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Abstract. The recent increasing trend of “warm Arctic, cold continents” has attracted much attention, 23 

but it remains debatable as to what forces are behind this phenomenon. Here, we revisited 24 

surface-temperature variability over the Arctic and Eurasian continent by applying the 25 

Self-Organizing-Map (SOM) technique to gridded daily surface temperature data. Nearly 40% of the 26 

surface temperature trends are explained by the nine SOM patterns that depict the switch to the current 27 

warm Arctic-cold Eurasia pattern at the beginning of this century from the reversed pattern that 28 

dominated the 1980s and the 90s. Further, no cause-effect relationship is found between the Arctic 29 

sea-ice loss and the cold spells in high-mid latitude Eurasian continent suggested by earlier studies. 30 

Instead, the increasing trend in warm Arctic-cold Eurasia pattern appears to be related to the anomalous 31 

atmospheric circulations associated with two Rossby wavetrains triggered by rising sea surface 32 

temperature (SST) over the central North Pacific and the North Atlantic Oceans. On interdecadal 33 

timescale, the recent increase in the occurrences of the warm Arctic-cold Eurasia pattern is a fragment 34 

of the interdecadal variability of SST over the Atlantic Ocean as represented by the Atlantic 35 

Multidecadal Oscillations (AMO), and over the central Pacific Ocean.  36 
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1 Introduction 45 

In recent decades, winter season temperature in the Arctic has been rising at a rate faster than the 46 

warming experienced in any other regions of the world (Stroeve et al., 2007; Screen and Simmonds, 47 

2010; Stroeve, 2012). In contrasts, there has been an increasing trend in colder than normal winters 48 

over the northern mid-latitude continents (Mori et al., 2014; Cohen et al., 2014; 2018). This pattern of 49 

opposite winter temperature trend between the Arctic and high-mid latitude continents, referred to as 50 

the warm Arctic-cold continents pattern (Overland et al., 2011; Cohen et al., 2014; Walsh, 2014), has 51 

received considerable interest in the scientific community especially with regard to dynamical and 52 

physical mechanisms for the development of the phenomenon (Mori et al., 2014;Vihma, 2014; Barnes 53 

and Screen, 2015; Kug et al., 2015; Overland et al., 2015; Chen et al., 2018).  54 

Using observational analyses or coupled ocean-atmosphere modeling, a number of studies have 55 

attributed the recent warm Arctic-cold continents pattern to the Arctic sea ice loss in boreal winter 56 

(Inoue et al., 2012; Tang et al., 2013; Mori et al., 2014; Kug et al., 2015; Cohen et al., 2018; Mori et al., 57 

2019). Sea ice variability in different parts of the Arctic Ocean has been linked to climate variability in 58 

different parts of the world. Specifically, sea ice loss in the Barents and Kara Seas has been linked to 59 

cold winters over East Asia (Kim et al., 2014; Mori et al., 2014; Kug et al., 2015; Overland et al., 2015) 60 

and in central Eurasia (Mori et al., 2014), while a similar connection has been found between cold 61 

winters in North America and sea ice retreat in the East Siberian and Chukchi Seas (Kug et al., 2015). 62 

A most recent study (Matsumura and Kosaka, 2019) attributed the warm Arctic-cold continents pattern 63 

to the combined effect of Arctic sea ice loss and the atmospheric teleconnection induced by tropical 64 

Atlantic sea-surface temperature (SST) anomalies.  65 

Other studies, however, found no cause-and-effect relationship between Arctic sea ice loss and 66 
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mid-latitude climate anomalies (Blackport et al., 2019; Fyfe, 2019). Numerical modeling studies using 67 

coupled ocean and atmospheric models simulated no cold mid-latitude winters when the models were 68 

forced with reduced Arctic sea ice cover (McCusker et al., 2016; Sun et al., 2016; Koenigk et al., 2019; 69 

Blackport et al., 2019; Fyfe, 2019). Instead, these studies pointed to internal atmospheric variability as 70 

the likely cause for cold winters in mid-latitudes. Some studies have also suggested that on the 71 

interannual timescale mid-latitude atmospheric circulation anomalies triggered by the Pacific and 72 

Atlantic SST oscillations may explain both the Arctic sea ice loss and the cooling of the high-mid 73 

latitudes (Lee et al., 2011; Luo et al., 2016; Peings et al., 2019; Matsumura and Kosaka, 2019; Clark 74 

and Lee, 2019). The sea surface temperature anomalies over the Gulf Stream have also been linked to 75 

the Barents Sea ice loss and Eurasian cooling (Sato et al., 2014).  76 

Despite the recent attention given to the warm Arctic-cold continents pattern, it remains debatable 77 

as to the roles of various dynamical and physical processes play in the formation of this phenomenon. 78 

In this study, we revisit surface temperature variability over the Arctic and Eurasia continent (40-90°N, 79 

20-130°E), where the warm Arctic-cold continents pattern is a prominent feature (Cohen et al., 2014; 80 

Mori et al., 2014), by applying the Self-Organizing-Map (SOM) technique to daily surface temperature 81 

over the recent four decades. We will show that while the warm Arctic-cold Eurasian continent pattern 82 

has dominated the recent two decades, its opposite pattern, cold Arctic-warm Eurasia continent, 83 

appeared frequently in the 1980s and the 90s. Using century-long data, we will further show that the 84 

warm Arctic-cold Eurasian continent pattern is an intrinsic climate mode and the recent increasing 85 

trend in its occurrence is a reflection of an interdecadal variability of the pattern. Using linear 86 

regression, we explain the reason for the recent increasing occurrences of the warm Arctic-cold 87 

continents pattern. We also assess the role of the SST anomalies over the North Pacific and Atlantic 88 
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Oceans in the variability of the warm Arctic-cold Eurasia pattern on the interdecadal time scale. 89 

2 Datasets and methods 90 

2.1 Datasets 91 

Daily surface air temperature and other climate variables used in the current analyses, including 92 

500 hPa geopotential height, 800-hPa wind and mean sea level pressure, all come from the European 93 

