10

11

12

13

14

15

16

17

18

19

20

21

22

Revisiting the trend in the occurrences of the “warm Arctic-cold Eurasian continent”
temperature pattern

Lejiang Yu"**, Shiyuan Zhong®, Cuijuan Sui*, and Bo Sun*
1MNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China
2 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong,
China
3Department of Geography, Environment and Spatial Sciences, Michigan State University, East
Lansing, MI, USA

4 National Marine Environmental Forecasting Center, Beijing, China

*Corresponding Author’s address

Dr. Lejiang Yu

MNR Key Laboratory for Polar Science, Polar Research Institute of China
451 Jingiao Rd. Shanghai, 200136

Phone: 86-21-58712034,

Email: yulejiang@sina.com.cn



23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

Abstract. The recent increasing trend of “warm Arctic, cold continents” has attracted much attention,

but it remains debatable as to what forces are behind this phenomenon. Here, we revisited

surface-temperature variability over the Arctic and Eurasian continent by applying the

Self-Organizing-Map (SOM) technique to gridded daily surface temperature data. Nearly 40% of the

surface temperature trends are explained by the nine SOM patterns that depict the switch to the current

warm Arctic-cold Eurasia pattern at the beginning of this century from the reversed pattern that

dominated the 1980s and the 90s. Further, no cause-effect relationship is found between the Arctic

sea-ice loss and the cold spells in high-mid latitude Eurasian continent suggested by earlier studies.

Instead, the increasing trend in warm Arctic-cold Eurasia pattern appears to be related to the anomalous

atmospheric circulations associated with two Rossby wavetrains triggered by rising sea surface

temperature (SST) over the central North Pacific and the North Atlantic Oceans. On interdecadal

timescale, the recent increase in the occurrences of the warm Arctic-cold Eurasia pattern is a fragment

of the interdecadal variability of SST over the Atlantic Ocean as represented by the Atlantic

Multidecadal Oscillations (AMO), and over the central Pacific Ocean.

Key words: Warm Arctic-cold Eurasian continent, Arctic Sea ice, the Kara-Barents Sea, the

Self-Organizing-Map (SOM), the Pacific Decadal Oscillation (PDO), the Atlantic Multidecadal

Oscillation (AMO)
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1 Introduction

In recent decades, winter season temperature in the Arctic has been rising at a rate faster than the

warming experienced in any other regions of the world (Stroeve et al., 2007; Screen and Simmonds,

2010; Stroeve, 2012). In contrasts, there has been an increasing trend in colder than normal winters

over the northern mid-Ilatitude continents (Mori et al., 2014; Cohen et al., 2014; 2018). This pattern of

opposite winter temperature trend between the Arctic and high-mid latitude continents, referred to as

the warm Arctic-cold continents pattern (Overland et al., 2011; Cohen et al., 2014; Walsh, 2014), has

received considerable interest in the scientific community especially with regard to dynamical and

physical mechanisms for the development of the phenomenon (Mori et al., 2014;Vihma, 2014; Barnes

and Screen, 2015; Kug et al., 2015; Overland et al., 2015; Chen et al., 2018).

Using observational analyses or coupled ocean-atmosphere modeling, a number of studies have

attributed the recent warm Arctic-cold continents pattern to the Arctic sea ice loss in boreal winter

(Inoue et al., 2012; Tang et al., 2013; Mori et al., 2014; Kug et al., 2015; Cohen et al., 2018; Mori et al.,

2019). Sea ice variability in different parts of the Arctic Ocean has been linked to climate variability in

different parts of the world. Specifically, sea ice loss in the Barents and Kara Seas has been linked to

cold winters over East Asia (Kim et al., 2014; Mori et al., 2014; Kug et al., 2015; Overland et al., 2015)

and in central Eurasia (Mori et al., 2014), while a similar connection has been found between cold

winters in North America and sea ice retreat in the East Siberian and Chukchi Seas (Kug et al., 2015).

A most recent study (Matsumura and Kosaka, 2019) attributed the warm Arctic-cold continents pattern

to the combined effect of Arctic sea ice loss and the atmospheric teleconnection induced by tropical

Atlantic sea-surface temperature (SST) anomalies.

Other studies, however, found no cause-and-effect relationship between Arctic sea ice loss and
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mid-latitude climate anomalies (Blackport et al., 2019; Fyfe, 2019). Numerical modeling studies using

coupled ocean and atmospheric models simulated no cold mid-latitude winters when the models were

forced with reduced Arctic sea ice cover (McCusker et al., 2016; Sun et al., 2016; Koenigk et al., 2019;

Blackport et al., 2019; Fyfe, 2019). Instead, these studies pointed to internal atmospheric variability as

the likely cause for cold winters in mid-latitudes. Some studies have also suggested that on the

interannual timescale mid-latitude atmospheric circulation anomalies triggered by the Pacific and

Atlantic SST oscillations may explain both the Arctic sea ice loss and the cooling of the high-mid

latitudes (Lee et al., 2011; Luo et al., 2016; Peings et al., 2019; Matsumura and Kosaka, 2019; Clark

and Lee, 2019). The sea surface temperature anomalies over the Gulf Stream have also been linked to

the Barents Sea ice loss and Eurasian cooling (Sato et al., 2014).

Despite the recent attention given to the warm Arctic-cold continents pattern, it remains debatable

as to the roles of various dynamical and physical processes play in the formation of this phenomenon.

