1	
2	An AnalysisA Phenomenology of New Particle Formation (NPF) at
3	Thirteen European Sites
4	
5	
6	Dimitrios Bousiotis ¹ , Francis D. Pope ¹ , David C. Beddows ¹ ,
7	Manuel Dall'Osto ² , Andreas Massling ³ , Jacob Klenø Nøjgaard ^{3,4} ,
8	Claus Nordstrøm ³ , Jarkko V. Niemi ⁵ , Harri Portin ⁵ , Tuukka Petäjä ⁶ ,
9	Noemi Perez ⁷ , Andrés Alastuey ⁷ , Xavier Querol ⁷ , Giorgos Kouvarakis ⁸ ,
10	Stergios Vratolis ⁹ , Konstantinos Eleftheriadis ⁹ , Alfred Wiedensohler ¹⁰ ,
11	Kay Weinhold ¹⁰ , Maik Merkel ¹⁰ , Thomas Tuch ¹⁰ and Roy M. Harrison ^{1*†}
12	
13	¹ Division of Environmental Health and Risk Management
13 14	School of Geography, Earth and Environmental Sciences
15	University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
16	Christer, or Dirininghum, Euglauston, Dirininghum Die 211, Christer Hingdom
17	² Institute of Marine Sciences
18	Passeig Marítim de la Barceloneta, 37-49, E-08003, Barcelona, Spain
19	
20	³ Department of Environmental Science, Aarhus University, 4000 Roskilde, Denmark
21	
22	⁴ The National Research Centre for the Working Environment, 2100 Copenhagen, Denmark
23	
24	⁵ Helsinki Region Environmental Services Authority (HSY),
25	FI-00066 HSY, Helsinki, Finland
26	
27	⁶ Institute for Atmospheric and Earth System Research (INAR) / Physics, Faculty of Science,
28	University of Helsinki, Finland
29	
30	⁷ Institute of Environmental Assessment and Water Research (IDAEA - CSIC), 08034,
31	Barcelona, Spain
32	

<u>* To whom correspondence should be addressed (Email: r.m.harrison@bham.ac.uk)</u> <u>*Also at: Department of Environmental Sciences / Center of Excellence in Environmental Studies, King Abdulaziz</u> <u>University, PO Box 80203, Jeddah, 21589, Saudi Arabia</u>

33	⁸ Environmental Chemical Processes Laboratory (ECPL), Department of Chemistry,
34	University of Crete, 70013, Heraklion, Greece
35	
36	⁹ Environmental Radioactivity Laboratory, Institute of Nuclear and Radiological Science &
37	Technology, Energy & Safety, NCSR Demokritos, Athens, Greece
38	
39	¹⁰ Leibniz Institute for Tropospheric Research (TROPOS),
40	Permoserstr. 15, 04318 Leipzig, Germany
41	
42	

43 ABSTRACT

New particle formation (NPF) events occur almost everywhere in the world and can play an 44 important role as a particle source. The frequency and characteristics of NPF events vary spatially 45 and this variability is yet to be fully understood. In the present study, long term particle size 46 47 distribution datasets (minimum of three years) from thirteen sites of various land uses and climates 48 from across Europe were studied and NPF events, deriving from secondary formation and not 49 traffic related nucleation, were extracted and analysed. The frequency of NPF events was consistently found to be higher at rural background sites, while the growth and formation rates of 50 51 newly formed particles were higher at roadsides, underlining the importance of the abundance of 52 condensable compounds of anthropogenic origin found there. The growth rate was higher in 53 summer at all rural background sites studied. The urban background sites presented the highest 54 uncertainty due to greater variability compared to the other two types of site. The origin of incoming air masses and the specific conditions associated with them greatly affect the 55 56 characteristics of NPF events. In general, cleaner air masses present higher probability for NPF 57 events, while the more polluted ones show higher growth rates. However, different patterns of NPF 58 events were found even at sites in close proximity (< 200 km) due to the different local conditions at each site. Region-wide events were also studied and were found to be associated with the same 59 conditions as local events, although some variability was found which was associated with the 60 different seasonality of the events at two neighbouring sites. NPF events were responsible for an 61 62 increase in the number concentration of ultrafine particles of more than 400% at rural background

sites on the day of their occurrence. The degree of enhancement was less at urban sites due to the
increased contribution of other sources within the urban environment. It is evident that, while some
variables (such as solar radiation intensity, relative humidity or the concentrations of specific
pollutants) appear to have a similar influence on NPF events across all sites, it is impossible to
predict the characteristics of NPF events at a site using just these variables, due to the crucial role of
local conditions.

69

70 Keywords: Nucleation; New Particle Formation; Ultrafine Particles; Roadside; Urban Background;
71 Rural

73 1. INTRODUCTION

Ultrafine particles (particles with diameter smaller than 100 nm), while not yet regulated, are 74 believed to have adverse effects upon air quality and public health (Atkinson et al., 2010; Politis et 75 76 al., 2008; Tobías et al., 2018), as well as having a direct or indirect effect on atmospheric properties 77 (Makkonen et al., 2012; Seinfeld and Pandis, 2012). The source of ultrafine particles can either be 78 from primary emissions (Harrison et al., 2000; Masiol et al., 2017), including delayed primary 79 emissions (Hietikko et al., 2018; Olin et al., 2020; Rönkkö et al., 2017), or from secondary formation from gaseous precursors (Brean et al., 2019; Chu et al., 2019; Kerminen et al., 2018; 80 81 Kulmala et al., 2004a; Yao et al., 2018), which is considered as an important source of CCN in the atmosphere (Dameto de España et al., 2017; Kalivitis et al., 2015; Spracklen et al., 2008). For the 82 83 latter, while the process of formation of initial clusters that subsequently lead to particle formation has been extensively studied (Dal Maso et al., 2002; Kulmala et al., 2014; Riipinen et al., 2007; 84 85 Weber et al., 1998), there is no consistent explanation of the factors which determine the occurrence and development of NPF events in the atmosphere. Additionally, events that resemble NPF, with 86 the initial particles deriving from primary emissions, especially close to traffic sources (Rönkkö et 87 88 al., 2017), have been also reported but these are out of the scope of the present study.

89

A large number of studies both in laboratories and in real world conditions have been conducted to
either describe or explain the mechanisms that drive NPF events. The role of meteorological
conditions, such as solar radiation intensity (Kumar et al., 2014; Shi et al., 2001; Stanier et al.,

2004) and relative humidity (Li et al., 2019; Park et al., 2015), are well documented, while great 93 diversity was found for the effect of other meteorological factors such as the wind speed (Charron et 94 al., 2008; Németh and Salma, 2014; Rimnácová et al., 2011) or temperature (Jeong et al., 2010; 95 96 Napari et al., 2002). There are also influences of atmospheric composition, with the positive role of low condensation sink and concentrations of pollutants such as NO_x upon NPF event occurrence 97 98 being widely agreed upon (Alam et al., 2003; Cheung et al., 2013; Kerminen et al., 2004; Wang et 99 al., 2014; Wehner et al., 2007). Contrary to that, while the indirect role of SO_2 is well established in the nucleation process, via the formation of new clusters of H₂SO₄ molecules (Boy et al., 2005; Iida 100 101 et al., 2008; Kulmala et al., 2005; Sipila et al., 2010; Xiao et al., 2015), uncertainty exists in the role 102 that different concentrations of SO_2 play in the occurrence of NPF events in real world atmospheric conditions (Alam et al., 2003; Dall'Osto et al., 2018; Wonaschütz et al., 2015; Woo et al., 2001). 103 104 Ammonia is known to enhance the formation of initial clusters (Korhonen et al., 1999; Ortega et al., 105 2008; Schobesberger et al., 2015), and volatile organic compounds are regarded as the main drivers 106 of the growth of the newly formed particles (Kulmala et al., 2013; Riccobono et al., 2014; Tröstl et 107 al., 2016). NPF events in different locations do not appear to follow consistent trends with the 108 concentrations of these compounds and meteorological parameters (McFiggans et al., 2019; Minguillón et al., 2015; Riipinen et al., 2007), though links between NPF events and sulphuric acid 109 110 vapour concentrations (Petäjä et al., 2009; Weber et al., 1995) and organics (Bianchi et al., 2019; 111 Ehn et al., 2014) have been reported.

It is evident that NPF events and their development are complex, and local conditions play an 113 important role in their variability. Many studies have attempted to explain this variability by 114 115 analyzing multiple datasets from wider areas. Studies in the UK (Bousiotis et al., 2019; Hama et al., 116 2017), Spain (Brines et al., 2014; Carnerero et al., 2018; Dall'Osto et al., 2013; Minguillón et al., 117 2015), Hungary (Németh and Salma, 2014; Salma et al., 2014, 2016), Greece (Kalkavouras et al., 118 2017; Siakavaras et al., 2016), Germany (Costabile et al., 2009; Ma and Birmili, 2015; Sun et al., 119 2019) and China (Peng et al., 2017; Shen et al., 2018; Wang et al., 2017) have attempted to explain the differences found in NPF event conditions and variability between different sites in close 120 121 proximity, while larger scale studies using descriptive (Brines et al., 2015; Hofman et al., 2016; 122 Jaatinen et al., 2009; Kulmala et al., 2005) or statistical methods (Dall'Osto et al., 2018; Rivas et al., 2020) have provided insights into the effect of the variability of parameters that are considered 123 124 to play an important role in the occurrence and development of NPF events on a broader scale. 125 The present study, combining thirteen long term datasets (minimum of three years) from different 126 127 countries across Europe and combined with the results from a previous study in the UK, attempts to 128 elucidate the effect of the local conditions on NPF event characteristics (frequency of NPF events,

129 formation rate and growth rate) both for sites in close proximity (< 200 km), and by

130 intercomparison of sites on a continental scale in order to find general trends of the variables that

131 affect the characteristics and development of NPF events on a larger scale. Finally, the effect of

NPF events upon the ultrafine particle number concentrations was calculated, providing insight tothe potential of NPF events to influence the local air quality conditions in all areas studied.

134

135 2. DATA AND METHODS

136 2.1 Site Description and Data Availability

137 In the present study, particle number size distribution data from 13 sites in Europe (Figure 1) are 138 analysed in the size range 3 nm < Dp < 1000 nm. A detailed list of the site locations and the data 139 available for each is found in Table 1 (seasonal data availability is found in Table S1). For site naming 140 the first three letters refer to the country (DEN = Denmark, GER = Germany, FIN = Finland, SPA =

141 Spain, GRE = Greece) while the next two refer to the type of the site (RU = Rural background, UB =

142 <u>Urban background, RO = Roadside</u>). Average meteorological conditions and concentrations of 143 chemical compounds for all sites are found in Tables S21 and S32 respectively; their seasonal 144 variation is found in Table S43.

145

146 **2.2** Methods

147 2.2.1 NPF event selection

- 148 The identification of NPF events was conducted manually using the criteria set by Dal Maso et al.
- 149 (2005). According to these, a NPF event is considered to occur when:
- 150 a distinctly new mode of particles appears in the nucleation range,
- 151 this new mode prevails for some hours,

152 • the new mode shows signs of growth.

153

The NPF events extracted using this method are then classified into classes I or II depending on the 154 level of confidence. Class I (high confidence) is further classified as Ia and Ib, with class Ia 155 containing the events that both present a clear formation of a new mode as well as a distinct growth 156 157 of this mode, while Ib includes those with a less distinct formation and development. In the present study, only the events classified as Ia were used as they are considered as more suitable for study. 158 As the growth criterion is not fully defined, in the present study a minimum growth rate of 1 nm h⁻¹ 159 160 is required for NPF events to be considered. The events found using this method should not be confused with the formation and growth of particles deriving from primary emissions next to 161 pollution sources, such as traffic. While to an extent the particle formation found can be biased by 162 primary emissions (especially at roadside sites), great effort was made using additional data, such as 163 atmospheric composition data, to not include any incidents of traffic related nucleation. 164 165

166 2.2.2 Calculation of condensation sink, growth rate, formation rate, Nucleation Strength 167 Factor (NSF) and NPF event probability

168 The calculation of the condensation sink was made using the method proposed by Kulmala et al.169 (2001). The condensation sink (CS) is calculated as:

171 CS =
$$4\pi D_{vap} \sum \beta_M r N$$

where r and N are the radius and the number concentration of the particles and D_{vap} is the diffusion coefficient, calculated for T = 293 K and P = 1013.25 mbar, according to Poling et al. (2001):

175
$$D_{vap} = 0.00143 \cdot T^{1.75} \frac{\sqrt{M_{air}^{-1} + M_{vap}^{-1}}}{P\left(D_{x,air}^{\frac{1}{3}} + D_{x,vap}^{\frac{1}{3}}\right)^2}$$

176

177 where M and D_x are the molar mass and diffusion volume for air and H₂SO₄. β_M is the Fuchs 178 correction factor calculated from Fuchs and Sutugin (1971):

179

180
$$\beta_{\rm M} = \frac{1 + K_{\rm n}}{1 + \left(\frac{4}{3a} + 0.377\right)K_{\rm n} + \frac{4}{3a}{K_{\rm n}}^2}$$

181

182 K_n is the Knudsen number, defined as $Kn = 2\lambda_m/d_p$, with λ_m being the mean free path of the gas.

183

184 The growth rate of the newly formed particles is calculated according to Kulmala et al. (2012), as

185

186 GR =
$$\frac{D_{P_2} - D_{P_1}}{t_2 - t_1}$$

for the size range between the minimum available particle diameter up to 30 nm. For the calculation 188 189 of the growth rate, the time considered was from the start of the event until a) growth stopped, b) GMD reached the upper limit set or c) the day ended. Due to the differences in the smallest particle 190 191 size available between the sites, a discrepancy would exist for the growth rate values presented (sites with lower size cut shwould present lower values of growth rate, as the growth rate tends to 92 increase with particle size atin this range (Deng et al., 2020)). As a result, a direct comparison of the 93 94 growth rate values found among sites with significant differences at the smallest particle size available was avoided. 95 196

197 The formation rate J was calculated using the method proposed by Kulmala et al. (2012) in which:198

199
$$J_{d_p} = \frac{dN_{d_p}}{dt} + CoagS_{d_p} \times N_{d_p} + \frac{GR}{\Delta d_p} \times N_{d_p} + S_{losses}$$

200

201 where $CoagS_{dp}$ is the coagulation rate of particles of diameter d_p , calculated by:

202

203
$$\text{CoagS}_{d_p} = \int K(d_p, d'_p) n(d'_p) dd'_p \cong \sum_{d'_p = d_p}^{d'_p = \max} K(d_p, d'_p) N_{d_p}$$

205	as proposed by Kerminen et al. (2001). $K(d_p, d'_p)$ is the coagulation coefficient of particle sizes d_p
206	and d'p. Slosses accounts for the additional loss terms (i.e. chamber walls), not considered here. Initial
207	particle formation starts at about 1.5 ± 0.4 nm (Kulmala et al., 2012). The formation rate calculated
208	here refers to particles in the atmosphere that reached the diameter of 10 nm during NPF events for
209	uniformity reasons. This means that these particles were formed earlier during the day of the events,
210	survived and grew to this size later in the day. Furthermore, due to the effect of the morning rush
211	which biased the results at roadsides, the averages are calculated for the time window between 9:00
212	to 15:00 (\pm 3 hours from noon, when J ₁₀ peaked in the majority of the events). This was done for all
213	the sites in this study for consistency.
214	
215	As mentioned in the methodology for NPF event selection (chapter 2.2.1) days with particle
215 216	As mentioned in the methodology for NPF event selection (chapter 2.2.1) days with particle formation associated with resulting directly from traffic emissions were excluded. For those
216	formation associated with resulting directly from traffic emissions were excluded. For those
216 217	formation associated with resulting directly from traffic emissions were excluded. For those extracted identified as NPF event days though, mainly for the roadside sites, such formation still
216 217 218	formation associated with resulting directly from traffic emissions were excluded. For those extracted identified as NPF event days though, mainly for the roadside sites, such formation still occurs. It is impossible with the data available for this study to remove the traffic related particle
216 217 218 219	formation associated withresulting directly from traffic emissions were excluded. For those extractedidentified as NPF event days though, mainly for the roadside sites, such formation still occurs. It is impossible with the data available for this study to remove the traffic related particle formation in the calculations included in this study, by effectively separating it from secondary
216217218219220	formation associated withresulting directly from traffic emissions were excluded. For those extractedidentified as NPF event days though, mainly for the roadside sites, such formation still occurs. It is impossible with the data available for this study to remove the traffic related particle formation in the calculations included in this study, by effectively separating it from secondary particle formation or calculate it. Using average conditions for comparison would lead to negative
 216 217 218 219 220 221 	formation associated withresulting directly from traffic emissions were excluded. For those extracted identified as NPF event days though, mainly for the roadside sites, such formation still occurs. It is impossible with the data available for this study to remove the traffic related particle formation in the calculations included in this study, by effectively separating it from secondary particle formation or calculate it. Using average conditions for comparison would lead to negative values in most cases since in order for an NPF event to occur other emissions are reduced. This may

| 226

227 The Nucleation Strength Factor (NSF) proposed by Nemeth and Salma (2014) is a measure of the

228 effect of NPF events on ultrafine particle concentration. It can either refer to the effect of NPF

229 events on the day of their occurrence, calculated by:

230

231 NSF_{NUC} =
$$\frac{\left(\frac{N_{smallest size available-100nm}}{N_{100nm} - largest size available}\right)_{nucleation days}}{\left(\frac{N_{smallest size available-100nm}}{N_{100nm} - largest size available}\right)_{non-nucleation days}}$$

232

233 or their overall contribution on the ultrafine particle concentrations at a site calculated by:

234

235 NSF_{GEN} =
$$\frac{\left(\frac{N_{smallest size available-100nm}}{N_{100nm-largest size available}}\right)_{all days}}{\left(\frac{N_{smallest size available-100nm}}{N_{100nm-largest size available}}\right)_{non-nucleation days}}$$
236

The NPF event probability is a simple metric of the probability of NPF events calculated by the number of NPF event days divided by the number of days with available data for the given group (temporal, wind direction etc.). Finally, it should be mentioned that all the results presented are normalised according the seasonal data availability for each site, based upon the expression: 241 $NPF_{probability} = \frac{N_{NPF event days for group of days X}}{N_{days with available data for group of days X}}$

242

243 3. **RESULTS** AND DISCUSSION

- 244 The seasonal NPF probability for all sites is found in Table S5. The annual number of NPF events,
- 245 growth rate and formation rate for all the sites is found in Table S6.

246

247 <u>3.1 Frequency and sSeasonality of NPF eEvents</u>

- 248 In Denmark, NPF events occurred at all three sites with a similar frequency for the urban sites
- 249 (5.4% for DENRO and 5.8% for DENUB) and higher for the rural DENRU site (7.9%). The
- 250 seasonal variation favoured summer at DENRU and DENRO, while at DENUB a similar frequency
- 251 for spring and summer was found (Figure 2). The within-week variation of the events favours
- 252 weekends compared to weekdays going from the rural background site to the roadside site (Figure
- 253 3). Interesting is the increased frequency of NPF events found in all Danish sites on Thursday
- among the weekdays. This trend though does not have a plausible explanation and is probably

255 <u>coincidental.</u>

- 256
- 257 <u>A higher frequency of events for all types of environments is found for the German sites compared</u>
- to all other countries in this study. The background sites had NPF events for more than 17% of the
- 259 days, while the roadside had a lower frequency of about 9%, with a seasonal variability favouring
- 260 summer at all sites. It should be noted though that, due to the lack of spring and summer data for the

261	first two years at the German roadside site, the frequency of events is probably a lot higher, and the
262	seasonal variation should further favour these seasons. No substantial within-week variation was
263	found for any of the sites in this country, a feature that is expected mainly at background sites. For
264	GERRO, this may be due to not being as polluted as other sites of the same type, having an average
265	condensation sink comparable to that of urban background sites in this study.
266	
267	NPF events at the sites in Finland presented the most diverse seasonal variation, peaking at the
268	background sites in spring and at the roadside site in summer (while the spring data availability is
269	somewhathow reduced for the Finnish roadside site, the general trend remains the same if all
270	seasons had the same data availability). The frequency of NPF events at FINRU was higher (8.66%)
271	compared to the urban sites (4.97% at FINUB and 5.20% at FINRO). Strong within-week variation
272	favouring weekends is found for the roadside site, while no clear variation was found for the
273	background sites. This may be due to either the higher condensation sink during weekdays that
274	supresses the events, or the dominant impact of the traffic emissions which could make the
275	detection of NPF events harder.
276	
277	For Spain, data was available for an urban and a rural background site in the greater area of
278	Barcelona. NPF events were rather frequent, occurring on about 12% of the days at the rural
279	background site and 13.1% at the urban site. Though the sites are in close proximity (about 50 km),
280	the seasonality of NPF events was different between them, peaking in spring at SPARU and autumn

281	at SPAUB. The frequency of NPF events in winter was relatively high compared to the sites in
282	central and northern Europe and higher than summer for both sites. For both sites a higher NPF
283	probability was found on weekends compared to weekdays, though this trend is stronger at SPAUB.
284	Finally, for Greece data are available for two background sites, though not in close proximity (the
285	distance between the sites is about 350 km). While in Greece meteorological conditions are
286	favourable in general for NPF events, with high solar radiation and low relative humidity, their
287	frequency was only 8.5% for the urban background site in Athens and 6.5% for the rural
288	background site in Finokalia, similar to the frequency of Class I events reported in the study by
289	Kalivitis et al. (2019). Most NPF events occurred in spring at both sites, peaking in April. It is
290	interesting that the sites in southern Europe (in Spain and Greece) have a considerable number of
291	NPF events during winter, which might be due to the specific meteorological conditions found in
292	this area, where winter is a lot warmer than at the sites in northern and central Europe, and
293	insolation is higher.
294	
295	3.2 The Formation and Growth F Rates
296	For the Danish sites the growth rate was found to be higher at the roadside site at 4.45 ± 1.87 nm h ⁻¹
297	and it was similar for the other two sites (3.19 ± 1.43 for DENRU and 3.19 ± 1.45 for DENUB) nm h ⁻¹
298	(Figure 4), though the peak was found in different seasons (Figure 5), coinciding with that of the
299	frequency of NPF events (the highest average for DENRO was found for winter but it was only for
300	a single event that occurred in that season). The formation rate (J_{10}) was found to be broadly similar

- at the rural and urban background sites and higher at DENRO (Figure 6), favoured by different
 seasons at each site (summer at DENRU, spring at DENUB though with minimalum differences
 and autumn at DENRO) (Figure 7).
- 304
- 805 Similar to the frequency of NPF events, the German sites also had higher growth rates compared to
- 306 sites of the same type in other areas of this study, with GERRU having 4.34 ± 1.73 nm h⁻¹, GERUB
- 4.24 ± 1.69 nm h⁻¹ and GERRO 5.17 ± 2.20 nm h⁻¹ (Figure 3). While the difference between GERRU
- and GERUB is not statistically significant, there is a significant difference with GERRO (p <
- 809 <u>0.005</u>). Higher growth rates were found in summer compared to spring for all sites (Figure 5).
- 310 Specifically, for the roadside though, the highest average growth rates were found in autumn, which
- 811 <u>may be either a site-specific feature or an artefact of the limited number of events in that season</u>
- 812 (total of 11 NPF events in autumn). Similarly, J₁₀ at the German sites was also the highest among
- the sites of this study, increasing from the GERRU to GERRO. It was found to be higher in summer
- 814 for the background sites and in autumn for GERRO.
- 315
- For the Finnish sites, growth rates were similar at the background sites $(2.91\pm1.68 \text{ nm h}^{-1} \text{ at FINRU})$
- and 2.87 \pm 1.33 nm h⁻¹ at FINUB), peaking in the summer months, similar to the findings of (Yli-
- Juuti et al., (2011), while the peak for FINRO (growth rate at 3.74±1.48 nm h⁻¹) was found in
- spring, though the differences between the seasons for this site were rather small. The formation

rate was the highest at FINRO, peaking in autumn for both urban sites (with small differences with
 spring), while FINRU presented the highest J₁₀ in summer.

