

1 **Revisiting the trend in the occurrences of the “warm Arctic-cold Eurasian continent”**

2 **temperature pattern**

3 Lejiang Yu^{1,2*}, Shiyuan Zhong³, Cuijuan Sui⁴, and Bo Sun¹

4 1MNR Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai, China

5 2 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong,

6 China

7 3Department of Geography, Environment and Spatial Sciences, Michigan State University, East

8 Lansing, MI, USA

9 4 National Marine Environmental Forecasting Center, Beijing, China

10

11 *Corresponding Author's address

12 Dr. Lejiang Yu

13 MNR Key Laboratory for Polar Science, Polar Research Institute of China

14 451 Jinqiao Rd. Shanghai, 200136

15 Phone: 86-21-58712034,

16 Email: yulejiang@sina.com.cn

17

18

19

20

21

22

23 **Abstract.** The recent increasing trend of “warm Arctic, cold continents” has attracted much attention,
24 but it remains debatable as to what forces are behind this phenomenon. Here, we revisited
25 surface-temperature variability over the Arctic and Eurasian continent by applying the
26 Self-Organizing-Map (SOM) technique to gridded daily surface temperature data. Nearly 40% of the
27 surface temperature trends are explained by the nine SOM patterns that depict the switch to the current
28 warm Arctic-cold Eurasia pattern at the beginning of this century from the reversed pattern that
29 dominated the 1980s and the 90s. Further, no cause-effect relationship is found between the Arctic
30 sea-ice loss and the cold spells in high-mid latitude Eurasian continent suggested by earlier studies.
31 Instead, the increasing trend in warm Arctic-cold Eurasia pattern appears to be related to the anomalous
32 atmospheric circulations associated with two Rossby wavetrains triggered by rising sea surface
33 temperature (SST) over the central North Pacific and the North Atlantic Oceans. On interdecadal
34 timescale, the recent increase in the occurrences of the warm Arctic-cold Eurasia pattern is a fragment
35 of the interdecadal variability of SST over the Atlantic Ocean as represented by the Atlantic
36 Multidecadal Oscillations (AMO), and over the central Pacific Ocean.

37
38 **Key words:** Warm Arctic-cold Eurasian continent, Arctic Sea ice, the Kara-Barents Sea, the
39 Self-Organizing-Map (SOM), the Pacific Decadal Oscillation (PDO), the Atlantic Multidecadal
40 Oscillation (AMO)

41

42

43

44

45 1 **Introduction**

46 In recent decades, winter season temperature in the Arctic has been rising at a rate faster than the
47 warming experienced in any other regions of the world (Stroeve et al., 2007; Screen and Simmonds,
48 2010; Stroeve, 2012). In contrasts, there has been an increasing trend in colder than normal winters
49 over the northern mid-latitude continents (Mori et al., 2014; Cohen et al., 2014; 2018). This pattern of
50 opposite winter temperature trend between the Arctic and high-mid latitude continents, referred to as
51 the warm Arctic-cold continents pattern (Overland et al., 2011; Cohen et al., 2014; Walsh, 2014), has
52 received considerable interest in the scientific community especially with regard to dynamical and
53 physical mechanisms for the development of the phenomenon (Mori et al., 2014; Vihma, 2014; Barnes
54 and Screen, 2015; Kug et al., 2015; Overland et al., 2015; Chen et al., 2018).

55 Using observational analyses or coupled ocean-atmosphere modeling, a number of studies have
56 attributed the recent warm Arctic-cold continents pattern to the Arctic sea ice loss in boreal winter
57 (Inoue et al., 2012; Tang et al., 2013; Mori et al., 2014; Kug et al., 2015; Cohen et al., 2018; Mori et al.,
58 2019). Sea ice variability in different parts of the Arctic Ocean has been linked to climate variability in
59 different parts of the world. Specifically, sea ice loss in the Barents and Kara Seas has been linked to
60 cold winters over East Asia (Kim et al., 2014; Mori et al., 2014; Kug et al., 2015; Overland et al., 2015)
61 and in central Eurasia (Mori et al., 2014), while a similar connection has been found between cold
62 winters in North America and sea ice retreat in the East Siberian and Chukchi Seas (Kug et al., 2015).
63 A most recent study (Matsumura and Kosaka, 2019) attributed the warm Arctic-cold continents pattern
64 to the combined effect of Arctic sea ice loss and the atmospheric teleconnection induced by tropical
65 Atlantic sea-surface temperature (SST) anomalies.

66 Other studies, however, found no cause-and-effect relationship between Arctic sea ice loss and

67 mid-latitude climate anomalies (Blackport et al., 2019; Fyfe, 2019). Numerical modeling studies using
68 coupled ocean and atmospheric models simulated no cold mid-latitude winters when the models were
69 forced with reduced Arctic sea ice cover (McCusker et al., 2016; Sun et al., 2016; Koenigk et al., 2019;
70 Blackport et al., 2019; Fyfe, 2019). Instead, these studies pointed to internal atmospheric variability as
71 the likely cause for cold winters in mid-latitudes. Some studies have also suggested that on the
72 interannual timescale mid-latitude atmospheric circulation anomalies triggered by the Pacific and
73 Atlantic SST oscillations may explain both the Arctic sea ice loss and the cooling of the high-mid
74 latitudes (Lee et al., 2011; Luo et al., 2016; Peings et al., 2019; Matsumura and Kosaka, 2019; Clark
75 and Lee, 2019). The sea surface temperature anomalies over the Gulf Stream have also been linked to
76 the Barents Sea ice loss and Eurasian cooling (Sato et al., 2014).

77 Despite the recent attention given to the warm Arctic-cold continents pattern, it remains debatable
78 as to the roles of various dynamical and physical processes play in the formation of this phenomenon.
79 In this study, we revisit surface temperature variability over the Arctic and Eurasia continent (40-90 N,
80 20-130 E), where the warm Arctic-cold continents pattern is a prominent feature (Cohen et al., 2014;
81 Mori et al., 2014), by applying the Self-Organizing-Map (SOM) technique to daily surface temperature
82 over the recent four decades. We will show that while the warm Arctic-cold Eurasian continent pattern
83 has dominated the recent two decades, its opposite pattern, cold Arctic-warm Eurasia continent,
84 appeared frequently in the 1980s and the 90s. Using century-long data, we will further show that the
85 warm Arctic-cold Eurasian continent pattern is an intrinsic climate mode and the recent increasing
86 trend in its occurrence is a reflection of an interdecadal variability of the pattern. Using linear
87 regression, we explain the reason for the recent increasing occurrences of the warm Arctic-cold
88 continents pattern. We also assess the role of the SST anomalies over the North Pacific and Atlantic

89 Oceans in the variability of the warm Arctic-cold Eurasia pattern on the interdecadal time scale.

90 **2 Datasets and methods**

91 2.1 Datasets

92 Daily surface air temperature and other climate variables used in the current analyses, including
93 500 hPa geopotential height, 800-hPa wind and mean sea level pressure, all come from the European
94 Centre for Medium-Range Weather Forecasts Re-Analysis (ERA), the interim version (ERA-Interim;
95 Dee et al., 2011) with a horizontal resolution of approximately 79 km (T255) and 60 vertical levels in
96 the atmosphere. Compared to the earlier versions of ERA (e.g., ERA-40, Uppala et al., 2005) and other
97 global re-analysis products (e.g. the NCEP reanalysis, Kalnay et al., 1996), ERA-Interim has been
98 found to be more accurate in portraying the Arctic warming trend (Dee et al., 2011; Screen and
99 Simmonds, 2011) despite its known warm and moist bias in the surface layer (Jakobson et al., 2012).

100 Daily sea ice data are obtained from the U.S. National Snow and Ice data Center
101 (ftp://sidads.colorado.edu/DATASETS/nsidc0051_gsfc_nasateam_seaice/final-gsfc/north/daily).

102 Gridded monthly SST data used in the current analysis are obtained from the U.S. National Oceanic
103 and Atmospheric Administration (NOAA) data archives
104 (<ftp://ftp.cdc.noaa.gov/Datasets/noaa.oisst.v2.highres/>) (Reynolds et al. 2007).