In this study, we revisit surface temperature variability over the Arctic and Eurasia continent (40-90N,

20-130<E), where the warm Arctic-cold continents pattern is a prominent feature (Cohen et al., 2014;

Mori et al., 2014), by applying the Self-Organizing-Map (SOM) technique to daily surface temperature

over the recent four decades. We will show that while the warm Arctic-cold Eurasian continent pattern

has dominated the recent two decades, its opposite pattern, cold Arctic-warm Eurasia continent,

appeared frequently in the 1980s and the 90s. Using century-long data, we will further show that the

warm Arctic-cold Eurasian continent pattern is an intrinsic climate mode and the recent increasing

trend in its occurrence is a reflection of an interdecadal variability of the pattern. Using linear

regression, we explain the reason for the recent increasing occurrences of the warm Arctic-cold

continents pattern. We also assess the role of the SST anomalies over the North Pacific and Atlantic
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Oceans in the variability of the warm Arctic-cold Eurasia pattern on the interdecadal time scale.

2 Datasets and methods

2.1 Datasets

Daily surface air temperature and other climate variables used in the current analyses, including

500 hPa geopotential height, 800-hPa wind and mean sea level pressure, all come from the European

Centre for Medium-Range Weather Forecasts Re-Analysis (ERA), the interim version (ERA-Interim;

Dee et al., 2011) with a horizontal resolution of approximately 79 km (T255) and 60 vertical levels in

the atmosphere. Compared to the earlier versions of ERA (e.g., ERA-40, Uppala et al., 2005) and other

global re-analysis products (e.g. the NCEP reanalysis, Kalnay et al., 1996), ERA-Interim has been

found to be more accurate in portraying the Arctic warming trend (Dee et al., 2011; Screen and

Simmonds, 2011) despite its known warm and moist bias in the surface layer (Jakobson et al., 2012).

Daily sea ice data are obtained from the U.S. National Snow and Ice data Center

(ftp://sidads.colorado.edu/DATASETS/nsidc0051 gsfc nasateam_seaice/final-gsfc/north/daily).

Gridded monthly SST data used in the current analysis are obtained from the U.S. National Oceanic

and Atmospheric Administration (NOAA) data archives

(ftp://ftp.cdc.noaa.gov/Datasets/noaa.oisst.v2.highres/) (Reynolds et al. 2007).

The results obtained from the data within the recent four decades are put into the context of the

variability over longer time scales using data from the Twentieth Century Reanalysis project, version

2C (20CR) that spans more than a century from 1851 through 2015 (Compo et al., 2011). The 20CR

reanalysis data, which has a horizontal resolution of 2 °latitude by 2 <longitude and temporal resolution

of 6 hours, was produced by a model driven at the lower boundary by observed monthly SST and sea

ice conditions and with data assimilation of surface pressure observations. Several indices used to
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describe known modes of climate variability including Arctic oscillation (AO), Northern Atlantic

Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO) (Enfield et al., 2001) and PDO (Mantua

et al, 1997), are obtained from NOAA’s Climate prediction Center (CPC)

(https://www.esrl.noaa.gov/psd/data/climateindices/list/),

2.2 Methods

From the perspective of nonlinear dynamic, a region’s climate has its intrinsic modes of variability,

but the frequency of occurrence of these internal modes can be modulated by remote forces external to

the region (Palmer, 19991; Hoskins and Woollings, 2015; Shepherd, 2016). In this study we will first

obtain the main modes of variability of wintertime surface temperature in a region (40-90N, 20-130E)

by applying the SOM method (Kohonen, 2001) to daily surface temperature data for the 40 winters

(December, January, February) from December 1979 through February 2019. The use of daily data

over four decades allows for capturing the variability across two time scales (synoptic and decadal).

SOM is a clustering method based on neural network that can transform multi-dimensional data into a

two-dimensional array without supervised learning. The array includes a series of nodes arranged by a

Sammon map (Sammon, 1969). Each node in the array has a vector that can represent a spatial pattern

of the input data. The distance of any two nodes in the Sammon map represents the level of similarity

between the spatial patterns of the two nodes. Because SOM has fewer limitations than most other

commonly used clustering methods, (e.g., orthorgonality required by the empirical orthogonal function

or EOF method ), the SOM method can describe better the main variability patterns of the input data

(Reusch et al., 2005).

SOM method has been used in atmospheric research at mid and high latitudes of the northern

hemisphere (Skific et al., 2009; Johnson and Feldstein, 2010; Horton et al., 2015; Loikith and Broccoli,
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2015; Vihma et al., 2019). For example, Johnson and Feldstein (2010) used SOM to identify spatial

patterns of daily wintertime North Pacific sea level pressure and relate the variability of the

occurrences of those patterns to some large-scale circulation indices. Loikith and Broccoli (2015)

compared observed and model-simulated circulation patterns across the North American domain using

an approaching involving SOM. The SOM method was also used to detect circulation pattern trends in

a subset of North America during two different periods (Horton et al., 2015).

In this study, the SOM method is applied to ERA-Interim wintertime daily temperature anomalies from

December 1979 through February 2019. The anomalies are calculated by subtracting 40-year averaged

daily temperature from the original daily temperature at each grid point. Prior to SOM analysis, it is

necessary to determine how many SOM nodes are needed to best capture the variability in the data.

According to previous studies (Lee and Feldstein, 2013; Gibson et al., 2017; Schudeboom et al., 2018),

the rule for determining the number of SOM nodes is that the number should be sufficiently large to

capture the variability of the data analyzed, but not too large to introduce unimportant details. Table 1

shows the averaged spatial correlation between all daily surface air temperature anomalies and their

matching nodes. The spatial correlation coefficients increase from 0.26 for a 3L grid to 0.51 for a

4>4 grid, but the gain from a 3>3 grid to a 4>4 grid is relatively small. Hence, a 3>3 grid seems to

meet the above-mentioned rule and will be utilized in this study.

