
Referee #2 

 

We thank the anonymous referee for his/her valuable comments and constructive suggestions. 

We have made changes according to the referee’s suggestions and replied to all comments point 

by point. All the page and line number for corrections are referred to the revised manuscript, 

while the page and line number from original reviews are kept intact. The references related to 

the responses are listed in the end of this document.  

 

General comments:  

In this study, Jiang et al. upgraded the Global Carbon Assimilation System (GCAS) with new 

assimilation algorithms, a localization scheme, and a higher assimilation parameter resolution, 

namely GCASv2. The global terrestrial ecosystem (BIO) and ocean (OCN) carbon fluxes 

from 2009 to 2015 were constrained by the GOSAT ACOS XCO2 retrievals. Following this, 

the posterior carbon fluxes from 2010 to 2015 were evaluated using 52 surface flask 

observations. The errors in the posterior carbon fluxes in the new inversion system were 

compared to those in a previous version. The authors indicated that the pattern of regional 

carbon sinks was significantly different from previous studies (CT2017). The inter-annual 

variations of carbon fluxes in most land regions, and the relationship with the changes of 

severe drought area the plant indexes, and drought were re-visited. These results are 

interesting. However, the improvement of the inversion methodology is not presented, and the 

reduction of the uncertainty by the inversions remains unclear (Figure 3) in the current paper. 

I, therefore, recommend that this work cannot be published before the following comments 

are addressed. 

 

Specific comments:  

Figure 3: What is the source for error bars in these two plots? Are they coming from the 

uncertainty in the prior and posterior estimates? If yes, it seems that the uncertainty is not 

reduced from the prior estimates to the posterior estimates. One main purpose of inversion is 

to reduce the uncertainty in the prior estimates. If the uncertainty is not reduced, the 

effectiveness of the inversions should be evaluated. 

Response: Thank you for this suggestion. The error bars represent the standard deviations of 

all biases at each latitude and each site, respectively. Indeed, the uncertainty reduction is very 

important for an inversion study. We analyzed the uncertainty reduction rate (UR), and added 

a section of “4.2 Uncertainty reduction” in the revised manuscript (see Lines 663 – 705, Pages 

21 - 23). The annual mean URs of the BIO fluxes over different TRANSCOM regions are in 

the range of 6% ~ 27%, with global mean of 17%. The highest monthly UR is 51% in 

temperate South America. 

 

Figures 4/5: Evaluation of the reduction of the uncertainty from the prior estimates to the 

posterior estimates is more important than evaluation of the bias itself for an inversion 

system. 



Response: Thank you for this suggestion. We have analyzed the reductions of the 

uncertainties from the prior estimates to the posterior estimates and added a section of “4.2 

Uncertainty reduction” in the revised manuscript (see Lines 663 – 705, Pages 21 - 23). 

 

Tables 2/3: What is the uncertainty for the prior and posterior estimates? 

Response: Thank you! We have added the uncertainties of the prior and posterior estimates in 

the revised manuscript (see Lines 719 – 723, Page 24 and Line 828, Page 28). 

 

Line 473-488: What is the uncertainty for the estimates from this study? To evaluate the 

effectiveness of an inversion system, the uncertainty of the posterior estimates is more 

important than the central value. Such information is missing in the current manuscript, which 

is better considered / discussed in previous studies (e.g. the literature cited in line 586). 

Response: Thank you for this suggestion! As shown above, we have analyzed the uncertainty 

reductions and added a section of “4.2 Uncertainty reduction” in the revised manuscript (see 

Lines 663 – 705, Pages 21 - 23).  

 

Figures 7/9/10: What is the uncertainty for the prior and posterior estimates? 

Response: Thank you for this suggestion. We have added the prior and posterior uncertainties 

in Figures 7, 9 and 10, which are named as Figure 8, 10 and 11 in the revised manuscript (see 

Lines 893-896, Page 31; Lines 934-937, Page 33; and Lines 1045-1049, Page 37).  

