shows the monthly uncertainties in temperate North America and Europe. It could be 684 

found that in Europe, high URs are mainly during May ~ September, and in temperate 685 

North America, there are high URs in each month, with the highest UR reaching 45%. 686 

The highest monthly UR is in temperate South America, with value of 50%. The highest 687 

monthly and annual URs are lower than the ones given in previous studies (40%−70%, 688 

Takagi et al., 2011; Deng et al., 2014; Saeki et al., 2013a), which may be related to the 689 

grided state vector and shorter DA window used in this study.  690 

 Over the ocean regions, the URs are very low, with values in the range of 0.12% ~ 691 

3.7%. As shown in formula (14), the UR is mainly determined by the observation 692 

uncertainty R and background error covariance Pb (prior uncertainty). Usually, a small 693 

R and large Pb corresponds to a large UR, and vice versa. Since we used a scheme in 694 

which the prior uncertainties were proportional to the prior fluxes, thereby the regions 695 

with small prior fluxes would have small prior uncertainties and small URs. Compared 696 

to those over the lands, there are much weaker fluxes and much larger XCO2 697 

uncertainties (Wunch et al., 2017) over the oceans, resulting in the significantly lower 698 
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URs over the oceans. Previous studies (e.g., Takagi et al., 2011; Kadygrov et al., 2009) 699 

also showed very low URs over the oceans. 700 

Table 2. Annual mean prior uncertainties and reduction rates (UR) aggregated in 701 

different TRANSCOM Regions during 2010~2015 702 

Region 
Prior Unc. 

(PgC yr-1) 

UR 

(%) 
Region 

Prior Unc. 

(PgC yr-1) 

UR 

(%) 

Boreal North America 0.82 7.8  North Pacific 0.49 0.29 

Temperate North America  1.62 26.4  West Pacific 0.15 0.47 

Tropical South America  1.28 6.4  East Pacific 0.42 3.71 

Temperate South America  1.27 27.2  South Pacific 0.33 0.42 

Northern Africa 1.5 5.9  Arctic Ocean 0.30 0.14 

Southern Africa 1.35 15.9  North Atlantic 0.27 0.17 

Boreal Asia  1.24 15.6  Tropical Atlantic 0.13 0.60 

Temperate Asia  1.23 10.3  South Atlantic 0.25 0.46 

Tropical Asia  0.77 8.0  Southern Ocean 0.40 0.12 

Australia 0.50 10.0  North Indian Ocean 0.17 0.43 

Europe 1.31 19.8  South Indian Ocean 0.35 0.33 

Northern Lands 2.91 19.9  Northern Oceans 0.65 0.13 

Tropical Lands 2.57 9.0  Tropical Oceans 0.51 2.82 

Southern Lands 1.38 24.4  Southern Oceans 0.68 0.27 

Global Lands 4.24 17.1  Global Oceans 1.11 0.84 

 703 

 704 

Figure 6. Monthly uncertainties in (a) temperate North America and (b) Europe 705 
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4.3 Global Carbon Budget 706 

Table 3 presents the mean prior and posterior global carbon budgets during 2010 ~ 707 

2015 of this study. For comparison, the mean global carbon budgets from Global 708 

Carbon Budget 2018 (GCP2018, Le Quéré et al., 2018), CT2017, and Jena CarboScope 709 

(JCS, Rödenbeck, 2005) are also shown. Both CT2017 and JCS estimates of the 710 

surface-atmosphere CO2 exchange were based on the atmospheric measurements of 711 

CO2 concentrations. In this study, the JCS product of s04oc_v4.3 is adopted. It should 712 

to be noted that JCS only provides the net biosphere exchange (NBE), which is the sum 713 

of BIO carbon flux and FIRE carbon emissions, and no individual FIRE carbon 714 

emissions data is available. To compare, the FIRE carbon emissions used in this study, 715 

which is from CT2017, is also applied to the JCS data, namely the BIO carbon flux of 716 