The contribution of each SOM node to the trend in wintertime surface temperature anomalies is

calculated by the product of each node pattern and its frequency trend normalized by the total number

(90) of wintertime days (Lee and Feldstein, 2013). The sum of the contributions from all nodes denotes

the SOM-explained trends. Residual trends are equal to the subtraction of SOM-explained trends from

the total trends. The anomalous atmospheric circulation pattern corresponding to each of the SOM
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pattern is obtained by composite analysis that computes a composite mean of an atmospheric

circulation field (e.g., 500 hPa height) over all occurrences of that SOM node. Regression analysis is

also performed where atmospheric circulation variables are regressed onto the time series of the

occurrence of a SOM node to further elucidate the relationship between the variability of atmospheric

circulations and surface temperatures. The statistical significance of composite and regression analyses

in this study is tested by using the Student’s t test.

3 Results

3.1 Surface temperature variability

The majority of the 9 SOM nodes depict a dipole pattern characterized by opposite changes in

surface temperatures between the Arctic Ocean and the Eurasian continent, although the sign switch

does not always occur at the continent-ocean boundary (Figure 1). The differences in the position of the

boundary between the warm and cold anomalies reflects the transition between the cold Arctic-warm

Eurasia pattern (denoted, in descent order of the occurrence frequency, by nodes 3, 9, 6), to the warm

Arctic-cold Eurasia pattern (depicted, in descent order of the occurrence frequency, by nodes 1, 7, 4).

The spatial patterns represented by the first group of nodes are almost mirror images of the patterns

denoted by the corresponding nodes in the second group. For example, the second node in group 1

(node 9, 15.4%) and the first node in group 2 (node 1, 17.1%) show a mirror image pattern with cold

(warm) anomalies in the Arctic Ocean extending into northern Eurasia and warm (cold) anomalies in

the rest of the Eurasia continent in the study domain. In both cases, the region of maximum magnitude

anomalies is centered near Svalbard, Norway. The second pair, denoted by node 3 (17.2%) and 7

(13.7%) has the boundary of separation moved northward from northern Eurasia continent toward the

shore of the Arctic Ocean. While the maximum anomaly in the Arctic Ocean remains close to Svalbard,
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maximum values over the continent are found in central Russia. Nodes 4-6 display a noticeable

transition from node 1 to node 7 and from node 3 to node 9, respectively. Although nodes 2 and 8 show

an approximate monopole spatial pattern, they also represent a transition between nodes 1 and 3, and

between nodes 7 and 9, respectively. Above SOM analysis does not consider the trend in surface air

temperature. The result is similar when the trend is removed (not shown).

The temporal variability on this time scale is typically related to synoptic processes and hence the

questions are what synoptic patterns are responsible for the occurrence of the spatial patterns depicted

by each of the 9 SOM nodes and how these patterns are related to those of the Arctic sea ice anomalies?

These questions can be answered by using the composite method. Specifically, for each SOM node,

composite maps are made respectively for the anomalous 500-hPa geopotential height, mean sea level

pressure, 850-hPa wind, downward longwave radiation, surface turbulent heat flux, and sea ice

concentration over all the days when the spatial variability of the surface temperature anomalies is best

matched by the spatial pattern of that node.

3.2 Large-scale circulation patterns

For all SOM nodes, the spatial pattern of the composited 500-hPa geopotential height anomalies

(Figure 2) is similar to that of mean sea level pressure anomalies (not shown), indicating an

approximately barotropic structure. For nodes 1, 4 and 7, the 500-hPa height anomalies show a dipole

structure of positive values over Siberia and negative values to its south over the Eurasian continent.

Anomalous southwesterly winds on the western side of the anticyclone over Siberia transport warm

and moist air from northern Europe and the North Atlantic Ocean into the Atlantic sector of the Arctic

Ocean (Figure 3), providing a plausible explanation of the warm surface temperature anomalies in the

region (Figure 1). On the eastern side of the anticyclone, anomalous northwesterly winds bring cold
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and dry air from the Arctic Ocean into Eurasia continent, which is consistent with the negative surface

temperature anomalies there. The opposite occurs for nodes 3, 6 and 9. A similar explanation involving

anomalous pressure and wind fields can be applied to other nodes. The dipole structure that dominates

the anomalous 500-hPa height fields over the North Atlantic Ocean for most nodes resembles the

spatial pattern of the NAO (Figure 2). In addition, the patterns for several nodes, such as nodes 4 and 7,

have some resemblance to the spatial pattern of the AO over larger geographical region. The possible

connection to NAO and AOQ is further investigated by averaging the daily index values of NAO or AO

over all occurrence days for each node. The results (Table 2) show that nodes 1, 2, 3 (5, 8, 9)

correspond to a significant positive (negative) phase of the NAO index characterized by negative

(positive) height anomalies over Iceland and positive (negative) values over the central North Atlantic

Ocean. Association is also found between nodes 1, 2, 3, and 6 (5, 7, 8, and 9) and the positive (negative)

phases of the AO index.