 

Figure 1: The authors suggested that a new assimilation scheme is developed in this paper. 

Why not directly compare the flow charts between the GCAS and GCASv2 systems and show 

the difference? 

Response: Many thanks for this suggestion. We have modified Figure 1 and given the 

differences in the flow charts between GCASv1 and GCASv2 (see Lines 147-148, Page 6). 

 

Line 124: It seems that a major advance of GCASv2 against GCAS is that “In the second 

step, the MOZART-4 model is run again using the optimized fluxes of Xa, to generate new 

CO2 concentrations for the initial field of the next DA window. This DA flow chart is 

different from the previous version of GCAS, which runs the MOZART-4 model only once, 

and optimizes the fluxes and the initial field of the next window synchronously.” However, I 

do not understand how this improves the inversion system. The old GCAS system produces 

the posterior global gridded carbon fluxes, which were used as prior fluxes as input to any 

other forward models to simulate the CO2 field. If the difference of GCASv2 was just that the 

posterior global gridded carbon fluxes were used by MOZART-4 to simulate the CO2 field, I 

cannot see how and why the inversing methodology is improved. 

Response: Thank you for this comment. Indeed, as you said, the descriptions of the 

differences between GCASv2 and GCASv1 are rather vague. We have revised Section 2.1 to 

further clarify their differences. The main differences between GCASv2 and GCASv1 are as 

follows: 

1) Optimization of the initial field of each window. In GCASv1, it is directly optimized using 

the observations, while in GCASv2, it is simulated using the posterior fluxes of the previous 

window. The advantage of this method in GCASv2 is that the assimilation errors could be 



transported from one window to the next. If the fluxes are overestimated in one window 

because of some reasons, by this method, they will affect the concentrations of the next 

window, thereby the posterior fluxes of the next window will compensate the 

overestimations. While in GCASv1, since the initial field of each window is directly 

optimized using the observations, which means in each window, there are relatively perfect 

initial fields, the inversions of each window are independent, and the amount of 

overestimation or underestimation in one window will continue to accumulate until the end, 

leading to an overall overestimation or underestimation. In addition, due to the perfect initial 

field, the differences between the simulated and observed concentrations are only contributed 

by the errors in the prior fluxes of current window, resulting in a relatively smaller model – 

data mismatch, so as to weaken the assimilation benefits on fluxes. This difference is given in 

Lines 128 – 143, Page 5 in the revised manuscript. 

2) State vector. In GCASv1, only BIO is state vector, while in GCASv2, we set 4 state vector 

schemes for different applications: 1) only the BIO flux is state vector; 2) both BIO and OCN 

fluxes are treated as state vectors; 3) the BIO, OCN and FOSSIL fluxes are optimized at the 

same time; and 4) only net flux is optimized. This difference is given in Lines 172 – 178, 

Page 7 in the revised manuscript. 

3) Resolution of the state vectors. In GCASv1, the scaling factor λ is defined in different land 

and ocean areas based on 22 TRANSCOM regions (Gurney et al., 2002) and 19 Olson 

ecosystem types, as in CarbonTracker (Peters et al., 2007), while in GCASv2, we change to 

use a λ in each grid, meaning that for each grid, the perturbations of prior fluxes are 

independent, and the grid cell of λ could be set freely. This difference is given in Lines 

154-161, Page 6 in the revised manuscript. 

4) observation data. In GCASv1, only flask/in situ observations were assimilated, while in 

GCASv2, we added a module to assimilate the satellite XCO2 retrievals, and allow users to 

simultaneously or separately assimilate the flask/in situ concentrations and the XCO2 

retrievals. See Lines 186 – 201, Pages 7 -8 in the revised manuscript. Besides, a ‘super-

observation’ approach is also adopted in GCASv2, See Lines 202-215, Page 8 in the revised 

manuscript. 