322

At the Spanish sites, the growth rate was similar for the two sites, being 3.62 ± 1.86 nm h⁻¹ at

SPARU and 3.38 ± 1.53 nm h⁻¹ at SPAUB, again being higher in autumn for the urban site (which

325 <u>appears to be a feature of more polluted sites</u>), while the rural site follows the general trend of rural

<u>background sites, peaking in summer. The formation rate at SPAUB is comparable to the other</u>

327 <u>urban background sites (apart from GERUB) and peaked in spring, while once again the peak at</u>

328 <u>SPARU was found in summer, similar to the other rural sites of this study apart from the Greek. At</u>

the urban site both the growth and formation rates were higher on weekdays compared to weekends

(both p < 0.001). While the higher growth rate during weekdays may be associated with the

331 increased presence of condensable species from anthropogenic activities, the higher formation rate

might be affected by the increased emissions during these days, which bias to an extent its value.

Finally, the growth rate of particles was found to be similar at both Greek sites $(3.68\pm1.41 \text{ nm h}^{-1})$

for GREUB and 3.78±2.01 nm h⁻¹ for GRERU) and was higher in summer compared to the other

835 seasons, having a similar trend with the temperature and particulate organic carbon concentrations

336 in the area. The formation rate presented a unique trend, having high averages in winter for both

337 <u>sites. Interestingly, contrary to most background sites in this study, the lowest average J_{10} was found</u>

338 <u>for summer at both sites.</u>

340 3.3 Conditions **aA**ffecting NPF **eE**vents

341 The average and NPF event days² conditions are presented in tables S2 and S3 (for meteorological

- 342 <u>conditions and atmospheric composition respectively</u>). A number of variables present consistent
- behaviour on NPF days. For all the sites in this study the solar radiation intensity was higher on
- 844 <u>NPF days compared to the average conditions, while the relative humidity was lower. Additionally,</u>
- all the chemical compounds with available data present either lower or similar concentrations. This
- 346 is consistent even for the chemical compounds which are associated with the NPF process (such as
- the SO₂). This probably points indicates that they are in sufficient concentrations for not being a
- 348 limiting factor in the occurrence of the events, while higher concentrations are associated with
- 349 increased pollution conditions which may suppress their occurrence. The exceptions found are
- 350 SPARU and GRERU for NO₂ and FINRU for SO₂. In these sites the concentrations of these
- gaseous components are very low in general (being rural background sites) and were found to be
- only marginally higher on NPF event days. These differences point indicate that the variability of
- these compounds is not playing a significant role in the occurrence of the events and thus should not
- be considered as an important factor. The ozone concentration though, was found to be consistently
- B55 <u>higher on event days compared to the average conditions at all sites regardless of their geographical</u>
- B56 location and type. As the ozone concentration variability is directly associated with the solar
- ⁸⁵⁷ radiation intensity, it is unknown whether it plays a direct role in the occurrence of the events or it is
- the result of its covariance with the solar radiation intensity.

359	Following that, differences were found in the variability of some of the meteorological conditions,
360	as well as local conditions (either meteorological or specific pollution sources), which played a
361	significant role in the occurrence and the metrics of NPF events across the sites of this study. These
362	will be further explained explored in the following sections.
363	
364	<u>3.3.1 Denmark</u>
365	The meteorological conditions that prevailed on NPF event days followed the general trend
366	mentioned earlier, while wind speed and temperature were higher than average (consistently at all
367	sites, meteorological conditions' variability was significant for all ($p < 0.001$) but except the wind
368	speed). As meteorological data were available from the urban background site (the variation
369	between the rural and urban sites should not be great since they are about 25 km away from each
370	other), the average conditions for the three sites are almost the same, with the only variability being
371	the data availability among the sites. Thus, the more common wind directions in the area are
372	southwesterly; for all sites though the majority of NPF events are associated with direct westerly
373	and northwesterly winds, similar to the findings of Wang et al. (2013) for the same site, which are
374	those with the lowest concentrations of pollutants and condensation sink for all sites (Table S7),
375	probably being of marine origin as elemental concentrations showed an increased presence of Na,
376	Cl and Mg (results not included). The wind directions with the highest probability for NPF events
377	presented low growth rates and vice versa (Table S4), though it was proposed by Kristensson et al.
378	(2008) that there is a possibility for events observed at the nearby Vavihill site in Sweden with

379	northwesterly winds to be associated to the emissions of specific ship lanes that pass from that area.
380	Wind direction sectors with higher concentrations of OC coincide with higher growth rates at
381	DENRO, while this variability is not found at DENRU possibly showing that different compounds
382	and mechanisms take part in the growth process of the newly formed particles (Kulmala et al.,
383	<u>2004b).</u>
384	
385	As mentioned earlier, DENUB although close to the DENRO site has different seasonal variation of
386	NPF events, with a marginally lower frequency in summer compared to the other two Danish sites,
387	which have almost the same seasonal variation of NPF events. At DENUB, a strong presence of
388	particles in the size range of about 50 – 60 nm is observed (Figure S1), especially during summer
389	months, increasing the condensation sink in the area (this enhanced mode of particles is visible at
390	DENRO as well, but its effect is dampened due to the elevated particle number concentrations in
391	the other modes). This mode is probably part of the urban particle background. The strongest source
392	though at DENUB appears to be from the east and consistently appears at both urban sites; this
393	sector is where both elevated pollutant concentrations and condensation sink are found. In this
394	sector, there are two possible local sources, either the port located 2 km to the east or the power
395	plant located at a similar distance (or both). In general, both stations are located only a few
396	kilometres away from the Øresund strait, a major shipping route. Studying the SMPS plots it can be
397	seen that NPF events at DENUB, especially in summer, tend to start but are either suppressed after
398	the start or have a lifetime of a couple of hours before the new particles are scavenged or evaporate.
1	

399	While this might explain to an extent the frequency and variability of NPF events at this site, the
400	balance between the condensation sink and the concentration of condensable compounds is
401	highlighted. While at DENRO the condensation sink is considerably higher than at DENUB and the
402	effect of the aforementioned mode of particles is present onat both, the occurrence and development
403	of NPF events at DENRO are more pronounced in the data, due to the higher concentrations of
404	condensable compounds.
405	
406	3.3.2 Germany
407	Compared to the average conditions, a higher temperature was found on NPF event days, while
408	wind speed was lower at all German sites. The condensation sink was also higher on event days
409	compared to the average, though this may be the result of the high formation rates found for the
410	German sites. The wind profile is different between the urban and the rural sites, with mainly
411	northeasterly and southwesterly winds at the rural site and a more balanced profile for the urban
412	sites. This difference is probably due to differences in the local topography. For the urban sites the
413	majority of NPF events are associated with easterly winds (to a lesser extent westerly as well for
414	GERRO). At GERUB, along with the increased frequency of NPF events, the highest average
415	growth rate is also found with easterly wind directions (though the differences are rather small). At
416	GERRO the frequency and growth rate appear to be affected by the topography of the site.
417	Eisenbahnstraße is a road with an axis at almost $90^{\circ} - 270^{\circ}$ and although the H/W ratio
418	(surrounding buildings- height to width ratio) is not high, the effect of a street canyon vortex is
1	

<u>observed (Voigtländer et al., 2006).</u> Possibly as a consequence of this, the probability of NPF events
is low for direct northerly and southerly winds, although there are high growth rates of the newly
formed particles (highest growth rates observed with southerly winds, associated with cleaner air).
<u>At GERRU an increased probability of NPF events and growth rate are also found for wind</u>
directions from the easterly sector, although these are not very frequent for this site. For this site

425 <u>chemical composition data for $PM_{2.5}$ and PM_{10} are available, and it is found that the generally low</u>

426 (on average) concentrations of pollutants (such as elemental carbon, nitrate and sulphate), in general

427 are elevated for wind directions from that sector. This is also reported for the Melpitz site (GERRU)

428 by Jaatinen et al. (2009) and probably indicates that in a relatively clean area, the presence of low

429 <u>concentrations of pollutants may be favourable in the occurrence and development of NPF events</u>,

430 as in general pollutant concentrations are lower on NPF event days compared to average conditions.

431 Another interesting point is the concentration of organic carbon at the site (average of 2.18 μg m⁻³

432 in PM_{2.5}), having the highest average concentration among the rural background sites studied. As

433 <u>other pollutant concentrations are relatively low at this site, it is possible that a portion of this</u>

434 organic carbon is of biogenic origin, considering also that the area is largely surrounded by forests

435 <u>and green areas, with a minimal effect of marine air masses (as indicated by the low marine</u>

436 <u>component concentrations – data not included</u>) and possibly pointing to increased presence of

437 BVOCs. The increased presence of organic species at GERRU may explain to some extent the

increased frequency of NPF events as well as the highest growth and formation rates found among
the sites of this study.

440

441 <u>3.3.3 Finland</u>

- 442 At the background sites in Finland, temperature was lower on NPF event days compared to the
- 443 average conditions, whereas it was higher for FINRO associated with the different seasonality of
- the events. No significant differences were found for the wind speed on NPF events for all sites.
- 145 <u>There are though some significant differences in the wind conditions for NPF events compared to</u>
- 446 average conditions. At FINRU, NPF events were more common with northerly wind directions, as
- 447 was also found by Nieminen et al. (2014) and Nilsson et al. (2001). This is probably due to the
- 448 <u>lower condensation sink which can be associated with the lower relative humidity also found for</u>
- incoming winds from that sector and explains the lower temperatures found with NPF events at this
- 450 <u>site. Similarly, at FINUB NPF events were favoured by wind directions from the northerly sector</u>,
- 451 while there is almost a complete lack of NPF on southerly winds. This is due to its position at the
- 452 north of both the city centre and the harbour, though winds from that sector are not common in
- 453 general for that site. Finally, the wind profile for NPF events at FINRO also favours northerly winds
- 454 with an almost complete absence of <u>NPF in southerly winds</u>, probably due to the elevated pollutant
- 455 <u>concentrations and condensation sink associated with them.</u>

457	At all sites, NPF event days had a lower condensation sink compared to the average for the site. The
458	seasonal variation of NPF events in Finland favouring spring, was explained by earlier work as the
459	result of the seasonal variation of H ₂ SO ₄ concentrations (Nieminen et al., 2014), which in the area
460	peak in spring. The variation of H ₂ SO ₄ concentrations is directly associated with SO ₂ concentrations
461	in the area, which follow a similar trend. The seasonal variation of NPF events at FINRO though
462	cannot be explained by the variation of H_2SO_4 in the area. SO_2 concentrations, which were available
463	only for the nearby urban background site at Kalio (about 3 km away from FINRO) and may
464	provide information upon the trends of SO ₂ in the greater area, peak during January (probably due
465	to increased heating in winter and the limited oxidation processes due to lower incoming solar
466	radiation) and are higher during spring months compared to summer. In general, the variation of
467	pollutant concentrations and the condensation sink is not great for the spring and summer seasons.
468	The only variable out of the ones considered that may explain to an extent the seasonality of NPF
469	events at the site is the increased concentrations of PM ₁₀ found for spring months, which might be
470	associated with road sanding and salting that takes place in Scandinavian countries during the
471	colder months (Kupiainen et al., 2016) and arewith released inemissions to the ambient air during
472	spring months (Stojiljkovic et al., 2019). The source of these particles though is uncertain, as no
473	major differences in the wind roses are found between the two seasons. Another study by Sarnela et
474	al. (2015) at a different site in southern Finland attributed the seasonality of NPF events in Finland
475	to the absence of H ₂ SO ₄ clusters during summer months due to a possible lack of stabilizing agents
476	(e.g. ammonia). This could explain the limited number of small particles (smaller than 10 nm) at the

477 <u>background sites during summer</u>. In the more polluted environment at a roadside site these agents
478 <u>may exist, but such data was unfortunately not available</u>.

479

480 Finally, a feature mentioned by Hao et al. (2018) in their study at the site of Hyytiälä, in which late 481 particle growth is observed was also found in this study. This happened on about 20% of NPF days 482 at FINRU (and a number of non-event days) and in most cases in early spring (before mid-April) or 483 late autumn (after mid-September). New particles were formed and either did not grow or grew very 484 slowly until later in the day when growth rates increased (Figure S2). In all these cases, growth 485 started when solar radiation was very low or zero, which probably associates the growth of particles 486 with nighttime chemistry leading to the formation of organonitrates (as found by the same study). A 487 similar behaviour was also rarely occasionally found at FINUB. Particle growth at late hours is not a 488 unique feature for the Finnish sites, as it was found at all sites studied. What is different in the 489 specific events is the lack or very slow growth during the daytime. Lower temperature (-0.81° C), incoming solar radiation (112 Wm⁻²) and higher relative humidity (68.4%) occurred on event days 490 491 with later growth, while no clear wind association was found. Lower concentrations of organic 492 matter and nitrate were found throughout the days with later growth compared to the rest of the 493 NPF days. The very high average particle number concentration in the smaller size bins is due to 494 particles, though not growing to larger sizes for some time, persisting in the local atmosphere for 495 hours. These results though should be used with caution due to the limited number of observations. 496

497	3.3.4	Spain

- 498 The atmospheric conditions favouring NPF events at both sites are similar to most other sites,
- 499 though with lower wind speed on event days compared to the average conditions (p < 0.001 at
- 500 <u>SPAUB</u>). The wind profile between the two sites is different, with mainly northwesterly and
- 501 southeasterly winds for SPARU (which seems to be affected by the local topography), while a more
- 502 <u>balanced profile is found at SPAUB.</u> For both sites, though, increased probability for NPF events is
- 503 found for westerly and northwesterly winds. These incoming wind directions originate from a rather
- 504 <u>clean area with low concentrations of pollutants and condensation sink. At SPARU, incoming wind</u>
- 505 from directions with higher concentrations of pollutants and condensation sink were associated with
- 506 lower frequency of NPF events but higher growth rates. At SPAUB, NPF events were relatively
- 507 rare and growth rates were lower with easterly wind directions, as air masses originating from that
- 508 section have passed from the city centre and the industrial areas from the Besos River. Due to this,
- 509 incoming air masses from these sectors had higher concentrations of pollutants and condensation
- 510 <u>sink.</u>
- 511
- 512 <u>While NPF events with subsequent growth of the particles were rare during summer, cases of bursts</u>
- 513 of particles in the smallest size range available were found to occur frequently, especially in August
- 514 and July (the month with the fewest NPF events, despite the favourable meteorological conditions).
- 515 In such cases, a new mode of particles appears in the smallest size available, persisting for many
- 516 hours though without clear growth (brief or no growth is only observed), as reported by Dall'Osto

517	et al. (2012). Due to the lack of growth of the particles these burst events do not qualify as NPF
518	events using the criteria set in the present study. These burst events are associated with southerly
519	winds (known as Garbí-southwest and Migjorn-south in Catalan, which are common during the
520	summer in the area) that bring a large number of particles smaller than 30 nm to the site from the
521	nearby airport (located about 15 km to the southwest) and port (7 km south), as well as Saharan
522	dust, increasing the concentrations of PM (Rodríguez et al., 2001) and thus suppressing NPF events
523	due to the increased condensation sink.
524	
525	Finally, the wind direction profile at SPARU appears to have a daily trend, with almost exclusively
526	stronger southeasterly winds at about midday (Figure S3), which might beprobably due to a local
527	mesoscale circulation caused by the result of the movement of the air masses due to the increased
528	solar activity during that time (which results in different heating patterns of the various land types in
529	the greater area). These incoming southeast winds are more polluted and have a higher
530	condensation sink (being affected by the city of Barcelona), which and almost consistently bring
531	larger particles at the site during the midday period. This may explain to an extent the lowest
532	probability for NPF events from that sector, despite the very high concentrations of O ₃ associated
533	to with them, with some extreme values well above 100 μ g m ⁻³ (Querol et al., 2017). The highest
534	average growth rates are also found from that direction.
535	
536	
1	

- 537 <u>3.3.5 Greece</u>
- 538 <u>Temperature and wind speed are found to be lower on NPF event days at the Greek sites, though the</u>
- 539 differences are minimal and are associated with the seasonal variability of the events. The wind rose
- 540 in GREUB mainly consists of northeasterly and southwesterly winds. Due to its position, the site is
- 541 <u>heavily affected by emissions in Athens city centre with westerly winds, resulting in increased</u>
- 542 particle number concentrations and condensation sink. Despite this, the highest NPF probability and
- 543 growth rates were found with a northwesterly wind directions. This may be due to them being
- 544 associated with the highest solar radiation (probably the result of seasonal and diurnal variation),
- 545 temperature and the lowest relative humidity, along with the highest condensation sink and particle
- 546 <u>number concentrations of almost all sizes. Chemical composition data was not available for</u>
- 547 <u>GREUB, though SO₂ concentrations are rather low in Athens and kept declining after the economic</u>
- 548 <u>crisis (Vrekoussis et al., 2013). The seasonality of SO₂ concentration in Athens favoured winter</u>
- 549 months and was at its lowest during summer for the period studied (ΥΠΕΚΑ, 2012) (this trend
- 550 <u>changed later as SO₂ concentrations further declined</u>), which may also be a factor in the seasonality
- 551 of NPF events, though this will be further discussed later.
- 552
- 553 At the GRERU site, the wind profile is mainly westerly, and though it coincides with the most
- 554 <u>important source of pollutants in the area, the city of Herakleio, its effect while observable is not</u>
- 555 <u>significant due to the topography in the area. The wind profile for NPF events is similar to the</u>
- 556 <u>average with significantly higher wind speeds (p < 0.001). In general, GRERU has very low</u>

557	pollutant concentrations, with an average NO of 0.073 μ g m ⁻³ , NO ₂ of 0.52 μ g m ⁻³ and SO ₂ in
558	concentrations below 1 ppb (Kouvarakis et al., 2002). Due to this, the differences in the chemical
559	composition in the atmosphere are also minimal. For the specific site two different patterns of
560	development of NPF events were found. In one case, NPF events occurred in a rather clear
561	background, while in the other one they were accompanied with an increase in number
562	concentrations of larger particles or a new mode appearing at larger sizes (about a third of the
563	events). No differences were found in the seasonal variation between the two groups; increased
564	gaseous pollutant and particulate organic carbon concentrations were found for the second group
565	(though the differences were rather small) and a wind rose that favoured southwesterly winds
566	(originating from mainland Crete) instead of the northwesterly (originating from the sea) ones for
567	the first group. The growth rate for the two groups was found to be 3.56 nm h ⁻¹ for the first group
568	and 4.17 nm h ⁻¹ for the second, which might be due to the increased presence of condensable
569	compounds. As the dataset starts from the particle size of 8.77 nm, the possibility that these
570	particles were advected from nearby areas should not be overlooked, though they persisted and
571	grew at the site. Other than that, no significant differences were found for the different wind
572	directions.
573	
574	As mentioned earlier, both sites had a very low frequency of events and J_{10} in summer similar to
575	previous studies also reporting few or no events during summer (Vratolis et al., 2019; Ždímal et al.,
576	2011), though the incoming solar radiation is the highest and relative humidity is the lowest during

577	that season. This variation was also observed by Kalivitis et al. (2012) who associated the seasonal
578	variation of NPF events at GRERU towith the concentrations of atmospheric ions. The effect of the
579	Etesian winds (known as Meltemia in Greek), which dominate the southern Aegean region during
580	the summer months though should not be overlooked. These result in very strong winds with an
581	average wind speed of 8.15 m s ⁻¹ during summer at the Finokalia site, and increased turbulence
582	found in all years with available data, affecting both sites of this study. During this period, $N_{<30nm}$
583	drops to half or less compared to other seasons at both sites, while $N_{>100nm}$ is at its maximum due to
584	particle aging (Kalkavouras et al., 2017), increasing the condensation sink, especially in GRERU
585	(the effect in GREUB is less visible due to both the wind profile, blowing from east which is a less
586	polluted area, as well as the reduction of urban activities during summer months in Athens). Both
587	the increased condensation sink and turbulence are possible factors for the reduced number of NPF
588	events found at both sites in summer. Another possible factor is the effect of high temperatures in
589	destabilising the molecular clusters critical to new particle formation.
590	
591	3.4 Region-Wide Events
592	Region-wide events are NPF events which occur over large-scale areas, that may cover hundreds of
593	kilometres (Shen et al., 2018). In the present study, NPF events that took place on the same day at
594	both background sites (urban background and rural) are considered as regional and their conditions
595	are studied (Table S8). The background sites in Greece were not considered due to the great
596	distance between them (about 350 km). There is also uncertainty for the background sites in
1	

597	Finland, where the distance is about 190 km, though a large number of days were found when NPF
598	events occurred on the same day. The number of region-wide events per season (or the fraction of
599	region-wide events to total NPF events) is found in Figure 8 and it appears as if they are more
600	probable in spring at all the sites of the present study (apart from Finland, though the number of
601	events in winter was low), despite the differences found in absolute numbers.
602	
603	In Denmark, about 20% of NPF events in DENRU were regional (the percentage is higher for
604	DENUB due to the smaller number of events, at 29%). The relatively low frequency of region-wide
605	NPF events can be explained by the different seasonal dependence of NPF events (region-wide NPF
606	events were more frequent in spring compared to the average due to the seasonality of NPF events
607	in DENUB). Compared to local NPF event conditions, higher wind speed and solar radiation, as
608	well as O ₃ and marine compound concentrations (results not included) were found, while the
609	concentrations of all pollutants (such as NO, NO _x , sulphate, elemental and organic carbon) were
610	lower. These cleaner atmospheric conditions are also confirmed by the lower CS on associated with
611	region-wide events, which is probably one of the most important factors in the occurrence of these
612	large-scale events. The exceptions found at DENRU (increased relative humidity and less incoming
613	solar radiation) are probably due to the different seasonality between local and region-wide NPF
614	events at the site, though region-wide events rarely present similar characteristics at different sites
615	even in the same country due to the differences in the initial meteorological and local conditions
616	(Hussein et al., 2009). The growth rates of region-wide events were found to be lower than those of