JCS in this manuscript is obtained from the NBE of JCS minus the FIRE carbon 717 

emission of this study. 718 

Table 3. Mean global carbon budgets during 2010 ~2015 estimated in this study as well 719 

as those from the prior fluxes, GCP2018, CT2017 and JCS (PgC yr-1) 720 

 Prior Posterior GCP2018 CT2017 JCS 

Fossil fuel and industry 

(FOSSIL) 
9.58  9.58  9.49  9.62  9.31  

Biomass burning (FIRE) 2.02  2.02  1.52*  2.03  2.02 

Terrestrial ecosystem 

(BIO) 
-4.07±4.24  -4.24±3.51  -3.13  -4.29  -4.07 

Ocean (OCN) -2.47±1.11  -2.56±1.10  -2.46  -2.57  -2.25  

Budget imbalance - - -0.52  - - 

Net biosphere exchange 

(NBE)*** 
-2.05±4.24  -2.22±3.51  -2.12  -2.27  -2.05  

Global net carbon flux 

(AGR) 
5.06±4.38  4.80±3.67  4.91**  4.79  5.01  

* land-use change emissions, **atmospheric growth in GCP2018, *** for GCP2018, it 721 

is the sum of BIO, FIRE and budget imbalance, and for the others, it is the sum of BIO 722 

flux and FIRE emission. 723 

The mean posterior BIO carbon flux during 2010-2015 in this study is -4.24±3.51 724 

PgC yr-1 (negative/positive mean carbon uptake/release from/to the atmosphere, same 725 

thereafter), and the OCN flux is -2.56±1.10 PgC yr-1, after considering the FOSSIL 726 
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carbon emission (9.58 PgC yr-1) and FIRE carbon emission (2.02 PgC yr-1), the mean 733 

global net carbon flux (i.e., atmospheric CO2 growth rate) inverted in this study is 734 

4.80±3.67 PgC yr-1. Both the posterior BIO and OCN carbon fluxes are stronger than 735 

the prior ones, and the posterior global net carbon flux is weaker than the prior one. 736 

Compared with the others, both posterior BIO and OCN fluxes are close to the ones of 737 

CT2017, but higher than the ones of JCS. The AGR of GCP2018 was estimated directly 738 

from atmospheric CO2 measurements, which were provided by the US National 739 

Oceanic and Atmospheric Administration Earth System Research Laboratory 740 

(NOAA/ESRL) (Dlugokencky and Tans, 2018), and therefore, it could be considered 741 

as a true value. The posterior AGR in this study (4.8 PgC yr-1) is slightly lower than 742 

GCP2018 and very close to CT2017. Compared with GCP2018, the deviations of prior 743 

and JCS AGR are 0.15 and 0.10 PgC yr-1, while the ones of posterior and CT2017 are 744 

-0.11 and -0.12 PgC yr-1, respectively. 745 

4.4 Regional Carbon Flux 746 

Figure 7 shows the distributions of the mean prior and posterior annual BIO and 747 

OCN carbon fluxes as well as their differences during 2010 - 2015. For the prior BIO 748 

flux, carbon uptakes mainly occur over eastern North America, Amazon, southern 749 

Brazil, western Europe, southern Russia, eastern China, South Asia and Malay 750 

Archipelago; and carbon releases mainly occur in western North America, eastern 751 

Amazon, Argentina, most Africa, Indo-China Peninsula, and parts of eastern Europe 752 

and Russia. For the prior OCN flux, carbon uptakes mainly happen in mid-latitude 753 

regions in both hemispheres, while carbon sources are mainly in tropical oceans and 754 

Southern Ocean. After the constraint with the GOSAT XCO2 retrievals, the overall 755 

patterns of carbon sinks and sources are similar to the prior ones. However, the BIO 756 

sinks in East and Central America, eastern Amazon, tropical Africa, Indo-China 757 

Peninsula, and southwestern Russia are obviously increased, on the contrary, in western 758 

North America, temperate South America, extra-tropical Africa, South Asia, Southwest 759 

China, North China, Siberia, and parts of southern and northern Europe, the carbon 760 
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sources are increased. For the OCN flux, in most tropical and northern hemisphere 765 

oceans, the carbon sinks are slightly increased, while in most southern hemisphere 766 

oceans, the carbon sources are slightly enhanced. 767 

 768 

Figure 7. Distributions of mean annual terrestrial ecosystem and ocean carbon fluxes 769 

(a, prior; b, posterior and c, their differences (posterior - prior), unit: gC m-2yr-1) 770 

Table 4 lists the aggregated mean annual prior and posterior BIO carbon fluxes 771 

during 2010-2015 for the 11 TRANSCOM land regions (Figure 2, Gurney et al., 2002) 772 

(a)

(b)

(c)
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as well as 3 aggregated large-scale regions, i.e., Northern Lands, Tropical Lands, and 780 