5) assimilation algorithm, in GCASv2, we added another EnKF algorithm, i.e., EnSRF. See 

Lines 223-227, Page 9. 

 

Line 143: It seems that the carbon emission from cement production, a large part of CO2 

source, is missed in this inversion system. This could be a big weakness of the current system. 

Response: Sorry, that description is not accurate enough. The carbon emission from cement 

production has been included in this study. The fossil fuel carbon emissions are obtained from 

NOAA's CarbonTracker, version CT2017, which is an average of the Carbon Dioxide 

Information Analysis Center (CDIAC) product (Andres et al., 2011) and the Open-source 

Data Inventory of Anthropogenic CO2 (ODIAC) emission product (Oda et al., 2018). We 

have checked the document of CT2017 and the introduction of CDIAC database, compared 

the annual global fossil fuel emissions in our system with the global emissions from the 

CDIAC website (https://cdiac.ess-dive.lbl.gov/), and confirmed that the carbon emission from 



cement production has been included in this study. We have changed the sentence of “… 

atmosphere and ocean (OCN) carbon exchange, fossil fuel (FOSSIL) carbon emission and 

biomass burning (FIRE) carbon emission…” to “… atmosphere and ocean (OCN) carbon 

exchange, fossil fuel and cement production (FOSSIL) carbon emission and biomass burning 

(FIRE) carbon emission…” (see Lines 166-167, Page 7) 

 

Line 143: What is the relationship between BIO and FIRE? Biomass sequestrates carbon from 

the atmosphere, and releases CO2 in biomass burning. Should FIRE be a part of BIO? 

Response: Yes, biomass burning carbon emission is a part of terrestrial ecosystem carbon 

flux. Terrestrial ecosystems uptake carbon through photosynthesis (GPP) and release carbon 

through respiration (ER) and biomass combustion (FIRE). The BIO flux defined in this study 

is the net flux of GPP and ER (ER-GPP). In many previous inversion studies, it is directly 

defined as net ecosystem exchange [NEE = ecosystem respiration (ER) − gross primary 

production (GPP)] (e.g., Hu et al., 2019; Peters et al., 2007, 2010), and the sum of NEE and 

FIRE is defined as net biosphere exchange (NBE, Liu et al., 2017). In the revised manuscript, 

we have changed the sentence of “… name terrestrial ecosystem (BIO) carbon flux, …” to 

“namely terrestrial ecosystem (BIO) carbon flux (i.e., net ecosystem exchange (NEE) = 

ecosystem respiration (ER) − gross primary production (GPP)), …” (see Lines 163-166, 

Pages 6-7) 

 

Line 147: “FOSSIL and FIRE fluxes are assumed to have no errors, only BIO and OCN 

fluxes are optimized in an assimilation system”. I do not think that this is the case in other 

inversion systems: (1) It needs clear justification by summarizing and tabulating the 

methodology in the literature. (2) The difference relative to a system with errors considered 

for FOSSIL and FIRE need to be calculated to show how much the conclusion of the present 

study are sensitive to this assumption. 

Response: Thank you for this comment. Yes, there are considerable uncertainties for the fossil 

fuel and biomass burning carbon emissions, which are about 6% and 20% for global mean, 

respectively. Ideally, we would like the inversion to partition the deviations from the a-priori 

fluxes among all the four type of carbon fluxes. NEE and ocean fluxes can, since they are 

geographically separated, readily be accounted for in statistically independent deviation 

terms. However, the inversion cannot be expected to distinguish between land biosphere 

fluxes and fossil fuel emissions, because both are inextricably localized on land, and the CO2 

data alone do not discern fossil and non-fossil carbon (Rödenbeck et al., 2003). Therefore, 

most inversion studies for surface carbon fluxes focused on the NEE and ocean fluxes, and 

the fossil fuel and biomass burning were prescribed (e.g., Gurney et al., 2002, 2003; Peters et 

al., 2007; Nassar et al., 2011; Feng et al., 2009; Monteil et al., 2020). As shown in Table 1, we 

have reviewed a lot of studies, in which only Deng et al. (2014, 2015) considered the 

uncertainties of fossil fuel and biomass burning carbon emissions, Liu et al. (2019) and Kang 

et al. (2012) directly optimized the net carbon flux, and Some studies (Monteil et al., 2020, 