3.3 Downward radiative fluxes

Besides the anomalous circulation patterns, anomalous surface radiative fluxes may also play a role in

shaping the spatial pattern of surface temperature variability. In fact, the spatial pattern of the mean

anomalous daily downward longwave radiation for an individual node (Figure 4) is in good agreement

with the spatial pattern of the surface temperature anomalies of that node. In other words, increased

downward longwave radiation is associated with positive surface temperature anomalies, and vice

versa. As expected from previous studies (e.g., Sedlar et al. 2011), there is a significant positive

correlation between downward longwave radiative fluxes and the anomalous total column water vapor

and mid-level cloud cover (not shown). The correlation to low- and high-level cloud cover is, however,

not significant (not shown). Most of the water vapor in both the Arctic and Eurasia is derived from the

10
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North Atlantic Ocean, but the water vapor is transported into the Arctic by southwesterly flows and into

Eurasia by northwesterly winds. The anomalous shortwave radiation corresponding to each node (not

shown) is an order of magnitude smaller that of the longwave radiation anomalies and has a spatial

pattern opposite to that of the mid-level cloud cover and the longwave radiation anomalies.

3.4 Sea ice

The analyses presented above attempt to explain the spatial pattern of surface temperature

variability for each node from the perspective of anomalous heat advection and surface radiative fluxes.

As mentioned earlier, there has been a debate in the literature about the role played by the sea ice

anomalies in the Barents and Kara Seas in the development of the warm Arctic-cold Eurasia pattern.

Here, we examine the anomalous turbulent heat flux (Figure 5) and sea ice concentration (Figure 6) for

each node. Turbulent heat flux is considered positive when it is directed from the atmosphere

downward to the ocean or land surfaces. Thus, a positive anomaly indicates either an increase in the

atmosphere-to-surface heat transfer or a decrease in the heat transfer from the surface to the atmosphere.

The magnitude of anomalous turbulent heat flux is found to be comparable to that of anomalous

downward longwave radiation (Figure 4). For all nodes, the heat flux anomalies are larger over ocean

than over land (Figure 5). For node 1, positive turbulent heat flux anomalies occur mainly over the

Barents Sea, the western and central North Atlantic Ocean and the eastern North Pacific Ocean,

indicating an increase in heat transport from the air to the ocean due possibly to an increase in vertical

temperature gradient caused by warm air advection associated with anomalous circulation (Figures 2

and 3). The downward heat transfer results in sea ice melt in the Greenland Sea and the Barents Sea

(Figure 6). For node 4, the anomalous southerly winds over the Nordic Sea produce larger positive

turbulent heat flux anomalies (Figure 5). For node 7, the anticyclone is located more northwards, which

11
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generates opposite anomalous winds between the Nordic and northern Barents Seas and the southern

Barents Sea and thus opposite turbulent heat flux anomalies that are consistent with the opposite sea ice

concentration anomalies in the two regions (Figure 5). For nodes 3, 6, and 9, the anomalous cold air

from the central Arctic Ocean flows into warm water in the Nordic and Barents Seas, producing

negative turbulent heat flux anomalies and positive sea ice concentration anomalies (Figures 5 and 6).

Sorokina et al. (2016) noted that turbulent heat flux usually peaks 2 days before changes in surface

temperature pattern occur. The pattern of the composited anomalous 500-hPa geopotential height,

turbulent heat flux and sea ice concentration 2 days prior to the day when the nodes occur (not shown)

is similar to the current-day pattern in Figures 2, 5, and 6. Our results support the conclusion of

Sorokina et al. (2016) and Blackport et al. (2019) that the anomalous atmospheric circulations lead to

the anomalous sea ice concentration in the Barents Sea.

3.5 Trends in wintertime surface temperature

The results above suggest that both the surface temperature anomaly patterns over the Arctic Ocean

and Eurasian continent and the sea ice concentration anomalies in the Nordic and Barents Seas can be

explained largely by changes in atmospheric circulations and the associated vertical and horizontal heat

and moisture transfer by mean and turbulent flows. Next, we assess the trends of wintertime surface

temperature and the contributions of the SOM nodes to the trends.

We first examine the time series of the accumulated number of days for each node in each winter

for the 1979-2019 period (Figure 7). The time series for nodes 1, 4, 6, and 9 exhibit variability on

interannual as well as decadal time scales. The occurrence frequency is noticeably larger after 2003

than prior to 2003 for nodes 1 and 4, and vice versa for nodes 6 and 9, and the difference between the

two periods is significant at 95% confidence level. Given the spatial patterns of these four nodes
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(Figure 1), this indicates that the warm Arctic-cold Eurasia pattern occurred more frequently after 2003.

A linear trend analysis of the time series for each node (Table 3) reveals significant positive trends in

occurrence frequency for nodes 1 and 4 and significant negative trends for nodes 6 and 9, which agree

with the result from a previous study (Clark and Lee, 2019; Overland et al., 2015) that suggested an

increasing trend of the warm Arctic and cold Eurasia pattern.

These trends in the occurrence frequency of the SOM nodes contribute to the trends in the total

wintertime (DJF) surface temperature anomalies (Figure 8, top panel) that have significant positive

trends over the Arctic Ocean and in regions of Northern and Eastern Europe and negative, mostly

insignificant trends in Central Siberia. The contribution, however, varies from node to node (Figure 9).

Node 1 has the largest domain-averaged contribution of 18.7%, followed by its mirror node (node 9) at

10.1%. Nodes 4 and 6 account for 2.8% and 4.3% of the total trend, respectively. None of the

remaining nodes explain more than 2%. All nodes together explain 39.5% of the total trend in

wintertime surface air temperature. The spatial pattern of the SOM-explained trends (Figure 8, middle

panel) is similar to the warm Arctic-cold continent pattern, whereas the residual trend resembles more

the total trend (Figure 8 bottom panel).