Centre for Medium-Range Weather Forecasts Re-Analysis (ERA), the interim version (ERA-Interim; 94 

Dee et al., 2011) with a horizontal resolution of approximately 79 km (T255) and 60 vertical levels in 95 

the atmosphere. Compared to the earlier versions of ERA (e.g., ERA-40, Uppala et al., 2005) and other 96 

global re-analysis products (e.g. the NCEP reanalysis, Kalnay et al., 1996), ERA-Interim has been 97 

found to be more accurate in portraying the Arctic warming trend (Dee et al., 2011; Screen and 98 

Simmonds, 2011) despite its known warm and moist bias in the surface layer (Jakobson et al., 2012). 99 

Daily sea ice data are obtained from the U.S. National Snow and Ice data Center 100 

(ftp://sidads.colorado.edu/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily). 101 

Gridded monthly SST data used in the current analysis are obtained from the U.S. National Oceanic 102 

and Atmospheric Administration (NOAA) data archives 103 

(ftp://ftp.cdc.noaa.gov/Datasets/noaa.oisst.v2.highres/) (Reynolds et al. 2007). 104 

The results obtained from the data within the recent four decades are put into the context of the 105 

variability over longer time scales using data from the Twentieth Century Reanalysis project, version 106 

2C (20CR) that spans more than a century from 1851 through 2015 (Compo et al., 2011). The 20CR 107 

reanalysis data, which has a horizontal resolution of 2° latitude by 2° longitude and temporal resolution 108 

of 6 hours, was produced by a model driven at the lower boundary by observed monthly SST and sea 109 

ice conditions and with data assimilation of surface pressure observations. Several indices used to 110 

ftp://sidads.colorado.edu/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily
ftp://ftp.cdc.noaa.gov/Datasets/noaa.oisst.v2.highres/
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describe known modes of climate variability including Arctic oscillation (AO), Northern Atlantic 111 

Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO) (Enfield et al., 2001) and PDO (Mantua 112 

et al., 1997), are obtained from NOAA’s Climate prediction Center (CPC) 113 

(https://www.esrl.noaa.gov/psd/data/climateindices/list/), 114 

2.2 Methods 115 

From the perspective of nonlinear dynamic, a region’s climate has its intrinsic modes of variability, 116 

but the frequency of occurrence of these internal modes can be modulated by remote forces external to 117 

the region (Palmer, 1999l; Hoskins and Woollings, 2015; Shepherd, 2016). In this study we will first 118 

obtain the main modes of variability of wintertime surface temperature in a region (40-90°N, 20-130°E) 119 

by applying the SOM method (Kohonen, 2001) to daily surface temperature data for the 40 winters 120 

(December, January, February) from December 1979 through February 2019. The use of daily data 121 

over four decades allows for capturing the variability across two time scales (synoptic and decadal). 122 

SOM is a clustering method based on neural network that can transform multi-dimensional data into a 123 

two-dimensional array without supervised learning. The array includes a series of nodes arranged by a 124 

Sammon map (Sammon, 1969). Each node in the array has a vector that can represent a spatial pattern 125 

of the input data. The distance of any two nodes in the Sammon map represents the level of similarity 126 

between the spatial patterns of the two nodes. Because SOM has fewer limitations than most other 127 

commonly used clustering methods, (e.g., orthorgonality required by the empirical orthogonal function 128 

or EOF method ), the SOM method can describe better the main variability patterns of the input data 129 

(Reusch et al., 2005).  130 

SOM method has been used in atmospheric research at mid and high latitudes of the northern 131 

hemisphere (Skific et al., 2009; Johnson and Feldstein, 2010; Horton et al., 2015; Loikith and Broccoli, 132 

https://www.esrl.noaa.gov/psd/data/climateindices/list/
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2015; Vihma et al., 2019). For example, Johnson and Feldstein (2010) used SOM to identify spatial 133 

patterns of daily wintertime North Pacific sea level pressure and relate the variability of the 134 

occurrences of those patterns to some large-scale circulation indices. Loikith and Broccoli (2015) 135 

compared observed and model-simulated circulation patterns across the North American domain using 136 

an approaching involving SOM. The SOM method was also used to detect circulation pattern trends in 137 

a subset of North America during two different periods (Horton et al., 2015).   138 

In this study, the SOM method is applied to ERA-Interim wintertime daily temperature anomalies from 139 

December 1979 through February 2019. The anomalies are calculated by subtracting 40-year averaged 140 

daily temperature from the original daily temperature at each grid point. Prior to SOM analysis, it is 141 

necessary to determine how many SOM nodes are needed to best capture the variability in the data. 142 

According to previous studies (Lee and Feldstein, 2013; Gibson et al., 2017; Schudeboom et al., 2018), 143 

the rule for determining the number of SOM nodes is that the number should be sufficiently large to 144 

capture the variability of the data analyzed, but not too large to introduce unimportant details. Table 1 145 

shows the averaged spatial correlation between all daily surface air temperature anomalies and their 146 

matching nodes.  The spatial correlation coefficients increase from 0.26 for a 3×1 grid to 0.51 for a 147 

4×4 grid, but the gain from a 3×3 grid to a 4×4 grid is relatively small. Hence, a 3×3 grid seems to 148 

meet the above-mentioned rule and will be utilized in this study.  149 

The contribution of each SOM node to the trend in wintertime surface temperature anomalies is 150 

calculated by the product of each node pattern and its frequency trend normalized by the total number  151 

(90) of wintertime days (Lee and Feldstein, 2013). The sum of the contributions from all nodes denotes 152 

the SOM-explained trends. Residual trends are equal to the subtraction of SOM-explained trends from 153 

the total trends. The anomalous atmospheric circulation pattern corresponding to each of the SOM 154 
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pattern is obtained by composite analysis that computes a composite mean of an atmospheric 155 

circulation field (e.g., 500 hPa height) over all occurrences of that SOM node. Regression analysis is 156 

also performed where atmospheric circulation variables are regressed onto the time series of the 157 

occurrence of a SOM node to further elucidate the relationship between the variability of atmospheric 158 

circulations and surface temperatures. The statistical significance of composite and regression analyses 159 

in this study is tested by using the Student’s t test.  160 

3 Results 161 

3.1 Surface temperature variability  162 

The majority of the 9 SOM nodes depict a dipole pattern characterized by opposite changes in 163 

surface temperatures between the Arctic Ocean and the Eurasian continent, although the sign switch 164 

does not always occur at the continent-ocean boundary (Figure 1). The differences in the position of the 165 

boundary between the warm and cold anomalies reflects the transition between the cold Arctic-warm 166 