105 The results obtained from the data within the recent four decades are put into the context of the
106 variability over longer time scales using data from the Twentieth Century Reanalysis project, version
107 2C (20CR) that spans more than a century from 1851 through 2015 (Compo et al., 2011). The 20CR
108 reanalysis data, which has a horizontal resolution of 2 °latitude by 2 °longitude and temporal resolution
109 of 6 hours, was produced by a model driven at the lower boundary by observed monthly SST and sea
110 ice conditions and with data assimilation of surface pressure observations. Several indices used to

111 describe known modes of climate variability including Arctic oscillation (AO), Northern Atlantic
112 Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO) (Enfield et al., 2001) and PDO (Mantua
113 et al., 1997), are obtained from NOAA's Climate prediction Center (CPC)
114 (<https://www.esrl.noaa.gov/psd/data/climateindices/list/>),

115 2.2 Methods

116 From the perspective of nonlinear dynamic, a region's climate has its intrinsic modes of variability,
117 but the frequency of occurrence of these internal modes can be modulated by remote forces external to
118 the region (Palmer, 1999l; Hoskins and Woollings, 2015; Shepherd, 2016). In this study we will first
119 obtain the main modes of variability of wintertime surface temperature in a region (40-90 N, 20-130 E)
120 by applying the SOM method (Kohonen, 2001) to daily surface temperature data for the 40 winters
121 (December, January, February) from December 1979 through February 2019. The use of daily data
122 over four decades allows for capturing the variability across two time scales (synoptic and decadal).
123 SOM is a clustering method based on neural network that can transform multi-dimensional data into a
124 two-dimensional array without supervised learning. The array includes a series of nodes arranged by a
125 Sammon map (Sammon, 1969). Each node in the array has a vector that can represent a spatial pattern
126 of the input data. The distance of any two nodes in the Sammon map represents the level of similarity
127 between the spatial patterns of the two nodes. Because SOM has fewer limitations than most other
128 commonly used clustering methods, (e.g., orthogonality required by the empirical orthogonal function
129 or EOF method), the SOM method can describe better the main variability patterns of the input data
130 (Reusch et al., 2005).

131 SOM method has been used in atmospheric research at mid and high latitudes of the northern
132 hemisphere (Skific et al., 2009; Johnson and Feldstein, 2010; Horton et al., 2015; Loikith and Broccoli,

133 2015; Vihma et al., 2019). For example, Johnson and Feldstein (2010) used SOM to identify spatial
134 patterns of daily wintertime North Pacific sea level pressure and relate the variability of the
135 occurrences of those patterns to some large-scale circulation indices. Loikith and Broccoli (2015)
136 compared observed and model-simulated circulation patterns across the North American domain using
137 an approach involving SOM. The SOM method was also used to detect circulation pattern trends in
138 a subset of North America during two different periods (Horton et al., 2015).

139 In this study, the SOM method is applied to ERA-Interim wintertime daily temperature anomalies from
140 December 1979 through February 2019. The anomalies are calculated by subtracting 40-year averaged
141 daily temperature from the original daily temperature at each grid point. Prior to SOM analysis, it is
142 necessary to determine how many SOM nodes are needed to best capture the variability in the data.
143 According to previous studies (Lee and Feldstein, 2013; Gibson et al., 2017; Schudeboom et al., 2018),
144 the rule for determining the number of SOM nodes is that the number should be sufficiently large to
145 capture the variability of the data analyzed, but not too large to introduce unimportant details. Table 1
146 shows the averaged spatial correlation between all daily surface air temperature anomalies and their
147 matching nodes. The spatial correlation coefficients increase from 0.26 for a 3×1 grid to 0.51 for a
148 4×4 grid, but the gain from a 3×3 grid to a 4×4 grid is relatively small. Hence, a 3×3 grid seems to
149 meet the above-mentioned rule and will be utilized in this study.

150 The contribution of each SOM node to the trend in wintertime surface temperature anomalies is
151 calculated by the product of each node pattern and its frequency trend normalized by the total number
152 (90) of wintertime days (Lee and Feldstein, 2013). The sum of the contributions from all nodes denotes
153 the SOM-explained trends. Residual trends are equal to the subtraction of SOM-explained trends from
154 the total trends. The anomalous atmospheric circulation pattern corresponding to each of the SOM

155 pattern is obtained by composite analysis that computes a composite mean of an atmospheric
156 circulation field (e.g., 500 hPa height) over all occurrences of that SOM node. Regression analysis is
157 also performed where atmospheric circulation variables are regressed onto the time series of the
158 occurrence of a SOM node to further elucidate the relationship between the variability of atmospheric
159 circulations and surface temperatures. The statistical significance of composite and regression analyses
160 in this study is tested by using the Student's t test.

161 **3 Results**

162 **3.1 Surface temperature variability**

163 The majority of the 9 SOM nodes depict a dipole pattern characterized by opposite changes in
164 surface temperatures between the Arctic Ocean and the Eurasian continent, although the sign switch
165 does not always occur at the continent-ocean boundary (Figure 1). The differences in the position of the
166 boundary between the warm and cold anomalies reflects the transition between the cold Arctic-warm
167 Eurasia pattern (denoted, in descent order of the occurrence frequency, by nodes 3, 9, 6), to the warm
168 Arctic-cold Eurasia pattern (depicted, in descent order of the occurrence frequency, by nodes 1, 7, 4).

169 The spatial patterns represented by the first group of nodes are almost mirror images of the patterns
170 denoted by the corresponding nodes in the second group. For example, the second node in group 1
171 (node 9, 15.4%) and the first node in group 2 (node 1, 17.1%) show a mirror image pattern with cold
172 (warm) anomalies in the Arctic Ocean extending into northern Eurasia and warm (cold) anomalies in
173 the rest of the Eurasia continent in the study domain. In both cases, the region of maximum magnitude
174 anomalies is centered near Svalbard, Norway. The second pair, denoted by node 3 (17.2%) and 7
175 (13.7%) has the boundary of separation moved northward from northern Eurasia continent toward the
176 shore of the Arctic Ocean. While the maximum anomaly in the Arctic Ocean remains close to Svalbard,

177 maximum values over the continent are found in central Russia. Nodes 4-6 display a noticeable
178 transition from node 1 to node 7 and from node 3 to node 9, respectively. Although nodes 2 and 8 show
179 an approximate monopole spatial pattern, they also represent a transition between nodes 1 and 3, and
180 between nodes 7 and 9, respectively. Above SOM analysis does not consider the trend in surface air
181 temperature. The result is similar when the trend is removed (not shown).

182 The temporal variability on this time scale is typically related to synoptic processes and hence the
183 questions are what synoptic patterns are responsible for the occurrence of the spatial patterns depicted
184 by each of the 9 SOM nodes and how these patterns are related to those of the Arctic sea ice anomalies?
185 These questions can be answered by using the composite method. Specifically, for each SOM node,
186 composite maps are made respectively for the anomalous 500-hPa geopotential height, mean sea level
187 pressure, 850-hPa wind, downward longwave radiation, surface turbulent heat flux, and sea ice
188 concentration over all the days when the spatial variability of the surface temperature anomalies is best
189 matched by the spatial pattern of that node.

190 3.2 Large-scale circulation patterns

191 For all SOM nodes, the spatial pattern of the composited 500-hPa geopotential height anomalies
192 (Figure 2) is similar to that of mean sea level pressure anomalies (not shown), indicating an
193 approximately barotropic structure. For nodes 1, 4 and 7, the 500-hPa height anomalies show a dipole
194 structure of positive values over Siberia and negative values to its south over the Eurasian continent.
195 Anomalous southwesterly winds on the western side of the anticyclone over Siberia transport warm
196 and moist air from northern Europe and the North Atlantic Ocean into the Atlantic sector of the Arctic
197 Ocean (Figure 3), providing a plausible explanation of the warm surface temperature anomalies in the
198 region (Figure 1). On the eastern side of the anticyclone, anomalous northwesterly winds bring cold

199 and dry air from the Arctic Ocean into Eurasia continent, which is consistent with the negative surface
200 temperature anomalies there. The opposite occurs for nodes 3, 6 and 9. A similar explanation involving
201 anomalous pressure and wind fields can be applied to other nodes. The dipole structure that dominates
202 the anomalous 500-hPa height fields over the North Atlantic Ocean for most nodes resembles the
203 spatial pattern of the NAO (Figure 2). In addition, the patterns for several nodes, such as nodes 4 and 7,
204 have some resemblance to the spatial pattern of the AO over larger geographical region. The possible
205 connection to NAO and AO is further investigated by averaging the daily index values of NAO or AO
206 over all occurrence days for each node. The results (Table 2) show that nodes 1, 2, 3 (5, 8, 9)
207 correspond to a significant positive (negative) phase of the NAO index characterized by negative
208 (positive) height anomalies over Iceland and positive (negative) values over the central North Atlantic
209 Ocean. Association is also found between nodes 1, 2, 3, and 6 (5, 7, 8, and 9) and the positive (negative)
210 phases of the AO index.