618 condensable compounds due to the cleaner air masses of marine origin (as confirmed by the higher

- 619 <u>concentrations of marine compounds).</u>
- 620
- 521 In Germany, the majority of NPF events of this study were region-wide (about 60%). Compared to
- the average, the meteorological conditions found for NPF event days compared to average
- 623 <u>conditions were more distinct for the region-wide events, with even lower wind speed and relative</u>
- 624 <u>humidity and higher temperature and solar radiation, and all of these differences were significant (p</u>
- 625 < <u>< 0.001</u>). At GERRU where chemical composition data was available, higher concentrations of
- 626 particulate organic carbon and sulphate and lower nitrate concentrations were found. The
- 627 differences are significant (p < 0.001) and may explain the higher growth rates found in region-wide
- 628 events at both sites compared to the average, which is a unique feature. It should be noted that as
- 529 the majority of NPF events at the German sites are associated with easterly winds, it is expected that
- 630 in most cases the region-wide events will be associated with these, carrying the characteristics that
- 631 come along with them (increased growth rates and concentrations of organic carbon, as discussed in
- 632 <u>Section 3.2).</u>
- 633
- 534 In Finland, about a quarter of the NPF event days at FINRU (26%) occurred on the same day as at
- 535 <u>FINUB (the frequency is a lot higher for FINUB, at 39%). As in Germany, the meteorological</u>
- 636 <u>conditions found on NPF event days compared to average conditions were more distinct during</u>

637	region-wide events. Thus, for both sites temperature and relative humidity were lower while solar
638	radiation was higher. The different trend found for the wind speed at the two sites (being higher on
639	average NPF days at FINRU and lower at FINUB compared to average conditions) was enhanced
640	as well at the two sites for region-wide events. At FINRU where chemical composition data was
641	available, NO _x and SO ₂ had similar concentrations on region-wide event days compared to the
642	averages on total event days, while O_3 was significantly higher (p < 0.001). As at most other sites,
643	the growth rate was found lower on region-wide event days compared to the average at both sites.
644	
645	Finally, in Spain the datasets of the two sites did not overlap greatly, having only 322 common
646	days. Among these days, 13 days presented with NPF events that took place simultaneously at both
647	sites, with smaller growth rates on average compared to local events (43% of the events at SPARU
648	and 36% of the events at SPAUB in the period 8/2012 to 1/2013 and 2014 when data for both sites
649	were available). Due to the small number of common events the results are quite mixed with the
650	only consistent result being the lower relative humidity and higher O ₃ concentrations for regional
651	events at both sites, though none of these differences is significant. The wind profile at SPAUB
652	seems to further favour the cleaner sector, with the majority of incoming winds being from the NW
653	and even higher wind speeds (though with low significance). The result is similar at SPARU,
654	though less clear and with lower wind speeds.
655	
1	

656	These results are in general in agreement with those found in the UK in a previous study, where
657	meteorological conditions were more distinct on region-wide event days compared to local NPF
658	events; pollutant concentrations were lower as well as the growth rates of the newly formed
659	particles (Bousiotis et al., 2019).
660	
661	Common events were also found between either of the background sites and the roadside, but they
662	were always fewer in number, due to the difference in their temporal variability compared to the
663	background sites, resulting from the effect of roadside pollution.
664	
665	3.5 The Effect of NPF Events on the Ultrafine Particle Concentrations
666	The NSF is a metric of the effect of NPF events upon particle concentrations on either the days of
667	the events or over a larger timescale. Both the NSF _{NUC} and NSF _{GEN} were calculated for all sites of
668	this study and the results are presented in Figure 9. For almost all rural background sites NSF _{NUC} ,
669	which indicates the effect of NPF on ultrafine particle concentrations on the day of the event, was
670	found to be greater than 2 (the only exception was GERRU), which means that NPF events more
671	than double the number of ultrafine particles (particles with diameter smaller than 100 nm) at the
672	site on the days of the events, as NPF events are one of the main sources of ultrafine particles in this
673	type of sites, especially below 30 nm. This reaches up to 4.18 found at FINRU (418% more
674	ultrafine particles on the day of the events – 100% being the average), showing the great effect NPF
675	events have on rather clean areas. The long-term effect was smaller, and it was found that at FINRU
1	

676	NPF events increase the number of ultrafine particles by an additional 130% in general. The effect
677	of NPF events was a lot smaller at the urban sites, though still significant at urban background sites
678	(reaching up 240% at FINUB on the days of events), while roadsides had the smallest NSF
679	compared to their respective background sites. This is because of the increased effect of local
680	sources such as traffic or heating, and the associated increased condensation sink found within these
681	sites, which cause the new particles to be scavenged by the more polluted background.
682	
683	The calculation of NSF at the sites around Europe showed a weakness of the specific metric, which
684	points to the need for more careful interpretation of the results of this metric, especially at roadside
685	sites. At FINRO, the NSF _{NUC} provided a value smaller than 1, which translates as ultrafine particles
686	are lost instead of formed on NPF event days. This though is the result of both the sharp reduction
687	in particle number concentrations at all modes that are required for NPF events to occur at a busy
688	roadside (much lower condensation sink), as well as a difference in the ratio between smaller to
689	larger particles (smaller or larger than 100 nm) on NPF event days (favouring the larger particles) at
690	the specific site. Similarly, the long-term effect of NPF events at the site was found to be 1, which
691	means that NPF events appear to cause no changes in the number concentration of ultrafine
692	particles.
693	3.1 Denmark
694	NPF events occurred at all three sites with available data with a similar frequency for the urban sites
695	(5.4% for DENRO and 5.8% for DENUB) and higher for the rural DENRU site (7.9%), for the nine

696	year period of this study (2008 2017). For the DENRO and DENRU sites the seasonal variation
697	favoured summer, while at DENUB a higher frequency of events was found for spring (Figure 2).
698	The growth rate was found to be higher at the DENRO site at 4.45 ± 1.87 nm h ⁻¹ and it was similar
699	for the other two sites (3.19±1.43 for DENRU and 3.19±1.45 for DENUB) nm h ⁻¹ (Figure 3),
700	though the peak was found in different seasons (Figure 5), coinciding with that of the frequency of
701	NPF events (the highest average for DENRO was found for winter but it was only for a single event
702	that occurred in that season). As for the within-week variation of the events, there is an increasing
703	probability of NPF events to occur on weekends than weekdays going from the rural background
704	site to the roadside site (Figure 4). Interesting (and probably coincidental) is the increased
705	frequency of NPF events found at all sites on Thursday among the weekdays. J_{10} was found to be
706	broadly similar at the rural and urban background sites and higher at DENRO (Figure 6), favoured
707	by different seasons at each site (summer at DENRU, spring at DENUB though with minimum
708	differences and autumn at DENRO) (Figure 7).
709	
710	In general, pollutant concentrations were found to be lower on event days for all sites (apart from
711	O ₃), including the secondary pollutants and minerals (apart from marine related elements like Na,
712	Cl and Mg data not included) where data was available (Table S2). Among the compounds with
713	lower concentrations on NPF event days was SO2 (for the sites with available data), possibly due to
714	being in sufficient concentrations for not being a limiting factor in the occurrence of NPF events,
I	

715 while higher concentrations are associated with increased pollution conditions which may suppress 716 the occurrence of the events.

717

The meteorological conditions that prevailed on NPF event days (Table S1) were higher incoming 718 solar radiation, wind speed and temperature and lower relative humidity compared to average 719 conditions (consistently at all sites and significant for all (p < 0.001) except wind speed). As 720 meteorological conditions were available from the urban background site (the variation between the 721 rural and urban sites should not be great since they are about 25 km away from each other), the 722 average conditions for the three sites are almost the same with the only variability being the data 723 availability among the sites. Thus, the more common wind directions in the area are southwesterly; 724 for all sites though the majority of NPF events are associated with direct westerly and northwesterly 725 winds, similar to the findings of Wang et al. (2013) for the same site, which are those with the 726 lowest concentrations of pollutants and condensation sink for all sites, probably being of marine 727 origin as elemental concentrations showed an increased presence of Na, Cl and Mg (results not 728 included). The wind directions with the highest probability for NPF events present low growth rates 729 730 and vice versa (Table S4), though it was proposed by Kristensson et al. (2008) that there is a possibility for events observed at the nearby Vavihill site in Sweden with northwesterly winds to be 731 associated to the emissions of specific ship lanes that pass from that area. Wind direction sectors 732 with higher concentrations of OC coincide with higher growth rates at DENRO, while this 733

variability is not found at DENRU possibly showing that different compounds and mechanisms take
part in the growth process of the newly formed particles (Kulmala et al., 2004b).

736

As mentioned earlier, DENUB although close to the DENRO site has different seasonal variation of 737 NPF events with a marginally lower frequency in summer compared to the other two Danish sites, 738 which have almost the same seasonal variation of NPF events. At DENUB, a strong presence of 739 particles in the size range of about 50 60 nm is observed (Figure S1), especially during summer 740 months, increasing the condensation sink in the area (this enhanced mode of particles is visible at 741 DENRO as well, but its effect is dampened due to the elevated particle number concentrations in 742 743 the other modes). This mode is probably part of the urban particle background. The strongest source though at DENUB appears to be from the east and consistently appears at both urban sites; this 744 745 sector is where both elevated pollutant concentrations and condensation sink are found. In this sector, there are two possible local sources, either the port located 2 km to the east or the power 746 747 plants located at a similar distance (or both). In general, both stations are located only a few 748 kilometres away from the Øresund strait, a major shipping route. Studying the SMPS plots it can be seen that NPF events at DENUB especially in summer tend to start but are either suppressed after 749 the start or have a lifetime of a couple of hours before the new particles are scavenged or evaporate. 750 While this might explain to an extent the frequency and variability of NPF events at this site, the 751 balance between the condensation sink and the concentration of condensable compounds is 752 highlighted. While at DENRO the condensation sink is considerably higher than at DENUB and the 753

effect of the aforementioned mode of particles is present on both, the occurrence and development
 of NPF events at DENRO are more pronounced in the data due to the higher concentrations of
 condensable compounds.

757

758 **3.2 Germany**

A higher frequency of NPF events was found for each type of site in Germany compared to the 759 other countries in this study, for the three year period of this study (2008 2011). The background 760 sites had NPF events for more than 17% of the days, while the roadside had a lower frequency of 761 about 9%, with a seasonal variability favouring summer at all sites (Figure 2). It should be noted 762 though that due to the lack of spring and summer data for the first two years at GERRO, the 763 frequency of events is probably a lot higher and the seasonal variation should further favour these 764 seasons. Similarly, all sites had higher growth rates compared to sites of the same type in other 765 areas of this study, with GERRU having 4.34±1.73 nm h⁻¹, GERUB 4.24±1.69 nm h⁻¹ and GERRO 766 5.17±2.20 nm h⁻¹ (Figure 3). While the difference between GERRU and GERUB is not statistically 767 significant, there is a significant difference for GERRO (p < 0.005). Higher growth rates were 768 found in summer compared to spring for all sites (Figure 5). Specifically for the roadside though, 769 770 the highest average growth rates were found in autumn, which may be either a site specific feature or an artefact of the limited number of events in that season (total of 11 NPF events in autumn). No 771 substantial within week variation was found for any of the sites in this country (Figure 4), a feature 772 that is expected mainly at background sites. For GERRO, this may be due to not being as polluted 773

as other sites of the same type, having an average condensation sink comparable to that of urban
background sites. J₁₀ at the German sites was also the highest among the sites of this study (Figure
6), increasing from the GERRU to GERRO. It was found to be higher in summer for the
background sites and in autumn for GERRO (Figure 7).

778

Compared to the average conditions, a higher temperature and solar radiation were found on NPF 779 event days, while wind speed and relative humidity were lower at all sites (Table S1). The wind 780 profile is different between the urban and the rural sites, with mainly northeasterly and 781 southwesterly winds at the rural site and a more balanced profile for the urban sites. This difference 782 is probably due to differences in the local topography. For the urban sites the majority of NPF 783 events are associated with easterly winds (to a lesser extent westerly as well for GERRO). At 784 GERUB, along with the increased frequency of NPF events the highest average growth rate is also 785 found with easterly wind directions (though the differences are rather small). At GERRO the 786 frequency and growth rate appear to be affected by the topography of the site. Eisenbahnstraße is a 787 road with an axis at almost 90° - 270° and although the H/W ratio (surrounding buildings' height to 788 width ratio) is not high, the effect of a street canyon vortex is observed (Voigtländer et al., 2006). 789 Possibly as a consequence of this, the probability of NPF events is low for direct northerly and 790 southerly winds, although there are high growth rates of the newly formed particles (highest growth 791 rates observed with southerly winds, associated with cleaner air). 792 793

794 At GERRU an increased probability of NPF events and growth rate are also found for wind directions from the easterly sector, although these are not very frequent for this site (Table S4). For 795 796 this site chemical composition data for PM_{2.5} and PM₁₀ are available, and it is found that the 797 generally low (on average) concentrations of pollutants (such as elemental carbon, nitrate and sulphate) in general are elevated for wind directions from that sector. This is also reported for the 798 Melpitz site (GERRU) by Jaatinen et al. (2009) and probably indicates that in a relatively clean 799 area, the presence of low concentrations of pollutants may be favourable in the occurrence and 800 development of NPF events, as in general pollutant concentrations are lower on NPF event days 801 802 compared to average conditions. Another interesting point is the concentration of organic carbon at the site (average of 2.18 μ g m⁻³ in PM_{2.5}), having the highest average concentration among the rural 803 background sites studied. As other pollutant concentrations are relatively low at this site, it is 804 805 possible that a portion of this organic carbon is of biogenic origin, considering also that the area is largely surrounded by forests and green areas, with a minimal effect of marine air masses (as 806 indicated by the low marine component concentrations - data not included) and possibly pointing to 807 increased presence of BVOCs. The increased presence of organic species at GERRU may explain to 808 some extent the increased frequency of NPF events as well as the highest growth and formation 809 rates found among the sites of this study. 810 811

812 **3.3 Finland**

813	NPF events at the sites studied in Finland presented the most diverse seasonal variation, peaking at
814	the background sites in spring and at the roadside in summer (Figure 2). The frequency of NPF
815	events at FINRU was higher (8.66%) for the years with available data (2008 2011 & 2015
816	2018), while being less at the urban sites (4.97% at FINUB and 5.20% at FINRO) for the three
817	years with available data for each (2008 2011 & 2015 - 2018 for FINUB and 2015 2018 for
818	FINRO). Growth rates were similar at the background sites (2.91 \pm 1.68 nm h ⁻¹ at FINRU and
819	2.87±1.33 nm h ⁻¹ at FINUB), peaking in summer months, similar to the findings of (Yli Juuti et al.,
820	2011), while the peak for FINRO (growth rate at 3.74±1.48 nm h ⁻¹) was found in spring, though the
821	differences between the seasons for this site were rather small (Figures 3 and 5). Strong within-
822	week variation favouring weekends is found for the roadside, while no clear variation was found for
823	the other two sites (Figure 4). This may be due to either the higher condensation sink during
824	weekdays that suppresses the events or the dominant impact of the traffic emissions which could
825	make the detection of NPF events harder. J_{10} was the highest at FINRO, peaking in autumn for both
826	urban sites (with small differences with spring), while FINRU presented the highest J_{10} in summer
827	(Figures 6 and 7).

For all sites of this study in Finland, NPF events were consistently associated with lower relative humidity and higher solar radiation (Table S1). At the background sites temperature was found to be lower on NPF event days compared to the average conditions, whereas it was found higher for FINRO associated with the different seasonality of the events. No significant differences were

833	found for the wind speed on NPF events for all sites. There are though some significant differences
834	in the wind conditions for NPF events compared to average conditions. At FINRU, NPF events
835	were more common with northerly wind directions, as was also found by Nieminen et al. (2014)
836	and Nilsson et al. (2001). This is probably due to the lower condensation sink which can be
837	associated with the lower relative humidity also found for incoming winds from that sector and also
838	explains the lower temperatures found with NPF events at this site (Table 4). Similarly, at FINUB
839	NPF events were favoured by wind directions from the northerly sector, while there is almost a
840	complete lack of NPF on southerly winds. This is due to its position at the north of both the city
841	centre and the harbour, though winds from that sector are not common in general for that site.
842	Finally, the wind profile for NPF events at FINRO also favours northerly winds with an almost
843	complete absence of southerly winds probably due to the elevated pollutant concentrations and
844	condensation sink associated with them.
845	
846	At all sites, NPF event days had a lower condensation sink compared to the average for the site, as
847	well as lower concentrations of pollutants (apart from O ₃) where data was available (Table S2). The
848	seasonal variation of NPF events in Finland favouring spring, was explained by earlier work as the
849	
649	result of the seasonal variation of H_2SO_4 concentrations (Nieminen et al., 2014), which in the area
850	
	result of the seasonal variation of H ₂ SO ₄ -concentrations (Nieminen et al., 2014), which in the area
850	result of the seasonal variation of H ₂ SO ₄ -concentrations (Nieminen et al., 2014), which in the area peak in spring. The variation of H ₂ SO ₄ -concentrations is directly associated with SO ₂ -concentrations

only for the nearby urban background site at Kalio (about 3 km away from FINRO) and may 853 provide information upon the trends of SO₂ in the greater area, peak during January (probably due 854 to increased heating in winter and the limited oxidation processes due to lower incoming solar 855 856 radiation) and are higher during spring months compared to summer. In general, the variation of pollutant concentrations and the condensation sink is not great for the spring and summer seasons. 857 The only variable out of the ones considered that may explain the seasonality of NPF events at the 858 site is the increased concentrations of PM₁₀ found for spring months, which might be associated 859 with road sanding and salting that takes place in Scandinavian countries during the colder months 860 (Kupiainen et al., 2016) and are released in the ambient air during spring months (Stojiljkovic et al., 861 862 2019). The source of these particles though is uncertain, as no major differences in the wind roses are found between the two seasons. Another study by Sarnela et al. (2015) at a different site in 863 864 southern Finland attributed the seasonality of NPF events in Finland to the absence of H₂SO₄ clusters during summer months due to a possible lack of stabilizing agents (e.g. ammonia). This 865 could explain the limited number of small particles (smaller than 10 nm) at the background sites 866 during summer. In the more polluted environment at a roadside these agents may exist, but such 867 data was unfortunately not available. 868 Finally, a feature mentioned by Hao et al. (2018) in their study at the site of Hyytiälä, in which late 869

870 particle growth is observed was also found in this study. This happened on about 20% of NPF days
871 at FINRU (and a number of non-event days) and in most cases in early spring (before mid-April) or
872 late autumn (after mid-September). New particles were formed and either did not grow or grew very

873	slowly until later in the day when growth rates increased (Figure S2). In all these cases, growth
874	started when solar radiation was very low or zero, which probably associates the growth of particles
875	with nighttime chemistry leading to the formation of organonitrates (as found by the same study). A
876	similar behaviour was also rarely found at FINUB. Particle growth at late hours is not a unique
877	feature, as it was found at all sites studied. What is different in the specific events is the lack or very
878	slow growth during the daytime. Lower temperature (-0.81°C), incoming solar radiation (112 Wm ⁻²)
879	and higher relative humidity (68.4%) occurred on event days with later growth, while no clear wind
880	association was found. Lower concentrations of organic matter and nitrate were found throughout
881	the days with later growth compared to the rest of the NPF days. The very high average particle
882	number concentration in the smaller size bins is due to particles, though not growing to larger sizes
883	for some time, persisting in the local atmosphere for hours. These results though should be used
883 884	tor some time, persisting in the local atmosphere for hours. These results though should be used with caution due to the limited number of observations.
884	
884 885	with caution due to the limited number of observations.
884 885 886	with caution due to the limited number of observations. 3.4 Spain
884 885 886 887	 with caution due to the limited number of observations. 3.4 Spain For Spain, data was available for an urban and a rural background site in the greater area of
884 885 886 887 888	with caution due to the limited number of observations. 3.4 Spain For Spain, data was available for an urban and a rural background site in the greater area of Barcelona for the period 2012 - 2015. NPF events were rather frequent, occurring on about 12% of
884 885 886 887 888 888	with caution due to the limited number of observations. 3.4 Spain For Spain, data was available for an urban and a rural background site in the greater area of Barcelona for the period 2012 - 2015. NPF events were rather frequent, occurring on about 12% of the days at the rural site and 13.1% at the urban site. Though the sites are in close proximity (about
884 885 886 887 888 889 890	with caution due to the limited number of observations. 3.4 Spain For Spain, data was available for an urban and a rural background site in the greater area of Barcelona for the period 2012 - 2015. NPF events were rather frequent, occurring on about 12% of the days at the rural site and 13.1% at the urban site. Though the sites are in close proximity (about 50 km), the seasonality of NPF events was different between them, peaking in spring at SPARU and

893	growth rate was similar for the two sites, being 3.62 ± 1.86 nm h ⁻¹ at SPARU and 3.38 ± 1.53 nm h ⁻¹
894	⁴ at SPAUB, again being higher in autumn for the urban site (which appears to be a feature of more
895	polluted sites), while the rural site follows the general trend of rural background sites, peaking in
896	summer (Figure 5). The formation rate J_{10} at SPAUB is comparable to the other urban background
897	sites (apart from GERUB) and it peaked in spring, while once again the peak at SPARU was found
898	in summer, similar to the other rural sites of this study apart from the Greek (Figures 6 and 7). For
899	both sites a higher probability for events was found on weekends compared to weekdays, though
900	this trend is stronger at SPAUB (Figure 4). On the other hand, at the urban site both the growth and
901	formation rates were higher on weekdays compared to weekends (both $p < 0.001$). While the
902	increased growth rate during weekdays may be associated with the increased presence of
903	condensable species due to increased anthropogenic activities, the increased formation rate might be
903 904	condensable species due to increased anthropogenic activities, the increased formation rate might be affected by the increased emissions during these days.
904	
904 905	affected by the increased emissions during these days.
904 905 906	affected by the increased emissions during these days. In general, the atmospheric conditions favouring NPF events at both sites are similar to most other
904 905 906 907	affected by the increased emissions during these days. In general, the atmospheric conditions favouring NPF events at both sites are similar to most other sites, with lower relative humidity and higher solar radiation and wind speed (p < 0.001 for wind
904 905 906 907 908	affected by the increased emissions during these days. In general, the atmospheric conditions favouring NPF events at both sites are similar to most other sites, with lower relative humidity and higher solar radiation and wind speed (p < 0.001 for wind speed at SPAUB) (Table S1). The wind profile between the two sites is different, with mainly
904 905 906 907 908 909	affected by the increased emissions during these days. In general, the atmospheric conditions favouring NPF events at both sites are similar to most other sites, with lower relative humidity and higher solar radiation and wind speed (p < 0.001 for wind speed at SPAUB) (Table S1). The wind profile between the two sites is different, with mainly northwesterly and southeasterly winds for SPARU (which seems to be affected by the local
904 905 906 907 908 909 910	affected by the increased emissions during these days. In general, the atmospheric conditions favouring NPF events at both sites are similar to most other sites, with lower relative humidity and higher solar radiation and wind speed (p < 0.001 for wind speed at SPAUB) (Table S1). The wind profile between the two sites is different, with mainly northwesterly and southeasterly winds for SPARU (which seems to be affected by the local topography), while a more balanced profile is found at SPAUB. For both sites, though, increased

913	and condensation sink (Table S4). At SPARU, incoming wind from directions with higher
914	concentrations of pollutants and condensation sink were associated with lower frequency of NPF
915	events but higher growth rates. At SPAUB, NPF events were relatively rare and growth rates were
916	lower with easterly wind directions, as air masses originating from that section have passed from
917	the city centre and the industrial areas from the Besos River. Due to this, incoming air masses from
918	these sectors had higher concentrations of pollutants and condensation sink. The concentrations of
919	all the pollutants with available data were lower at SPAUB (apart from O_3 and CO – the results for
920	the latter are not included) on NPF event days (Table S2) as was found by Brines et al. (2015), as
921	were the condensation sink and PM concentrations. At SPARU, the concentrations of the pollutants
922	with available data are rather low and as a result minimal differences were found between event and
923	non-event days.
924	
6.00	

While NPF events with subsequent growth of the particles were rare during summer, cases of bursts 925 of particles in the smallest size range available were found to occur frequently, especially in August 926 927 and July (the month with the fewest NPF events, despite the favourable meteorological conditions). In such cases, a new mode of particles appears in the smallest size available, persisting for many 928 hours though without clear growth (brief or no growth is only observed), as reported by Dall'Osto 929 et al. (2012). Due to the lack of growth of the particles these burst events do not qualify as NPF 930 events using the criteria set in the present study. These burst events are associated with southerly 931 winds (known as Garbí southwest and Migjorn south in Catalan, which are common during the 932

summer in the area) that bring a large number of particles smaller than 30 nm to the site from the
nearby airport (located about 15 km to the southwest) and port (7 km south), as well as Saharan
dust, increasing the concentrations of PM (Rodríguez et al., 2001) and thus suppressing NPF events
due to the increased condensation sink.