3.6 Mechanisms

The results presented above indicate that the SOM patterns explain nearly 40% of the trend in

wintertime surface air temperature anomalies and majority of the contributions (35 out of 40%) come

from the two pairs of the nodes (nodes 1, 9, and 4, 6). The analyses hereafter will focus on these four

nodes. Below we assess the atmospheric and oceanic conditions associated with the occurrences of the

four nodes via regression analysis. Specifically, the anomalous seasonal SST and atmospheric

circulation variables are regressed onto the normalized time series of the number of days when each of

13
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the four nodes occurs (Figures 10, 11, and 12).

For node 1, the SST regression pattern in the Pacific Ocean shows significant positive anomalies

over the tropical western Pacific Ocean and central North Pacific Ocean (Figure 10). The positive SST

anomalies also occur over most of the North Atlantic. Negative SST anomalies occur over the central

tropical Pacific Ocean, though they are not significant at 95% confidence level. The SST regression

pattern is reversed for node 9. The direction of wave activity flux indicates the direction of group speed

of stationary planetary wave. Here we calculate the wave activity flux defined by Takaya and

Nakamura (2001), which considers the influence of mid-Ilatitude zonal wind (Figure 12). For node 1,

the corresponding anomalous 500-hPa height regression (Figure 11) shows two Rossby wavetrains: one

is excited over the central Pacific Ocean and propagates northeastwards into North America and North

Atlantic Ocean, and the other, which displays astronger signal, originates from central North Atlantic

and propagates northeastwards to the Arctic Ocean and southeastwards to the Eurasian continent

(Figure 11 and 12). For node 9, the corresponding anomalous 500-hPa height and streamfunction show

an opposite pattern, but the wave activity flux is similar to that of node 1.

For node 4, the SST anomalies over the tropical Pacific Ocean appear to be in a La Nifa state,

which shows stronger negative SST anomalies over the eastern tropical Pacific Ocean than those for

node 1 (Figure 10). The positive SST anomalies over the North Pacific shift more northwards relative

to that of node 1. The positive SST anomalies over the North Atlantic are weaker than those for node 1.

The corresponding wavetrain over the Pacific Ocean is stronger than that over the Atlantic Ocean

(Figure 11), which is also be observed in the pattern of wave activity and streamfunction (Figure 12).

The corresponding pattern for node 6 is nearly reversed, but there are some noticeable differences in

the amplitude of the wavetrain and SST anomalies. For example, the magnitude of the anomalous SST
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and the 500-hPa height over the central North Pacific is larger for node 6 than that for node 4.

Besides the above-mentioned variables, similar regression analysis is also performed for the

anomalous 850-hPa wind field and anomalous downward longwave radiation (not shown). Their

regression patterns, which are similar to those in Figures 3 and 4, explain well the decadal variability of

the number of days for nodes 1, 4, 6, and 9. Together, these results in Figures 10-12 indicate that the

decadal variability of the occurrence frequency of the four nodes in recent decades is related to two

wavetrains induced by SST anomalies over the central North Pacific Ocean and the North Atlantic

Ocean (Figures 10 and 11). The aforementioned SST regression patterns over the Atlantic and Pacific

Oceans also show features of the AMO and PDO (Figure 10). Since both the AMO and PDO exhibited

a phase change in the late 1990s (Yu et al., 2017), the question is whether a similar change in the SOM

frequency also appear in the late 1990s. A comparison of the averaged frequency before and after 1998

shows a significant drop in frequency for nodes 6 and 9 and an increase in frequency for node 1 (not

shown). This result suggests that the change in the AMO and PDO indices may contribute to the change

in the frequencies of the warm Arctic-cold Eurasia continent pattern.

3.7 Interdecadal variability

The four-decade-long ERA-Interim reanalysis is not adequate for examining interdecadal to

multi-decadal variations represented by the PDO and AMO indices. Further analysis is performed using

the 20CR daily reanalysis data for the 1854-2014 period. Before applying the SOM technique to the

20CR data, we first remove the trend to eliminate the influence from the global warming. No low-pass

filter is applied before SOM analysis in order to test the stability of the SOM results for the different

periods. The spatial SOM patterns from the de-trended century-long 20CR data (Figure 13) are similar

to those for the 1979-2019 period (Figure 1). Nodes 1, 4, and 7 correspond to the positive phase of the
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warm Arctic-cold Eurasia pattern and the negative phase can be observed in nodes 3, 6, and 9. The

magnitude in Figure 13 is smaller compared to the recent four decades in Figure 1. The occurrence

frequencies of the four nodes, 1, 4, 6, and 9 (Figure 14), are close to those for the recent four decades

(Figure 7). It indicates that the SOM method can obtain stably the main modes of wintertime surface

air temperature variability. For the recent four decades, the time series of the number of days also

displays a noticeable increasing (decreasing) trend for nodes 1 and 4 (6 and 9), suggesting that the

trend in the recent four decades is a reflection of an interdecadal variability of wintertime surface air

temperature.

Next, we apply a 40-year low-pass filter to the time series of the occurrence frequencies for nodes

1, 4, 6 and 9 and the AMO and PDO indices and calculate correlations. There is a significant

correlation between the time series and the AMO index, with correlation coefficients of 0.36 for node 1,

0.27 for node 4, -0.37 for node 6, and -0.20 for node 9, all of which are at the 95% confidence level. No

significant correlations, however, are found between the filtered time series and the PDO index. If we

define a SST index to represent the variability of SST anomalies over the central North Pacific Ocean

(20N-40N, 150E-150W), the 40-year low-pass filtered central North Pacific Ocean SST index is

now significantly correlated with the filtered time series of occurrence frequencies for nodes 1 and 9

(0.55 for node 1 and -0.46 for node 9). The correlation results are consistent with the SST regression

map for the recent decades (Figure 10).