211 3.3 Downward radiative fluxes

212 Besides the anomalous circulation patterns, anomalous surface radiative fluxes may also play a role in
213 shaping the spatial pattern of surface temperature variability. In fact, the spatial pattern of the mean
214 anomalous daily downward longwave radiation for an individual node (Figure 4) is in good agreement
215 with the spatial pattern of the surface temperature anomalies of that node. In other words, increased
216 downward longwave radiation is associated with positive surface temperature anomalies, and vice
217 versa. As expected from previous studies (e.g., Sedlar et al. 2011), there is a significant positive
218 correlation between downward longwave radiative fluxes and the anomalous total column water vapor
219 and mid-level cloud cover (not shown). The correlation to low- and high-level cloud cover is, however,
220 not significant (not shown). Most of the water vapor in both the Arctic and Eurasia is derived from the

221 North Atlantic Ocean, but the water vapor is transported into the Arctic by southwesterly flows and into
222 Eurasia by northwesterly winds. The anomalous shortwave radiation corresponding to each node (not
223 shown) is an order of magnitude smaller than that of the longwave radiation anomalies and has a spatial
224 pattern opposite to that of the mid-level cloud cover and the longwave radiation anomalies.

225 3.4 Sea ice

226 The analyses presented above attempt to explain the spatial pattern of surface temperature
227 variability for each node from the perspective of anomalous heat advection and surface radiative fluxes.

228 As mentioned earlier, there has been a debate in the literature about the role played by the sea ice
229 anomalies in the Barents and Kara Seas in the development of the warm Arctic-cold Eurasia pattern.

230 Here, we examine the anomalous turbulent heat flux (Figure 5) and sea ice concentration (Figure 6) for
231 each node. Turbulent heat flux is considered positive when it is directed from the atmosphere
232 downward to the ocean or land surfaces. Thus, a positive anomaly indicates either an increase in the
233 atmosphere-to-surface heat transfer or a decrease in the heat transfer from the surface to the atmosphere.

234 The magnitude of anomalous turbulent heat flux is found to be comparable to that of anomalous
235 downward longwave radiation (Figure 4). For all nodes, the heat flux anomalies are larger over ocean

236 than over land (Figure 5). For node 1, positive turbulent heat flux anomalies occur mainly over the
237 Barents Sea, the western and central North Atlantic Ocean and the eastern North Pacific Ocean,
238 indicating an increase in heat transport from the air to the ocean due possibly to an increase in vertical
239 temperature gradient caused by warm air advection associated with anomalous circulation (Figures 2

240 and 3). The downward heat transfer results in sea ice melt in the Greenland Sea and the Barents Sea
241 (Figure 6). For node 4, the anomalous southerly winds over the Nordic Sea produce larger positive
242 turbulent heat flux anomalies (Figure 5). For node 7, the anticyclone is located more northwards, which

243 generates opposite anomalous winds between the Nordic and northern Barents Seas and the southern
244 Barents Sea and thus opposite turbulent heat flux anomalies that are consistent with the opposite sea ice
245 concentration anomalies in the two regions (Figure 5). For nodes 3, 6, and 9, the anomalous cold air
246 from the central Arctic Ocean flows into warm water in the Nordic and Barents Seas, producing
247 negative turbulent heat flux anomalies and positive sea ice concentration anomalies (Figures 5 and 6).
248 Sorokina et al. (2016) noted that turbulent heat flux usually peaks 2 days before changes in surface
249 temperature pattern occur. The pattern of the composited anomalous 500-hPa geopotential height,
250 turbulent heat flux and sea ice concentration 2 days prior to the day when the nodes occur (not shown)
251 is similar to the current-day pattern in Figures 2, 5, and 6. Our results support the conclusion of
252 Sorokina et al. (2016) and Blackport et al. (2019) that the anomalous atmospheric circulations lead to
253 the anomalous sea ice concentration in the Barents Sea.

254 3.5 Trends in wintertime surface temperature

255 The results above suggest that both the surface temperature anomaly patterns over the Arctic Ocean
256 and Eurasian continent and the sea ice concentration anomalies in the Nordic and Barents Seas can be
257 explained largely by changes in atmospheric circulations and the associated vertical and horizontal heat
258 and moisture transfer by mean and turbulent flows. Next, we assess the trends of wintertime surface
259 temperature and the contributions of the SOM nodes to the trends.

260 We first examine the time series of the accumulated number of days for each node in each winter
261 for the 1979-2019 period (Figure 7). The time series for nodes 1, 4, 6, and 9 exhibit variability on
262 interannual as well as decadal time scales. The occurrence frequency is noticeably larger after 2003
263 than prior to 2003 for nodes 1 and 4, and vice versa for nodes 6 and 9, and the difference between the
264 two periods is significant at 95% confidence level. Given the spatial patterns of these four nodes

265 (Figure 1), this indicates that the warm Arctic-cold Eurasia pattern occurred more frequently after 2003.

266 A linear trend analysis of the time series for each node (Table 3) reveals significant positive trends in

267 occurrence frequency for nodes 1 and 4 and significant negative trends for nodes 6 and 9, which agree

268 with the result from a previous study (Clark and Lee, 2019; Overland et al., 2015) that suggested an

269 increasing trend of the warm Arctic and cold Eurasia pattern.

270 These trends in the occurrence frequency of the SOM nodes contribute to the trends in the total

271 wintertime (DJF) surface temperature anomalies (Figure 8, top panel) that have significant positive

272 trends over the Arctic Ocean and in regions of Northern and Eastern Europe and negative, mostly

273 insignificant trends in Central Siberia. The contribution, however, varies from node to node (Figure 9).

274 Node 1 has the largest domain-averaged contribution of 18.7%, followed by its mirror node (node 9) at

275 10.1%. Nodes 4 and 6 account for 2.8% and 4.3% of the total trend, respectively. None of the

276 remaining nodes explain more than 2%. All nodes together explain 39.5% of the total trend in

277 wintertime surface air temperature. The spatial pattern of the SOM-explained trends (Figure 8, middle

278 panel) is similar to the warm Arctic-cold continent pattern, whereas the residual trend resembles more

279 the total trend (Figure 8 bottom panel).

280 3.6 Mechanisms

281 The results presented above indicate that the SOM patterns explain nearly 40% of the trend in

282 wintertime surface air temperature anomalies and majority of the contributions (35 out of 40%) come

283 from the two pairs of the nodes (nodes 1, 9, and 4, 6). The analyses hereafter will focus on these four

284 nodes. Below we assess the atmospheric and oceanic conditions associated with the occurrences of the

285 four nodes via regression analysis. Specifically, the anomalous seasonal SST and atmospheric

286 circulation variables are regressed onto the normalized time series of the number of days when each of

287 the four nodes occurs (Figures 10, 11, and 12).

288 For node 1, the SST regression pattern in the Pacific Ocean shows significant positive anomalies
289 over the tropical western Pacific Ocean and central North Pacific Ocean (Figure 10). The positive SST
290 anomalies also occur over most of the North Atlantic. Negative SST anomalies occur over the central
291 tropical Pacific Ocean, though they are not significant at 95% confidence level. The SST regression
292 pattern is reversed for node 9. The direction of wave activity flux indicates the direction of group speed
293 of stationary planetary wave. Here we calculate the wave activity flux defined by Takaya and
294 Nakamura (2001), which considers the influence of mid-latitude zonal wind (Figure 12). For node 1,
295 the corresponding anomalous 500-hPa height regression (Figure 11) shows two Rossby wavetrains: one
296 is excited over the central Pacific Ocean and propagates northeastwards into North America and North
297 Atlantic Ocean, and the other, which displays a stronger signal, originates from central North Atlantic
298 and propagates northeastwards to the Arctic Ocean and southeastwards to the Eurasian continent
299 (Figure 11 and 12). For node 9, the corresponding anomalous 500-hPa height and streamfunction show
300 an opposite pattern, but the wave activity flux is similar to that of node 1.