Scholze et al., 2019) only optimized the NEE. Although Deng et al. (2014)’s state vector 

includes emissions of CO2 from fossil fuel combustion, when they reported their posteriori 

flux estimates, they removed the a priori fossil fuel estimate from the reported total land flux.  

 



As shown in section 2.1, we have added a scheme to simultaneously the fossil fuel and 

cement production carbon emissions in GCASv2. We have tried to use it to optimize the 

fossil fuel emissions in China. We tested different emission inventories, but GCASv2 did not 

make them converge, but only made the emissions of each inventory slightly lower. 

Therefore, we think that under the current resolution of atmospheric transport model, spatial 

coverage of observational data, and the assimilation settings, GCASv2 cannot optimize it 

well.  

 

According to your suggestion, we added a sensitivity test for optimizing fossil fuel carbon 

emissions, using the same localization scheme as BIO and OCN, giving fossil fuels a global 

uncertainty of 5%. The results showed that the impact on both the inverted global and 

regional scale BIO fluxes are very small (Table 2). 

 

The following sentences has been added in the revised manuscript: 

 

“… and the FOSSIL and FIRE carbon emissions are kept intact (the impact of this assumption 

on both the inverted global and regional BIO fluxes are very small (Table S4)). Following 

Wang et al. (2019), …” (see Lines 558-560, Pages 16-17) 

 

Table 1. a summary of the inversion methodology in the literature. 

System Name 
Transport 

model/Res. 

Assimilati

on method 
Obs. 

State 

Vector* 
Reference 

CT/CTE/CT-

China 

TM5,global 

3x2, region, 1x1 
EnSRF obspack NEE, OCN 

Peters et al., 2007; 

Peters et al., 2010; 

Zhang et al., 2014 

UoE 
GEOS‐

Chem,4x5 
EnKF 

in situ or 

GOSAT 
NEE, OCN 

Feng et al., 2009, 

2016, 2017 

CAMS CO2 

inversion 

system 

LMDz,3.75x1.8

75 
variational 

surface 

observations, 

GOSAT, OCO-

2 

NEE, OCN 
Chevallier, et al., 

2019 

CCDAS TM3,4x5 4D-Var 

in situ CO2, 

SM, and L-

VOD 

NEE 
Scholze et al., 

2019 

 Jena 

CarboScope 
TM3,4x5 

time-

independe

nt 

Bayesian 

inversion 

surface 

observations 

NBE, 

OCN 

Rödenbeck, 2005;  

Rödenbeck et al., 

2003 

TransCom 3 

inversions 

16 Atmospheric 

Transport 

Models,2.0x2.5 

to 7.5x7.5 

Bayesian 

synthesis 

inversion 

GLOBALVIEW 

data 

NEE，

OCN 

Baker et al., 2006; 

Gurney et al., 

2002, 2003 



Nasser et al., 

2011 

GEOS-

Chem,2x2.5 

time-

independe

nt 

Bayesian 

inversion 

TES and surface 

flask 

measurements 

NEE, OCN Nassar et al., 2011 

EUROCOM 

(include 6 

systems) 

CHIMERE, 

FLEXPART, 

STILT, TM5, 

NAME/0.5x0.5 

~1x1 

 

Variational

, EnKF, 

MCMC 

flask 

NEE 

OCN (4 

prescribed) 