To confirm the effect of SST anomalies on the warm Arctic -cold Eurasia pattern, we also perform

EOF analysis of wintertime detrended seasonal surface air temperature anomalies for the 1854-2014

period (Figure 15). The spatial patterns of the first and second EOF modes show the negative phase of

the warm Arctic-cold Eurasia pattern and the 40-year low-pass filtered time series is inversely
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correlated with the 40-year low-pass filtered wintertime AMO index (-0.46, p<0.05 for mode 1 and

-0.44, p<0.05 for mode 2). The 40-year low-pass filtered time series of the two EOF modes have a

significant negative correlation with the 40-year low-pass filtered central North Pacific Ocean SST

index, with correlation coefficients of -0.19 and -0.26 (p<0.05). Only PC1 has a significant correlation

with the PDO index (0.38, p<0.05). Thus, the increase in the occurrence of the warm Arctic-cold

Eurasia pattern in the recent decades is a part of the interdecadal variability of the pattern, which is

influenced by the AMO index, the PDO index, and the central North Pacific SST.

4 Conclusions and Discussions

In this study, we examine the variability of wintertime surface air temperature in the Arctic and the

Eurasian continent (20 E-130<E) by applying the SOM method to daily temperature from the gridded

ERA-Interim dataset for the period 1979-2019 and from the 20CR reanalysis for the period 1854-2014

and the EOF method to seasonal temperature from the 20CR reanalysis for the period 1854-2014. The

spatial pattern in the surface temperature variations in the study region, as revealed by the nine SOM

nodes, is dominated by concurrent warming in the Arctic and cooling in Eurasia, and vice versa. The

nine SOM patterns explain nearly 40% of the trends in wintertime surface temperature and 88% of that

are accounted for by only four nodes. Two of the four nodes (nodes 1 and 4) represent the warm

Acrctic-cold Eurasian pattern and the other two (nodes 6 and 9) depict the opposite cold Arctic-warm

Eurasia pattern. There is a clear shift in the frequency of the occurrence of these patterns near the

beginning of this century, with the warm Arctic — cold Eurasia pattern dominating since 2003, while the

opposite pattern prevailing from the 1980s through the 1990s. The warm Arctic-cold Eurasia pattern is

accompanied by an anomalous high pressure and anticyclonic circulation over the Eurasian continent.

The anomalous winds and the associated temperature and moisture advection interact with local
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longwave radiative forcing and turbulent fluxes to produce positive (negative) temperature anomalies

in the Arctic (Eurasian continent). The circulation is reversed for the cold Arctic-warm Eurasia pattern.

The warm, moist air mass is advected to the Arctic by the anomalous atmospheric circulations and the

increased downward turbulent heat flux also explain sea ice melt in the Barents and Kara Seas. In other

words, the sea ice loss in the Barents and Kara Seas and the cooling of the Eurasian continent can both

be traced to anomalous atmospheric circulations.

Increasing occurrences of the warm Arctic-cold Eurasian continent pattern appear to relate to

rising SST over the central North Pacific and North Atlantic Oceans (positive AMO phase). The SST

anomalies trigger two Rossby wavetrains spanning from the North Pacific Ocean, North America, and

the North Atlantic Ocean to the Eurasian continent. The two wavetrains are strengthened through local

sea-atmosphere-ice interactions in mid-high latitudes, which influence the change in the occurrence

frequency of the warm Arctic-cold Eurasian continent pattern. Our results agree with those of previous

studies (Lee et al., 2011; Sato et al., 2014; Clark and Lee, 2019). But previous studies only focus on the

effects of SST anomalies over either North Pacific or North Atlantic Oceans. We also note that the two

wavetrains excited by SST anomalies over different oceans differ in amplitudes, leading to somewhat

different warm Arctic-cold Eurasia patterns.

Using century-long data, we show that the warm Arctic-cold Eurasia pattern is an intrinsic climate

mode, which has been stable since 1854. The recent increasing trend in its occurrence is a reflection of

an interdecadal variability of the pattern resulting from the interdecadal variability of SST anomalies

over the central Pacific Ocean and over the Atlantic Ocean represented by the AMO index. Sung et al.

(2018) investigated interdecadal variability of the warm Arctic and cold Eurasia pattern and considered

the variability of the SST over the North Atlantic as its origin. Our results suggest that the variability of
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the SST over the North Pacific also plays an important role. However, internal atmospheric variability

remains another potential source. The Rossby wavetrains also lead to deepening of a trough in East

Asia and generate an anomalous low pressure and cold temperature in northern China (Figure 10),

which further suggests that a warmer Arctic, especially warmer Barents and Kara Seas is not the driver

for the increasing occurrence of cold spells in East Asia, as suggested in previous studies (Kim et al.,

2014; Mori et al., 2014; Kug et al., 2015; Overland et al., 2015).

Our results suggest that the increasing trend in warm Arctic-cold Eurasia pattern may be related to

the anomalous SST over the central North Pacific and the North Atlantic Oceans. But we cannot rule

out the influence of the Arctic sea ice loss on the trend. The Arctic sea ice loss results from both Arctic

warming due to anthropogenic increasing of greenhouse gas concentrations and natural variability of

climate system such as SST anomalies. This study considers natural variability or internal driver of

climate system. The Arctic warming caused external forcing related to increasing greenhouse gas

emissions can produce an anomalous anticyclone over the Barents and Kara Seas, leading to the warm

Arctic-cold continents pattern.