Eurasia pattern (denoted, in descent order of the occurrence frequency, by nodes 3, 9, 6), to the warm 167 

Arctic-cold Eurasia pattern (depicted, in descent order of the occurrence frequency, by nodes 1, 7, 4). 168 

The spatial patterns represented by the first group of nodes are almost mirror images of the patterns 169 

denoted by the corresponding nodes in the second group. For example, the second node in group 1 170 

(node 9, 15.4%) and the first node in group 2 (node 1, 17.1%) show a mirror image pattern with cold 171 

(warm) anomalies in the Arctic Ocean extending into northern Eurasia and warm (cold) anomalies in 172 

the rest of the Eurasia continent in the study domain. In both cases, the region of maximum magnitude 173 

anomalies is centered near Svalbard, Norway. The second pair, denoted by node 3 (17.2%) and 7 174 

(13.7%) has the boundary of separation moved northward from northern Eurasia continent toward the 175 

shore of the Arctic Ocean. While the maximum anomaly in the Arctic Ocean remains close to Svalbard, 176 
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maximum values over the continent are found in central Russia. Nodes 4-6 display a noticeable 177 

transition from node 1 to node 7 and from node 3 to node 9, respectively. Although nodes 2 and 8 show 178 

an approximate monopole spatial pattern, they also represent a transition between nodes 1 and 3, and 179 

between nodes 7 and 9, respectively. Above SOM analysis does not consider the trend in surface air 180 

temperature. The result is similar when the trend is removed (not shown). 181 

The temporal variability on this time scale is typically related to synoptic processes and hence the 182 

questions are what synoptic patterns are responsible for the occurrence of the spatial patterns depicted 183 

by each of the 9 SOM nodes and how these patterns are related to those of the Arctic sea ice anomalies? 184 

These questions can be answered by using the composite method. Specifically, for each SOM node, 185 

composite maps are made respectively for the anomalous 500-hPa geopotential height, mean sea level 186 

pressure, 850-hPa wind, downward longwave radiation, surface turbulent heat flux, and sea ice 187 

concentration over all the days when the spatial variability of the surface temperature anomalies is best 188 

matched by the spatial pattern of that node.  189 

3.2 Large-scale circulation patterns 190 

For all SOM nodes, the spatial pattern of the composited 500-hPa geopotential height anomalies 191 

(Figure 2) is similar to that of mean sea level pressure anomalies (not shown), indicating an 192 

approximately barotropic structure. For nodes 1, 4 and 7, the 500-hPa height anomalies show a dipole 193 

structure of positive values over Siberia and negative values to its south over the Eurasian continent. 194 

Anomalous southwesterly winds on the western side of the anticyclone over Siberia transport warm 195 

and moist air from northern Europe and the North Atlantic Ocean into the Atlantic sector of the Arctic 196 

Ocean (Figure 3), providing a plausible explanation of the warm surface temperature anomalies in the 197 

region (Figure 1). On the eastern side of the anticyclone, anomalous northwesterly winds bring cold 198 
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and dry air from the Arctic Ocean into Eurasia continent, which is consistent with the negative surface 199 

temperature anomalies there. The opposite occurs for nodes 3, 6 and 9. A similar explanation involving 200 

anomalous pressure and wind fields can be applied to other nodes. The dipole structure that dominates 201 

the anomalous 500-hPa height fields over the North Atlantic Ocean for most nodes resembles the 202 

spatial pattern of the NAO (Figure 2). In addition, the patterns for several nodes, such as nodes 4 and 7, 203 

have some resemblance to the spatial pattern of the AO over larger geographical region. The possible 204 

connection to NAO and AO is further investigated by averaging the daily index values of NAO or AO 205 

over all occurrence days for each node. The results (Table 2) show that nodes 1, 2, 3 (5, 8, 9) 206 

correspond to a significant positive (negative) phase of the NAO index characterized by negative 207 

(positive) height anomalies over Iceland and positive (negative) values over the central North Atlantic 208 

Ocean. Association is also found between nodes 1, 2, 3, and 6 (5, 7, 8, and 9) and the positive (negative) 209 

phases of the AO index.  210 

3.3 Downward radiative fluxes  211 

Besides the anomalous circulation patterns, anomalous surface radiative fluxes may also play a role in 212 

shaping the spatial pattern of surface temperature variability. In fact, the spatial pattern of the mean 213 

anomalous daily downward longwave radiation for an individual node (Figure 4) is in good agreement 214 

with the spatial pattern of the surface temperature anomalies of that node. In other words, increased 215 

downward longwave radiation is associated with positive surface temperature anomalies, and vice 216 

versa. As expected from previous studies (e.g., Sedlar et al. 2011), there is a significant positive 217 

correlation between downward longwave radiative fluxes and the anomalous total column water vapor 218 

and mid-level cloud cover (not shown). The correlation to low- and high-level cloud cover is, however, 219 

not significant (not shown). Most of the water vapor in both the Arctic and Eurasia is derived from the 220 
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North Atlantic Ocean, but the water vapor is transported into the Arctic by southwesterly flows and into 221 

Eurasia by northwesterly winds. The anomalous shortwave radiation corresponding to each node (not 222 

shown) is an order of magnitude smaller that of the longwave radiation anomalies and has a spatial 223 

pattern opposite to that of the mid-level cloud cover and the longwave radiation anomalies.  224 

3.4 Sea ice  225 

The analyses presented above attempt to explain the spatial pattern of surface temperature 226 

variability for each node from the perspective of anomalous heat advection and surface radiative fluxes. 227 