Monteil et al., 

2020 

Deng et al., 

2007 
NIES,2.5x2.5 

Time-

dependent 

Bayesian 

synthesis 

GLOBALVIEW 

data 
NEE, OCN Deng et al., 2007 

Niwa et al., 

2012 

NICAM-

TM,~240 km 

Time-

dependent 

Bayesian 

synthesis 

GLOBALVIEW

, CONTRAIL 
NEE, OCN Niwa et al., 2012 

Miyazaki et al., 

2011 
AGCM,2.8x2.8 LETKF 

OSSEs 

(GOSAT, 

CONTRAIL, 

and surface 

sites) 

NEE, OCN 
Miyazaki et al., 

2011 

TM5-4DVAR 

inversion 

system 

TM5,6x4  4D-Var GOSAT NEE, OCN Basu et al., 2013 

GEOS-Chem-

4DVAR 

inversion 

system 

GEOS-

Chem,4x5 
4D-Var GOSAT, Flask 

NEE, 

OCN, 

FOSSIL, 

FIRE 

Deng et al., 2014; 

2016 

CMS-Flux 

inversion 

framework 

GEOS-

Chem,4x5 
4D-Var 

GOSAT, OCO-

2, SIF 

NBE, 

OCN 
Liu et al., 2017 

LETKF_C 
GEOS-

Chem,4x5 
LETKF 

OSSEs 

(GOSAT, 

CONTRAIL, 

and surface 

sites) 

Net flux 
Liu et al., 2019; 

Kang et al., 2012 

*NEE: net ecosystem exchange, ecosystem respiration (ER) − gross primary production 

(GPP); NBE: net biosphere exchange, NEE + biomass burning carbon emission (FIRE); 

OCN: atmosphere - ocean carbon exchange; FOSSIL: fossil fuel and cement production 

carbon emission; Net flux: NEE + OCN + FOSSIL+ FIRE 

 

Table 2. Results of sensitivity tests in the year of 2010 (Wfossil is an experiment with the 



FOSSIL carbon emissions being synchronously optimized) (This Table has been added in the 

revised Supporting Information) 

    Prior 1 week Wfossil 

Super Obs. 

Num. per 

window 

Total  - 730 730 

 Each grid could use - 4 4 

Global Flux 

(PgC/yr) 

BIO -2.07 -4.16 -4.15 

OCN -2.08 -2.33 -2.31 

FOSSIL 9.07 9.07 9.05 

AGR 7.25 4.91 4.92 

Regional Flux 

(PgC/yr) 

North America Boreal -0.29 -0.43 -0.44 

North America Temperate -0.42 -1.25 -1.21 

Tropical South America -0.17 -0.26 -0.27 

Temperate South America -0.24 -0.4 -0.41 

Northern Afirca 0.21 0.32 0.34 

Southern Africa 0.22 -0.3 -0.29 

Boreal Asia -0.4 -0.46 -0.48 

Temperate Asia -0.3 -0.29 -0.27 

Southeast Asia -0.29 -0.23 -0.24 

Australia -0.17 -0.4 -0.4 

Europe -0.19 -0.41 -0.43 

independent 

evaluation 

BIAS 1.43 -0.44 -0.43 

MAE 1.92 1.37 1.35 

RMSE 2.36 2.11 2.08 

Deviation from the observed AGR (PgC yr-1) 2.08 -0.26 -0.25 

 

 

Line 209: How does GCASv2 consider the spatial representativeness errors in the inversion 

system? 

Response: Many thanks for this question. GCASv2 do not consider the spatial 

representativeness errors for the GOSAT XCO2 retrievals in this study. Generally, the spatial 

representation error must be considered when the resolution of the model grid is inconsistent 

with the spatial range represented by the observation data. In this study, we only use the 

XCO2 retrievals. The reason of why we do not consider the spatial representativeness errors is 

that, first, the XCO2 retrieval is a column averaged atmospheric CO2 concentration, which is 

the result of full atmosphere mixing; 2) before we use the GOSAT data in GCASv2, it has 

been averaged within the grid cell of 1°×1°. 3) a ‘super-observation’ approach is adopted 

based on the optimal estimation theory (Miyazaki et al., 2012). A super-observation is 

generated by averaging all observations located within the same model grid within a DA 

window. Therefore, we believe that the spatial representation of the re-grided and averaged 

XCO2 data can match the grid of the model. In addition, the model-data mismatch error of 

XCO2 is constructed using the GOSAT retrieval error, which has been uniformly inflated by a 

factor of 1.9 with lowest error fixed as 1 ppm. Therefore, we did not consider the spatial 

representation error in this study. 