Although the ERA-Interim reanalysis is overall superior in describing the Arctic atmospheric

environment to other similar global reanalysis products, it contains warm and moist biases in the

surface layer (Jakobson et al., 2012; Chaudhuri et al., 2014; Simmons and Poli, 2015; Wang et al.,

2019). However, we believe these biases, as well as the relatively coarse resolution, should have

minimum impact in the results from the current analyses. Further, although the current analyses were

performed on a predetermined SOM grid with 3x3 nodes, an increase in the number of SOM nodes

didn’t change the conclusions.

Our results help broaden the current understanding of the formation mechanisms for the warm
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Arctic-cold Eurasia pattern. The SST anomalies over Northern Hemisphere oceans may offer a

potential for predicting its occurrence. The statistical relationship between SST anomalies and the

occurrences of the warm Arctic-cold continents pattern may help improve the predictability of

wintertime surface air temperature over Eurasian continent on interdecadal time scales.
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619  Table 1. Spatial correlations (Corrs) between the daily winter (DJF) surface air

620  temperature and the corresponding SOM pattern for each day from 1979 to 2018.

3x1 22 32 4>2 33 592 4>3 93 4>4

Cor 026 043 048 048 050 049 050 051 0.1
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668
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670
671
672
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676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691

Table 2. Averaged anomalous NAO and AO indices for all occurrences of each SOM
node. Asterisks indicate the above 95% confidence level.

Nodel Node2 Node3 Node4 Node5 Node6 Node7 Node8 Node9

NAO 0.38* 0.22* 0.12* 0.05 -0.22*  -0.02 -0.07 -0.31*  -0.32*
AO 0.44* 0.38* 1.03* -0.42 -0.62*  0.22* -0.44*  -1.11* -0.41*
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701
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703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731

Table 3. Trends in the frequency of occurrences for each SOM node (day yr™).

Asterisks indicate the above 95% confidence level.

Nodel

Node2

Node3

Node4

Node5

Nodeb

Node7

Node8

Node9

Trend

0.80*

0.10

-0.18

0.22*

-0.02

-0.39*

0.17

-0.17

-0.50*
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736

737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761

762

763

Table 4. Frequencies of occurrence (%) of wintertime surface air temperature patterns
in Figure 1 for all winters before 1998 and after 1998 for the period 1979-20109.
Values with Asterisks are significantly different from climatology above the 95%
confidence level.

Frequencies of occurrence

SOM patterns All winters Winters before 1998  Winters after 1998
Node 1 17.1 7.4%* 26.8
Node 2 4.4 33 5.4
Node 3 17.2 18.8 15.6
Node 4 8.6 5.4 11.7
Node 5 34 34 3.5
Node 6 10.2 15.2* 2.1*
Node 7 13.7 10.6 16.8
Node 8 10.1 12.1 8.0
Node 9 15.4 23.7* 7.1*
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Figure Captions

Figure 1. Spatial patterns of SOM nodes for daily wintertime (December, January, and
February) surface air temperature anomalies (<C) without removing their linear trends
from ERA-Interim reanalysis over the 1979-2019 period. The number in brackets
denotes the frequency of the occurrence for each node.

Figure 2. Corresponding 500-hPa geopotential height anomalies (gpm) without
removing their linear trends from ERA-Interim reanalysis over the 1979-2019 period
for each node in Figure 1. Dotted regions indicate the above 95% confidence level.
The thick black lines show the study region.

Figure 3. Corresponding anomalous 850-hPa wind field (ms™) without removing its
linear trend from ERA-Interim reanalysis over the 1979-2019 period for each node in
Figure 1. Shaded regions indicate the above 95% confidence level. The thick black
lines show the study region.

Figure 4. Corresponding anomalous daily accumulated downward longwave radiation
(105 W m-2) without removing its linear trend from ERA-Interim reanalysis over the
1979-2019 period for each node in Figure 1. Dotted regions indicate the above 95%
confidence level. The thick black lines denote show the study region.

Figure 5. Corresponding anomalous daily accumulated turbulent heat flux (sensible
and latent heat) (10°W m™) without removing their linear trends from ERA-Interim
reanalysis over the 1979-2019 period for each node in Figure 1. Positive values
denote heat flux from atmosphere to ocean and vice versa. Dotted regions indicate the
above 95% confidence level. The thick black lines denote show the study region.
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Figure 6. Corresponding anomalous wintertime sea ice concentration without
removing its linear trend from the NSIDC over the 1979-2019 period for each node in
Figure 1. Dotted regions indicate the above 95% confidence level.

Figure 7. Time series of the number of days for occurrence of each SOM node in
Figure 1 over the 1979-2019 period. The thick lines denote the trend in time series.
Figure 8. Total (top), SOM-explained (middle), and residual (bottom) trend in
wintertime (DJF) surface air temperature (° C yr') over the 1979-2019 period. Dots in
the top panel indicate above 95% confidence level.

Figure 9. Trends in surface air temperature explained by each SOM node (T yr™)
over the 1979-2019 period. The percentage in the upper of each panel indicates the
fraction of the total trend represented by each node.

Figure 10. Anomalous SST (<C) regressed into the normalized time series of
occurrence number for nodes 1, 4, 6, and 9 without removing its linear trend from the
NOAA over the 1979-2019 period.

Figure 11. Anomalous 500-hPa geopotential height (gpm) regressed into the
normalized time series of occurrence number for nodes 1, 4, 6, and 9 without
removing its linear trend from ERA-Interim reanalysis over the 1979-2019 period.
Figure 12. The anomalous wave activity flux (vectors) (Takaya and Nakamura, 2001)
and stream function (colors, units: 10° m?s™) regressed onto the normalized time
series of occurrence number for nodes 1, 4, 6, and 9 without removing their linear
trends from ERA-Interim reanalysis over the 1979-2019 period.