Southern Lands. Northern lands include Boreal North America, Temperate North 781 

America, Boreal Asia, Temperate Asia and Europe; Tropical Lands include Tropical 782 

South America, Tropical Asia, Northern Africa and Southern Africa; and Southern 783 

Lands include Temperate South America and Australia. For the prior, there is a largest 784 

carbon sink in Tropical South America, followed by Boreal Asia and Temperate Asia, 785 

and a weakest carbon flux in Southern Africa. After optimization using GOSAT XCO2 786 

retrievals, the carbon sinks of Temperate North America, Southern Africa are 787 

significantly increased, and those in Australia and Europe are also enhanced. However, 788 

in Temperate South America, Northern Africa, Boreal Asia, and Temperate Asia, the 789 

carbon sinks are decreased. Very small changes are found in Boreal North America, 790 

Tropical South America, and Tropical Asia, especially for Tropical South America, 791 

however, as shown in Figure 7, there are obvious changes over different areas in 792 

Tropical South America, thus the zero change in statistics in this region may be just a 793 

coincidence. For the Amazon region (Figure 2), the estimated BIO flux is decreased 794 

from a prior of -0.52±1.46 PgC yr-1 to -0.45±1.28 PgC yr-1. The largest carbon sink 795 

occurs in Temperate North America, followed by Tropical South America and Europe, 796 

and the weakest sink appears in Northern Africa. 797 

For comparisons, Table 4 also lists the mean BIO carbon fluxes of CT2017 and 798 

JCS for the same period. For the 3 large-scale regions, i.e., Northern Lands, Tropical 799 

Lands and Southern Lands, the same as the global total BIO carbon sink, the carbon 800 

sinks in these 3 regions are also similar to CT2017. However, in each region, the 801 

distributions of carbon sinks between this study and CT2017 are significantly different. 802 

In Northern Lands, the carbon sinks estimated by this study are more evenly distributed, 803 

although Temperate North America has the largest carbon sink, and those in Boreal Asia, 804 

Temperate Asia and Europe are also very strong and comparable. However, in CT2017, 805 

the carbon sinks are mainly distributed in Boreal Asia and Temperate Asia, accounting 806 

for more than 70% of the total sink in Northern Lands. The sinks in Temperate North 807 

America and Europe are very weak or even neutral. In Tropical Lands, this study shows 808 
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strong carbon sinks in Tropical South America and Tropical Asia, and a weak sink in 811 

Africa, while CT2017 shows an opposite pattern. In Southern Lands, this study shows 812 

comparable sinks in Temperate South America and Australia, while CT2017 shows a 813 

strong sink in Temperate South America and very weak one in Australia. Compared 814 

with JCS, except for Temperate North America and Southern Africa, the carbon sinks 815 

are comparable in other regions. Constraining with different observations might be one 816 

of the main reasons among these studies. Many studies have shown differences between 817 

the constraints with in situ observations and XCO2 retrievals (e.g., Wang et al., 2019; 818 

Deng et al., 2014). Besides, these differences may be also related to the different prior 819 

BIO carbon fluxes among these studies, especially for the tropical land. The distribution 820 

of the posterior BIO fluxes in this study and CT2017 are consistent with the 821 

corresponding prior fluxes in the tropical land (Table 4). Using the same GOSAT XCO2 822 

retrievals, Deng et al. (2014) adopted a similar prior flux with this study, which was 823 

also simulated using the BEPS model but globally neutralized, to infer the land fluxes 824 

of 2010, their distributions are roughly consistent with this study, while Wang et al. 825 

(2019) applied the prior flux from CT2016 to optimizing the fluxes in 2015, and they 826 

showed a similar distribution of land sinks over tropical lands to that of CT2017. 827 

Table 4. Regional BIO and FIRE flux in the 11 TRANSCOM land regions (PgC yr-1) 828 