As mentioned earlier, there has been a debate in the literature about the role played by the sea ice 228 

anomalies in the Barents and Kara Seas in the development of the warm Arctic-cold Eurasia pattern. 229 

Here, we examine the anomalous turbulent heat flux (Figure 5) and sea ice concentration (Figure 6) for 230 

each node. Turbulent heat flux is considered positive when it is directed from the atmosphere 231 

downward to the ocean or land surfaces. Thus, a positive anomaly indicates either an increase in the 232 

atmosphere-to-surface heat transfer or a decrease in the heat transfer from the surface to the atmosphere. 233 

The magnitude of anomalous turbulent heat flux is found to be comparable to that of anomalous 234 

downward longwave radiation (Figure 4). For all nodes, the heat flux anomalies are larger over ocean 235 

than over land (Figure 5). For node 1, positive turbulent heat flux anomalies occur mainly over the 236 

Barents Sea, the western and central North Atlantic Ocean and the eastern North Pacific Ocean, 237 

indicating an increase in heat transport from the air to the ocean due possibly to an increase in vertical 238 

temperature gradient caused by warm air advection associated with anomalous circulation (Figures 2 239 

and 3). The downward heat transfer results in sea ice melt in the Greenland Sea and the Barents Sea 240 

(Figure 6). For node 4, the anomalous southerly winds over the Nordic Sea produce larger positive 241 

turbulent heat flux anomalies (Figure 5). For node 7, the anticyclone is located more northwards, which 242 
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generates opposite anomalous winds between the Nordic and northern Barents Seas and the southern 243 

Barents Sea and thus opposite turbulent heat flux anomalies that are consistent with the opposite sea ice 244 

concentration anomalies in the two regions (Figure 5). For nodes 3, 6, and 9, the anomalous cold air 245 

from the central Arctic Ocean flows into warm water in the Nordic and Barents Seas, producing 246 

negative turbulent heat flux anomalies and positive sea ice concentration anomalies (Figures 5 and 6). 247 

Sorokina et al. (2016) noted that turbulent heat flux usually peaks 2 days before changes in surface 248 

temperature pattern occur. The pattern of the composited anomalous 500-hPa geopotential height, 249 

turbulent heat flux and sea ice concentration 2 days prior to the day when the nodes occur (not shown) 250 

is similar to the current-day pattern in Figures 2, 5, and 6. Our results support the conclusion of 251 

Sorokina et al. (2016) and Blackport et al. (2019) that the anomalous atmospheric circulations lead to 252 

the anomalous sea ice concentration in the Barents Sea.  253 

3.5 Trends in wintertime surface temperature  254 

The results above suggest that both the surface temperature anomaly patterns over the Arctic Ocean 255 

and Eurasian continent and the sea ice concentration anomalies in the Nordic and Barents Seas can be 256 

explained largely by changes in atmospheric circulations and the associated vertical and horizontal heat 257 

and moisture transfer by mean and turbulent flows. Next, we assess the trends of wintertime surface 258 

temperature and the contributions of the SOM nodes to the trends.  259 

We first examine the time series of the accumulated number of days for each node in each winter 260 

for the 1979-2019 period (Figure 7). The time series for nodes 1, 4, 6, and 9 exhibit variability on 261 

interannual as well as decadal time scales. The occurrence frequency is noticeably larger after 2003 262 

than prior to 2003 for nodes 1 and 4, and vice versa for nodes 6 and 9, and the difference between the 263 

two periods is significant at 95% confidence level. Given the spatial patterns of these four nodes 264 
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(Figure 1), this indicates that the warm Arctic-cold Eurasia pattern occurred more frequently after 2003. 265 

A linear trend analysis of the time series for each node (Table 3) reveals significant positive trends in 266 

occurrence frequency for nodes 1 and 4 and significant negative trends for nodes 6 and 9, which agree 267 

with the result from a previous study (Clark and Lee, 2019; Overland et al., 2015) that suggested an 268 

increasing trend of the warm Arctic and cold Eurasia pattern. 269 

These trends in the occurrence frequency of the SOM nodes contribute to the trends in the total 270 

wintertime (DJF) surface temperature anomalies (Figure 8, top panel) that have significant positive 271 

trends over the Arctic Ocean and in regions of Northern and Eastern Europe and negative, mostly 272 

insignificant trends in Central Siberia. The contribution, however, varies from node to node (Figure 9). 273 

Node 1 has the largest domain-averaged contribution of 18.7%, followed by its mirror node (node 9) at 274 

10.1%. Nodes 4 and 6 account for 2.8% and 4.3% of the total trend, respectively. None of the 275 

remaining nodes explain more than 2%. All nodes together explain 39.5% of the total trend in 276 

wintertime surface air temperature. The spatial pattern of the SOM-explained trends (Figure 8, middle 277 

panel) is similar to the warm Arctic-cold continent pattern, whereas the residual trend resembles more 278 

the total trend (Figure 8 bottom panel).  279 

3.6 Mechanisms 280 

The results presented above indicate that the SOM patterns explain nearly 40% of the trend in 281 

wintertime surface air temperature anomalies and majority of the contributions (35 out of 40%) come 282 

from the two pairs of the nodes (nodes 1, 9, and 4, 6). The analyses hereafter will focus on these four 283 

nodes. Below we assess the atmospheric and oceanic conditions associated with the occurrences of the 284 

four nodes via regression analysis. Specifically, the anomalous seasonal SST and atmospheric 285 

circulation variables are regressed onto the normalized time series of the number of days when each of 286 
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the four nodes occurs (Figures 10, 11, and 12). 287 

For node 1, the SST regression pattern in the Pacific Ocean shows significant positive anomalies 288 

over the tropical western Pacific Ocean and central North Pacific Ocean (Figure 10). The positive SST 289 

anomalies also occur over most of the North Atlantic. Negative SST anomalies occur over the central 290 

tropical Pacific Ocean, though they are not significant at 95% confidence level. The SST regression 291 

pattern is reversed for node 9. The direction of wave activity flux indicates the direction of group speed 292 

of stationary planetary wave. Here we calculate the wave activity flux defined by Takaya and 293 