937

Finally, the wind direction profile at SPARU appears to have a daily trend, with almost exclusively 938 stronger southeasterly winds at about midday (Figure S3), which might be the result of the 939 movement of the air masses due to the increased solar activity during that time (which results in 940 different heating patterns of the various land types in the greater area). These incoming southeast 941 winds are more polluted and have higher condensation sink, which almost consistently bring larger 942 particles at the site during the midday. This may explain to an extent the lowest probability for NPF 943 events from that sector, despite the very high concentrations of O₃ associated to them, with some 944 extreme values well above 100 µg m⁻³ (Querol et al., 2017). The highest average growth rates are 945 also found from that direction. 946 947 948 949 3.5 Greece Data are available for two background sites in Greece (2012 2018 for GRERU and 2015 2018 950 for GREUB), though not in close proximity. While in Greece meteorological conditions are 951 favourable in general for NPF events, with high solar radiation and low relative humidity, their 952

953	frequency was only about 8.5% for the urban background site in Athens and 6.5% for the rural
954	background site in Finokalia, similar to the frequency of Class I events in the study by Kalivitis et
955	al. (2019). Most NPF events occurred in spring at both sites, peaking in April (Figure 2). It is
956	interesting that all sites in southern Europe have a considerable number of NPF events during
957	winter, which might be due to the specific meteorological conditions found in this area, where
958	winter is a lot warmer than the sites in northern and central Europe. The growth rate of particles in
959	these events was found to be similar at both sites (3.68±1.41 nm h ⁻⁴ for GREUB and 3.78±2.01 nm
960	h ⁻¹ for GRERU) and was higher in summer compared to the other seasons (Figures 3 and 5), having
961	a similar trend with the temperature and particulate organic carbon concentrations in the area. J_{10}
962	presented an interesting trend, having high averages in winter for both sites. Interestingly, the
963	lowest average J ₁₀ was found for summer at both sites (Figure 7).
963 964	lowest average J ₁₀ was found for summer at both sites (Figure 7).
	lowest average J ₁₀ was found for summer at both sites (Figure 7). Similar to all sites, higher solar radiation and lower relative humidity compared to average
964	
964 965	Similar to all sites, higher solar radiation and lower relative humidity compared to average
964 965 966	Similar to all sites, higher solar radiation and lower relative humidity compared to average conditions were found on NPF event days (Table S1). Temperature and wind speed were found to
964 965 966 967	Similar to all sites, higher solar radiation and lower relative humidity compared to average conditions were found on NPF event days (Table S1). Temperature and wind speed were found to be lower, but the differences are minimal and are associated with the seasonal variability of the
964 965 966 967 968	Similar to all sites, higher solar radiation and lower relative humidity compared to average conditions were found on NPF event days (Table S1). Temperature and wind speed were found to be lower, but the differences are minimal and are associated with the seasonal variability of the events. The wind rose in GREUB mainly consists of northeasterly and southwesterly winds. Due to
964 965 966 967 968 969	Similar to all sites, higher solar radiation and lower relative humidity compared to average conditions were found on NPF event days (Table S1). Temperature and wind speed were found to be lower, but the differences are minimal and are associated with the seasonal variability of the events. The wind rose in GREUB mainly consists of northeasterly and southwesterly winds. Due to its position, the site is heavily affected by emissions in Athens city centre with westerly winds,
964 965 966 967 968 969 970	Similar to all sites, higher solar radiation and lower relative humidity compared to average conditions were found on NPF event days (Table S1). Temperature and wind speed were found to be lower, but the differences are minimal and are associated with the seasonal variability of the events. The wind rose in GREUB mainly consists of northeasterly and southwesterly winds. Due to its position, the site is heavily affected by emissions in Athens city centre with westerly winds, resulting in increased particle number concentrations and condensation sink. Despite this, the

973	of seasonal and diurnal variation), temperature and the lowest relative humidity, along with the
974	highest condensation sink and particle number concentrations of almost all sizes. Chemical
975	composition data was not available for GREUB, though SO2 concentrations are rather low in
976	Athens and kept declining after the economic crisis (Vrekoussis et al., 2013). The seasonality of
977	SO2 concentration in Athens favoured winter months and was at its lowest during summer for the
978	period studied (YIIEKA, 2012) (this trend changed later as SO ₂ -concentrations further declined),
979	which may also be a factor in the seasonality of NPF events, though this will be further discussed
980	later.
981	
982	At the GRERU site, the wind profile is mainly westerly, and though it coincides with the most
983	important source of pollutants in the area, the city of Herakleio, its effect while observable is not
984	significant due to the topography in the area. The wind profile for NPF events is similar to the
985	average with significantly higher wind speeds (p < 0.001). In general, GRERU has very low
986	pollutant concentrations, with an average NO of 0.073 µg m ⁻³ , NO ₂ of 0.52 µg m ⁻³ and SO ₂ in
987	concentrations below 1 ppb (Kouvarakis et al., 2002). Due to this, the differences in the chemical
988	composition in the atmosphere are also minimal (Table S2). For the specific site two different
989	patterns of development of NPF events were found. In one case, NPF events occurred in a rather
990	clear background, while in the other one they were accompanied with an increase in number
991	concentrations of larger particles or a new mode appearing at larger sizes (about a third of the
992	events). No differences were found in the seasonal variation between the two groups; increased
I	

993	gaseous pollutant and particulate organic carbon concentrations were found for the second group
994	(though the differences were rather small) and a wind rose that favoured southwesterly winds
995	(originating from mainland Crete) instead of the northwesterly (originating from the sea) ones for
996	the first group. The growth rate for the two groups was found to be 3.56 nm h ⁻¹ for the first group
997	and 4.17 nm h ⁻¹ for the second, which might be due to the increased presence of condensable
998	compounds. As the dataset starts from the particle size of 8.77 nm, the possibility that these
999	particles were advected from nearby areas should not be overlooked, though they persisted and
1000	grew at the site. Other than that, no significant differences were found for the different wind
1001	directions.
1002	
1003	As mentioned earlier, both sites had a very low frequency of events and J_{10} in summer similar to
1004	previous studies also reporting few or no events during summer (Vratolis et al., 2019; Ždímal et al.,
1005	2011), though the incoming solar radiation is the highest and relative humidity is the lowest during
1006	that season. This variation was also observed by Kalivitis et al. (2012) who associated the seasonal
1007	variation of NPF events at GRERU to the concentrations of atmospheric ions. The effect of the
1008	Etesian winds (known as Meltemia in Greek), which dominate the southern Aegean region during
1009	the summer months though should not be overlooked. These result in very strong winds with an
1010	average wind speed of 8.15 m s ⁻¹ during summer at the Finokalia site, and increased turbulence
1011	found in all years with available data, affecting both sites of this study. During this period, $N_{<30nm}$
1012	drops to half or less compared to other seasons at both sites, while N>100nm is at its maximum due to
I	

1013	particle aging (Kalkavouras et al., 2017), increasing the condensation sink, especially in GRERU
1014	(the effect in GREUB is less visible due to both the wind profile, blowing from east which is a less
1015	polluted area, as well as the reduction of urban activities during summer months in Athens). Both
1016	the increased condensation sink and turbulence are possible factors for the reduced number of NPF
1017	events found at both sites in summer. Another possible factor is the effect of high temperatures in
1018	destabilising the molecular clusters critical to new particle formation.
1019	
1020	3.6 Region-Wide Events

Region-wide events are NPF events which occur over large scale areas, that may cover hundreds of 1021 kilometres (Shen et al., 2018). In the present study, NPF events that took place on the same day at 1022 both background sites (urban background and rural) are considered as regional and their conditions 1023 1024 are studied (Table S5). The background sites in Greece were not considered due to the great distance between them (about 350 km). There is also uncertainty for the background sites in 1025 Finland, where the distance is about 190 km, though a large number of days were found when NPF 1026 1027 events occurred on the same day. The number of region wide events per season (or the fraction of region-wide events to total NPF events) is found in Figure 8 and it appears as if they are more 1028 1029 probable in spring at all the sites of the present study (apart from Finland, though the number of 1030 events in winter was low), despite the differences found in absolute numbers. 1031

1032	In Denmark, about 20% of NPF events in DENRU were regional (the percentage is higher for
1033	DENUB due to the smaller number of events, at 29%). The relatively low frequency of region-wide
1034	NPF events can be explained by the different seasonal variation of NPF events (region-wide NPF
1035	events were more frequent in spring compared to the average due to the seasonality of NPF events
1036	in DENUB). Compared to local NPF event conditions, higher wind speed and solar radiation, as
1037	well as O3- and marine compound concentrations (results not included) were found, while the
1038	concentrations of all pollutants (such as NO, NO _x , sulphate, elemental and organic carbon) were
1039	lower. The exceptions found at DENRU (increased relative humidity and less incoming solar
1040	radiation) are probably due to the different seasonality between local and region wide NPF events at
1041	the site, though region-wide events rarely present similar characteristics at different sites even in the
1042	same country due to the differences in the initial meteorological and geographical conditions
1043	(Hussein et al., 2009). The growth rates of region wide events were found to be lower than those of
1044	local events at both sites, which is probably associated with the limited concentrations of
1045	condensable compounds due to the cleaner air masses of marine origin (as confirmed by the higher
1046	concentrations of marine compounds).
1047	
1048	In Germany, the majority of NPF events of this study were region wide (about 60%). Compared to
1049	the average, the meteorological conditions found for NPF event days compared to average
1050	conditions were more distinct for the region-wide events, with even lower wind speed and relative

1051 humidity and higher temperature and solar radiation, and all of these differences were significant (p

10	52	< 0.001). At GERRU where chemical composition data was available, higher concentrations of
10	53	particulate organic carbon and sulphate and lower nitrate concentrations were found. The
10	54	differences are significant (p < 0.001) and may explain the higher growth rates found in region-wide
10	55	events at both sites compared to the average, which is a unique feature. It should be noted that as
10	56	the majority of NPF events at the German sites are associated with easterly winds, it is expected that
10	57	in most cases the region wide events will be associated with these, carrying the characteristics that
10	58	come along with them (increased growth rates and concentrations of organic carbon, as discussed in
10	59	Section 3.2).
10	60	
10	61	In Finland, about a quarter of the NPF event days at FINRU (26%) occurred on the same day as at

FINUB (the frequency is a lot higher for FINUB, at 39%). As in Germany, the meteorological 1062 1063 conditions found on NPF event days compared to average conditions were more distinct during region-wide events. Thus, for both sites temperature and relative humidity were lower while solar 1064 radiation was higher. The different trend found for the wind speed at the two sites (being higher on 1065 1066 average NPF days at FINRU and lower at FINUB compared to average conditions) was enhanced as well at the two sites for region-wide events. At FINRU where chemical composition data was 1067 available, NO_x and SO₂ had similar concentrations on region wide event days, while O₃ was 1068 significantly higher (p < 0.001). As at most other sites, the growth rate was found lower on region-1069 wide event days compared to the average at both sites. 1070 1071

1072	Finally, in Spain the datasets of the two sites did not overlap greatly, having only 322 common
1073	days. Among these days, 13 days presented with NPF events that took place simultaneously at both
1074	sites, with smaller growth rates on average compared to local events (43% of the events at SPARU
1075	and 36% of the events at SPAUB in the period 8/2012 to 1/2013 and 2014 when data for both sites
1076	were available). Due to the small number of common events the results are quite mixed with the
1077	only consistent result being the lower relative humidity and higher O ₃ -concentrations for regional
1078	events at both sites, though none of these differences is significant. The wind profile at SPAUB
1079	seems to further favour the cleaner sector, with the majority of incoming winds being from the NW
1080	and even higher wind speeds (though with low significance). The result is similar at SPARU,
1081	though less clear and with lower wind speeds.
1082	
1083	These results are in general in agreement with those found in the UK in a previous study, where
1084	meteorological conditions were more distinct on region-wide event days compared to local NPF
1085	events; pollutant concentrations were lower as well as the growth rates of the newly formed
1086	particles (Bousiotis et al., 2019).
1087	
1088	Common events were also found between either of the background sites and the roadside, but they
1089	were always fewer in number, due to the difference in their temporal variability compared to the
1090	background sites, resulting from the effect of roadside pollution.
1091	

3.7 The Effect of NPF Events on the Ultrafine Particle Concentrations

1093	The NSF is a metric of the effect of NPF events upon particle concentrations on either the days of
1094	the events or over a larger timescale. Both the NSF _{NUC} and NSF _{GEN} were calculated for all sites of
1095	this study and the results are presented in Figure 9. For almost all rural background sites NSF _{NUC} ,
1096	which indicates the effect of NPF on ultrafine particle concentrations on the day of the event, was
1097	found to be greater than 2 (the only exception was GERRU), which means that NPF events more
1098	than double the number of ultrafine particles (particles with diameter smaller than 100 nm) at the
1099	site on the days of the events, as NPF events are one of the main sources of ultrafine particles in this
1100	type of sites, especially below 30 nm. This reaches up to 4.18 found at FINRU (418% more
1101	ultrafine particles on the day of the events 100% being the average), showing the great effect NPF
1102	events have on rather clean areas. The long-term effect was smaller, and it was found that at FINRU
1103	NPF events increase the number of ultrafine particles by about 130% in general. The effect of NPF
1104	events was a lot smaller at the urban sites, though still significant at urban background sites
1105	(reaching up 240% at FINUB on the days of events), while roadsides had the smallest NSF
1106	compared to their respective background sites. This is because of the increased effect of local
1107	sources such as traffic or heating, and the associated increased condensation sink found within these
1108	sites, which cause the new particles to be scavenged by the more polluted background.
1109	
1110	The calculation of NSF at the sites around Europe showed a weakness of the specific metric, which
1111	points to the need for more careful interpretation of the results of this metric, especially at roadside

1112	sites. At FINRO, the NSF _{NUC} provided a value smaller than 1, which translates as ultrafine particles
1113	are lost instead of formed on NPF event days. This though is the result of both the sharp reduction
1114	in particle number concentrations at all modes that are required for NPF events to occur at a busy
1115	roadside (much lower condensation sink), as well as a difference in the ratio between smaller to
1116	larger particles (smaller or larger than 100 nm) on NPF event days (favouring the larger particles) at
1117	the specific site. Similarly, the long term effect of NPF events at the site was found to be 1, which
1118	means that NPF events appear to cause no changes in the number concentration of ultrafine
1119	particles.
1120	
1121	4. DISCUSSION
1122	4.1 Variability of the fF requency and sS easonality of the eE vents
11221123	4.1Variability of the fFrequency and sSeasonality of the eEventsThe most consistent result found throughout the areas studied, regardless of the geographical
1123	The most consistent result found throughout the areas studied, regardless of the geographical
1123 1124	The most consistent result found throughout the areas studied, regardless of the geographical location was the higher frequency of NPF events at rural background sites compared to roadsides.
1123 1124 1125	The most consistent result found throughout the areas studied, regardless of the geographical location was the higher frequency of NPF events at rural background sites compared to roadsides. This pattern comes in contrast with what was found for the more polluted Asian cities (Peng et al.,
1123 1124 1125 1126 1127	The most consistent result found throughout the areas studied, regardless of the geographical location was the higher frequency of NPF events at rural background sites compared to roadsides. This pattern comes in contrast with what was found for the more polluted Asian cities (Peng et al., 2017; Wang et al., 2017), where NPF events were more frequent at the urban sites. This is probably
1123 1124 1125 1126 1127	The most consistent result found throughout the areas studied, regardless of the geographical location was the higher frequency of NPF events at rural background sites compared to roadsides. This pattern comes in contrast with what was found for the more polluted Asian cities (Peng et al., 2017; Wang et al., 2017), where NPF events were more frequent at the urban sites. This is probably associated with the even greater abundance of condensable species (which further enhances the
1123 1124 1125 1126 1127 1128	The most consistent result found throughout the areas studied, regardless of the geographical location was the higher frequency of NPF events at rural background sites compared to roadsides. This pattern comes in contrast with what was found for the more polluted Asian cities (Peng et al., 2017; Wang et al., 2017), where NPF events were more frequent at the urban sites. This is probably associated with the even greater abundance of condensable species (which further enhances the growth of the particles, thus increasing their chance of survival), deriving from anthropogenic
1123 1124 1125 1126 1127 1128 1129	The most consistent result found throughout the areas studied, regardless of the geographical location was the higher frequency of NPF events at rural background sites compared to roadsides. This pattern comes in contrast with what was found for the more polluted Asian cities (Peng et al., 2017; Wang et al., 2017), where NPF events were more frequent at the urban sites. This is probably associated with the even greater abundance of condensable species (which further enhances the growth of the particles, thus increasing their chance of survival), deriving from anthropogenic emissions, found in Asian megacities compared to European ones and results in a greater frequency

1132	and Asia, which are associated with the level of pollution found in them, as well as the influence
1133	that the level of pollution has on the occurrence of NPF events in general.
1134	
1135	The type of site dependence found in Europe together with the average conditions found on NPF
1136	event days compared to the average for each site, underline the importance of clear atmospheric
1137	conditions (high solar radiation and low relative humidity and pollutant concentrations) at all types
1138	of sites in Europe, especially for region-wide events. The temperature and wind speed presented
1139	more diverse results which in many cases are associated with local conditions. The origin of the
1140	incoming air masses though, appears to have a more important influence upon the NPF events.
1141	Cleaner air masses tend to have higher probability for NPF events, a result which was consistent
1142	among the sites of this study regardless of their type.
1143	
	The frequency of NPF events at roadsides peaked in summer in all three countries with available
1143	
1143 1144	The frequency of NPF events at roadsides peaked in summer in all three countries with available
1143 1144 1145	The frequency of NPF events at roadsides peaked in summer in all three countries with available data. Greater variability in the seasonality of NPF events was found at the background sites. The
1143 1144 1145 1146	The frequency of NPF events at roadsides peaked in summer in all three countries with available data. Greater variability in the seasonality of NPF events was found at the background sites. The urban background sites presented more diverse results, for both the occurrence and development of
1143 1144 1145 1146 1147	The frequency of NPF events at roadsides peaked in summer in all three countries with available data. Greater variability in the seasonality of NPF events was found at the background sites. The urban background sites presented more diverse results, for both the occurrence and development of NPF events, especially compared to rural background sites. The within-week variation of NPF
1143 1144 1145 1146 1147 1148	The frequency of NPF events at roadsides peaked in summer in all three countries with available data. Greater variability in the seasonality of NPF events was found at the background sites. The urban background sites presented more diverse results, for both the occurrence and development of NPF events, especially compared to rural background sites. The within-week variation of NPF events was found to favour weekends in most cases, as the pollution levels decrease, due to the
1143 1144 1145 1146 1147 1148 1149	The frequency of NPF events at roadsides peaked in summer in all three countries with available data. Greater variability in the seasonality of NPF events was found at the background sites. The urban background sites presented more diverse results, for both the occurrence and development of NPF events, especially compared to rural background sites. The within-week variation of NPF events was found to favour weekends in most cases, as the pollution levels decrease, due to the weekly cycle, especially at the roadsides. As background sites have smaller variations between

1152 that no clear interannual trend was found in the frequency of the events for any site, even for those
1153 with longer datasets.