Regions Fire 
This Study   CT2017 

JCS 
Prior Posterior   Prior Posterior 

Boreal North America 0.065 -0.26±0.82 -0.28±0.75  -0.05 -0.39 -0.31 

Temperate North America  0.022 -0.49±1.62 -0.88±1.19  -0.14 -0.23 -0.21 

Tropical South America  0.220 -0.66±1.28 -0.66±1.20  0.02 -0.11 -0.43 

Temperate South America  0.142 -0.30±1.27 -0.15±0.93  -0.16 -0.42 0.13 

Northern Africa 0.385 -0.18±1.50 -0.05±1.41  -0.47 -0.82 -0.11 

Southern Africa 0.628 0.01±1.35 -0.14±1.14  -0.63 -0.55 -0.66 

Boreal Asia  0.097 -0.61±1.24 -0.45±1.05  -0.18 -0.99 -0.51 

Temperate Asia  0.065 -0.51±1.23 -0.42±1.10  -0.15 -0.66 -0.69 

Tropical Asia  0.258 -0.45±0.77 -0.47±0.71  -0.05 -0.07 -0.73 

Australia 0.097 -0.16±0.50 -0.23±0.45  -0.15 -0.07 -0.08 

Europe 0.015 -0.46±1.31 -0.52±1.05   -0.18 0 -0.44 

Northern Lands* 0.26 -2.33±2.91 -2.55±2.33  -0.7 -2.27 -2.16 

Tropical Lands** 1.49 -1.28±2.57 -1.32±2.34  -1.13 -1.55 -1.93 

Southern Lands*** 0.24 -0.46±1.38 -0.38±1.04   -0.31 -0.49 0.05 
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*Northern lands include Boreal North America, Temperate North America, Boreal Asia, Temperate 831 

Asia and Europe; **Tropical Lands include Tropical South America, Tropical Asia, Northern Africa 832 

and Southern Africa; ***Southern Lands include Temperate South America and Australia. 833 

Compared with other studies, the land fluxes (including FIRE but excluding 834 

FOSSIL) in South America (-0.45±1.51 PgC yr-1), Europe (-0.51±1.05 PgC yr-1), 835 

Boreal Asia (-0.35±1.05 PgC yr-1), Temperate Asia (-0.35±1.10 PgC yr-1), Tropical Asia 836 

(-0.21±0.71 PgC yr-1), and Australia (-0.13±0.45 PgC yr-1) are comparable with the 837 

forest sinks in these regions during 2000-2007 estimated using forest inventory data by 838 

Pan et al. (2011). However, the land fluxes in Africa and North America are 839 

significantly different from the estimates of Pan et al. (2011). In North America, based 840 

on inventory-based calculations, the Second State of the Carbon Cycle Report 841 

(SOCCR2, Hayes et al., 2018) estimated that the average annual net land ecosystem 842 

flux was -0.96 PgC yr-1, and after considering the outgassing and wood products 843 

emissions, they reported the land-based carbon sink was -0.606 PgC yr-1 (±75%) during 844 

the 2004 to 2013 time period. The land flux estimated in this study (-1.07 PgC yr-1) is 845 

close to the bottom-up estimate of the net land ecosystem flux, but much stronger than 846 

the reported land-based carbon sink of SOCCR2. In Africa, Ciais et al. (2011) shown a 847 

comprehensive estimate for its carbon balance, given a sink of - 0.2 PgC yr−1 (excluding 848 

land-use change emissions) based upon observations. Our estimate of the BIO flux in 849 

Africa is very consistent with this result. Moreover, most recently, Palmer et al. (2019) 850 

inferred the carbon fluxes of pan-tropical lands in 2015 and 2016 using both GOSAT 851 

and the NASA Orbiting Carbon Observatory (OCO-2) XCO2 retrievals, and their 852 

estimated net carbon emissions from African biosphere dominate pan-tropical 853 

atmospheric CO2 signals are similar to the results of this study. In Boreal Asia, the land 854 

sink estimated by bottom-up approaches was in the range of -0.11 ~ -0.76 PgC yr−1 855 

(Hayes et al., 2011; Nilsson et al., 2003; Dolman et al., 2012; Zamolodchikov et al., 856 

2017). CT usually reports a very strong carbon sink (Jacobson et al. 2020; Peter et al., 857 

2007; Zhang et al., 2014), one possible reason is that there are no enough surface 858 

observations in Asia boreal regions. Saeki et al. (2013b) conducted an inversion with a 859 

focus on the Siberia region, and also derived a large sink of −0.56 ± 0.79 PgC yr−1 only 860 
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using the NOAA data, but after adding additional observations in Siberia, they obtained 864 

a weaker uptake of −0.35±0.61 PgC yr−1. Our estimate (-0.35±1.05 PgC yr-1) is in the 865 

range of bottom-up estimates, and very consistent with the Siberia-focused inversion 866 

(Saeki et al., 2013b). In Europe, previous GOSAT-based inversions consistently derived 867 

a very large European sink, which was in the range of -0.6 ~ -1.8 PgC yr−1(Basu et al., 868 