Nakamura (2001), which considers the influence of mid-latitude zonal wind (Figure 12). For node 1, 294 

the corresponding anomalous 500-hPa height regression (Figure 11) shows two Rossby wavetrains: one 295 

is excited over the central Pacific Ocean and propagates northeastwards into North America and North 296 

Atlantic Ocean, and the other, which displays astronger signal, originates from central North Atlantic 297 

and propagates northeastwards to the Arctic Ocean and southeastwards to the Eurasian continent 298 

(Figure 11 and 12). For node 9, the corresponding anomalous 500-hPa height and streamfunction show 299 

an opposite pattern, but the wave activity flux is similar to that of node 1. 300 

For node 4, the SST anomalies over the tropical Pacific Ocean appear to be in a La Niña state, 301 

which shows stronger negative SST anomalies over the eastern tropical Pacific Ocean than those for 302 

node 1 (Figure 10). The positive SST anomalies over the North Pacific shift more northwards relative 303 

to that of node 1. The positive SST anomalies over the North Atlantic are weaker than those for node 1. 304 

The corresponding wavetrain over the Pacific Ocean is stronger than that over the Atlantic Ocean 305 

(Figure 11), which is also be observed in the pattern of wave activity and streamfunction (Figure 12). 306 

The corresponding pattern for node 6 is nearly reversed, but there are some noticeable differences in 307 

the amplitude of the wavetrain and SST anomalies. For example, the magnitude of the anomalous SST 308 
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and the 500-hPa height over the central North Pacific is larger for node 6 than that for node 4.  309 

Besides the above-mentioned variables, similar regression analysis is also performed for the 310 

anomalous 850-hPa wind field and anomalous downward longwave radiation (not shown). Their 311 

regression patterns, which are similar to those in Figures 3 and 4, explain well the decadal variability of 312 

the number of days for nodes 1, 4, 6, and 9. Together, these results in Figures 10-12 indicate that the 313 

decadal variability of the occurrence frequency of the four nodes in recent decades is related to two 314 

wavetrains induced by SST anomalies over the central North Pacific Ocean and the North Atlantic 315 

Ocean (Figures 10 and 11). The aforementioned SST regression patterns over the Atlantic and Pacific 316 

Oceans also show features of the AMO and PDO (Figure 10). Since both the AMO and PDO exhibited 317 

a phase change in the late 1990s (Yu et al., 2017), the question is whether a similar change in the SOM 318 

frequency also appear in the late 1990s. A comparison of the averaged frequency before and after 1998 319 

shows a significant drop in frequency for nodes 6 and 9 and an increase in frequency for node 1 (not 320 

shown). This result suggests that the change in the AMO and PDO indices may contribute to the change 321 

in the frequencies of the warm Arctic-cold Eurasia continent pattern. 322 

3.7 Interdecadal variability 323 

The four-decade-long ERA-Interim reanalysis is not adequate for examining interdecadal to 324 

multi-decadal variations represented by the PDO and AMO indices. Further analysis is performed using 325 

the 20CR daily reanalysis data for the 1854-2014 period. Before applying the SOM technique to the 326 

20CR data, we first remove the trend to eliminate the influence from the global warming. No low-pass 327 

filter is applied before SOM analysis in order to test the stability of the SOM results for the different 328 

periods. The spatial SOM patterns from the de-trended century-long 20CR data (Figure 13) are similar 329 

to those for the 1979-2019 period (Figure 1). Nodes 1, 4, and 7 correspond to the positive phase of the 330 
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warm Arctic-cold Eurasia pattern and the negative phase can be observed in nodes 3, 6, and 9. The 331 

magnitude in Figure 13 is smaller compared to the recent four decades in Figure 1. The occurrence 332 

frequencies of the four nodes, 1, 4, 6, and 9 (Figure 14), are close to those for the recent four decades 333 

(Figure 7). It indicates that the SOM method can obtain stably the main modes of wintertime surface 334 

air temperature variability. For the recent four decades, the time series of the number of days also 335 

displays a noticeable increasing (decreasing) trend for nodes 1 and 4 (6 and 9), suggesting that the 336 

trend in the recent four decades is a reflection of an interdecadal variability of wintertime surface air 337 

temperature.  338 

Next, we apply a 40-year low-pass filter to the time series of the occurrence frequencies for nodes 339 

1, 4, 6 and 9 and the AMO and PDO indices and calculate correlations. There is a significant 340 

correlation between the time series and the AMO index, with correlation coefficients of 0.36 for node 1, 341 

0.27 for node 4, -0.37 for node 6, and -0.20 for node 9, all of which are at the 95% confidence level. No 342 

significant correlations, however, are found between the filtered time series and the PDO index. If we 343 

define a SST index to represent the variability of SST anomalies over the central North Pacific Ocean 344 

(20°N-40°N, 150°E-150°W), the 40-year low-pass filtered central North Pacific Ocean SST index is 345 

now significantly correlated with the filtered time series of occurrence frequencies for nodes 1 and 9 346 

(0.55 for node 1 and -0.46 for node 9). The correlation results are consistent with the SST regression 347 

map for the recent decades (Figure 10). 348 

To confirm the effect of SST anomalies on the warm Arctic -cold Eurasia pattern, we also perform 349 

EOF analysis of wintertime detrended seasonal surface air temperature anomalies for the 1854-2014 350 

period (Figure 15). The spatial patterns of the first and second EOF modes show the negative phase of 351 

the warm Arctic-cold Eurasia pattern and the 40-year low-pass filtered time series is inversely 352 
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correlated with the 40-year low-pass filtered wintertime AMO index (-0.46, p<0.05 for mode 1 and 353 

-0.44, p<0.05 for mode 2). The 40-year low-pass filtered time series of the two EOF modes have a 354 

significant negative correlation with the 40-year low-pass filtered central North Pacific Ocean SST 355 

index, with correlation coefficients of -0.19 and -0.26 (p<0.05). Only PC1 has a significant correlation 356 

with the PDO index (0.38, p<0.05). Thus, the increase in the occurrence of the warm Arctic-cold 357 