Figure 13. Spatial patterns of SOM nodes for detrended daily wintertime (December,
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January, and February) surface air temperature anomalies (<C) from the 20CR
reanalysis for the 1851-2014 period. The number in brackets denotes the frequency of
the occurrence for each node.

Figure 14. Time series of the number of days for occurrence of each SOM node in
Figure 13 from the 20CR reanalysis for the 1851-2014 period. The thick red lines
denote the result in Figure 7 from the ERA-Interim reanalysis for the 1979-2019
period.

Figure 15. The (a) leading pattern and (b) its time series (PC1 and PC2) of EOF
analysis of wintertime surface air temperature anomalies from the 20CR reanalysis for
the 1851-2014 period. Prior to EOF analysis, surface sir temperature data are
detrended. A 40-yr low-pass filtered is applied to the time series of PC1, PC2, AMO,
PDO, and central North Pacific Ocean (CNPO) indices. The correlation coefficients
between PC1 and AMO, PDO and CNPO indices are -0.46 (p<0.0001), 0.38
(p<0.0001), and -0.19 (p=0.019); those between PC2 and and AMO, PDO and CNPO

indices are -0.44 (p<0.0001), 0.38 (p<0.0001), and -0.26 (p=0.0009).
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832  Figure 1. Spatial patterns of SOM nodes for daily wintertime (December, January, and February)
833  surface air temperature anomalies (<C) without removing their linear trends from ERA-Interim
834  reanalysis over the 1979-2019 period. The number in brackets denotes the frequency of the
835  occurrence for each node.
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853  Figure 2. Corresponding 500-hPa geopotential height anomalies (gpm) without removing their

854 linear trends from ERA-Interim reanalysis over the 1979-2019 period for each node in Figure 1.
855  Dotted regions indicate the above 95% confidence level. The thick black lines show the study
856  region.
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871
872  Figure 3. Corresponding anomalous 850-hPa wind field without removing its linear trend from
873  ERA-Interim reanalysis over the 1979-2019 period for each node in Figure 1. Shaded regions
874 indicate the above 95% confidence level. The thick black linesshow the study region.
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891
892  Figure 4. Corresponding anomalous daily accumulated downward longwave radiation (10° W m™)

893  without removing its linear trend from ERA-Interim reanalysis over the 1979-2019 period for each
894  node in Figure 1. Dotted regions indicate the above 95% confidence level. The thick black lines
895  show the study region.
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Figure 5. Corresponding anomalous daily accumulated turbulent heat flux (sensible and latent heat)
(10°W m™®) without removing their linear trends from ERA-Interim reanalysis over the 1979-2019
period for each node in Figure 1. Positive values denote heat flux from atmosphere to ocean and
vice versa. Dotted regions indicate the above 95% confidence level. The thick black lines show the
study region.
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932  Figure 6. Corresponding anomalous wintertime sea ice concentration without removing its linear

933  trend from the NSIDC over the 1979-2019 period for each node in Figure 1. Dotted regions
934 indicate the above 95% confidence level.
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952  Figure 7. Time series of the number of days for occurrence of each SOM node in Figure 1 over the
953  1979-2019 period. The thick lines denote the trend in time series.
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970  Figure 8. Total (top), SOM-explained (middle), and residual (bottom) trend in wintertime (DJF)
971  surface air temperature (° C yr™) over the 1979-2019 period. Dots in the top panel indicate above
972 95% confidence level.
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Figure 9. Trends in surface air temperature explained by each SOM node (T yr) over the
1979-2019 period. The percentage in the upper of each panel indicates the fraction of the total
trend represented by each node.
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Figure 10. Anomalous SST (<C) regressed into the normalized time series of occurrence number
for nodes 1, 4, 6, and 9 without removing its linear trend from the NOAA over the 1979-2019
period.
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Figure 11. Anomalous 500-hPa geopotential height (gpm) regressed into the normalized time
series of occurrence number for nodes 1, 4, 6, and 9 without removing its linear trend from
ERA-Interim reanalysis over the 1979-2019 period.
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Figure 12. The anomalous wave activity flux (vectors) (Takaya and Nakamura, 2001) and stream

function (colors, units: 10’ m’s™) regressed onto the normalized time series of occurrence number

for nodes 1, 4, 6, and 9 without removing their linear trends from ERA-Interim reanalysis over the

1979-2019 period.
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1060  Figure 13. Spatial patterns of SOM nodes for detrended daily wintertime (December, January, and
1061  February) surface air temperature anomalies (<) from the 20CR reanalysis for the 1851-2014
1062  period. The number in brackets denotes the frequency of the occurrence for each node.
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Figure 14. Time series of the number of days for occurrence of each SOM node in Figure 13 from
the 20CR reanalysis for the 1851-2014 period. The thick red lines denote the result in Figure 7
from the ERA-Interim reanalysis for the 1979-2019 period.
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Figure 15. The (a) leading pattern and (b) its time series (PC1 and PC2) of EOF analysis of
wintertime surface air temperature anomalies from the 20CR reanalysis for the 1851-2014 period..
Prior to EOF analysis, surface sir temperature data are detrended. A 40-yr low-pass filtered is
applied to the time series of PC1, PC2, AMO, PDO, and central North Pacific Ocean (CNPO)
indices. The correlation coefficients between PC1 and AMO, PDO and CNPO indices are -0.46
(p<0.0001), 0.38 (p<0.0001), and -0.19 (p=0.019); those between PC2 and and AMO, PDO and
CNPO indices are -0.44 (p<0.0001), 0.38 (p<0.0001), and -0.26 (p=0.0009).
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