2013, Chevallier et al., 2014; Deng et al., 2014), while the ones constrained using 869 

surface observations were much weaker, in the range of 0 ~ -0.4 PgC yr-1 (Peters et al., 870 

2007, 2010; Peylin et al., 2013; Scholze et al., 2019). Our estimate of the BIO flux in 871 

Europe is smaller than the previous GOSAT-based inversions, and close to the estimate 872 

of Pelylin et al. (2013). In the Amazon region, the posterior land flux is -0.45±1.28 PgC 873 

yr-1, which is in the range of the previous long-term forest biomass sink estimates of -874 

0.28 ~ -0.49 PgC yr−1 (Phillips et al., 2009; Brienen et al., 2015), but larger than the 875 

other inversions (e.g., Deng et al., 2016; Gatti et al., 2014). 876 

4.5 Interannual variations 877 

4.5.1 Global land and ocean fluxes 878 

Figure 8 shows the interannual variations of the prior and posterior BIO and OCN 879 

fluxes. Overall, from 2010 to 2015, the prior BIO fluxes show an increasing trend, but 880 

for the posterior fluxes, there is no significant trend. Large differences between the prior 881 

and the posterior fluxes mainly occur in 2010 and 2015. In 2010, the posterior sink is 882 

much stronger than the prior, while in 2015, the posterior sink is much weaker than the 883 

prior. For the OCN flux, both prior and posterior fluxes show consistently upward 884 

trends, and except for 2015, the posterior sinks are basically stronger than the prior ones 885 

every year. For the AGR (Figure 9), the prior sink shows a significant downward trend, 886 

while the posterior one shows a slightly increasing trend. The same as the BIO fluxes, 887 

large differences mainly occur in 2010 and 2015. 888 
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 893 

Figure 8. Interannual variations of global (a) BIO and (b) OCN fluxes of the prior and 894 

posterior as well as GCP2018, CarbonTracker 2017 (CT2017) and Jena CarboScope 895 

(JCS)  896 

 Compared with the other products, the interannual variations of the posterior BIO 897 

fluxes (Figure 8a) are consistent with the inversions of CT2017 and JCS, and the 898 

estimates of GCP2018. For each year, the inversions of this study are all in the range of 899 

CT2017 and JCS, but higher than GCP2018. However, because GCP2018 has the item 900 

of budget imbalance and the land-use change emission is different from the FIRE 901 

emission, the BIO flux in GCP2018 is different from this study, so direct comparison 902 

with GCP2018 is not meaningful. For OCN fluxes, overall, there are no significant 903 

differences among different estimates, and the upward trend of this study is similar to 904 

that of GCP2018, and higher than those of CT2017 and JCS. The interannual variation 905 

of AGR in this study is also very consistent with GCP2018 (Figure 9). Except for 2012 906 

and 2015, the absolute deviations of AGR between this study and GCP2018 are within 907 

0.3 PgC yr-1. 908 
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 913 

Figure 9. Interannual variations of the atmospheric CO2 growth rates 914 

4.5.2 Regional land fluxes 915 

 Figure 10a, b, and c show the prior and posterior interannual variations of the BIO 916 

fluxes in Northern Lands, Tropical Lands and Southern Lands, respectively. In Northern 917 

Lands, the interannual variations of both prior and posterior fluxes are similar to the 918 

corresponding global land totals (Figure 8a), i.e., upward trend for the prior flux and no 919 

trend with the posterior one, indicating that the interannual variations of global BIO 920 

fluxes are dominated by the fluxes in Northern Lands. In Tropical Lands, the 921 

interannual variations of posterior fluxes are similar to the prior ones, however, 922 

compared with the prior sinks in 2010 and 2011, the posterior sinks are much stronger, 923 

while in 2013 and 2015, they are much weaker. In Southern Lands, there are large 924 

differences for the interannual variations between the prior and posterior fluxes. For the 925 

prior flux, the highest sink is in 2011 and the weakest in 2012, and after that, it increases 926 

year by year, while for the posterior flux, the sink decreases from 2010 to 2013, and 927 

then increases. 928 
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 934 

Figure 10. Prior and posterior interannual variations of the BIO fluxes in (a) Northern 935 