 

Line 238: How many sites are subject to this spurious noise? Are these sites excluded from 

the inversion system? How much does removing data at these sites influence the inversion 

fluxes? 

Response: We have conducted an additional assimilation for the year of 2010, in which we do 

not remove the spurious signals, namely all the data with the correlation coefficient with the 

perturbed fluxes greater than zero were used for assimilation. As shown in Table 3, on 

average, 87% of the observations were spurious noise and removed in this study. The spurious 

observations will increase the inverted global land sink and enlarge the deviation of the 

simulated and observed atmospheric CO2 growth rate. For different TRANSCOM regions, the 

impact for the BIO fluxes could be in the range of -32% to 40%. We have added the following 

sentences in the revised manuscript (see Lines 351-355, Page 12) and added Table 3 in the 

revised Supporting Information. 

 

“…Otherwise, the relationship is assumed to be spurious noise. On average, 87% of the 

observations were spurious noise and removed in this study. The spurious observations will 

increase the inverted global land sink and enlarge the deviation of the simulated and observed 

AGR. For different TRANSCOM regions, the impact for the BIO fluxes could be in the range 

of -32% to 40% (Table S4). The scale of 3000 km …” 

 

Table 3. Results of sensitivity tests in the year of 2010 (Wnoise is the experiment with 

spurious signals included) 

    Prior Posterior Wnoise 

Super Obs. 

Num. per 

window 

Total  - 730 730 

Each grid could use - 4 28 

Global Flux 

(PgC/yr) 

BIO -2.07 -4.16 -4.31 

OCN -2.08 -2.33 -2.42 

AGR 7.25 4.91 4.67 

Regional Flux 

(PgC/yr) 

North America Boreal -0.29 -0.43 -0.42 

North America Temperate -0.42 -1.25 -1.41 

Tropical South America -0.17 -0.26 -0.3 

Temperate South America -0.24 -0.4 -0.37 

Northern Afirca 0.21 0.32 0.28 

Southern Africa 0.22 -0.3 -0.42 

Boreal Asia -0.4 -0.46 -0.33 

Temperate Asia -0.3 -0.29 -0.31 

Southeast Asia -0.29 -0.23 -0.27 

Australia -0.17 -0.4 -0.4 

Europe -0.19 -0.41 -0.28 

independent 

evaluation 

BIAS 1.43 -0.44 -0.41 

MAE 1.92 1.37 1.4 

RMSE 2.36 2.11 2.2 

Deviation from the observed AGR (PgC yr-1) 2.08 -0.26 -0.5 



 

Technical corrections: 

Line 38: “BIAS” is not defined before it is used. 

Response: Thanks! We have changed “BIAS” to “bias” in the revised manuscript (see Line 

38, Page 2). 

 

Line 63: “However, their carbon uptakes have significant spatial differences and interannual 

variations.” References are needed. 

Response: Thanks for this suggestion. We have added three references, namely Bousquet et 

al. (2000), Takahashi et al. (2009) and Piao et al. (2020). (see Lines 65-66, Page 3) 

 

Line 95: “However, so far, on the one hand, most studies focused on the impact of GOAST 

XCO 2 retrievals on the inversion of surface carbon fluxes, but in many regions, there are still 

large divergences for carbon sinks between different inversions with the same GOSAT data or 

between inversions with GOSAT and in situ observations (Chevallier et al., 2014)”. Is only 

one study considered and cited? 