1154

1 55 4.2 Variability and sSeasonality of the fFormation and gGrowth rRate

- 1 56 The growth rate of the newly formed particles was found to be higher at all the roadsides compared
- 1 57 to their respective rural and urban background. The picture is similar for J_{10} , (the rate of formed
- 1 58 particles associated with NPF events that reached 10 nm diameter), for which urban background
- 1 59 sites were between their respective rural background sites and the roadsides with the sole exception
- 1 60 of DENUB (the difference with DENRU is rather small though). The growth and formation rate at
- 161 the rural background sites (apart from the Greek site) were found to be higher in summer compared
- 1 62 to the other seasons. On the other hand, the seasonality of the growth rate at the roadsides is not
- 163 <u>clear but the formation rate peaks in the autumn at all three roadside sites. While the trend at the</u>
- 1 64 rural sites is probably associated with the enhanced photochemistry and increased concentrations of
- 1165 BVOCs during summer, the seasonality of the growth rate at the roadside sites is more difficult to
- 166 explain and probably shows the smaller importance of the BVOCs compared to the compounds of
- 1 167 <u>anthropogenic origin (which are in less abundance in summer) in this type of environment. In</u>

168 general, higher temperatures were associated with higher growth rates. This though applies only for

- 169 the specific conditions at each site and cannot be used as a general rule for the expected growth rate
- 1 170 at a site, as locations with higher temperatures did not present higher growth rates. Additionally, the
- 1 71 origin of the incoming air masses appears to have an effect on the growth of the particles as well. In

1172	most of the sites in this study, incoming air masses from directions associated with higher
1173	concentrations of pollutants presented higher growth rates of the newly formed particles. The effect
1174	of the different wind directions upon the formation rate was more complex and a definitive
1175	conclusion cannot be made. Finally, as with the frequency of the events, no significant interannual
1176	trend was found in the variation of the formation or the growth rate across the sites studied.
1177	
1178	<u>4.3</u> Effect of <u>H</u> ocal eC onditions in the <u>oO</u> ccurrence and <u>dD</u> evelopment of NPF <u>eE</u> vents
1179	Apart from the general meteorological and atmospheric conditions that affect the occurrence and
1180	the metrics of NPF events, conditions with a more local character were found to play a significant
1181	role as well. These include synoptic systems, such as the one occurring during the summer at the
1182	Greek sites, affecting the frequency and seasonality of the events. As a result, sites or seasons with
1183	conditions that favoured NPF presented decreased frequency of events and unexpected seasonality,
1184	due to the increased turbulence caused by such pressure systems. Additionally, local sources of
1185	pollution can also have a significant impact in the temporal trends and metrics of the events, even
1186	for sites of very close proximity. One such example was the urban sites in Denmark, which despite
1187	being affected by the same source of pollution (the nearby port) and being only a few kilometres
1188	away from each other, they presented different outcomes in the occurrence of the events. This was
1189	due to the different atmospheric composition found between them, being a background and a
1190	roadside site, which led to a different response in that local variable. In this case, the effect of the
1191	specific source was more prominent at the urban background site compared to the roadside,
I	

- 1192 resulting in fewer NPF events, as the newly formed particles were more effectively supressed at the
 1193 urban background site, due to their slower growth.
- 1194

1195 <u>5</u>4. CONCLUSIONS

- 196 There are different ways to assess the occurrence of new particle formation (NPF) events. In this
- 1 97 study, the frequency of NPF events, the formation and growth rate of the particles associated with
- 198 secondary formation of particles and not primary emissions, at 13 sites from five countries in
- 199 Europe are considered. NPF is a complicated process, affected by many meteorological and
- 1200 environmental variables. The seasonality of these variables, which varies throughout Europe, results
- 1201 in the different temporal trends found for the metrics studied in this paper. Apart from
- 1202 meteorological conditions though, some of which have a uniform effect (such as the solar radiation
- 1203 intensity and relative humidity), many local variables can also have a positive or negative effect in
- 1204 the occurrence of these events. Sites with less anthropogenic influence seem to have temporal
- 1205 trends dependant on the seasonality of synoptic conditions and general atmospheric composition.
- 1206 The urban sites though and especially those with significant sources of pollution in close proximity,
- 1207 present more complex trends as the NPF occurrence depends less toupon favourable meteorological
- 1208 <u>conditions and more toupon the local atmospheric conditions, including composition. As NPF</u>
- 1209 <u>events</u>² occurrence is based on the balance between the rapid growth of the newly formed particles
- 1210 and their loss from processes, such as the evaporation or coagulation of the particles, the importance
- 1211 of significant particle formation, fast growth (which is enhanced by the increased presence of

1212	condensable compounds from anthropogenic activities found in urban environments) and low
1213	condensation sink is increased within such environments, also affecting the temporal trends of the
1214	events, making them more probable during periods with smaller pollution loads (e.g. summer,
1215	weekends). This explains the smaller frequency of NPF events at roadside sites compared to their
1216	respective background sites, despite the greater formation and growth rates observed in them.
1217	Consequently, NPF events have a smaller influence on the ultrafine particle load at the urban sites
1218	compared to background sites, due to both the increased presence of ultrafine particles from
1219	anthropogenic emissions as well as the smaller probability of ultrafine particles to survive in such
1220	environments.
1221	
1222	Nevertheless, NPF events are an important source of ultrafine particles in the atmosphere for all
1223	types of environments and are an important factor in the air quality of a given area. The present
1224	study underlines the importance of both the synoptic and local conditions on NPF events, the mix of
1225	which not only affects their development but can also influence their occurrence even in areas of
1226	very close proximity. NPF is a complex mechanismprocess, affected by numerous variables,
1227	making it extremely difficult to predict any of its metrics without considering all of them multiple
1228	factors. Since the mechanisms and general trends in NPF events are yet to be fully explained and
1229	understood, more laboratory and field studies should be undertaken to generate new knowledgeare
1230	needed to generate greater clarity and predictive capability.

1231 There are different ways to assess occurrences of new particle formation (NPF) events. In this 1232 study, the rate of NPF events, the growth rate of the particles and the frequency of NPF events, 1233 associated with secondary formation of particles and not primary emissions, at 13 sites from five 1234 countries in Europe are considered. The most consistent result found throughout the areas studied, regardless of the geographical location was the higher frequency of NPF events at rural background 1235 sites compared to roadsides. This pattern comes in contrast with what was found for the more 1236 1237 polluted Asian cities (Peng et al., 2017; Wang et al., 2017), where NPF events were more frequent 1238 at the urban sites. This is probably associated with the even greater abundance of condensable 1239 species associated with anthropogenic emissions, that promotes NPF events more, even compared 1240 to the polluted cities in Europe. This contrast emphasises the differences in the occurrence of NPF 1241 events between the polluted cities in Europe and Asia, which are associated with the level of 1242 pollution found in them, as well as the influence that the level of pollution has on the occurrence of 1243 NPF events. The type of site dependence found in Europe together with the average conditions 1244 found on NPF event days compared to the average for each site, underline the importance of clear 1245 atmospheric conditions at all types of site in Europe, especially for region wide events (high solar 1246 radiation and low relative humidity and pollutants concentrations). The temperature and wind speed presented more diverse results which in many cases are associated with local conditions; the origin 1247 of the incoming air masses though, appears to have a more important influence upon the NPF 1248 1249 events. Cleaner air masses tend to have higher probability for NPF events, while more polluted tend to have higher growth rates (no consistent trend was found for the formation rate). 1250

1252	The frequency of NPF events at roadsides peaked in summer in all three countries with available
1253	data. Greater variability in the seasonality of NPF events was found at the background sites. The
1254	urban background sites presented more diverse results, for both the occurrence and development of
1255	NPF events, especially compared to rural background sites. The within-week variation of NPF
1256	events was found to favour weekends in most cases, as the pollution levels decrease, due to the
1257	weekly cycle, especially at the roadsides. As background sites have smaller variations between
1258	weekdays and weekends, the within-week variation of NPF events is smaller at the urban
1259	background sites and almost non existent at the rural background sites.
1260	
1261	Both the growth rate of the newly formed particles and the formation rate of the particles were
1262	found to be higher at all the roadsides compared to their respective rural and urban background.
1263	While the more polluted urban environment is a limiting factor in the occurrence of NPF events,
1264	their development as represented by the number of particles formed and the speed at which they
1265	grow is enhanced by the urban environment (which seems to be a prerequisite for NPF events
1266	within the more polluted environment), as more condensable compounds, deriving from
1267	anthropogenic activities, are available. The picture is similar for J ₁₀ , the formation rate of particles
1268	with 10 nm diameter (the rate of formed particles associated with NPF events that reached 10 nm
1269	diameter), for which urban background sites were between their respective rural background sites
1270	and the roadsides with the sole exception of DENUB (the difference with DENRU is rather small
I	

1271	though). The growth and formation rate at the rural background sites (apart from the Greek site)
1272	was found to be higher in summer than in other seasons. On the other hand, the seasonality of the
1273	growth rate at the roadsides is not clear but the formation rate peaks in the autumn at all three
1274	roadside sites. While the trend at the rural sites is probably associated with the enhanced
1275	photochemistry and increased concentrations of BVOCs during summer, the seasonality of the
1276	growth rate at the roadside sites is more difficult to explain and probably shows the smaller
1277	importance of the BVOCs compared to the compounds of anthropogenic origin (which are in less
1278	abundance in summer) in this type of environment. In general though, higher temperatures were
1279	associated with higher growth rates. This though applies only for the specific conditions at each site
1280	and cannot be used as a general rule for the expected growth rate at a site, as locations with higher
1281	temperatures did not present the higher growth rates.
1281 1282	temperatures did not present the higher growth rates.
	temperatures did not present the higher growth rates. While both the formation and growth rates are greater at the roadsides, the relative effect of NPF
1282	
1282 1283	While both the formation and growth rates are greater at the roadsides, the relative effect of NPF
1282 1283 1284	While both the formation and growth rates are greater at the roadsides, the relative effect of NPF events on the ultrafine particle concentrations is consistently a lot greater at the rural sites, where in
1282 1283 1284 1285	While both the formation and growth rates are greater at the roadsides, the relative effect of NPF events on the ultrafine particle concentrations is consistently a lot greater at the rural sites, where in most cases NPF more than doubles (up to 400%) their particle number concentration on the days
1282 1283 1284 1285 1286	While both the formation and growth rates are greater at the roadsides, the relative effect of NPF events on the ultrafine particle concentrations is consistently a lot greater at the rural sites, where in most cases NPF more than doubles (up to 400%) their particle number concentration on the days they occur, as well as in the urban background sites where a substantial increase (up to 240%) is
1282 1283 1284 1285 1286 1286	While both the formation and growth rates are greater at the roadsides, the relative effect of NPF events on the ultrafine particle concentrations is consistently a lot greater at the rural sites, where in most cases NPF more than doubles (up to 400%) their particle number concentration on the days they occur, as well as in the urban background sites where a substantial increase (up to 240%) is also observed. The effect is considerable at roadside sites as well, increasing the number of ultrafine
1282 1283 1284 1285 1286 1287 1288	While both the formation and growth rates are greater at the roadsides, the relative effect of NPF events on the ultrafine particle concentrations is consistently a lot greater at the rural sites, where in most cases NPF more than doubles (up to 400%) their particle number concentration on the days they occur, as well as in the urban background sites where a substantial increase (up to 240%) is also observed. The effect is considerable at roadside sites as well, increasing the number of ultrafine particles up to 126% on event days (which might be higher as the occurrence of NPF events at

129	1
-----	---

1292	NPF events are an important source of ultrafine particles in the atmosphere for all types of
1293	environments and are an important factor in the air quality of a given area. The present study
1294	underlines the importance of both the synoptic and local conditions on NPF events, the mix of
1295	which not only affects their development but can also influence their occurrence even in areas of
1296	very close proximity. Since the mechanisms and general trends in NPF events are yet to be fully
1297	explained and understood, more laboratory and field studies should be undertaken to generate new
1298	knowledge.

1299 DATA ACCESSIBILITY

- 1300 Data supporting this publication are openly available from the UBIRA eData repository at
- 1301 https://doi.org/10.25500/edata.bham.00000467
- 1302

1303 AUTHOR CONTRIBUTIONS

- 1304 The study was conceived and planned by MDO and RMH who also contributed to the final
- 1305 manuscript. The data analysis was carried out by DB who also prepared the first draft of the
- 1306 manuscript. AM, JKN, CN, JVN, HP, NP, AA, GK, SV and KE have provided with the data for the
- 1307 analysis. FDP, XQ, DCB and TP provided advice on the analysis.

1308

1309 COMPETING INTERESTS

1310 The authors have no conflict of interests.

1311 ACKNOWLEDGMENTS

- 1312 This work was supported by the National Centre for Atmospheric Science funded by the U.K.
- 1313 Natural Environment Research Council (R8/H12/83/011).

- 1314 **REFERENCES**
- 1315
- 1316 Aalto, P., Hämeri, K., Becker, E. D. O., Weber, R., Salm, J., Mäkelä, J. M., Hoell, C., O'Dowd, C.
- 1317 D., Karlsson, H., Hansson, H., Väkevä, M., Koponen, I. K., Buzorius, G. and Kulmala, M.: Physical
- 1318 characterization of aerosol particles during nucleation events, Tellus, Ser. B Chem. Phys. Meteorol.,
- 1319 53(4), 344–358, doi:10.3402/tellusb.v53i4.17127, 2001.
- 1320
- 1321 Alam, A., Shi, J. P. and Harrison, R. M.: Observations of new particle formation in urban air, J.
- 1322 Geophys. Res. Atmos., 108(D3), 4093, doi:10.1029/2001JD001417, 2003.
- 1323
- 1324 Atkinson, R. W., Fuller, G. W., Anderson, H. R., Harrison, R. M. and Armstrong, B.: Urban
- 1325 ambient particle metrics and health: A time-series analysis, Epidemiology, 21(4), 501–511,
- 1326 doi:10.1097/EDE.0b013e3181debc88, 2010.
- 1327
- 1328 Bianchi, F., Kurtén, T., Riva, M., Mohr, C., Rissanen, M. P., Roldin, P., Berndt, T., Crounse, J. D.,
- 1329 Wennberg, P. O., Mentel, T. F., Wildt, J., Junninen, H., Jokinen, T., Kulmala, M., Worsnop, D. R.,
- 1330 Thornton, J. A., Donahue, N., Kjaergaard, H. G. and Ehn, M.: Highly oxygenated organic
- 1331 molecules (HOM) from gas-phase autoxidation involving peroxy radicals : A key contributor to
- 1332 atmospheric aerosol, Chem. Rev., 119, 3472–3509, doi:10.1021/acs.chemrev.8b00395, 2019. 1333
- 1334 Birmili, W., Weinhold, K., Rasch, F., Sonntag, A., Sun, J., Merkel, M., Wiedensohler, A., Bastian,
- 1335 S., Schladitz, A., Löschau, G., Cyrys, J., Pitz, M., Gu, J., Kusch, T., Flentje, H., Quass, U.,
- 1336 Kaminski, H., Kuhlbusch, T. A. J., Meinhardt, F., Schwerin, A., Bath, O., Ries, L., Wirtz, K. and
- 1337 Fiebig, M.: Long-term observations of tropospheric particle number size distributions and
- 1338 equivalent black carbon mass concentrations in the German Ultrafine Aerosol Network (GUAN),
- 1339 Earth Syst. Sci. Data, 8(2), 355–382, doi:10.5194/essd-8-355-2016, 2016.
- 1340
- 1341 Bousiotis, D., Osto, M. D., Beddows, D. C. S., Pope, F. D., Harrison, R. M. and Harrison, C. R. M.:
- 1342 Analysis of new particle formation (NPF) events at nearby rural, urban background and urban
- 1343 roadside sites, 19, 5679–5694, 2019.
- 1344
- 1345 Boy, M., Kulmala, M., Ruuskanen, T. M., Pihlatie, M., Reissell, A., Aalto, P. P., Keronen, P., Dal
- 1346 Maso, M., Hellen, H., Hakola, H., Jansson, R., Hanke, M. and Arnold, F.: Sulphuric acid closure
- 1347 and contribution to nucleation mode particle growth, Atmos. Chem. Phys., 5(4), 863–878,
- 1348 doi:10.5194/acp-5-863-2005, 2005.
- 1349
- 1350 Brean, J., Harrison, R. M., Shi, Z., Beddows, D. C. S., Acton, W. J. F. and Hewitt, C. N.:
- 1351 Observations of highly oxidised molecules and particle nucleation in the atmosphere of Beijing,
- 1352 Atmos. Chem. Phys., 19, 14933–14947, 2019, doi.org/10.5194/acp-19-14933-2019, 2019.
- 1353

1354 Brines, M., Dall'Osto, M., Beddows, D. C. S., Harrison, R. M., Gómez-Moreno, F., Núñez, L., 1355 Artíñano, B., Costabile, F., Gobbi, G. P., Salimi, F., Morawska, L., Sioutas, C. and Querol, X.: 1356 Traffic and nucleation events as main sources of ultrafine particles in high-insolation developed world cities, Atmos. Chem. Phys., 15(10), 5929-5945, doi:10.5194/acp-15-5929-2015, 2015. 1357 1358 1359 Brines, M., Dall'Osto, M., Beddows, D. C. S., Harrison, R. M. and Ouerol, X.: Simplifying aerosol 1360 size distributions modes simultaneously detected at four monitoring sites during SAPUSS, Atmos. 1361 Chem. Phys., 14(6), 2973–2986, doi:10.5194/acp-14-2973-2014, 2014. 1362 1363 Carnerero, C., Pérez, N., Reche, C., Ealo, M., Titos, G., Lee, H., Eun, R., Park, Y., Dada, L., Paasonen, P., Kerminen, V., Mantilla, E., Escudero, M., Gómez-moreno, F. J., Alonso-blanco, E., 1364 1365 Coz, E., Saiz-, A., Temime-roussel, B., Marchand, N., Beddows, D. C. S. and Harrison, R. M.: 1366 Vertical and horizontal distribution of regional new particle formation events in Madrid, Atmos. 1367 Chem. Phys., 1–27, doi:10.5194/acp-2018-173, 2018. 1368 1369 Charron, A., Birmili, W. and Harrison, R. M.: Fingerprinting particle origins according to their size 1370 distribution at a UK rural site, J. Geophys. Res. Atmos., 113(7), 1–15, doi:10.1029/2007JD008562, 1371 2008. 1372 1373 Cheung, H. C., Chou, C. C.-K., Huang, W.-R. and Tsai, C.-Y.: Characterization of ultrafine particle 1374 number concentration and new particle formation in an urban environment of Taipei, Taiwan, 1375 Atmos. Chem. Phys., 13(17), 8935–8946, doi:10.5194/acp-13-8935-2013, 2013. 1376 1377 Chu, B., Kerminen, V., Bianchi, F., Yan, C., Petäjä, T. and Kulmala, M.: Atmospheric new particle formation in China, Atmos. Chem. Phys., 19, 115–138, doi.org/10.5194/acp-19-115-2019, 2019. 1378 1379 1380 Costabile, F., Birmili, W., Klose, S., Tuch, T., Wehner, B., Wiedensohler, A., Franck, U., Konig, K. 1381 and Sonntag, A.: Spatio-temporal variability and principal components of the particle number size 1382 distribution in an urban atmosphere, Atmos. Chem. Phys., 9(9), 3163–3195, doi:10.5194/acp-9-1383 3163-2009, 2009. 1384 1385 Dal Maso, M., Kulmala, M., Riipinen, I., Wagner, R., Hussein, T., Aalto, P. P. and Lehtinen, K. E. 1386 J.: Formation and growth of fresh atmospheric aerosols: Eight years of aerosol size distribution data 1387 from SMEAR II, Hyytiälä, Finland, Boreal Environ. Res., 10(5), 323–336, 1388 doi:10.1016/j.ijpharm.2012.03.044, 2005. 1389 Dal Maso, M., Kulmala, M., Lehtinen, K. E. J., *Äkelä, J. M., Aalto, P. and O'Dowd, C. D.:* 1390 1391 Condensation and coagulation sinks and formation of nucleation mode particles in coastal and 1392 boreal forest boundary layers, J. Geophys. Res. Atmos., 107(19), doi:10.1029/2001JD001053, 2002. 1393

1394	Dall'Osto, M., Beddows, D. C. S., Asmi, A., Poulain, L., Hao, L., Freney, E., Allan, J. D.,
1395	Canagaratna, M., Crippa, M., Bianchi, F., De Leeuw, G., Eriksson, A., Swietlicki, E., Hansson, H.
1396	C., Henzing, J. S., Granier, C., Zemankova, K., Laj, P., Onasch, T., Prevot, A., Putaud, J. P.,
1397	Sellegri, K., Vidal, M., Virtanen, A., Simo, R., Worsnop, D., O'Dowd, C., Kulmala, M. and
1398	Harrison, R. M.: Novel insights on new particle formation derived from a pan-european observing
1399	system, Sci. Rep., 8(1), 1–11, doi:10.1038/s41598-017-17343-9, 2018.
1400	
1401	Dall'Osto, M., Querol, X., Alastuey, A., O'Dowd, C., Harrison, R. M., Wenger, J. and Gómez-
1402	Moreno, F. J.: On the spatial distribution and evolution of ultrafine particles in Barcelona, Atmos.
1403	Chem. Phys., 13(2), 741–759, doi:10.5194/acp-13-741-2013, 2013.
1404	
1405	Dall'Osto, M., Beddows, D. C. S., Pey, J., Rodriguez, S., Alastuey, A., M. Harrison, R. and Querol,
1406	X.: Urban aerosol size distributions over the Mediterranean city of Barcelona, NE Spain, Atmos.
1407	Chem. Phys., 12(22), 10693–10707, doi:10.5194/acp-12-10693-2012, 2012.
1408	
1409	Dameto de España, C., Wonaschütz, A., Steiner, G., Rosati, B., Demattio, A., Schuh, H. and
1410	Hitzenberger, R.: Long-term quantitative field study of New Particle Formation (NPF) events as a
1411	source of Cloud Condensation Nuclei (CCN) in the urban background of Vienna, Atmos. Environ.,
1412	164, 289–298, doi:10.1016/j.atmosenv.2017.06.001, 2017.
1413	
1414	Deng C., Fu, F., Dada, L., Yan, C., Cai, R., Yang, D., Zhou, Y., Yin, R., Lu, Y., Li, X., Fan, X.,
1415	Nie, W., Kontkanen, J., Kangasluoma, J., Chu, B., Ding, A., Kerminen, VM., Paasonen, P.,
1416	Worsnop, D.R., Bianchi, F., Liu, Y., Zheng, J., Wang, L., Kulmala, M. and Jiang, J.: Seasonal
1417	Characteristics of New Particle Formation and Growth in Urban Beijing, Environ. Sci. Technol., 54,
1418	<u>8547 – 8557, 2020.</u>
1419	
1420	Ehn, M., Thornton, J. A., Kleist, E., Sipilä, M., Junninen, H., Pullinen, I., Springer, M., Rubach, F.,
1421	Tillmann, R., Lee, B., Lopez-Hilfiker, F., Andres, S., Acir, I. H., Rissanen, M., Jokinen, T.,
1422	Schobesberger, S., Kangasluoma, J., Kontkanen, J., Nieminen, T., Kurtén, T., Nielsen, L. B.,
1423	Jørgensen, S., Kjaergaard, H. G., Canagaratna, M., Maso, M. D., Berndt, T., Petäjä, T., Wahner, A.,
1424	Kerminen, V. M., Kulmala, M., Worsnop, D. R., Wildt, J. and Mentel, T. F.: A large source of low-
1425	volatility secondary organic aerosol, Nature, 506(7489), 476–479, doi:10.1038/nature13032, 2014.
1426	
1427	Fuchs, N. A. and Sutugin, A. G.: Highly dispersed aerosols, Foreign Sci. Technol. Center, 1-86,
1428	1971.
1429	
1430	Hama, S. M. L., Cordell, R. L., Kos, G. P. A., Weijers, E. P. and Monks, P. S.: Sub-micron particle
1431	number size distribution characteristics at two urban locations in Leicester, Atmos. Res., 194, 1–16,

- 1433 doi:10.1016/j.atmosres.2017.04.021, 2017.