301 For node 4, the SST anomalies over the tropical Pacific Ocean appear to be in a La Niña state,
302 which shows stronger negative SST anomalies over the eastern tropical Pacific Ocean than those for
303 node 1 (Figure 10). The positive SST anomalies over the North Pacific shift more northwards relative
304 to that of node 1. The positive SST anomalies over the North Atlantic are weaker than those for node 1.
305 The corresponding wavetrain over the Pacific Ocean is stronger than that over the Atlantic Ocean
306 (Figure 11), which is also be observed in the pattern of wave activity and streamfunction (Figure 12).
307 The corresponding pattern for node 6 is nearly reversed, but there are some noticeable differences in
308 the amplitude of the wavetrain and SST anomalies. For example, the magnitude of the anomalous SST

309 and the 500-hPa height over the central North Pacific is larger for node 6 than that for node 4.

310 Besides the above-mentioned variables, similar regression analysis is also performed for the
311 anomalous 850-hPa wind field and anomalous downward longwave radiation (not shown). Their
312 regression patterns, which are similar to those in Figures 3 and 4, explain well the decadal variability of
313 the number of days for nodes 1, 4, 6, and 9. Together, these results in Figures 10-12 indicate that the
314 decadal variability of the occurrence frequency of the four nodes in recent decades is related to two
315 wavetrains induced by SST anomalies over the central North Pacific Ocean and the North Atlantic
316 Ocean (Figures 10 and 11). The aforementioned SST regression patterns over the Atlantic and Pacific
317 Oceans also show features of the AMO and PDO (Figure 10). Since both the AMO and PDO exhibited
318 a phase change in the late 1990s (Yu et al., 2017), the question is whether a similar change in the SOM
319 frequency also appear in the late 1990s. A comparison of the averaged frequency before and after 1998
320 shows a significant drop in frequency for nodes 6 and 9 and an increase in frequency for node 1 (not
321 shown). This result suggests that the change in the AMO and PDO indices may contribute to the change
322 in the frequencies of the warm Arctic-cold Eurasia continent pattern.

323 3.7 Interdecadal variability

324 The four-decade-long ERA-Interim reanalysis is not adequate for examining interdecadal to
325 multi-decadal variations represented by the PDO and AMO indices. Further analysis is performed using
326 the 20CR daily reanalysis data for the 1854-2014 period. Before applying the SOM technique to the
327 20CR data, we first remove the trend to eliminate the influence from the global warming. No low-pass
328 filter is applied before SOM analysis in order to test the stability of the SOM results for the different
329 periods. The spatial SOM patterns from the de-trended century-long 20CR data (Figure 13) are similar
330 to those for the 1979-2019 period (Figure 1). Nodes 1, 4, and 7 correspond to the positive phase of the

331 warm Arctic-cold Eurasia pattern and the negative phase can be observed in nodes 3, 6, and 9. The
332 magnitude in Figure 13 is smaller compared to the recent four decades in Figure 1. The occurrence
333 frequencies of the four nodes, 1, 4, 6, and 9 (Figure 14), are close to those for the recent four decades
334 (Figure 7). It indicates that the SOM method can obtain stably the main modes of wintertime surface
335 air temperature variability. For the recent four decades, the time series of the number of days also
336 displays a noticeable increasing (decreasing) trend for nodes 1 and 4 (6 and 9), suggesting that the
337 trend in the recent four decades is a reflection of an interdecadal variability of wintertime surface air
338 temperature.

339 Next, we apply a 40-year low-pass filter to the time series of the occurrence frequencies for nodes
340 1, 4, 6 and 9 and the AMO and PDO indices and calculate correlations. There is a significant
341 correlation between the time series and the AMO index, with correlation coefficients of 0.36 for node 1,
342 0.27 for node 4, -0.37 for node 6, and -0.20 for node 9, all of which are at the 95% confidence level. No
343 significant correlations, however, are found between the filtered time series and the PDO index. If we
344 define a SST index to represent the variability of SST anomalies over the central North Pacific Ocean
345 (20°N-40°N, 150°E-150°W), the 40-year low-pass filtered central North Pacific Ocean SST index is
346 now significantly correlated with the filtered time series of occurrence frequencies for nodes 1 and 9
347 (0.55 for node 1 and -0.46 for node 9). The correlation results are consistent with the SST regression
348 map for the recent decades (Figure 10).

349 To confirm the effect of SST anomalies on the warm Arctic -cold Eurasia pattern, we also perform
350 EOF analysis of wintertime detrended seasonal surface air temperature anomalies for the 1854-2014
351 period (Figure 15). The spatial patterns of the first and second EOF modes show the negative phase of
352 the warm Arctic-cold Eurasia pattern and the 40-year low-pass filtered time series is inversely

353 correlated with the 40-year low-pass filtered wintertime AMO index (-0.46, $p<0.05$ for mode 1 and
354 -0.44, $p<0.05$ for mode 2). The 40-year low-pass filtered time series of the two EOF modes have a
355 significant negative correlation with the 40-year low-pass filtered central North Pacific Ocean SST
356 index, with correlation coefficients of -0.19 and -0.26 ($p<0.05$). Only PC1 has a significant correlation
357 with the PDO index (0.38, $p<0.05$). Thus, the increase in the occurrence of the warm Arctic-cold
358 Eurasia pattern in the recent decades is a part of the interdecadal variability of the pattern, which is
359 influenced by the AMO index, the PDO index, and the central North Pacific SST.

360 **4 Conclusions and Discussions**

361 In this study, we examine the variability of wintertime surface air temperature in the Arctic and the
362 Eurasian continent (20 °E-130 °E) by applying the SOM method to daily temperature from the gridded
363 ERA-Interim dataset for the period 1979-2019 and from the 20CR reanalysis for the period 1854-2014
364 and the EOF method to seasonal temperature from the 20CR reanalysis for the period 1854-2014. The
365 spatial pattern in the surface temperature variations in the study region, as revealed by the nine SOM
366 nodes, is dominated by concurrent warming in the Arctic and cooling in Eurasia, and vice versa. The
367 nine SOM patterns explain nearly 40% of the trends in wintertime surface temperature and 88% of that
368 are accounted for by only four nodes. Two of the four nodes (nodes 1 and 4) represent the warm
369 Arctic-cold Eurasian pattern and the other two (nodes 6 and 9) depict the opposite cold Arctic-warm
370 Eurasia pattern. There is a clear shift in the frequency of the occurrence of these patterns near the
371 beginning of this century, with the warm Arctic – cold Eurasia pattern dominating since 2003, while the
372 opposite pattern prevailing from the 1980s through the 1990s. The warm Arctic-cold Eurasia pattern is
373 accompanied by an anomalous high pressure and anticyclonic circulation over the Eurasian continent.
374 The anomalous winds and the associated temperature and moisture advection interact with local

375 longwave radiative forcing and turbulent fluxes to produce positive (negative) temperature anomalies
376 in the Arctic (Eurasian continent). The circulation is reversed for the cold Arctic-warm Eurasia pattern.
377 The warm, moist air mass is advected to the Arctic by the anomalous atmospheric circulations and the
378 increased downward turbulent heat flux also explain sea ice melt in the Barents and Kara Seas. In other
379 words, the sea ice loss in the Barents and Kara Seas and the cooling of the Eurasian continent can both
380 be traced to anomalous atmospheric circulations.