Lands, (b) Tropical Lands, and (c) Southern Lands, respectively, and (d) severe 936 

drought areas of above 3 regions. 937 

Drought is one of the most important factors that affect terrestrial carbon sinks, and 938 

generally, severe drought will significantly reduce carbon sinks (e.g., Ma et al., 2012; 939 

Zhao and Running, 2010; Ciais et al., 2005; Gatti et al., 2014; Phillips et al., 2009; 940 

Vicente-Serrano et al., 2013). Previous studies (e.g., Liu et al., 2018) have used the 941 

GOSAT XCO2 retrievals to infer the impact of droughts on terrestrial ecosystem carbon 942 

uptake anomalies. Figure 10d shows the severe drought areas (SDAs) in the 3 large 943 

regions every year, which were calculated according to the monthly Standardised 944 

Precipitation-Evapotranspiration Index at 12-month time scales (SPEI12) (Beguería et 945 

al., 2010). Here, the database of SPEIbase v2.5 is used, and the severe drought is 946 

defined as SPEI12 less than -1.5 (Paulo et al., 2012). In addition, only the severe 947 

drought that happens in forests, shrubs and crops are counted in this study. It could be 948 

found that the posterior fluxes have better correlations with the SDAs in all 3 regions, 949 

i.e. a larger SDA leads to a weaker carbon sink, and vice versa. The correlation 950 

coefficients between carbon sinks and SDAs in Northern Lands, Tropical Lands and 951 
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Southern Lands increase from prior values of -0.1, -0.25 and -0.44 to -0.53, -0.67 and -955 

0.76, respectively, indicating that the inversion has improved the interannual variations 956 

of BIO fluxes in large scales. In addition, strong El Niño event happened during 957 

2015~2016, and many researches have studied the responses of tropical land carbon 958 

fluxes to this strong El Niño event (e.g., Wang et al., 2018b; Liu et al., 2017; Bastos et 959 

al., 2018; Koren et al., 2018). Liu et al. (2017) found that relative to the 2011 La Niña, 960 

the pantropical biosphere released 2.5 ± 0.34 PgC more carbon into the atmosphere in 961 

2015. Bastos et al. (2018) showed a smaller difference of carbon fluxes between 2015 962 

and 2011 using both bottom-up and top-down approaches, which was in the range of 963 

−0.7 ~ −1.9 PgC yr−1. In this study, compared with the prior, our inversion significantly 964 

enhances the difference between 2011 and 2015 (Figure 10b), and shows that 2015 965 

released 1.35 PgC more than 2011 in the pantropical region (defined as Liu et al., 2017), 966 

which is much smaller than Liu et al.’s result, but agree well with the result of Bastos 967 

et al. (2018). 968 

Moreover, Figure 11 shows the prior and posterior interannual variations of the 969 

BIO fluxes on the 11 TRANSCOM land regions. In North America, including 970 

Temperate North America and Boreal North America, the prior fluxes show an upward 971 

trend, while the posterior fluxes show a downward trend. In Boreal Asia and Temperate 972 

Asia, there are significant upward trends for the prior fluxes, but no significant trends 973 

are found in the posterior fluxes. In Temperate South America, although the prior and 974 

posterior fluxes show trends of weakening first and then increasing, the years in which 975 

the carbon sink is weakest are not consistent: the prior flux is weakest in 2012, while 976 

the posterior one is in 2013. Similarly, in northern Africa, the prior and posterior fluxes 977 

show a trend of increasing and then decreasing, but the prior flux is the largest in 2014, 978 

while the posterior one is strongest in 2011. In other regions, i.e., Tropical South 979 

America, Tropical Asia, Southern Africa, Australia and Europe, the trends between the 980 

prior and posterior fluxes are similar, especially in Tropical South America and Tropical 981 

Asia, the prior and posterior fluxes are very close every year. Among them, in Southern 982 

Africa and Australia, the posterior fluxes have more significant interannual variations 983 
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than the prior fluxes, and in Europe, the posterior sink is much weaker in 2015, and 986 

stronger in 2010 and 2013 than the prior one. 987 

The same as above, we also investigate the relationships between the interannual 988 

variations of carbon sinks and SDAs in the 11 TRANSCOM land regions. As shown in 989 

Table 5, in Temperate South America, Boreal Asia, and Europe, the posterior sinks have 990 

a better correlation with the SDAs than the prior sinks, especially in Europe, the 991 

correlation coefficient increases from a prior value of -0.33 to -0.85. However, in other 992 

regions, there is no obvious improvement, and in some regions, the relationships are 993 

even getting worse, such as Boreal North America, Temperate North America, Northern 994 