1434 Hao, L., Garmash, O., Ehn, M., Miettinen, P., Massoli, P., Mikkonen, S. and Jokinen, T.: Combined effects of boundary layer dynamics and atmospheric chemistry on aerosol composition during new 1435 particle formation periods, Atmos. Chem. Phys., 18, 17705-17716, doi.org/10.5194/acp-18-17705-1436 1437 2018, 2018. 1438 1439 Harrison, R. M., Shi, J. P., Xi, S., Khan, A., Mark, D., Kinnersley, R. and Yin, J.: Measurement of 1440 number, mass and size distribution of particles in the atmosphere, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci., 358(1775), 2567–2580, doi:10.1098/rsta.2000.0669, 2000. 1441 1442 1443 Hietikko, R., Kuuluvainen, H., Harrison, R. M., Portin, H., Timonen, H., Niemi, J. V and Rönkkö, T.: Diurnal variation of nanocluster aerosol concentrations and emission factors in a street canyon, 1444 1445 Atmos. Environ., 189, 98–106, doi:10.1016/j.atmosenv.2018.06.031, 2018. 1446 1447 Hofman, J., Staelens, J., Cordell, R., Stroobants, C., Zikova, N., Hama, S. M. L., Wyche, K. P., 1448 Kos, G. P. A., Van Der Zee, S., Smallbone, K. L., Weijers, E. P., Monks, P. S. and Roekens, E.: 1449 Ultrafine particles in four European urban environments: Results from a new continuous long-term 1450 monitoring network, Atmos. Environ., 136, 68–81, doi:10.1016/j.atmosenv.2016.04.010, 2016. 1451 1452 Hussein, T., Junninen, H., Tunved, P., Kristensson, A., Dal Maso, M., Riipinen, I., Aalto, P. P., Hansson, H. C., Swietlicki, E. and Kulmala, M.: Time span and spatial scale of regional new 1453 1454 particle formation events over Finland and Southern Sweden, Atmos. Chem. Phys., 9(14), 4699– 1455 4716, doi:10.5194/acp-9-4699-2009, 2009. 1456 1457 Iida, K., Stolzenburg, M. R., McMurry, P. H. and Smith, J. N.: Estimating nanoparticle growth rates from size-dependent charged fractions: Analysis of new particle formation events in Mexico City, J. 1458 Geophys. Res. Atmos., 113(5), 1–15, doi:10.1029/2007JD009260, 2008. 1459 1460 1461 Jaatinen, A., Hamed, A., Joutsensaari, J., Mikkonen, S., Birmili, W., Wehner, B., Spindler, G., 1462 Wiedensohler, A., Decesari, S., Mircea, M., Facchini, M. C., Junninen, H., Kulmala, M., Lehtinen, 1463 K. E. J. and Laaksonen, A.: A comparison of new particle formation events in the boundary layer at 1464 three different sites in Europe, Boreal Environ, Res., 14(4), 481–498, 2009. 1465 Järvi, L., Hannuniemi, H., Hussein, T., Junninen, H., Aalto, P., Hillamo, R., Mäkelä, T., Keronen, 1466 P. and Siivola, E.: The urban measurement station SMEAR III: Continuous monitoring of air 1467 1468 pollution and surface – atmosphere interactions in Helsinki, Finland, Boreal Environ. Res., 14(4), 1469 86–109, 2009. 1470 1471 Jeong, C.-H. H., Evans, G. J., McGuire, M. L., Y.-W. Chang, R., Abbatt, J. P. D. D., Zeromskiene, 1472 K., Mozurkewich, M., Li, S.-M. M., Leaitch, W. R., Chang, R. Y.-W., Abbatt, J. P. D. D.,

1473 Zeromskiene, K., Mozurkewich, M., Li, S.-M. M. and Leaitch, W. R.: Particle formation and

- 1474 growth at five rural and urban sites, Atmos. Chem. Phys., 10(16), 7979–7995, doi:10.5194/acp-10-1475 7979-2010, 2010.
- 1476
- 1477 Kalivitis, N., Stavroulas, I., Bougiatioti, A., Kouvarakis, G., Gagné, S., Manninen, H. E., Kulmala,
- 1478 M. and Mihalopoulos, N.: Night-time enhanced atmospheric ion concentrations in the marine
- 1479 boundary layer, Atmos. Chem. Phys., 12(8), 3627–3638, doi:10.5194/acp-12-3627-2012, 2012.
- 1480
- 1481 Kalivitis, N., Kerminen, V.-M., Kulmala, M., Kanakidou, M., Myriokefalitakis, S., Tzitzikalaki, E.,
- 1482 Roldin, P., Kouvarakis, G., Stavroulas, I., Boy, M., Manninen, H. E., Bougiatioti, A., Daskalakis,
- 1483 N., Petäjä, T., Kalkavouras, P. and Mihalopoulos, N.: Formation and growth of atmospheric
- 1484 nanoparticles in the eastern Mediterranean: Results from long-term measurements and process
- 1485 simulations, Atmos. Chem. Phys., 19, 2671–2686, doi.org/10.5194/acp-19-2671-2019, 2019.
- 1486
- 1487 Kalivitis, N., Kerminen, V. M., Kouvarakis, G., Stavroulas, I., Bougiatioti, A., Nenes, A.,
- 1488 Manninen, H. E., Petäjä, T., Kulmala, M. and Mihalopoulos, N.: Atmospheric new particle
- 1489 formation as a source of CCN in the eastern Mediterranean marine boundary layer, Atmos. Chem.
- 1490 Phys., 15(16), 9203–9215, doi:10.5194/acp-15-9203-2015, 2015.
- 1491
- 1492 Kalkavouras, P., Bossioli, E., Bezantakos, S., Bougiatioti, A., Kalivitis, N., Stavroulas, I.,
- 1493 Kouvarakis, G., Protonotariou, A. P., Dandou, A., Biskos, G., Mihalopoulos, N., Nenes, A. and
- 1494 Tombrou, M.: New particle formation in the southern Aegean Sea during the Etesians: Importance
- 1495 for CCN production and cloud droplet number, Atmos. Chem. Phys., 17(1), 175–192,
- 1496 doi:10.5194/acp-17-175-2017, 2017.
- 1497
- 1498 Kerminen, V.-M., Chen, X., Vakkari, V., Petäjä, T., Kulmala, M. and Bianchi, F.: Atmospheric new
- particle formation and growth: review of field observations, Environ. Res. Lett, 13(10), 103003,
 doi:10.1088/1748-9326/aadf3c, 2018.
- 1501
- 1502 Kerminen, V. M., Lehtinen, K. E. J., Anttila, T. and Kulmala, M.: Dynamics of atmospheric
- nucleation mode particles: A timescale analysis, Tellus, Ser. B Chem. Phys. Meteorol., 56(2), 135–
 146, doi:10.3402/tellusb.v56i2.16411, 2004.
- 1505
- 1506 Kerminen, V. M., Pirjola, L. and Kulmala, M.: How significantly does coagulational scavenging
- 1507 limit atmospheric particle production?, J. Geophys. Res. Atmos., 106(D20), 24119–24125,
- 1508 doi:10.1029/2001JD000322, 2001.
- 1509
- 1510 Ketzel, M., Wåhlin, P., Kristensson, A., Swietlicki, E., Berkowicz, R., Nielsen, O. J. and Palmgren,
- 1511 F.: Particle size distribution and particle mass measurements at urban, near-city and rural level in
- 1512 the Copenhagen area and Southern Sweden, Atmos. Chem. Phys., 4(1), 5513–5546,
- 1513 doi:10.5194/acpd-3-5513-2003, 2004.

- 1514 Korhonen, P., Kulmala, M., Laaksonen, A., Viisanen, Y., Mcgraw, R. and Seinfeld, J. H.: Ternary
- 1515 nucleation of H_2SO_4 , NH_3 and H_2O in the atmosphere, J. Geophys. Res., 104(D21), 26349–26353, 1516 doi: $arg/10.1020/1000 ID000784_{-1000}$
- 1516 doi.org/10.1029/1999JD900784, 1999.
- 1517
- 1518 Kouvarakis, G., Bardouki, H. and Mihalopoulos, N.: Sulfur budget above the Eastern
- 1519 Mediterranean: Relative contribution of anthropogenic and biogenic sources, Tellus, Ser. B Chem.
- 1520 Phys. Meteorol., 54(3), 201–212, doi:10.3402/tellusb.v54i3.16661, 2002.
- 1521
- 1522 Kristensson, A., Dal Maso, M., Swietlicki, E., Hussein, T., Zhou, J., Kerminen, V. M. and Kulmala,
- 1523 M.: Characterization of new particle formation events at a background site in southern Sweden:
- 1524 Relation to air mass history, Tellus, Ser. B Chem. Phys. Meteorol., 60 B(3), 330–344, 2008.
- 1525
- 1526 Kulmala, M., Kontkanen, J., Junninen, H., Lehtipalo, K., Manninen, H. E., Nieminen, T., Petäjä, T.,
- 1527 Sipilä, M., Schobesberger, S., Rantala, P., Franchin, A., Jokinen, T., Järvinen, E., Äijälä, M.,
- 1528 Kangasluoma, J., Hakala, J., Aalto, P. P., Paasonen, P., Mikkilä, J., Vanhanen, J., Aalto, J., Hakola,
- 1529 H., Makkonen, U., Ruuskanen, T., Mauldin, R. L., Duplissy, J., Vehkamäki, H., Bäck, J., Kulmala,
- 1530 M., Petäjä, T., Ehn, M., Thornton, J., Sipilä, M., Worsnop, D. R. and Kerminen, V.-M.: Chemistry
- 1531 of atmospheric nucleation: On the recent advances on precursor characterization and atmospheric
- 1532 cluster composition in connection with atmospheric new particle formation, Annu. Rev. Phys.
- 1533 Chem., 65(1), 21–37, doi:10.1146/annurev-physchem-040412-110014, 2014.
- 1534
- 1535 Kortelainen, A., Riipinen, I., Kurtén, T., Johnston, M. V., Smith, J. N., Ehn, M., Mentel, T. F.,
- 1536 Lehtinen, K. E. J., Laaksonen, A., Kerminen, V. M. and Worsnop, D. R.: Direct observations of
- 1537 atmospheric aerosol nucleation, Science (80-.)., 339(6122), 943–946,
- 1538 doi:10.1126/science.1227385, 2013.
- 1539
- 1540 Kulmala, M., Petäjä, T., Nieminen, T., Sipilä, M., Manninen, H. E., Lehtipalo, K., Dal Maso, M.,
- 1541 Aalto, P. P., Junninen, H., Paasonen, P., Riipinen, I., Lehtinen, K. E. J., Laaksonen, A. and
- 1542 Kerminen, V. M.: Measurement of the nucleation of atmospheric aerosol particles, Nat. Protoc.,
- 1543 7(9), 1651–1667, doi:10.1038/nprot.2012.091, 2012.
- 1544
- 1545 Kulmala, M., Petäjä, T., Mönkkönen, P., Koponen, I. K., Dal Maso, M., Aalto, P. P., Lehtinen, K.
- 1546 E. J. and Kerminen, V.-M.: On the growth of nucleation mode particles: source rates of condensable
- 1547 vapor in polluted and clean environments, Atmos. Chem. Phys. Discuss., 4(5), 6943–6966,
- 1548 doi:10.5194/acpd-4-6943-2004, 2005.
- 1549
- 1550 Kulmala, M., Vehkamäki, H., Petäjä, T., Dal Maso, M., Lauri, A., Kerminen, V. M., Birmili, W.
- 1551 and McMurry, P. H.: Formation and growth rates of ultrafine atmospheric particles: A review of
- 1552 observations, J. Aerosol Sci., 35(2), 143–176, doi:10.1016/j.jaerosci.2003.10.003, 2004a.
- 1553

1554 Kulmala, M., Laakso, L., Lehtinen, K. E. J., Riipinen, I., Dal Maso, M., Anttila, T., Kerminen, V.-M., Hõrrak, U., Vana, M. and Tammet, H.: Initial steps of aerosol growth, Atmos. Chem. Phys. 1555 1556 Discuss., 4(5), 5433–5454, doi:10.5194/acpd-4-5433-2004, 2004b. 1557 1558 Kulmala, M., Dal Maso, M., Mäkelä, J. M., Pirjola, L., Väkevä, M., Aalto, P., Miikkulainen, P., 1559 Hämeri, K. and O'Dowd, C. D.: On the formation, growth and composition of nucleation mode 1560 particles, Tellus, Ser. B Chem. Phys. Meteorol., 53(4), 479–490, doi:10.3402/tellusb.v53i4.16622, 1561 2001. 1562 1563 Kumar, P., Morawska, L., Birmili, W., Paasonen, P., Hu, M., Kulmala, M., Harrison, R. M., 1564 Norford, L. and Britter, R.: Ultrafine particles in cities, Environ. Int., 66, 1–10, 1565 doi:10.1016/j.envint.2014.01.013, 2014. 1566 1567 Kupiainen, K., Ritola, R., Stojiljkovic, A., Pirjola, L., Malinen, A. and Niemi, J.: Contribution of mineral dust sources to street side ambient and suspension PM_{10} samples, Atmos. Environ., 147, 1568 1569 178-189, doi:10.1016/j.atmosenv.2016.09.059, 2016. 1570 1571 Li, X., Chee, S., Hao, J., Abbatt, J. P. D., Jiang, J. and Smith, J. N.: Relative humidity effect on the 1572 formation of highly oxidized molecules and new particles during monoterpene oxidation, Atmos. 1573 Chem. Phys., 19(3), 1555–1570, doi:10.5194/acp-19-1555-2019, 2019. 1574 1575 Ma, N. and Birmili, W.: Estimating the contribution of photochemical particle formation to ultrafine particle number averages in an urban atmosphere, Sci. Total Environ., 512-513, 154-166, 1576 1577 doi:10.1016/j.scitotenv.2015.01.009, 2015. 1578 1579 Makkonen, R., Asmi, A., Kerminen, V. M., Boy, M., Arneth, A., Hari, P. and Kulmala, M.: Air 1580 pollution control and decreasing new particle formation lead to strong climate warming, Atmos. Chem. Phys., 12(3), 1515–1524, doi:10.5194/acp-12-1515-2012, 2012. 1581 1582 1583 Masiol, M., Harrison, R. M., Vu, T. V. and Beddows, D. C. S.: Sources of sub-micrometre particles near a major international airport, Atmos. Chem. Phys., 17(20), 12379-12403, doi:10.5194/acp-17-1584 1585 12379-2017, 2017. 1586 McFiggans, G., Mentel, T. F., Wildt, J., Pullinen, I., Kang, S., Kleist, E., Schmitt, S., Springer, M., 1587 1588 Tillmann, R., Wu, C., Zhao, D., Hallquist, M., Faxon, C., Le Breton, M., Hallquist, Å. M., Simpson, D., Bergström, R., Jenkin, M. E., Ehn, M., Thornton, J. A., Alfarra, M. R., Bannan, T. J., Percival, 1589 1590 C. J., Priestley, M., Topping, D. and Kiendler-Scharr, A.: Secondary organic aerosol reduced by 1591 mixture of atmospheric vapours, Nature, 565(7741), 587–593, doi:10.1038/s41586-018-0871-y, 1592 2019. 1593

1594	Minguillón, M. C., Brines, M., Pérez, N., Reche, C., Pandolfi, M., Fonseca, A. S., Amato, F.,
1595	Alastuey, A., Lyasota, A., Codina, B., Lee, H. K., Eun, H. R., Ahn, K. H. and Querol, X.: New
1596	particle formation at ground level and in the vertical column over the Barcelona area, Atmos. Res.,
1597	164–165, 118–130, doi:10.1016/j.atmosres.2015.05.003, 2015.
1598	
1599	Napari, I., Noppel, M., Vehkamäki, H. and Kulmala, M.: An improved model for ternary nucleation
1600	of sulfuric acid-ammonia-water, J. Chem. Phys., 116(10), 4221–4227, doi:10.1063/1.1450557,
1601	2002.
1602	
1603	Németh, Z. and Salma, I.: Spatial extension of nucleating air masses in the Carpathian Basin,
1604	Atmos. Chem. Phys., 14(16), 8841–8848, doi:10.5194/acp-14-8841-2014, 2014.
1605	
1606	Nieminen, T., Asmi, A., Maso, M. D., Aalto, P. P., Keronen, P., Petäjä, T., Kulmala, M. and
1607	Kerminen, V.: Trends in atmospheric new-particle formation : 16 years of observations in a boreal-
1608	forest environment, Boreal Environ. Res., 19, 191–214, 2014.
1609	
1610	Nilsson, E. D., Rannik, Ü., Kulmala, M., Buzorius, G. and O'Dowd, C. D.: Effects of continental
1611	boundary layer evolution, convection, turbulence and entrainment, on aerosol formation, Tellus,
1612	Ser. B Chem. Phys. Meteorol., 53(4), 441–461, doi:10.3402/tellusb.v53i4.16617, 2001.
1613	
1614	Olin, M., Kuuluvainen, H., Aurela, M., Kalliokoski, J., Kuittinen, N., Isotalo, M., Timonen, H. J.,
1615	Niemi, J. V., Rönkkö, T. and Dal Maso, M.: Traffic-originated nanocluster emission exceeds
1616	H2SO4-driven photochemical new particle formation in an urban area, Atmos. Chem. Phys., 20(1),
1617	1–13, doi:10.5194/acp-20-1-2020, 2020.
1618	
1619	Ortega, I. K., Kurtén, T., Vehkamäki, H. and Kulmala, M.: The role of ammonia in sulfuric acid ion
1620	induced nucleation, Atmos. Chem. Phys., 8(11), 2859–2867, doi:10.5194/acp-8-2859-2008, 2008.
1621	
1622	Park, M., Yum, S. S. and Kim, J. H.: Characteristics of submicron aerosol number size distribution
1623	and new particle formation events measured in Seoul, Korea, during 2004–2012, Asia-Pacific J.
1624	Atmos. Sci., 51(1), 1–10, doi:10.1007/s13143-014-0055-0, 2015.
1625	
1626	Peng, Y., Dong, Y., Li, X., Liu, X., Dai, J., Chen, C., Dong, Z., Du, C. and Wang, Z.: Different
1627	characteristics of new particle formation events at two suburban sites in northern China,
1628	Atmosphere, 8, 258, doi:10.3390/atmos8120258, 2017.
1629	
1630	Petäjä, T., Mauldin, R. L., Kosciuch, E., McGrath, J., Nieminen, T., Paasonen, P., Boy, M.,
1631	Adamov, A., Kotiaho, T. and Kulmala, M.: Sulfuric acid and OH concentrations in a boreal forest
1632	site, Atmos. Chem. Phys., 9(19), 7435–7448, doi:10.5194/acp-9-7435-2009, 2009.
1633	

- 1634 Poling, B. E., Prausnitz, J. M. and O'Connell, J. P.: The properties of gases and liquids, 5th Ed.,
- 1635 McGraw-Hill Education, New York, USA, 768 pp., 2001.
- 1636
- 1637 Politis, M., Pilinis, C. and Lekkas, T. D.: Ultrafine particles (UFP) and health effects. Dangerous.
- 1638 Like no other PM? Review and analysis, Glob. Nest J., 10(3), 439–452, 2008.
- 1639
- 1640 Querol, X., Gangoiti, G., Mantilla, E., Alastuey, A., Minguillón, M. C., Amato, F., Reche, C.,
- 1641 Viana, M., Moreno, T., Karanasiou, A., Rivas, I., Pérez, N., Ripoll, A., Brines, M., Ealo, M.,
- 1642 Pandolfi, M., Lee, H. K., Eun, H. R., Park, Y. H., Escudero, M., Beddows, D., Harrison, R. M.,
- 1643 Bertrand, A., Marchand, N., Lyasota, A., Codina, B., Olid, M., Udina, M., Jiménez-Esteve, B. B.,
- 1644 Jiménez-Esteve, B. B., Alonso, L., Millán, M. and Ahn, K. H.: Phenomenology of high-ozone
- 1645 episodes in NE Spain, Atmos. Chem. Phys., 17(4), 2817–2838, doi:10.5194/acp-17-2817-2017, 1646 2017.
- 1647
- 1648 Riccobono, F., Schobesberger, S., Scott, C. E., Dommen, J., Ortega, I. K., Rondo, L., Almeida, J.,
- 1649 Amorim, A., Bianchi, F., Breitenlechner, M., David, A., Downard, A., Dunne, E. M., Duplissy, J.,
- 1650 Ehrhart, S., Flagan, R. C., Franchin, A., Hansel, A., Junninen, H., Kajos, M., Keskinen, H., Kupc,
- 1651 A., Makhmutov, V., Mathot, S., Nieminen, T., Onnela, A., Petäjä, T., Tsagkogeorgas, G.,
- 1652 Vaattovaara, P., Viisanen, Y., Vrtala, A. and Wagner, P. E.: Oxidation Products of Biogenic
- 1653 Atmospheric Particles, Science, 717, 717–722, doi:10.1126/science.1243527, 2014.
- 1654
- 1655 Riipinen, I., Sihto, S.-L. L., Kulmala, M., Arnold, F., Dal Maso, M., Birmili, W., Saarnio, K.,
- 1656 Teinilä, K., Kerminen, V.-M. M., Laaksonen, A. and Lehtinen, K. E. J. J.: Connections between
- 1657 atmospheric sulphuric acid and new particle formation during QUEST III–IV campaigns in
- 1658 Heidelberg and Hyytiälä, Atmos. Chem. Phys. Atmos. Chem. Phys., 7(8), 1899–1914,
- 1659 doi:10.5194/acp-7-1899-2007, 2007.
- 1660
- 1661 Rimnácová, D., Ždímal, V., Schwarz, J., Smolík, J. and Rimnác, M.: Atmospheric aerosols in
- 1662 suburb of Prague: The dynamics of particle size distributions, Atmos. Res., 101(3), 539–552,
- 1663 doi:10.1016/j.atmosres.2010.10.024, 2011.
- 1664
- 1665 Rivas, I., Beddows, D. C. S., Amato, F., Green, D. C., Järvi, L., Hueglin, C., Reche, C., Timonen,
- 1666 H., Fuller, G. W., Niemi, J. V, Pérez, N., Aurela, M., Hopke, P. K., Alastuey, A., Kulmala, M.,
- 1667 Harrison, R. M., Querol, X. and Kelly, F. J.: Source apportionment of particle number size
- 1668 distribution in urban background and traffic stations in four European cities, Environ. Int., 135,
- 1669 105345, doi:10.1016/j.envint.2019.105345, 2020.
- 1670
- 1671 Rodríguez, S., Querol, X., Alastuey, A., Kallos, G. and Kakaliagou, O.: Saharan dust contributions
- 1672 to PM10 and TSP levels in Southern and Eastern Spain, Atmos. Environ., 35(14), 2433–2447,
- 1673 doi:10.1016/S1352-2310(00)00496-9, 2001.