381 Increasing occurrences of the warm Arctic-cold Eurasian continent pattern appear to relate to
382 rising SST over the central North Pacific and North Atlantic Oceans (positive AMO phase). The SST
383 anomalies trigger two Rossby wavetrains spanning from the North Pacific Ocean, North America, and
384 the North Atlantic Ocean to the Eurasian continent. The two wavetrains are strengthened through local
385 sea-atmosphere-ice interactions in mid-high latitudes, which influence the change in the occurrence
386 frequency of the warm Arctic-cold Eurasian continent pattern. Our results agree with those of previous
387 studies (Lee et al., 2011; Sato et al., 2014; Clark and Lee, 2019). But previous studies only focus on the
388 effects of SST anomalies over either North Pacific or North Atlantic Oceans. We also note that the two
389 wavetrains excited by SST anomalies over different oceans differ in amplitudes, leading to somewhat
390 different warm Arctic-cold Eurasia patterns.

391 Using century-long data, we show that the warm Arctic-cold Eurasia pattern is an intrinsic climate
392 mode, which has been stable since 1854. The recent increasing trend in its occurrence is a reflection of
393 an interdecadal variability of the pattern resulting from the interdecadal variability of SST anomalies
394 over the central Pacific Ocean and over the Atlantic Ocean represented by the AMO index. Sung et al.
395 (2018) investigated interdecadal variability of the warm Arctic and cold Eurasia pattern and considered
396 the variability of the SST over the North Atlantic as its origin. Our results suggest that the variability of

397 the SST over the North Pacific also plays an important role. However, internal atmospheric variability
398 remains another potential source. The Rossby wavetrains also lead to deepening of a trough in East
399 Asia and generate an anomalous low pressure and cold temperature in northern China (Figure 10),
400 which further suggests that a warmer Arctic, especially warmer Barents and Kara Seas is not the driver
401 for the increasing occurrence of cold spells in East Asia, as suggested in previous studies (Kim et al.,
402 2014; Mori et al., 2014; Kug et al., 2015; Overland et al., 2015).

403 Our results suggest that the increasing trend in warm Arctic-cold Eurasia pattern may be related to
404 the anomalous SST over the central North Pacific and the North Atlantic Oceans. But we cannot rule
405 out the influence of the Arctic sea ice loss on the trend. The Arctic sea ice loss results from both Arctic
406 warming due to anthropogenic increasing of greenhouse gas concentrations and natural variability of
407 climate system such as SST anomalies. This study considers natural variability or internal driver of
408 climate system. The Arctic warming caused external forcing related to increasing greenhouse gas
409 emissions can produce an anomalous anticyclone over the Barents and Kara Seas, leading to the warm
410 Arctic-cold continents pattern.

411 Although the ERA-Interim reanalysis is overall superior in describing the Arctic atmospheric
412 environment to other similar global reanalysis products, it contains warm and moist biases in the
413 surface layer (Jakobson et al., 2012; Chaudhuri et al., 2014; Simmons and Poli, 2015; Wang et al.,
414 2019). However, we believe these biases, as well as the relatively coarse resolution, should have
415 minimum impact in the results from the current analyses. Further, although the current analyses were
416 performed on a predetermined SOM grid with 3x3 nodes, an increase in the number of SOM nodes
417 didn't change the conclusions.

418 Our results help broaden the current understanding of the formation mechanisms for the warm

419 Arctic-cold Eurasia pattern. The SST anomalies over Northern Hemisphere oceans may offer a
420 potential for predicting its occurrence. The statistical relationship between SST anomalies and the
421 occurrences of the warm Arctic-cold continents pattern may help improve the predictability of
422 wintertime surface air temperature over Eurasian continent on interdecadal time scales.

423 **Data Availability**

424 All data used in the current analyses are publicly available. The monthly sea ice concentration data are
425 available from the National Snow and Ice Data Center (NSIDC) (<http://nsidc.org/data/NSIDC-0051>), the
426 ERA-Interim reanalysis data are available from the European Center for Mid-Range Weather
427 Forecasting (<https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era-interim>) and the sea
428 surface temperature data are available from the Hadley Centre for Climate Prediction and Research
429 (<ftp://ftp.cdc.noaa.gov/Datasets/noaa.oisst.v2.highres/>). The long-term SST data are derived from
430 from the Twentieth Century Reanalysis project, version 2c (20CR)
431 (<https://climatedataguide.ucar.edu/climate-data/noaa-20th-century-reanalysis-version-2-and-2c>).

432 **Competing interests**

433 The authors declare that they have no conflict of interest.

434 **Author Contributions**

435 L. Yu designed the study, with input from S. Zhong, and carried out the analyses. L. Yu and S. Zhong
436 prepared the manuscript. C. Sui plotted a part of Figures. B. Sun revised the manuscript.

437 **Acknowledgements** We thank the European Centre for Medium-Range Weather Forecasts (ECMWF)
438 for the ERA-Interim data. This study is financially supported by the National Key R&D Program of
439 China (2019YFC1509102; 2017YFE0111700) and the National Natural Science Foundation of China
440 (41922044).

441

442

443

444 **References**

445 Barnes, E. A. and Screen, J. A.: The impact of Arctic warming on the midlatitude jet-stream: Can it?
446 Has it? Will it?, WIRES Clim. Change, 6, 277-286, doi:10.1002/wcc.337, 2015.

447 Blackport, R., Screen J. A., Wiel K. van der, and Bintanja, R.: Minimal influence of reduced Arctic sea
448 ice on coincident cold winters in mid-latitudes, Nature Climate Change, 9,
449 doi:10.1038/s41558-019-0551-4, 2019, 2019.

450 Chaudhuri, A. H., Ponte, R. M., and Nguyen, A. T.: A Comparison of atmospheric reanalysis products
451 for the Arctic Ocean and implications for uncertainties in air-sea fluxes, J. Climate, 27,
452 5411-5421, doi:10.1175/JCLI-D-13-00424.1, 2014.

453 Chen, L., Francis J. and Hanna E.: The “Warm-Arctic/Cold continents” pattern during 1901-2010, Int. J.
454 Climatol., 38, 5245-5254, [doi:10.1002/joc.5725](https://doi.org/10.1002/joc.5725), 2018.

455 Clark, J. P. and Lee, S.: The role of the tropically excited Arctic Warming Mechanism on the warm
456 Arctic cold continent surface air temperature trend pattern, Geophys. Res. Lett., 46, 8490-8499,
457 doi:10.1029/2019GL082714, 2019

458 Cohen, J., Screen, J. A., Furtado, J. C., Barlow, M., Whittleston, D., Coumou, D., Francis, J., Dethloff,
459 K., Entekhabi, D., Overland, J., and Jones, J.: Recent Arctic amplification and extreme
460 mid-latitude weather, Nat. Geosci., 7, 627-637, doi:10.1038/ngeo2234, 2014.

461 Cohen, J., Pfeiffer, K., and Francis, J. A.: Warm Arctic episodes linked with increased frequency of
462 extreme winter weather in the United States, Nat. Commun., 9, 869,
463 doi:10.1038/s41467-018-02992-9, 2018.

464 Compo, G. P., Whitaker, J. S., Sardeshmukh, P. D., Matsui, N., Allan, R., Yin, X., Jr, G. B. E., Vose, R.
465 S., Rutledge, G. K., Bessemoulin, P., Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A.

466 N., Groisman, P. Y., Jones, P. D., Kruk, M. C., Kruger, A. C., Marshall, G. J., Maugeri, M., Mok,
467 H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X., Woodruff, S. D., and Worley S. J.: The
468 Twentieth Century Reanalysis Project, *Quart. J. Roy. Meteor. Soc.*, 137, 1-28,
469 doi:10.1002/qj.776, 2011.

470 Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrac, U.,
471 Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L.,
472 Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy,
473 S. B., Hersbach, H., Hålm, E. V., Isaksen, L., Källberg, P., Köhler, Matricardi, M., McNally, A.
474 P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C.,
475 Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the
476 data assimilation system, *Q. J. R. Meteorol. Soc.*, 137, 553-597, doi:10.1002/qj.828, 2011.

477 Enfield, D. B., Mestas-Nunez, A. M., and Trimble, P. J.: The Atlantic multidecadal oscillation and it's
478 relation to rainfall and river flows in the continental U.S., *Geophy. Res. Lett.*, 28, 2077-2080,
479 2001.

480 Fyfe, J. C.: Midlatitudes unaffected by sea ice loss, *Nature Climate Change*, 9,
481 doi:10.1038/s41558-019-0560-3, 2019 .