Africa and Southern Africa. One possible reason is that there are usually higher annual 995 

mean temperatures in drought years, which might extend the growing season of 996 

vegetation, thereby enhance the carbon uptake and offset the impacts of drought. A 997 

previous study (Wolf et al., 2016) showed that in 2012, Temperate North America 998 

experienced an extreme summer drought event, and along with the warmest spring on 999 

record. They quantified the impact of this climate anomaly on the carbon cycle and 1000 

concluded that the warm spring largely increased spring carbon uptake, and thus 1001 

compensated for reduced carbon uptake induced by the summer drought. Liu et al. 1002 

(2018) reported that because of the compensating effect of the carbon flux anomalies 1003 

between northern and southern US in 2011 and between spring and summer in 2012, 1004 

the annual carbon uptake decreased by 0.10±0.16 PgC in 2011, and increased by 1005 

0.10±0.16 GtC in 2012 over US compared with the averaged state. In this study, 1006 

compared with the mean flux during 2010-2015, the carbon sink in Temperate North 1007 

America decreased by 0.09 PgC yr-1 in 2011, and increased by 0.14 PgC yr-1 in 2012, 1008 

which is very close to the result of Liu et al. (2018). In Australia, both the prior and 1009 

posterior fluxes have very good relationships with the SDAs. The significantly 1010 

enhanced carbon uptake during 2010-2012 is consistent with the finding in Detmers et 1011 

al. (2015), who inferred an even stronger carbon sink of -0.77±0.10 PgC yr−1 from the 1012 

end of 2010 to early 2012 using the GOSAT XCO2 product, and they confirmed that 1013 

this enhanced sink is related to the strong La Niña episode, which brought a record-1014 
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breaking amount of precipitation, resulting in an enhanced growth of vegetation. In 1016 

Tropical South America, the impacts of the 2010 drought on the carbon uptake over 1017 

Amazon have been extensively studied (e.g., Doughty et al., 2015; Gatti et al., 2014; 1018 

van der Laan-Luijkx et al., 2015). 2010 is a drought year, while 2011 is a wet year in 1019 

the Amazon region, compared to 2011, Gatti et al. (2014) estimated the no-fire carbon 1020 

exchange was reduced by 0.22 PgC yr-1, van der Laan-Luijkx et al. (2015) derived a 1021 

decrease of biospheric uptake ranging from 0.08 to 0.26 PgC yr-1, and Doughty et al. 1022 

(2015) concluded that drought suppressed Amazon-wide photosynthesis by 0.23–0.53 1023 

PgC yr-1. In this study, our inversion reduces the difference of carbon uptake between 1024 

2010 and 2011 from a prior of 0.62 PgC yr-1 to 0.28 PgC yr-1, which is much more 1025 

consistent with the previous estimates. 1026 

Carbon uptake occurs mainly through photosynthesis of vegetation leaves. Leaf 1027 

area index (LAI) is a measure of leaf area per unit area. Buchmann and Schulze (1999) 1028 

shown that there are strong relationships between the interannual changes of carbon 1029 

uptake and LAI in grasslands, C4 crops, and coniferous forests, but no significant 1030 

relationship in broad-leaved forests; Chen et al. (2019) also showed that from 1981 to 1031 

2016, the increase in LAI contributed significantly to the increase in global BIO carbon 1032 

sinks. Therefore, we further investigate the relationships between the interannual 1033 

changes of carbon sinks and LAIs in the 11 TRANSCOM regions (Table 5). Here, the 1034 

LAI data are from the GIMMS LAI3g product, which has a spatial resolution of 1/12 1035 

degree and a time interval of 15 days (Zhu et al., 2013). As shown in Table 5, in Boreal 1036 

North America, Temperate North America, Northern Africa and Southern Africa, 1037 

compared with the prior fluxes, there are better relationships between the posterior 1038 

carbon sinks and LAIs, the correlation coefficients increase from prior values of -0.4, 1039 

0.31 and 0.35 to 0.62, 0.73 and 0.90 respectively, suggesting that the inversion of this 1040 

study may also improve the interannual variations of carbon sinks in these 4 regions at 1041 

a certain extent.  1042 
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 1045 

Figure 11. Prior and posterior interannual variations of the BIO fluxes on (a) Boreal 1046 