Eurasia pattern in the recent decades is a part of the interdecadal variability of the pattern, which is 358 

influenced by the AMO index, the PDO index, and the central North Pacific SST.  359 

4 Conclusions and Discussions 360 

In this study, we examine the variability of wintertime surface air temperature in the Arctic and the 361 

Eurasian continent (20°E-130°E) by applying the SOM method to daily temperature from the gridded 362 

ERA-Interim dataset for the period 1979-2019 and from the 20CR reanalysis for the period 1854-2014 363 

and the EOF method to seasonal temperature from the 20CR reanalysis for the period 1854-2014. The 364 

spatial pattern in the surface temperature variations in the study region, as revealed by the nine SOM 365 

nodes, is dominated by concurrent warming in the Arctic and cooling in Eurasia, and vice versa. The 366 

nine SOM patterns explain nearly 40% of the trends in wintertime surface temperature and 88% of that 367 

are accounted for by only four nodes. Two of the four nodes (nodes 1 and 4) represent the warm 368 

Arctic-cold Eurasian pattern and the other two (nodes 6 and 9) depict the opposite cold Arctic-warm 369 

Eurasia pattern. There is a clear shift in the frequency of the occurrence of these patterns near the 370 

beginning of this century, with the warm Arctic – cold Eurasia pattern dominating since 2003, while the 371 

opposite pattern prevailing from the 1980s through the 1990s. The warm Arctic-cold Eurasia pattern is 372 

accompanied by an anomalous high pressure and anticyclonic circulation over the Eurasian continent. 373 

The anomalous winds and the associated temperature and moisture advection interact with local 374 
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longwave radiative forcing and turbulent fluxes to produce positive (negative) temperature anomalies 375 

in the Arctic (Eurasian continent). The circulation is reversed for the cold Arctic-warm Eurasia pattern. 376 

The warm, moist air mass is advected to the Arctic by the anomalous atmospheric circulations and the 377 

increased downward turbulent heat flux also explain sea ice melt in the Barents and Kara Seas. In other 378 

words, the sea ice loss in the Barents and Kara Seas and the cooling of the Eurasian continent can both 379 

be traced to anomalous atmospheric circulations.  380 

Increasing occurrences of the warm Arctic-cold Eurasian continent pattern appear to relate to 381 

rising SST over the central North Pacific and North Atlantic Oceans (positive AMO phase). The SST 382 

anomalies trigger two Rossby wavetrains spanning from the North Pacific Ocean, North America, and 383 

the North Atlantic Ocean to the Eurasian continent. The two wavetrains are strengthened through local 384 

sea-atmosphere-ice interactions in mid-high latitudes, which influence the change in the occurrence 385 

frequency of the warm Arctic-cold Eurasian continent pattern. Our results agree with those of previous 386 

studies (Lee et al., 2011; Sato et al., 2014; Clark and Lee, 2019). But previous studies only focus on the 387 

effects of SST anomalies over either North Pacific or North Atlantic Oceans. We also note that the two 388 

wavetrains excited by SST anomalies over different oceans differ in amplitudes, leading to somewhat 389 

different warm Arctic-cold Eurasia patterns.  390 

Using century-long data, we show that the warm Arctic-cold Eurasia pattern is an intrinsic climate 391 

mode, which has been stable since 1854. The recent increasing trend in its occurrence is a reflection of 392 

an interdecadal variability of the pattern resulting from the interdecadal variability of SST anomalies 393 

over the central Pacific Ocean and over the Atlantic Ocean represented by the AMO index. Sung et al. 394 

(2018) investigated interdecadal variability of the warm Arctic and cold Eurasia pattern and considered 395 

the variability of the SST over the North Atlantic as its origin. Our results suggest that the variability of 396 
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the SST over the North Pacific also plays an important role. However, internal atmospheric variability 397 

remains another potential source. The Rossby wavetrains also lead to deepening of a trough in East 398 

Asia and generate an anomalous low pressure and cold temperature in northern China (Figure 10), 399 

which further suggests that a warmer Arctic, especially warmer Barents and Kara Seas is not the driver 400 

for the increasing occurrence of cold spells in East Asia, as suggested in previous studies (Kim et al., 401 

2014; Mori et al., 2014; Kug et al., 2015; Overland et al., 2015).   402 

Our results suggest that the increasing trend in warm Arctic-cold Eurasia pattern may be related to 403 

the anomalous SST over the central North Pacific and the North Atlantic Oceans. But we cannot rule 404 

out the influence of the Arctic sea ice loss on the trend. The Arctic sea ice loss results from both Arctic 405 

warming due to anthropogenic increasing of greenhouse gas concentrations and natural variability of 406 

climate system such as SST anomalies. This study considers natural variability or internal driver of 407 

climate system. The Arctic warming caused external forcing related to increasing greenhouse gas 408 

emissions can produce an anomalous anticyclone over the Barents and Kara Seas, leading to the warm 409 

Arctic-cold continents pattern.  410 

Although the ERA-Interim reanalysis is overall superior in describing the Arctic atmospheric 411 

environment to other similar global reanalysis products, it contains warm and moist biases in the 412 

surface layer (Jakobson et al., 2012; Chaudhuri et al., 2014; Simmons and Poli, 2015; Wang et al., 413 

2019). However, we believe these biases, as well as the relatively coarse resolution, should have 414 

minimum impact in the results from the current analyses.  Further, although the current analyses were 415 

performed on a predetermined SOM grid with 3x3 nodes, an increase in the number of SOM nodes 416 

didn’t change the conclusions.   417 

Our results help broaden the current understanding of the formation mechanisms for the warm 418 
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Arctic-cold Eurasia pattern. The SST anomalies over Northern Hemisphere oceans may offer a 419 

potential for predicting its occurrence. The statistical relationship between SST anomalies and the 420 

occurrences of the warm Arctic-cold continents pattern may help improve the predictability of 421 

wintertime surface air temperature over Eurasian continent on interdecadal time scales.  422 
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Table 1．Spatial correlations (Corrs) between the daily winter (DJF) surface air 619 

temperature and the corresponding SOM pattern for each day from 1979 to 2018. 620 