482 Gibson, P. B., Perkins-Kirkpatrick, S. E., Uotila, P., Pepler, A. S., and Alexander, L. V.: On the use of
483 self-organizing maps for studying climate extremes, *J. Geophys. Res. Atmos.*, 122, 3891–3903,
484 doi:10.1002/2016JD026256, 2017.

485 Hoskins, B. and Woollings, T.: Persistent extratropical regimes and climate extremes, *Curr. Clim. Change
486 Rep.*, 1, 115-124, doi:10.1007/s40641-015-0020-8, 2015

487 Horton, D. E., Johnson, N. C., Singh, D., Swain, D. L., Rajaratnam, B., and Diffenbaugh, N. S.:

488 Contribution of changes in atmospheric circulation patterns to extreme trends, *Nature*,
489 522,465-469, doi:10.1038/nature14550, 2015.

490 Inoue, J., Hori, M. E., and Takaya, K.: The role of Barents Sea ice in the wintertime cyclone track and
491 emergence of a warm-Arctic-Siberian anomaly, *J. Clim.*, 25, 2561-2568,
492 doi:10.1175/JCLI-D-11-00449.1, 2012.

493 Jakobson, E., Vihma, T., Palo, T., Jakobson, L., Keernik, H., and Jaagus, J.: Validation of atmospheric
494 reanalyses over the central Arctic Ocean, *Geophys. Res. Lett.*, 39, L10802,
495 doi:10.1029/2012GL051591, 2012.

496 Johnson, N. C. and Feldstein, S. B.: The continuum of North Pacific sea level pressure patterns:
497 Intraseasonal, interannual, and interdecadal variability, *J. Clim.*, 23,
498 851-867, doi:10.1175/2009JCLI3099.1, 2010.

499 Jakobson, E., Vihma, T., Palo, T., Jakobson, L., Keernik, H., Jaagus, J.: Validation of atmospheric
500 reanalyses over the central Arctic Ocean, *Geophys. Res. Lett.*, 39, 2012.

501 Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W. G., Deaven, D., Gandin, L., Iredell, M., Saha, S.,
502 White, G., Woollen J.: The NCEP/NCAR 40-year reanalysis project, *Bull. Amer. Meteor. Soc.*,
503 77, 437-471, doi:10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.

504 Kim, B.-M., Son, S.-W., Min, S.-K., Jeong, J.-H., Kim, S.-J., Zhang, X., Shim, T., and Yoon, J.-H.:
505 Weakening of the stratospheric polar vortex by Arctic sea-ice loss, *Nature Commun.*, 5, 4646,
506 doi:10.1038/ncomms5646, 2014.

507 Kohonen, T.: *Self-Organizing Maps*. 3rd ed. Springer, 501 pp, 2001.

508 Kug, J.-S., Jeong, J.-H., Jang, Y.-S., Kim, B.-M., Folland, C. K., Min, S.-K., and Son, S.-W.: Two
509 distinct influences of Arctic warming on cold winters over North America and East Asia, *Nat.*

510 Geosci., 8, 759-762, doi:10.1038/ngeo2517, 2015.

511 Lee, S., Gong, T., Johnson, N., Feldstein, S. B., and Pollard, D.: On the possible link between tropical
512 convection and the Northern Hemisphere Arctic surface air temperature change between 1958
513 and 2001, *J. Clim.*, 24, 4350-4367, doi:10.1175/2011JCLI4003.1, 2011.

514 Lee, S. and Feldstein, S. B.: Detecting ozone- and greenhouse gas–driven wind trends with
515 observational data, *Science*, 339, 563–567, [doi:10.1126/science.1225154](https://doi.org/10.1126/science.1225154), 2013.

516 Loikith, P. C. and Broccoli, A. J.: Comparison between observed and model-simulated atmospheric
517 circulation patterns associated with extreme temperature days over North America using CMIP5
518 historical simulations, *J. Clim.*, 28, 2063-2079, doi:10.1175/JCLI-D-13-00544.1, 2015.

519 Luo, D., Xiao, Y., Yao, Y., Dai, A., Simmonds, I., and Franzke, C. L. E.: Impact of Ural blocking on
520 winter warm Arctic-cold Eurasian anomalies. Part I: Blocking-induced amplification, *J. Clim.*,
521 29, 3925-3947, doi:10.1175/JCLI-D-15-0611.1, 2016.

522 Mantua, N. J., Hare, S. R., Zhang, Y., Wallace, J. M., and Francis, R. C.: A Pacific interdecadal climate
523 oscillation with impacts on salmon production, *Bull. Amer. Meteor. Soc.*, 78, 1069–1079, 1997.

524 Matsumura, S. and Kosaka, Y.: Arctic-Eurasian climate linkage induced by tropical ocean variability,
525 *Nature Communications*, 10, 3441, doi:10.1038/s41467-019-11359-7, 2019.

526 Mori, M., Watanabe, M., Shiogama, H., Inoue, J., and Kimoto, M.: Robust Arctic sea-ice influence on
527 the frequent Eurasian cold winters in past decades, *Nat. Geosci.*, 7, 869-873,
528 doi:10.1038/ngeo2277, 2014.

529 Mori, M., Kosaka, Y., Watanabe, M., Nakamura, H., and Kimoto, M.: A reconciled estimate of the
530 influence of Arctic sea-ice loss on recent Eurasian cooling, *Nat. Clim. Change*, 9, 123-129,
531 doi:10.1038/s41558-018-0379-3, 2019.

532 McCusker, K. E., Fyfe, J. C., and Sigmond, M.: Twenty-five winters of unexcepted Eurasian cooling

533 unlikely due to Arctic sea-ice loss, *Nat. Geosci.*, 9, 838-842, doi:10.1038/ngeo2820, 2016.

534 Overland, J. E., Wood, K. R., and Wang, M.: Warm Arctic-cold continents: climate impacts of the

535 newly open Arctic sea, *Polar Res.*, 30, 15787, doi:10.3402/polar.v30i0.15787, 2011.

536 Overland, J. E., Francis, J., Hall, R., Hanna, E., Kim, S.-J., and Vihma, T.: The melting Arctic and

537 Midlatitude weather patterns: Are they connected?, *J. Clim.*, 28, 7917-7932,

538 doi:10.1175/JCLI-D-14-00822.1, 2015.

539 Palmer, T. N.: A nonlinear dynamical perspective on climate prediction, *J. Clim.*, 12, 575-591, 1999.

540 doi:10.1175/1520-0442(1999)012<0575:ANDPOC>2.0.CO;2

541 Peings, Y.: Ural blocking as a driver of early-winter stratospheric warmings, *Geophys. Res. Lett.*, 46,

542 5460-5468, doi:10.1029/2019GL082097, 2019.

543 Reusch, D. B., Alley, R. B., and Hewitson, B. C.: Relative performance of self-organizing maps and

544 principal component analysis in pattern extraction from synthetic climatological data, *Polar*

545 *Geogr.*, 29, 188–212, doi:10.1080/789610199, 2005.

546 Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., Schlax, M. G.: Daily

547 High-Resolution-Blended Analyses for Sea Surface Temperature, *J. Climate*, 20, 5473-5496,

548 doi:10.1175/2007JCLI1824.1, 2007.

549 Sammon, J. W.: A non-linear mapping for data structure analysis, *IEEE Trans. Computers*, C-18,

550 401–409 , 1969.

551 Sato, K., Inoue, J., and Watanabe, M.: Influence of the Gulf Stream on the Barents Sea ice retreat and

552 Eurasian coldness during early winter, *Environ. Res. Lett.*, 9, 084009,

553 doi:10.1088/1748-9326/9/8/084009, 2014.

554 Schudeboom, A., McDonald, A. J., Morgenstern, O., Harvey, M., and Parsons, S.: Regional
555 regime-based evaluation of present-day GCM cloud simulations using self-organizing maps, *J.*
556 *Geophys. Res. Atmos.*, 123, 4259–4272, doi:10.1002/2017JD028196, 2018.

557 Screen, J. A. and Simmonds, I.: The central role of diminishing sea ice in recent Arctic temperature
558 amplification, *Nature*, 464, 1334-1337, doi:10.1038/nature09051, 2010.