North America, (b) Temperate North America, (c) Tropical South America, (d) 1047 

Temperate South America, (e) Northern Africa, (f) Southern Africa, (g) Boreal Asia, 1048 

(h) Temperate Asia, (i) Tropical Asia, (j) Australia, and (k) Europe 1049 

 1050 

Table 5. Correlation coefficients of severe drought areas (SDAs) and regional mean 1051 

LAI with the BIO sinks in each region 1052 

Regions 
SDA   LAI 

Prior Posterior   Prior Posterior 

Boreal North America  -0.29 0.36  -0.4 0.62 

Temperate North America  -0.54 -0.27  0.31 0.73 

Tropical South America  -0.1 -0.2  0.64 0.49 

Temperate South America  -0.41 -0.74  0.72 0.24 

Northern Africa 0.51 0.2  0.81 0.89 

Southern Africa -0.53 0.41  0.35 0.9 

Boreal Asia  -0.17 -0.35  0.49 0.1 

Temperate Asia  0.33 0.33  0.55 0.38 

Tropical Asia  -0.03 0.16  0.69 0.71 

Australia -0.85 -0.73  0.88 0.83 

Europe -0.33 -0.85   0.85 0.58 

 1053 
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5. Summary and Conclusions 1058 

In this study, we upgrade the GCAS system to GCASv2 with new assimilation 1059 

algorithms, procedures and a localization scheme, a higher assimilation parameter 1060 

resolution, and the ability to assimilate XCO2 retrievals. Then, we use the GOSAT 1061 

XCO2 retrievals to constrain terrestrial ecosystem and ocean carbon fluxes from May 1062 

1, 2009 to Dec 31, 2015, using the GCASv2 system. We compare the simulated prior 1063 

and posterior XCO2 against the corresponding GOSAT XCO2 retrievals to test the 1064 

effectiveness of the assimilation system and evaluate the posterior carbon fluxes by 1065 

comparing the posterior CO2 mixing ratios against observations from 52 surface flask 1066 

sites. The distribution and interannual variations of the posterior carbon fluxes at both 1067 

global and regional scales from 2010 to 2015 are shown and discussed.  1068 

Compared with the GOSAT XCO2 retrievals, the global mean BIAS and RMSE 1069 

decrease from prior values of 1.8±1.3 and 2.2 ppm to -0.0±1.1 and 1.1 ppm, respectively, 1070 

indicating that the GCASv2 system works well with the GOSAT XCO2 retrievals. 1071 

Independent evaluations using surface flask CO2 concentrations showed that the 1072 

posterior carbon fluxes could significantly improve the modeling of atmospheric CO2 1073 

concentrations, with the global mean BIAS and RMSE decreasing from prior values of 1074 

1.6±1.8 and 2.4 ppm to -0.5±1.8 and 1.9 ppm, respectively. The large negative biases 1075 

are mainly distributed in North America, Europe, indicating the overestimates of carbon 1076 

sinks over these areas. Evaluations also show that the biases gradually increase along 1077 

with the time in most tropical and southern hemisphere ocean sites, but no accumulation 1078 

is found at most land sites, indicating that globally, the carbon sinks may be 1079 

overestimated every year, but in different lands, the deviations of the estimates may 1080 

differ each year. 1081 

Globally, the mean annual BIO carbon sink and the interannual variations 1082 

inferred in this study are very close to the estimates of CT2017 during the study period, 1083 

and the estimated mean AGR and interannual changes are also very close to the 1084 

observations, with mean annual bias of -0.11 PgC yr-1. Regionally, the inversion shows 1085 



39 

 

that in the northern lands, the carbon sink of Temperate North America is the strongest, 1086 

and those in Boreal Asia, Temperate Asia and Europe are also very strong and 1087 

comparable; in the tropics, there are strong sinks in Tropical South America and 1088 

Tropical Asia, but a very weak sink in Africa. These distributions are significantly 1089 

different from the estimates of CT2017, probably due to the different prior fluxes and 1090 

CO2 observations used for inversion. However, our estimates in most regions or 1091 

continents are comparable or in the range of previous bottom-up estimates. The 1092 

inversion also changed the interannual variations of carbon sinks in most TRANSCOM 1093 

and hemisphere scale land regions, leading to their better relationship with the 1094 

variations of severe drought or LAI, indicating that the inversion with GOSAT XCO2 1095 

retrievals may help to better understand the interannual variations of regional carbon 1096 

fluxes. 1097 
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