1674 Rönkkö, T., Kuuluvainen, H., Karjalainen, P., Keskinen, J., Hillamo, R., Niemi, J. V., Pirjola, L., 1675 Timonen, H. J., Saarikoski, S., Saukko, E., Järvinen, A., Silvennoinen, H., Rostedt, A., Olin, M., 1676 Yli-Ojanperä, J., Nousiainen, P., Kousa, A. and Dal Maso, M.: Traffic is a major source of 1677 atmospheric nanocluster aerosol, Proc. Natl. Acad. Sci., 114(29), 7549–7554, 1678 doi:10.1073/pnas.1700830114, 2017. 1679 1680 Salma, I., Németh, Z., Kerminen, V. M., Aalto, P., Nieminen, T., Weidinger, T., Molnár, Á., Imre, 1681 K. and Kulmala, M.: Regional effect on urban atmospheric nucleation, Atmos. Chem. Phys., 16(14), 1682 8715-8728, doi:10.5194/acp-16-8715-2016, 2016. 1683 1684 Salma, I., Borsós, T., Németh, Z., Weidinger, T., Aalto, P. and Kulmala, M.: Comparative study of 1685 ultrafine atmospheric aerosol within a city, Atmos. Environ., 92, 154–161, 1686 doi:10.1016/j.atmosenv.2014.04.020, 2014. 1687 1688 Sarnela, N., Jokinen, T., Nieminen, T., Lehtipalo, K., Junninen, H., Kangasluoma, J., Hakala, J., 1689 Taipale, R., Larnimaa, K., Westerholm, H., Schobesberger, S., Sipil, M., Heijari, J., Kerminen, V. 1690 and Pet, T.: Sulphuric acid and aerosol particle production in the vicinity of an oil refinery, Atmos. 1691 Environ., 119, 156–166, doi:10.1016/j.atmosenv.2015.08.033, 2015. 1692 Schobesberger, S., Franchin, A., Bianchi, F., Rondo, L., Duplissy, J., Kürten, A., Ortega, I. K., 1693 Metzger, A., Schnitzhofer, R., Almeida, J., Amorim, A., Dommen, J., Dunne, E. M., Ehn, M., 1694 Gagné, S., Ickes, L., Junninen, H., Hansel, A., Kerminen, V. M., Kirkby, J., Kupc, A., Laaksonen, 1695 A., Lehtipalo, K., Mathot, S., Onnela, A., Petäjä, T., Riccobono, F., Santos, F. D., Sipilä, M., Tomé, 1696 1697 A., Tsagkogeorgas, G., Viisanen, Y., Wagner, P. E., Wimmer, D., Curtius, J., Donahue, N. M., Baltensperger, U., Kulmala, M. and Worsnop, D. R.: On the composition of ammonia-sulfuric-acid 1698 ion clusters during aerosol particle formation, Atmos. Chem. Phys., 15(1), 55-78, doi:10.5194/acp-1699 1700 15-55-2015, 2015. 1701 1702 Seinfeld, J. H. and Pandis, S. N.: Atmospheric Chemistry and Physics: From Air Pollution to 1703 Climate Change, 3rd Editio., John Wiley & Sons, Inc, New Jersey, Canada, 2012. 1704 1705 Shen, X., Sun, J., Kivekäs, N., Kristensson, A., Zhang, X., Zhang, Y., Zhang, L., Fan, R., Oi, X., 1706 Ma, Q. and Zhou, H.: Spatial distribution and occurrence probability of regional new particle formation events in eastern China, Atmos. Chem. Phys., 18(2), 587-599, doi:10.5194/acp-18-587-1707 1708 2018, 2018. 1709 1710 Shi, J. P., Evans, D. E., Khan, A. A. and Harrison, R. M.: Sources and concentration of 1711 nanoparticles (10 nm diameter) in the urban atmosphere, Atmos. Environ., 35, 1193–1202, 1712 doi.org/10.1016/S1352-2310(00)00418-0, 2001. 1713

- 1714 Siakavaras, D., Samara, C., Petrakakis, M. and Biskos, G.: Nucleation events at a coastal city
- 1715 during the warm period: Kerbside versus urban background measurements, Atmos. Environ., 140,
- 1716 60–68, doi:10.1016/j.atmosenv.2016.05.054, 2016.
- 1717
- 1718 Sipila, M., Berndt, T., Petaja, T., Brus, D., Vanhanen, J., Stratmann, F., Patokoski, J., Mauldin III,
- 1719 R. L., Hyvarinen, A. P., Lihavainen, H. and Kulmala, M.: The role of sulfuric acid in atmospheric
- 1720 nucleation, Science, 327, 1243–1246, doi:10.1126/science.1180315, 2010.
- 1721
- 1722 Spracklen, D. V., Carslaw, K. S., Kulmala, M., Kerminen, V. M., Sihto, S. L., Riipinen, I.,
- 1723 Merikanto, J., Mann, G. W., Chipperfield, M. P., Wiedensohler, A., Birmili, W. and Lihavainen, H.: 1724 Contribution of particle formation to global cloud condensation nuclei concentrations, Geophys.
- 1725 Res. Lett., 35(6), 1–5, doi:10.1029/2007GL033038, 2008.
- 1726
- 1727 Stanier, C. O., Khlystov, A. Y. and Pandis, S. N.: Nucleation events during the Pittsburgh Air
- 1728 Quality Study: Description and relation to key meteorological, gas phase, and aerosol parameters,
- 1729 Aerosol Sci. Technol., 38, 253–264, doi:10.1080/02786820390229570, 2004.
- 1730
- 1731 Stojiljkovic, A., Kauhaniemi, M., Kukkonen, J., Kupiainen, K., Karppinen, A., Rolstad Denby, B.,
- 1732 Kousa, A., Niemi, J. V. and Ketzel, M.: The impact of measures to reduce ambient air PM10
- 1733 concentrations originating from road dust, evaluated for a street canyon in Helsinki, Atmos. Chem.
- 1734 Phys., 19(17), 11199–11212, doi:10.5194/acp-19-11199-2019, 2019.
- 1735
- 1736 Sun, J., Birmili, W., Hermann, M., Tuch, T., Weinhold, K., Spindler, G., Schladitz, A., Bastian, S.,
- 1737 Löschau, G., Cyrys, J., Gu, J., Flentje, H., Briel, B., Asbach, C., Kaminski, H., Ries, L., Sohmer, R.,
- 1738 Gerwig, H., Wirtz, K., Meinhardt, F., Schwerin, A., Bath, O., Ma, N., Wiedensohler, A.: Variability
- 1739 of Black Carbon mass concentrations, sub-micrometer particle number concentrations and size
- 1740 distributions: Results of the German Ultrafine Aerosol Network ranging from city street to high
- 1741 Alpine locations, Atmos. Environ., 202, 256-268, 2019.
- 1742
- 1743 Tobías, A., Rivas, I., Reche, C., Alastuey, A., Rodríguez, S., Fernández-camacho, R., Sánchez, A.
- 1744 M., Campa, D., De, J., Sunyer, J. and Querol, X.: Short-term e ff ects of ultra fi ne particles on daily
- 1745 mortality by primary vehicle exhaust versus secondary origin in three Spanish cities, Environ. Int.,
- 1746 111, 144–151, doi:10.1016/j.envint.2017.11.015, 2018.
- 1747
- 1748 Tröstl, J., Chuang, W. K., Gordon, H., Heinritzi, M., Yan, C., Molteni, U., Ahlm, L., Frege, C.,
- 1749 Bianchi, F., Wagner, R., Simon, M., Lehtipalo, K., Williamson, C., Craven, J. S., Duplissy, J.,
- 1750 Adamov, A., Almeida, J., Bernhammer, A. K., Breitenlechner, M., Brilke, S., Dias, A., Ehrhart, S.,
- 1751 Flagan, R. C., Franchin, A., Fuchs, C., Guida, R., Gysel, M., Hansel, A., Hoyle, C. R., Jokinen, T.,
- 1752 Junninen, H., Kangasluoma, J., Keskinen, H., Kim, J., Krapf, M., Kürten, A., Laaksonen, A.,
- 1753 Lawler, M., Leiminger, M., Mathot, S., Möhler, O., Nieminen, T., Onnela, A., Petäjä, T., Piel, F.

M., Miettinen, P., Rissanen, M. P., Rondo, L., Sarnela, N., Schobesberger, S., Sengupta, K., Sipilä, 1754 1755 M., Smith, J. N., Steiner, G., Tomè, A., Virtanen, A., Wagner, A. C., Weingartner, E., Wimmer, D., Winkler, P. M., Ye, P., Carslaw, K. S., Curtius, J., Dommen, J., Kirkby, J., Kulmala, M., Riipinen, 1756 I., Worsnop, D. R., Donahue, N. M. and Baltensperger, U.: The role of low-volatility organic 1757 1758 compounds in initial particle growth in the atmosphere, Nature, 533(7604), 527–531, 1759 doi:10.1038/nature18271, 2016. 1760 1761 Vassilakos, C., Saraga, D., Maggos, T., Michopoulos, J., Pateraki, S. and Helmis, C. G.: Temporal 1762 variations of PM2.5 in the ambient air of a suburban site in Athens, Greece, Sci. Total Environ., 1763 349(1-3), 223-231, doi:10.1016/j.scitotenv.2005.01.012, 2005. 1764 1765 Voigtländer, J., Tuch, T., Birmili, W. and Wiedensohler, A.: Correlation between traffic density and 1766 particle size distribution in a street canyon and the dependence on wind direction, Atmos. Chem. 1767 Phys., 6(12), 4275–4286, doi:10.5194/acp-6-4275-2006, 2006. 1768 1769 Vratolis, S., Gini, M. I., Bezantakos, S., Stavroulas, I., Kalivitis, N., Kostenidou, E., Louvaris, E., 1770 Siakavaras, D., Biskos, G., Mihalopoulos, N., Pandis, S. N. N., Pilinis, C., Papayannis, A. and 1771 Eleftheriadis, K.: Particle number size distribution statistics at City-Centre Urban Background, 1772 urban background, and remote stations in Greece during summer. Atmos. Environ., 213, 711–726. 1773 doi:10.1016/j.atmosenv.2019.05.064, 2019. 1774 1775 Vrekoussis, M., Richter, A., Hilboll, A., Burrows, J. P., Gerasopoulos, E., Lelieveld, J., Barrie, L., 1776 Zerefos, C. and Mihalopoulos, N.: Economic crisis detected from space: Air quality observations 1777 over Athens/Greece, Geophys. Res. Lett., 40(2), 458–463, doi:10.1002/grl.50118, 2013. 1778 1779 Wang, Z., Wu, Z., Yue, D., Shang, D., Guo, S., Sun, J., Ding, A., Wang, L., Jiang, J., Guo, H., Gao, 1780 J., Cheung, H. C., Morawska, L., Keywood, M. and Hu, M.: New particle formation in China: 1781 Current knowledge and further directions, Sci. Total Environ., 577, 258–266, 1782 doi:10.1016/j.scitotenv.2016.10.177, 2017. 1783 1784 Wang, D., Guo, H., Cheung, K. and Gan, F.: Observation of nucleation mode particle burst and new 1785 particle formation events at an urban site in Hong Kong, Atmos. Environ., 99, 196-205, 1786 doi:10.1016/j.atmosenv.2014.09.074, 2014. 1787 1788 Wang, F., Zhang, Z., Massling, A., Ketzel, M. and Kristensson, A.: Particle formation events measured at a semirural background site in Denmark, Environ. Sci. Pollut. Res., 20(5), 3050-3059, 1789 1790 doi:10.1007/s11356-012-1184-6, 2013. 1791 1792 Wang, F., Ketzel, M., Ellermann, T., Wåhlin, P., Jensen, S. S., Fang, D. and Massling, A.: Particle

1793 number, particle mass and NOx emission factors at a highway and an urban street in Copenhagen,

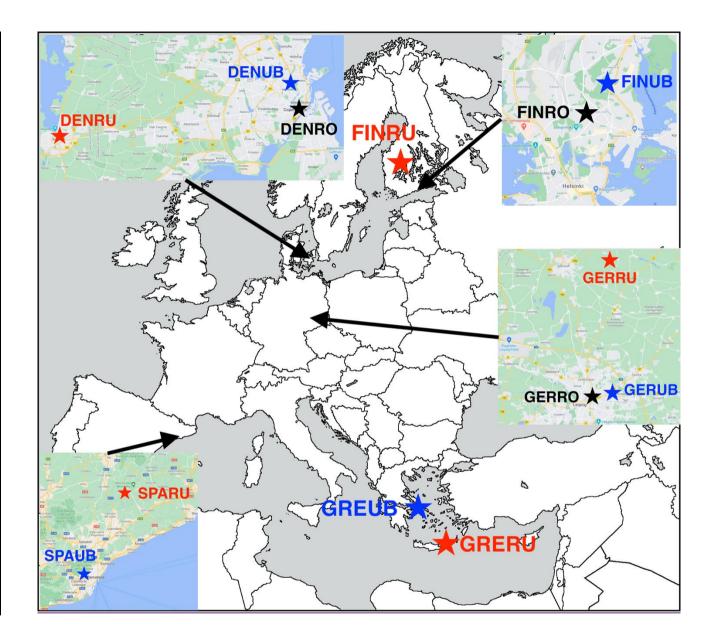
1796 Weber, R. J., McMurry, P. H., Mauldin, L., Tanner, D. J., Eisele, F. L., Brechtel, F. J., Kreidenweis, 1797 S. M., Kok, G. L., Schillawski, R. D., Baumgardner, D. and Baumgardner, B.: A study of new 1798 particle formation and growth involving biogenic and trace gas species measured during ACE 1, J. 1799 Geophys. Res. Atmos., 103(D13), 16385–16396, doi:10.1029/97JD02465, 1998. 1800 1801 Weber, R. J., McMurry, P. H., Eisele, F. L. and Tanner, D. J.: Measurement of expected nucleation 1802 precursor species and 3-500-nm diameter particles at Mauna Loa Observatory, Hawaii, J. Atmos. 1803 Sci., 52(12), 2242-2257, 1995. 1804 1805 Wehner, B., Siebert, H., Stratmann, F., Tuch, T., Wiedensohler, A., Petäjä, T., Dal Maso, M. and 1806 Kulmala, M.: Horizontal homogeneity and vertical extent of new particle formation events, Tellus, 1807 Ser. B Chem. Phys. Meteorol., 59(3), 362–371, doi:10.1111/j.1600-0889.2007.00260.x, 2007. 1808 1809 Wonaschütz, A., Demattio, A., Wagner, R., Burkart, J., Zíková, N., Vodička, P., Ludwig, W., 1810 Steiner, G., Schwarz, J. and Hitzenberger, R.: Seasonality of new particle formation in Vienna, 1811 Austria - Influence of air mass origin and aerosol chemical composition, Atmos. Environ., 118, 1812 118–126. doi:10.1016/j.atmosenv.2015.07.035. 2015. 1813 1814 Woo, K. S., Chen, D. R., Pui, D. Y. H. H. and McMurry, P. H.: Measurement of Atlanta aerosol size distributions: Observations of lutrafine particle events, Aerosol Sci. Technol., 34, 75–87, 1815 1816 doi:10.1080/02786820120056, 2001. 1817 1818 Xiao, S., Wang, M. Y., Yao, L., Kulmala, M., Zhou, B., Yang, X., Chen, J. M., Wang, D. F., Fu, Q. Y., Worsnop, D. R. and Wang, L.: Strong atmospheric new particle formation in winter in urban 1819 1820 Shanghai, China, Atmos. Chem. Phys., 15(4), 1769–1781, doi:10.5194/acp-15-1769-2015, 2015. 1821 1822 Yao, L., Garmash, O., Bianchi, F., Zheng, J., Yan, C., Kontkanen, J., Junninen, H., Mazon, S. B., 1823 Ehn, M., Paasonen, P., Sipilä, M., Wang, M., Wang, X., Xiao, S., Chen, H., Lu, Y., Zhang, B., Wang, D., Fu, Q., Geng, F., Li, L., Wang, H., Qiao, L., Yang, X., Chen, J., Kerminen, V. M., 1824 1825 Petäjä, T., Worsnop, D. R., Kulmala, M. and Wang, L.: Atmospheric new particle formation from 1826 sulfuric acid and amines in a Chinese megacity, Science, 361(6399), 278–281, 1827 doi:10.1126/science.aao4839, 2018. 1828 1829 Yli-Juuti, T., Nieminen, T., Hirsikko, A., Aalto, P. P., Asmi, E., Hõrrak, U., Manninen, H. E., 1830 Patokoski, J., Dal Maso, M., Petäjä, T., Rinne, J., Kulmala, M. and Riipinen, I.: Growth rates of 1831 nucleation mode particles in Hyytiälä during 2003-2009: Variation with particle size, season, data 1832 analysis method and ambient conditions, Atmos. Chem. Phys., 11(24), 12865–12886, 1833 doi:10.5194/acp-11-12865-2011, 2011.

Atmos. Chem. Phys., 10(6), 2745–2764, doi:10.5194/acp-10-2745-2010, 2010.

1794

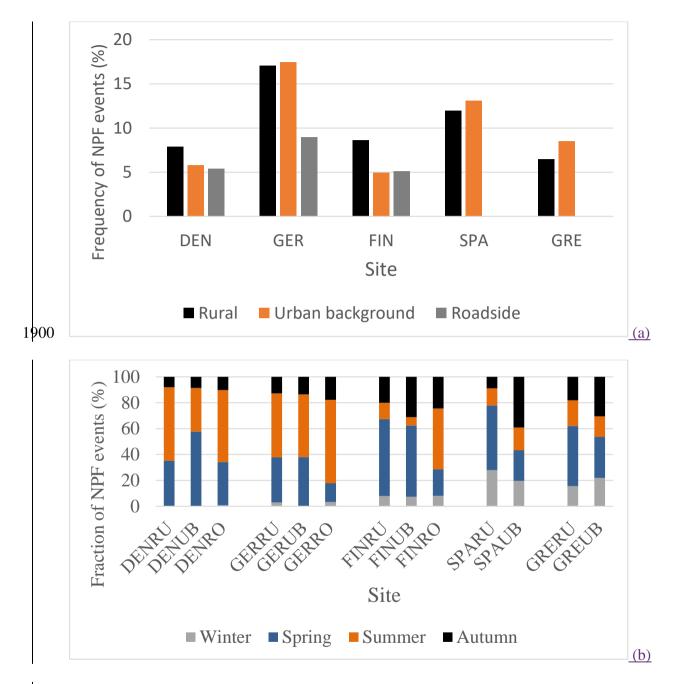
- 1834 YIIEKA (Ministry for the Environment, Energy and Climate Change in Greece): Annual report of
- 1835 atmospheric pollution 2011, Ministry for the Environment, Energy and Climate Change in Greece,
- 1836 Department of Air Quality, April 2012,
- 1837 <u>http://www.ypeka.gr/LinkClick.aspx?fileticket=TYgrT0qoSrI%3D&tabid=490&language=el-GR</u>,
- 1838 last accessed 18/9/2019, 2012.
- 1839
- 1840 Ždímal, V., Smolík, J., Eleftheriadis, K., Wagner, Z., Housiadas, C., Mihalopoulos, N., Mikuška,
- 1841 P., Večeřa, Z., Kopanakis, I. and Lazaridis, M.: Dynamics of atmospheric aerosol number size
- 1842 distributions in the eastern Mediterranean during the "SUB-AERO" project, Water. Air. Soil
- 1843 Pollut., 214(1-4), 133-146, doi:10.1007/s11270-010-0410-4, 2011.

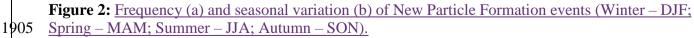
1845	TABLE LEGENDS:				
1846					
1847 1848	Table 1:	Location and data availability (seasonal data availability is found in Table S4) of the sites in the present study (RU denotes rural site, UB is urban background and RO is			
1849		roadside). In the studies referenced and extended description of the sites can be found.			
1850		/			
1851					
1852					
1853	FIGURE I	LEGENDS			
1854					
1855	Figure 1:	Map of the areas of study.			
1856	C				
1857	Figure 2:	Frequency (a) and seasonal variation (b) of New Particle Formation events (Winter – DJF;			
1858		Spring - MAM; Summer - JJA; Autumn - SON). Frequency (top panel) and seasonal			
1859		(lower panel) variation of New Particle Formation events (Winter DJF; Spring MAM;			
1860		Summer – JJA; Autumn – SON). For site naming first three letters refer to the country			
1861		(DEN = Denmark, GER = Germany, FIN = Finland, SPA = Spain, GRE = Greece) while			
1862		next two to the type of the site (RU = Rural Background, UB = Urban Background, RO			
1863		= Roadside)			
1864 1865	Figure 3:	Ratio of New Particle Formation event probability between weekends to weekdays. The greater the ratio the more probable it is for an event to take place during weekends			
1866 1867		compared to weekdays. Growth rate of particles up to 30 nm (with standard errors of the mean) on New Particle Formation events at all sites.			
1868 1869	Figure 4:	Growth rate of particles up to 30 nm (with standard deviations) during New Particle Formation events at all sites.			
1870	Datio of N	wy Domiala Ecompation events probability between weekends to weekdows. The greatest the			
1870 1871 1872	Katio of IN	ew Particle Formation events probability between weekends to weekdays. The greatest the ratio the more probable is for an event to take place during weekends compared to weekdays.			
1873 1874	Figure 5:	Seasonal variation of growth rate of particles up to 30 nm on New Particle Formation at (a) the rural background, (b) urban background and (c) roadsideall sites.			
1875 1876	Figure 6:	Formation rate of 10 nm particles (J_{10}) (with standard errors of the mean <u>deviations</u>) from New Particle Formation at <u>allall</u> sites.			
1877 1878 1879	Figure 7:	Seasonal variation of formation rate of 10 nm particles (J_{10}) (with standard deviations) from New Particle Formation events at (a) the rural background, (b) urban background and (c) roadsideall sites.			

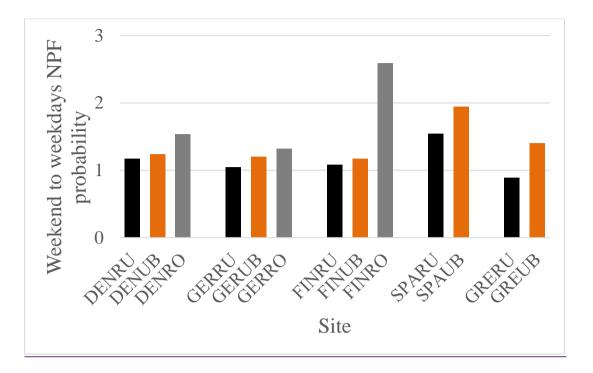

1880 Figure 8: (a) Number of region-wide New Particle Formation events per season (top panel) and (b) fraction of region-wide events to total New Particle Formation events per season for each site. Region-wide events are considered those that occur on the same day on both background sites (Rural and Urban background).