559 Screen, J. S. and Simmonds, I.: Erroneous Arctic temperature trends in the ERA-40 reanalysis: A closer
560 look, *J. Clim.*, 24, 2620–2627, doi:10.1175/2010JCLI4054.1, 2011.

561 Sedlar, J., Tjernström, M., Mauritsen, T., Shupe, M. D., Brooks, I. M., Persson, O., Birch, C. E., Leck,
562 C., Sirevaag, A., and Nicolaus, M. : A transitioning Arctic surface energy budget: The impacts of
563 solar zenith angle, surface albedo and cloud radiative forcing, *Clim. Dyn.*, 37, 1643–1660,
564 doi:[10.1007/s00382-010-0937-5](https://doi.org/10.1007/s00382-010-0937-5), 2011.

565 Shepherd, T. G.: Effects of a warming Arctic, *Science*, 353, 989-990, doi:10.1126/science.aag2349,
566 2016.

567 Simmons, A., and Poli, P.: Arctic warming in ERA-Interim and other analyses, *Q. J. R. Meteorol. Soc.*,
568 141, 1147-1162, doi:10.1002/qj.2422, 2015.

569 Skific, N., Francis, J. A., and Cassano, J. J.: Attribution of projected changes in atmospheric moisture
570 transport in the Arctic: A self-organizing map perspective, *J. Clim.*, 22, 4135-4153,
571 doi:10.1175/2009JCLI2645.1, 2009.

572 Sorokina, S. A., Li, C., Wettstein, J. J., and Kvamstø, N. G.: Observed atmospheric coupling between
573 Barents sea ice and the warm-Arctic cold-Siberian anomaly pattern, *J. Clim.*, 29, 495-511,
574 doi:10.1175/JCLI-D-15-0046.1, 2016.

575 Stroeve, J. C., Holland, M. M., Meier, W., Scambos, T., and Serreze, M.: Arctic sea ice decline: faster

576 than forecast, *Geophys. Res. Lett.*, 34, L09051, doi:10.1029/2007gl029703, 2007.

577 Stroeve, J. C.: Trends in Arctic sea ice extent from CMIP5, CMIP3 and observations, *Geophys. Res.*
578 *lett.*, 39, L16502, doi:10.1029/2012GL052676 , 2012.

579 Sun, L., Perlitz, J., and Hoerling, M.: What caused the recent “warm Arctic-Cold Continents” trend
580 pattern in winter temperature?, *Geophys. Res. Lett.*, 43, 5345-5352,
581 doi:10.1002/2016GL069024, 2016.

582 Sung, M.-K., Kim, S.-H., Kim, B.-M., and Choi, Y.-S.: Interdecadal variability of the warm Arctic and
583 cold Eurasia pattern and its North Atlantic origin, *J. Clim.*, 31, 5793-5810,
584 doi:10.1175/JCLI-D-17-0562.1, 2018.

585 Tang, Q., Zhang, X., Yang, X., and Francis J. A.: Cold winter extremes in northern conditions linked to
586 Arctic sea ice loss, *Environ. Res. Lett.*, 8, 014036, doi:1088/1748-9326/8/1/014036 ,2013.

587 Takaya K., and Nakamura, H.: A formulation of a phase-independent wave-activity flux for stationary
588 and migratory quasigeostrophic eddies on a zonally varying basic flow, *J. Atmos. Sci.*, 58,
589 608-627, 2001.

590 Uppala, S., KÅllberg, P. W., Simmons, A. J., Andrae, U., Da Costa Bechtold, V., Florino, M., Gibson, J.
591 K., Haseler, J., Hernandez, A., Kelly, G. A., Li, X., Onogi, K., Saarinen, S., Sokka, N., Allan, R.
592 P., Andersson, E., Arpe, K., Balmaseda, M. A., Beljaars, A. C. M., Van De Berg, L., Bidlot, J.,
593 Bormann, N., Caires, S., Chevallier, F., Dethof, A., Dragosavac, M., Fisher, M., Fuentes, M.,
594 Hagemann, S., Håkkinen, E., Hoskins, B. J., Isaksen, L., Janssen, P. A. E. M., Jenne, R., McNally, A.
595 P., Mahfouf, J.-F., Morcrette, J.-J., Rayner, N. A., Saunders, R. W., Simon, P., Sterl, A.,
596 Trenberth, K. E., Untch, A., Vasiljevic, D., Viterbo, P., and Woollen, J.: The ERA-40 re-analysis,
597 Quarterly Journal of the Royal Meteorological Society, 131, 2961–3012, doi:10.1256/qj.04.176,

598 2005.

599 Walsh, J. E.: Intensified warming of the Arctic: Causes and impacts on middle Latitudes, *Glob. Planet.*

600 *Change*, 117, 52-63, doi:10.1016/j.gloplacha.2014.03.003 , 2014.

601 Vihma, T.: Effects of Arctic sea ice decline on weather and climate: A review, *Surv. Geophys.*, 35,

602 1175-1214, doi:10.1007/s10712-014-9284-0 , 2014.

603 Vihma, T., Graversen, R., Chen, L., Handorf, D., Skific, N., Francis, J. A., Tyrrell, N., Hall, R., Hanna,

604 E., Uotila, P., Dethloff, K., Karpechko, A. Y., Björnsson, H., and Overland, J. E.: Effects of the

605 tropospheric large-scale circulation on European winter temperatures during the period of amplified

606 Arctic warming, *Int. J. Climatol.*, doi:10.1002/joc.6225, 2019.

607 Wang, C., Graham, R. M., Wang, K., Gerland, S., Granskog, M. A.: Comparison of ERA5 and

608 ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: effects

609 on sea ice thermodynamics and evolution, *The Cryosphere*, 13, 1661-1679, 2019.

610 Yoo, C., Feldstein, S., and Lee, S.: The impact of the Madden–Julian oscillation trend on the Arctic

611 amplification of surface air temperature during the 1979–2008 boreal winter, *Geophys. Res.*

612 *Lett.*, 38, L24804, doi:10.1029/2011GL049881, 2011.

613 Yu, L., Zhong, S., Winkler, J. A., Zhou, M., Lenschow, D. H., Li, B., Wang, X., and Yang, Q.: Possible

614 connections of the opposite trends in Arctic and Antarctic sea-ice cover, *Scientific Reports*, 7,

615 45804, doi:10.1038/srep45804, 2017.

616

617

618

619 Table 1. Spatial correlations (Corrs) between the daily winter (DJF) surface air
620 temperature and the corresponding SOM pattern for each day from 1979 to 2018.

	3×1	2×2	3×2	4×2	3×3	5×2	4×3	5×3	4×4
Corr	0.26	0.43	0.48	0.48	0.50	0.49	0.50	0.51	0.51

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651 Table 2. Averaged anomalous NAO and AO indices for all occurrences of each SOM
652 node. Asterisks indicate the above 95% confidence level.

653

	Node1	Node2	Node3	Node4	Node5	Node6	Node7	Node8	Node9
NAO	0.38*	0.22*	0.12*	0.05	-0.22*	-0.02	-0.07	-0.31*	-0.32*
AO	0.44*	0.38*	1.03*	-0.42	-0.62*	0.22*	-0.44*	-1.11*	-0.41*

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692 Table 3. Trends in the frequency of occurrences for each SOM node (day yr⁻¹).
693 Asterisks indicate the above 95% confidence level.

694

	Node1	Node2	Node3	Node4	Node5	Node6	Node7	Node8	Node9
Trend	0.80*	0.10	-0.18	0.22*	-0.02	-0.39*	0.17	-0.17	-0.50*

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732 Table 4. Frequencies of occurrence (%) of wintertime surface air temperature patterns
733 in Figure 1 for all winters before 1998 and after 1998 for the period 1979-2019.
734 Values with Asterisks are significantly different from climatology above the 95%
735 confidence level.