Response: Many thanks for this suggestion. We have added two references in the revised 

manuscript, i.e., Wang et al. (2018) and Feng et al. (2016). The sentence has been revised as 

follows (see Line 102, page 4 in the revised manuscript): 

“…between inversions with GOSAT and in situ observations (e.g., Chevallier et al., 2014; 

Feng et al., 2016; Wang et al., 2018), on the other hand, …” 

 

Line 102. References are needed. 

Response: Thank you! We have added two references, namely Feng et al. (2017) and Byrne et 

al., (2019). See Line 106, Page 4 in the revised manuscript. 

 

Line 255: The references for the two emission inventories of FOSSIL and FIRE are out of 

date. ODIAC and GFEDv4 have been updated recently. 

Response: We have revised the reference of ODIAC “Oda and Maksyutov (2011)” as “Oda et 

al. (2018)”, and the references of GFEDv4 “van der Werf et al. (2010) and Giglio et al. 

(2013)” as “Randerson et al., 2017” (see Lines 377 and 379, Page 13) 

 

Line 270: “The BIO carbon flux, which is the most important prior carbon flux”. Why is the 

prior carbon flux of BIO more important than FOSSIL and FIRE to an inversion system? 

Response: This statement is problematic. From the perspective of the carbon cycle, the carbon 

flux of terrestrial ecosystems is not more important than others. In fact, what we want to 

express is that because the carbon flux of terrestrial ecosystems has the greatest uncertainty 

and the most significant interannual variation, when using observational data to optimize 

surface carbon flux, the carbon flux of terrestrial ecosystems is the most concerned. We have 

modified that sentence to “The BIO carbon flux, which is one of the most concerned prior 

carbon fluxes in an assimilation system” in the revised manuscript. (see Line 389, Page 13) 

 

Line 340: When the averages of the modeled and the observational values/retrievals are equal, 

BIAS is zero, even if all data are distant to the 1:1 line in the comparison. BIAS cannot 



effectively evaluate the performance of the model by showing how much the modeled 

values/retrievals agree with the observational values/retrievals. The average of absolute 

difference between the modeled and the observational values/retrievals is needed. 

Response: Thank you! We have added the mean absolute error (MAE) between the modeled 

and the observational values/retrievals in the revised manuscript. (see Line 532, Page 15; 

Lines 577-579, Page 17; Lines 599-601, Page 18; and Lines 614 – 616, Page 19) 

 

 

Line 360: Does the study of Wang et al. (2019) account for the uncertainty in FOSSIL and 

FIRE? 

Response: No, Wang et al. (2019) only optimized the terrestrial ecosystem and ocean carbon 

fluxes. 

 

Line 448: What is “impact of accumulation”? 

Response: As shown in the following figure (Figure 1), we find that there is a significant 

increasing trend for the annual BIAS between the simulated CO2 concentration with the 

posterior flux and the observed concentration. We believe that this increasing trend is due to 

the accumulation of errors in the assimilation system, which may be caused by the slight 

overestimates of land sink in each year. 

 

Figure 1. Annual mean BIAS between the surface flask observations and the simulations with 

posterior fluxes, the △BIAS means the difference in BIAS between two consecutive years, 

for example, the △BIAS in 2011 means the BIAS in 2011 minus the one of 2010. 

 

Figures 3/4: “Biases” in the caption is easily confused with “BIAS” defined in equation 10. 

Response: Thank you! We have modified the “Biases” in the caption Figures 3/4 to “BIAS”. 

(see Line 595, page 18 and Line 605, page 19) 

 

Table 1: BIAS cannot evaluate the performance of the model by showing how much the 

modeled values/retrievals agree with the observed values/retrievals. 

Response: Thank you for this suggestion! According to this suggestion, we have added the 

mean absolute error (MAE) in Table 1 in the revised manuscript. (see Line 532, Page 15; 

Lines 577-579, Page 17; Lines 599-601, Page 18; and Lines 614 – 616, Page 19) 
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