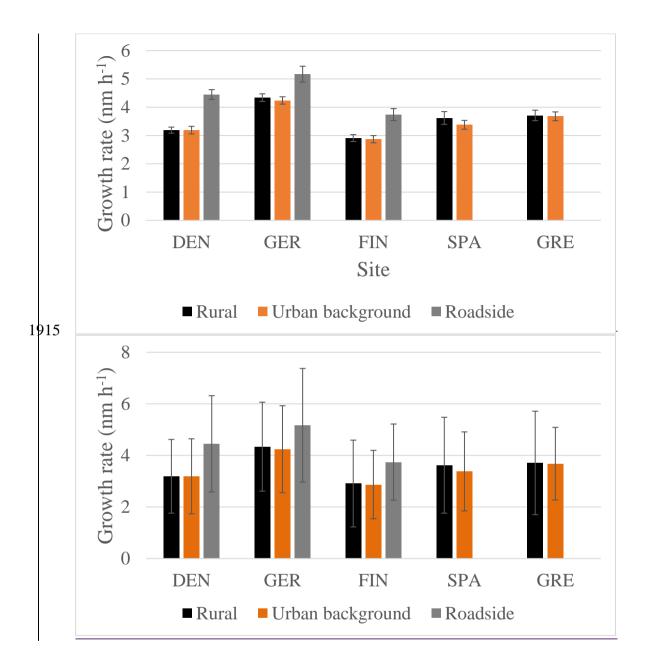
1884Figure 9:(a) NSF_{NUC} (average relative increase of ultrafine particles – particles of diameter up to1885100 nm) due to New Particle Formation events on event days) and (b) NSF_{GEN} (average1886annual relative increase of ultrafine particles due to New Particle Formation events) at all1887sites.

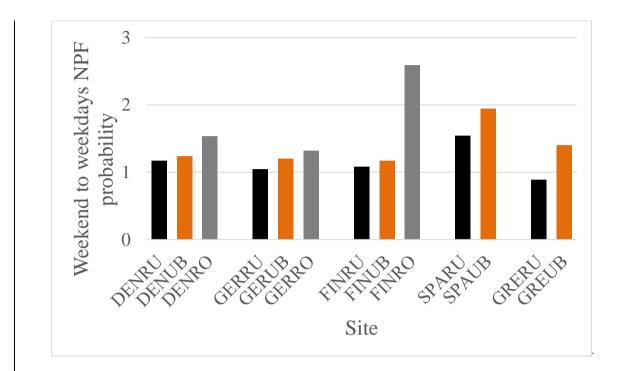
Table 1: Location and data availability (seasonal data availability is found in Table S4) of the sites in the present study-(RU denotes rural site, UB is urban background and RO is roadside). In the studies referenced an extended description of the sites can be found.

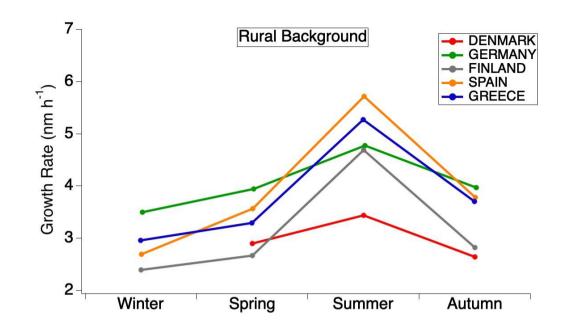

Site	Location	Available data	Meteorological data location	Data availability	Reference
DENRU	Lille Valby, 25 km W of Copenhagen, (55° 41' 41" N; 12° 7' 7" E) (2008 – 6/2010) Risø, 7 km north of Lille Valby, (55° 38' 40" N; 12° 5' 19" E) (7/2010 – 2017)	DMPS and CPC (5.8 - 700 nm, 65.4% availability), NO, NO _x , SO ₂ , O ₃ , minerals, OC, EC, NO ₃ ⁻ , SO ₄ ²⁻ , NH ₄ ⁺	Ørsted – Institute station	2008 – 2017	Ketzel et al., 2004
DENUB	Ørsted - Institude, 2 km NE of the city centre, Copenhagen, Denmark (55° 42' 1" N; 12° 33' 41" E)	availability),	On site	2008 - 2017	Wang et al., 2010
DENRO	H.C. Andersens Boulevard, Copenhagen, Denmark (55° 40' 28" N; 12° 34' 16" E)	DMPS and CPC (5.8 - 700 nm, 65.0% availability), NO, NO _x , SO ₂ , O ₃ , minerals, OC, EC, NO ₃ ⁻ , SO ₄ ²⁻ , NH ₄ ⁺	Ørsted – Institute station	2008 - 2017	Wang et al., 2010
GERRU	Melpitz, 40 km NE of Leipzig, Germany (51° 31' 31.85" N; 12° 26' 40.30" E)	TDMPS with CPC (4.8 - 800 nm, 87.1% availability), OC, NO_{3}^{-} , SO_{4}^{2-} , NH_{4}^{+} , CI^{-}	On site	2008 - 2011	Birmili et al., 2016
GERUB	Tropos, 3 km NE from the city centre of Leipzig, Germany (51° 21' 9.1" N; 12° 26' 5.1" E)	TDMPS with CPC (3 - 800 nm,88.0% availability)	On site	2008 - 2011	Birmili et al., 2016
GERRO	Eisenbahnstraße, Leipzig, Germany (51° 20' 43.80" N; 12° 24' 28.35" E)	TDMPS with CPC (4 - 800 nm, 64.4% availability)	Tropos station	2008 - 2011	Birmili et al., 2016
FINRU	Hyytiälä, 250 km N of Helsinki, Finland (61° 50' 50.70" N; 24° 17' 41.20" E)	TDMPS with CPC (3 $-$ 1000 nm, 98.7% availability), NO, NO _x , SO ₂ , O ₃ , CO, CH ₄ , VOCs, H ₂ SO ₄	On site	2008 – 2011 & 2015 – 2018	Aalto et al., 2001
FINUB	Kumpula Campus 4 km N of the city centre, Helsinki, Finland (60° 12' 10.52" N; 24° 57' 40.20" E)	TDMPS with CPC (3.4 - 1000 nm, 94.0% availability)	On site	2008 – 2011 & 2015 – 2018	Järvi et al., 2009
FINRO	Mäkelänkatu street, Helsinki, Finland (60° 11' 47.57" N; 24° 57' 6.01" E)	DMPS (6 - 800 nm, 90.0% availability), NO, NO ₂ , NO _x , O ₃ , BC and SO ₂ from Kalio Station	Pasila station and on site	2015 - 2018	Hietikko et al., 2018
SPARU	Montseny, 50 km NNE from Barcelona, Spain (41° 46' 45" N; 2° 21' 29" E)	SMPS (9 $-$ 856 nm, 47.7% availability), NO, NO ₂ , SO ₂ , O ₃ , CO, OM, SO ₄ ²⁻	On site	2012 - 2015	Dall'Osto et al., 2013
SPAUB	Palau Reial, Barcelona, Spain (41° 23' 14" N; 2° 6' 56" E)	SMPS (10.9 – 478 nm, 64.2% availability),	On site	2012 - 2015	Dall'Osto et al., 2012

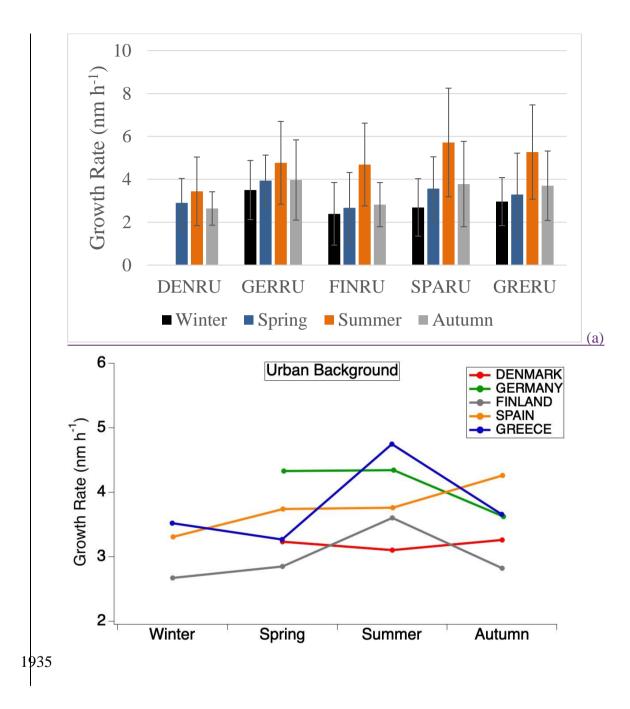

		NO, NO ₂ , SO ₂ , O ₃ , CO, BC, OM, SO ₄ ²⁻ , PM _{2.5} , PM ₁₀			
GRERU	Greece (35° 20' 16.8" N; 25° 40' 8.4"	SMPS (8.77 - 849 nm, 92.4% availability), NO, NO ₂ , O ₃ , OC, EC	On site	2012 - 2018	Kalkavouras et al., 2017
GREUB	"Demokritos", 12 km NE from the city centre, Athens, Greece (37° 59' 41.96" N; 23° 48' 57.56" E)	SMPS (10 – 550 nm, 77.2% availability)	On site		Vassilakos et al., 2005

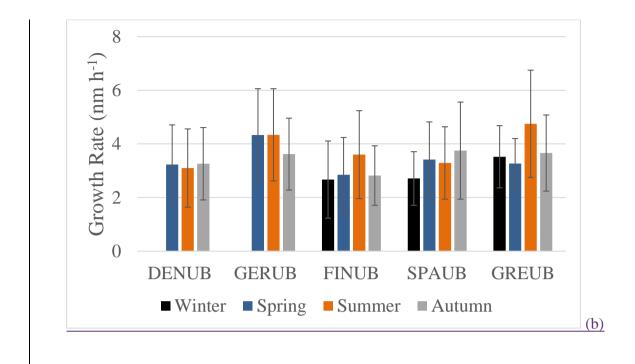



Figure 1: Map of the areas of study.




1910 Figure 3: Ratio of New Particle Formation event probability between weekends to weekdays. The greater the ratio the more probable it is for an event to take place during weekends compared to weekdays. For site naming first three letters refer to the country (DEN = Denmark, GER = Germany, FIN = Finland, SPA = Spain, GRE = Greece) while next two to the type of the site (RU = Rural background, UB = Urban background, RO = Roadside)




Figure <u>43</u>: Growth rate of particles up to 30 nm (with standard deviations) during New Particle 1920 Formation events at all sites.

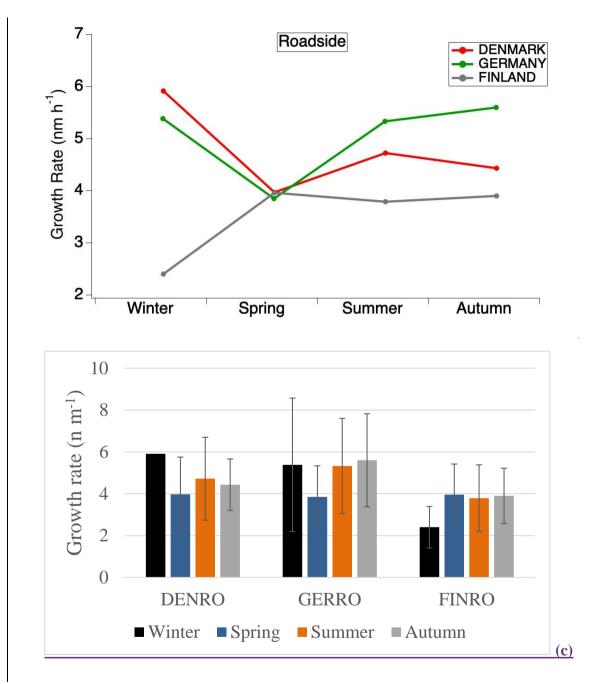
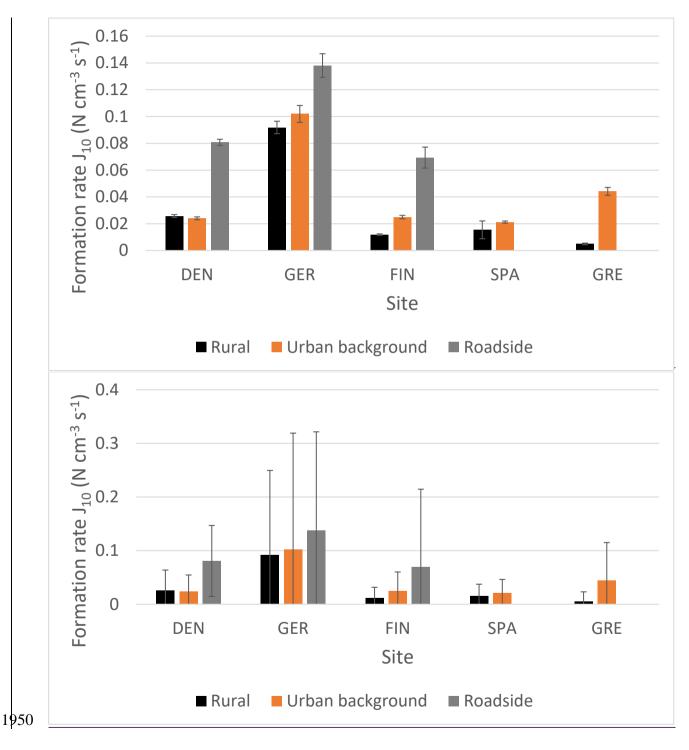
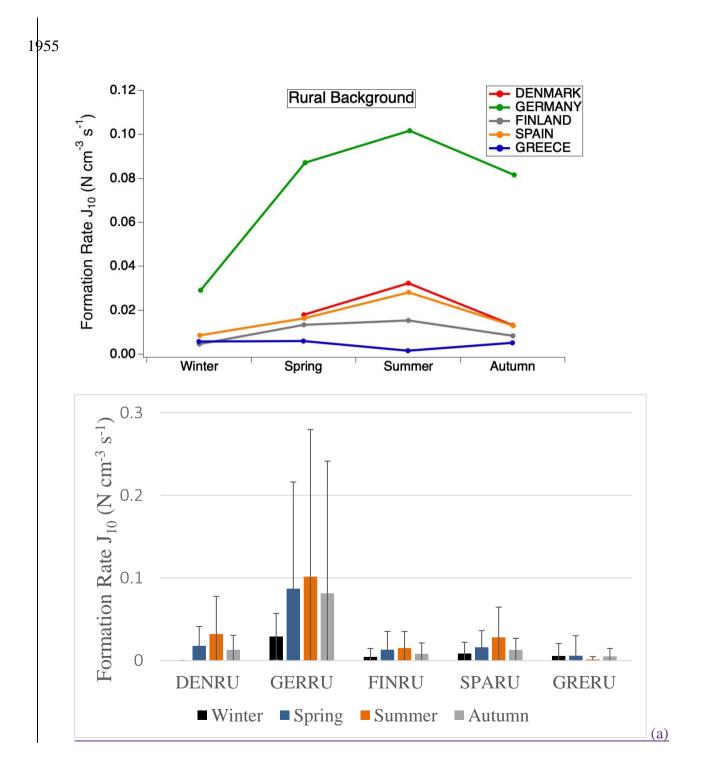


Figure 4: Ratio of New Particle Formation event probability between weekends to weekdays. The greater the ratio the more probable it is for an event to take place during weekends compared to weekdays.




Figure 5: Seasonal variation of growth rate of particles up to 30 nm on New Particle Formation at (a) the rural background, (b) urban background and (c) roadsideall sites.

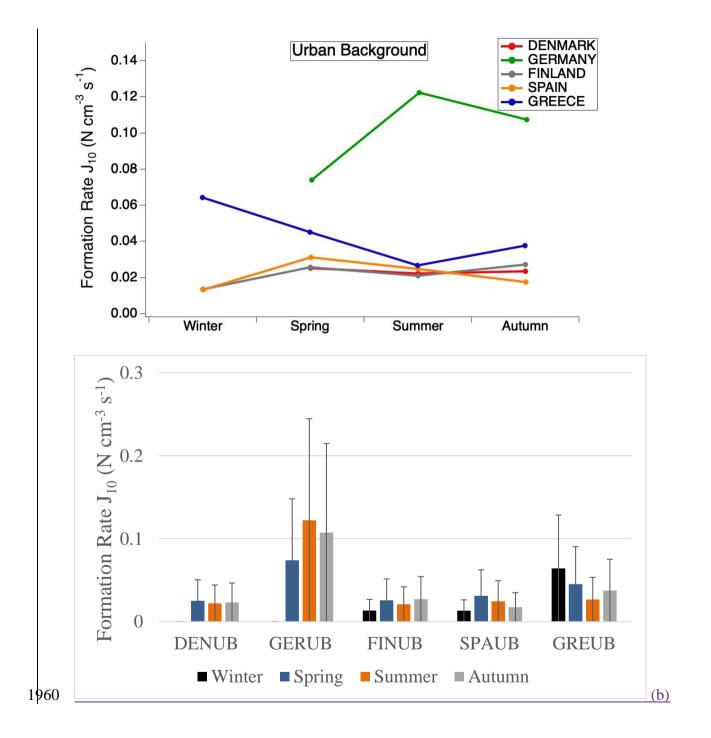


Figure 6: Formation rate of 10 nm particles (J_{10}) (with standard <u>errors of the meandeviations</u>) during New Particle Formation events at all sites.

|

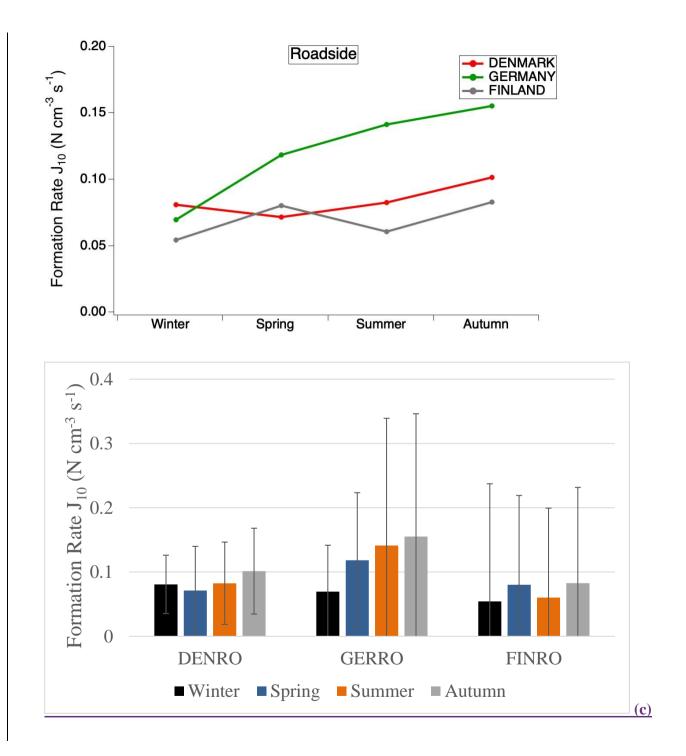


Figure 7: Seasonal variation of formation rate of 10 nm particles (J_{10}) (with standard deviations) from

1965 New Particle Formation events at (a) the rural background, (b) urban background and (c) roadsideall sites.

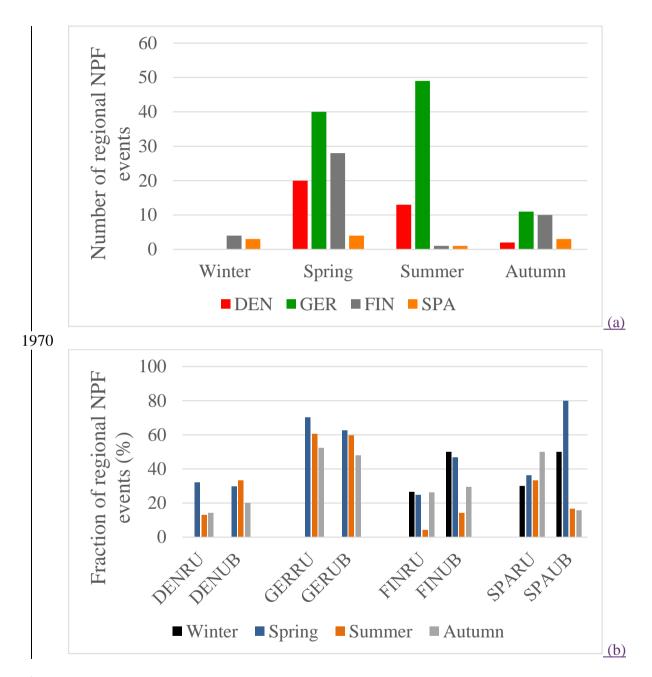
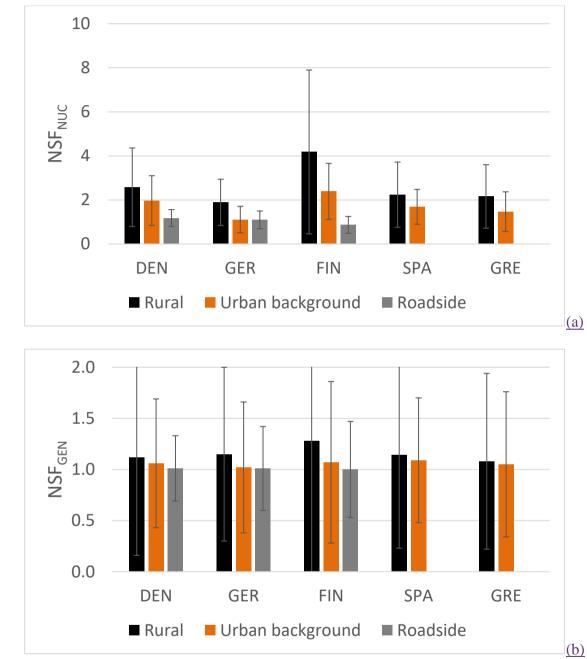



Figure 8: (a) Number of region-wide New Particle Formation events per season (top panel) and (b) fraction of region-wide events to total New Particle Formation events per season for each site. Region wide events are defined as those that occur on the same day at both background sites (Rural and Urban background).

Figure 9: (a) NSF_{NUC} (average relative increase of ultrafine particles – particles of diameter up to 100 nm) due to New Particle Formation events on event days) and (b) NSF_{GEN} (average annual relative increase of ultrafine particles due to New Particle Formation events) at all sites.