 3×1 2×2 3×2 4×2 3×3 5×2 4×3 5×3 4×4 

Corr 0.26 0.43 0.48 0.48 0.50 0.49 0.50 0.51 0.51 
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Table 2. Averaged anomalous NAO and AO indices for all occurrences of each SOM 651 

node. Asterisks indicate the above 95% confidence level. 652 

 653 

 Node1 Node2 Node3 Node4 Node5 Node6 Node7 Node8 Node9 

NAO 0.38* 0.22* 0.12* 0.05 -0.22* -0.02 -0.07 -0.31* -0.32* 

AO 0.44* 0.38* 1.03* -0.42 -0.62* 0.22* -0.44* -1.11* -0.41* 

 654 
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Table 3. Trends in the frequency of occurrences for each SOM node (day yr
-1

). 692 

Asterisks indicate the above 95% confidence level. 693 

 694 

 Node1 Node2 Node3 Node4 Node5 Node6 Node7 Node8 Node9 

Trend 0.80* 0.10 -0.18 0.22* -0.02 -0.39* 0.17 -0.17 -0.50* 
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Table 4. Frequencies of occurrence (%) of wintertime surface air temperature patterns 732 

in Figure 1 for all winters before 1998 and after 1998 for the period 1979-2019. 733 

Values with Asterisks are significantly different from climatology above the 95% 734 

confidence level. 735 

 736 

 Frequencies of occurrence 

SOM patterns All winters Winters before 1998 Winters after 1998 

Node 1 17.1 7.4* 26.8 

Node 2 4.4 3.3 5.4 

Node 3 17.2 18.8 15.6 

Node 4 8.6 5.4 11.7 

Node 5 3.4 3.4 3.5 

Node 6 10.2 15.2* 2.1* 

Node 7 13.7 10.6 16.8 

Node 8 10.1 12.1 8.0 

Node 9 15.4 23.7* 7.1* 
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Figure Captions 764 

Figure 1. Spatial patterns of SOM nodes for daily wintertime (December, January, and 765 

February) surface air temperature anomalies (°C) without removing their linear trends 766 

from ERA-Interim reanalysis over the 1979-2019 period. The number in brackets 767 

denotes the frequency of the occurrence for each node. 768 

Figure 2. Corresponding 500-hPa geopotential height anomalies (gpm) without 769 

removing their linear trends from ERA-Interim reanalysis over the 1979-2019 period 770 

for each node in Figure 1. Dotted regions indicate the above 95% confidence level. 771 

The thick black lines show the study region. 772 

Figure 3. Corresponding anomalous 850-hPa wind field (ms
-1

) without removing its 773 

linear trend from ERA-Interim reanalysis over the 1979-2019 period for each node in 774 

Figure 1. Shaded regions indicate the above 95% confidence level. The thick black 775 

lines show the study region. 776 

Figure 4. Corresponding anomalous daily accumulated downward longwave radiation 777 

(105 W m-2) without removing its linear trend from ERA-Interim reanalysis over the 778 

1979-2019 period for each node in Figure 1. Dotted regions indicate the above 95% 779 

confidence level. The thick black lines denote show the study region. 780 

Figure 5. Corresponding anomalous daily accumulated turbulent heat flux (sensible 781 

and latent heat) (10
5
W m

-2
) without removing their linear trends from ERA-Interim 782 

reanalysis over the 1979-2019 period for each node in Figure 1. Positive values 783 

denote heat flux from atmosphere to ocean and vice versa. Dotted regions indicate the 784 

above 95% confidence level. The thick black lines denote show the study region. 785 
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Figure 6. Corresponding anomalous wintertime sea ice concentration without 786 

removing its linear trend from the NSIDC over the 1979-2019 period for each node in 787 

Figure 1. Dotted regions indicate the above 95% confidence level. 788 

Figure 7. Time series of the number of days for occurrence of each SOM node in 789 

Figure 1 over the 1979-2019 period. The thick lines denote the trend in time series. 790 

Figure 8. Total (top), SOM-explained (middle), and residual (bottom) trend in 791 

wintertime (DJF) surface air temperature (
o
 C yr

-1
) over the 1979-2019 period. Dots in 792 

the top panel indicate above 95% confidence level.  793 

Figure 9. Trends in surface air temperature explained by each SOM node (°C yr
-1

) 794 

over the 1979-2019 period. The percentage in the upper of each panel indicates the 795 

fraction of the total trend represented by each node. 796 

Figure 10. Anomalous SST (°C) regressed into the normalized time series of 797 

occurrence number for nodes 1, 4, 6, and 9 without removing its linear trend from the 798 

NOAA over the 1979-2019 period. 799 

Figure 11. Anomalous 500-hPa geopotential height (gpm) regressed into the 800 

normalized time series of occurrence number for nodes 1, 4, 6, and 9 without 801 

removing its linear trend from ERA-Interim reanalysis over the 1979-2019 period.  802 

Figure 12. The anomalous wave activity flux (vectors) (Takaya and Nakamura, 2001) 803 

and stream function (colors, units: 10
7
 m

2 
s

-1
) regressed onto the normalized time 804 

series of occurrence number for nodes 1, 4, 6, and 9 without removing their linear 805 

trends from ERA-Interim reanalysis over the 1979-2019 period. 806 

Figure 13. Spatial patterns of SOM nodes for detrended daily wintertime (December, 807 
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January, and February) surface air temperature anomalies (°C) from the 20CR 808 

reanalysis for the 1851-2014 period. The number in brackets denotes the frequency of 809 

the occurrence for each node. 810 

Figure 14. Time series of the number of days for occurrence of each SOM node in 811 

Figure 13 from the 20CR reanalysis for the 1851-2014 period. The thick red lines 812 

denote the result in Figure 7 from the ERA-Interim reanalysis for the 1979-2019 813 

period. 814 

Figure 15. The (a) leading pattern and (b) its time series (PC1 and PC2) of EOF 815 

analysis of wintertime surface air temperature anomalies from the 20CR reanalysis for 816 

the 1851-2014 period. Prior to EOF analysis, surface sir temperature data are 817 

detrended. A 40-yr low-pass filtered is applied to the time series of PC1, PC2, AMO, 818 

PDO, and central North Pacific Ocean (CNPO) indices. The correlation coefficients 819 

between PC1 and AMO, PDO and CNPO indices are -0.46 (p<0.0001), 0.38 820 

(p<0.0001), and -0.19 (p=0.019); those between PC2 and and AMO, PDO and CNPO 821 

indices are -0.44 (p<0.0001), 0.38 (p<0.0001), and -0.26 (p=0.0009). 822 
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 830 

 831 

Figure 1. Spatial patterns of SOM nodes for daily wintertime (December, January, and February) 832 

surface air temperature anomalies (°C) without removing their linear trends from ERA-Interim 833 

reanalysis over the 1979-2019 period. The number in brackets denotes the frequency of the 834 

occurrence for each node. 835 
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 851 

 852 
Figure 2. Corresponding 500-hPa geopotential height anomalies (gpm) without removing their 853 

linear trends from ERA-Interim reanalysis over the 1979-2019 period for each node in Figure 1. 854 

Dotted regions indicate the above 95% confidence level. The thick black lines show the study 855 

region. 856 
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 868 

 869 

 870 

 871 

Figure 3. Corresponding anomalous 850-hPa wind field without removing its linear trend from 872 

ERA-Interim reanalysis over the 1979-2019 period for each node in Figure 1. Shaded regions 873 

indicate the above 95% confidence level. The thick black linesshow the study region. 874 
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 888 

 889 

 890 

 891 

Figure 4. Corresponding anomalous daily accumulated downward longwave radiation (10
5
 W m

-2
) 892 

without removing its linear trend from ERA-Interim reanalysis over the 1979-2019 period for each 893 

node in Figure 1. Dotted regions indicate the above 95% confidence level. The thick black lines 894 

show the study region. 895 
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 908 

 909 

 910 

 911 

Figure 5. Corresponding anomalous daily accumulated turbulent heat flux (sensible and latent heat) 912 

(10
5
W m

-2
) without removing their linear trends from ERA-Interim reanalysis over the 1979-2019 913 

period for each node in Figure 1. Positive values denote heat flux from atmosphere to ocean and 914 

vice versa. Dotted regions indicate the above 95% confidence level. The thick black lines show the 915 

study region. 916 

 917 

 918 

 919 



41 
 

 920 

 921 
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 923 

 924 
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 927 

 928 

 929 

 930 

 931 
Figure 6. Corresponding anomalous wintertime sea ice concentration without removing its linear 932 

trend from the NSIDC over the 1979-2019 period for each node in Figure 1. Dotted regions 933 

indicate the above 95% confidence level. 934 
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 951 

Figure 7. Time series of the number of days for occurrence of each SOM node in Figure 1 over the 952 

1979-2019 period. The thick lines denote the trend in time series. 953 
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 967 

 968 

 969 

Figure 8. Total (top), SOM-explained (middle), and residual (bottom) trend in wintertime (DJF) 970 

surface air temperature (
o
 C yr

-1
) over the 1979-2019 period. Dots in the top panel indicate above 971 

95% confidence level.  972 

 973 
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 974 
Figure 9. Trends in surface air temperature explained by each SOM node (°C yr

-1
) over the 975 

1979-2019 period. The percentage in the upper of each panel indicates the fraction of the total 976 

trend represented by each node. 977 
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 994 
 995 

 996 

Figure 10. Anomalous SST (°C) regressed into the normalized time series of occurrence number 997 

for nodes 1, 4, 6, and 9 without removing its linear trend from the NOAA over the 1979-2019 998 

period. 999 
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 1027 

 1028 

Figure 11. Anomalous 500-hPa geopotential height (gpm) regressed into the normalized time 1029 

series of occurrence number for nodes 1, 4, 6, and 9 without removing its linear trend from 1030 

ERA-Interim reanalysis over the 1979-2019 period.  1031 
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 1045 
Figure 12. The anomalous wave activity flux (vectors) (Takaya and Nakamura, 2001) and stream 1046 

function (colors, units: 10
7
 m

2
s

-1
) regressed onto the normalized time series of occurrence number 1047 

for nodes 1, 4, 6, and 9 without removing their linear trends from ERA-Interim reanalysis over the 1048 

1979-2019 period. 1049 
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 1059 

Figure 13. Spatial patterns of SOM nodes for detrended daily wintertime (December, January, and 1060 

February) surface air temperature anomalies (°C) from the 20CR reanalysis for the 1851-2014 1061 

period. The number in brackets denotes the frequency of the occurrence for each node. 1062 
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 1080 
Figure 14. Time series of the number of days for occurrence of each SOM node in Figure 13 from 1081 

the 20CR reanalysis for the 1851-2014 period. The thick red lines denote the result in Figure 7 1082 

from the ERA-Interim reanalysis for the 1979-2019 period. 1083 
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 1115 

Figure 15. The (a) leading pattern and (b) its time series (PC1 and PC2) of EOF analysis of 1116 

wintertime surface air temperature anomalies from the 20CR reanalysis for the 1851-2014 period.. 1117 

Prior to EOF analysis, surface sir temperature data are detrended. A 40-yr low-pass filtered is 1118 

applied to the time series of PC1, PC2, AMO, PDO, and central North Pacific Ocean (CNPO) 1119 

indices. The correlation coefficients between PC1 and AMO, PDO and CNPO indices are -0.46 1120 

(p<0.0001), 0.38 (p<0.0001), and -0.19 (p=0.019); those between PC2 and and AMO, PDO and 1121 

CNPO indices are -0.44 (p<0.0001), 0.38 (p<0.0001), and -0.26 (p=0.0009). 1122 
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