736

SOM patterns	Frequencies of occurrence		
	All winters	Winters before 1998	Winters after 1998
Node 1	17.1	7.4*	26.8
Node 2	4.4	3.3	5.4
Node 3	17.2	18.8	15.6
Node 4	8.6	5.4	11.7
Node 5	3.4	3.4	3.5
Node 6	10.2	15.2*	2.1*
Node 7	13.7	10.6	16.8
Node 8	10.1	12.1	8.0
Node 9	15.4	23.7*	7.1*

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764 **Figure Captions**

765 Figure 1. Spatial patterns of SOM nodes for daily wintertime (December, January, and
766 February) surface air temperature anomalies (°C) without removing their linear trends
767 from ERA-Interim reanalysis over the 1979-2019 period. The number in brackets
768 denotes the frequency of the occurrence for each node.

769 Figure 2. Corresponding 500-hPa geopotential height anomalies (gpm) without
770 removing their linear trends from ERA-Interim reanalysis over the 1979-2019 period
771 for each node in Figure 1. Dotted regions indicate the above 95% confidence level.
772 The thick black lines show the study region.

773 Figure 3. Corresponding anomalous 850-hPa wind field (ms^{-1}) without removing its
774 linear trend from ERA-Interim reanalysis over the 1979-2019 period for each node in
775 Figure 1. Shaded regions indicate the above 95% confidence level. The thick black
776 lines show the study region.

777 Figure 4. Corresponding anomalous daily accumulated downward longwave radiation
778 ($105 W m^{-2}$) without removing its linear trend from ERA-Interim reanalysis over the
779 1979-2019 period for each node in Figure 1. Dotted regions indicate the above 95%
780 confidence level. The thick black lines denote show the study region.

781 Figure 5. Corresponding anomalous daily accumulated turbulent heat flux (sensible
782 and latent heat) ($10^5 W m^{-2}$) without removing their linear trends from ERA-Interim
783 reanalysis over the 1979-2019 period for each node in Figure 1. Positive values
784 denote heat flux from atmosphere to ocean and vice versa. Dotted regions indicate the
785 above 95% confidence level. The thick black lines denote show the study region.

786 Figure 6. Corresponding anomalous wintertime sea ice concentration without
787 removing its linear trend from the NSIDC over the 1979-2019 period for each node in
788 Figure 1. Dotted regions indicate the above 95% confidence level.

789 Figure 7. Time series of the number of days for occurrence of each SOM node in
790 Figure 1 over the 1979-2019 period. The thick lines denote the trend in time series.

791 Figure 8. Total (top), SOM-explained (middle), and residual (bottom) trend in
792 wintertime (DJF) surface air temperature ($^{\circ}\text{C yr}^{-1}$) over the 1979-2019 period. Dots in
793 the top panel indicate above 95% confidence level.

794 Figure 9. Trends in surface air temperature explained by each SOM node ($^{\circ}\text{C yr}^{-1}$)
795 over the 1979-2019 period. The percentage in the upper of each panel indicates the
796 fraction of the total trend represented by each node.

797 Figure 10. Anomalous SST ($^{\circ}\text{C}$) regressed into the normalized time series of
798 occurrence number for nodes 1, 4, 6, and 9 without removing its linear trend from the
799 NOAA over the 1979-2019 period.

800 Figure 11. Anomalous 500-hPa geopotential height (gpm) regressed into the
801 normalized time series of occurrence number for nodes 1, 4, 6, and 9 without
802 removing its linear trend from ERA-Interim reanalysis over the 1979-2019 period.

803 Figure 12. The anomalous wave activity flux (vectors) (Takaya and Nakamura, 2001)
804 and stream function (colors, units: $10^7 \text{ m}^2 \text{ s}^{-1}$) regressed onto the normalized time
805 series of occurrence number for nodes 1, 4, 6, and 9 without removing their linear
806 trends from ERA-Interim reanalysis over the 1979-2019 period.

807 Figure 13. Spatial patterns of SOM nodes for detrended daily wintertime (December,

808 January, and February) surface air temperature anomalies (°C) from the 20CR
809 reanalysis for the 1851-2014 period. The number in brackets denotes the frequency of
810 the occurrence for each node.

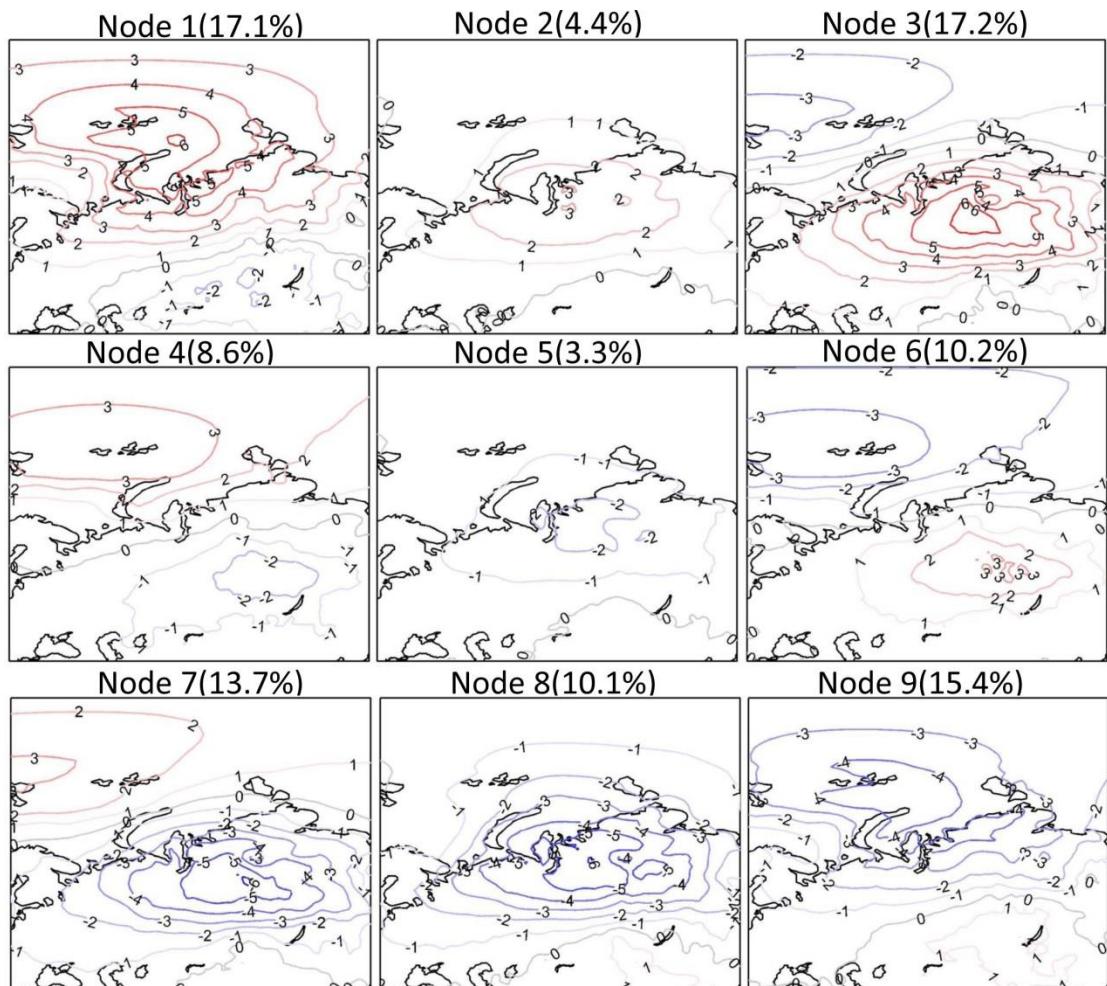
811 Figure 14. Time series of the number of days for occurrence of each SOM node in
812 Figure 13 from the 20CR reanalysis for the 1851-2014 period. The thick red lines
813 denote the result in Figure 7 from the ERA-Interim reanalysis for the 1979-2019
814 period.

815 Figure 15. The (a) leading pattern and (b) its time series (PC1 and PC2) of EOF
816 analysis of wintertime surface air temperature anomalies from the 20CR reanalysis for
817 the 1851-2014 period. Prior to EOF analysis, surface air temperature data are
818 detrended. A 40-yr low-pass filter is applied to the time series of PC1, PC2, AMO,
819 PDO, and central North Pacific Ocean (CNPO) indices. The correlation coefficients
820 between PC1 and AMO, PDO and CNPO indices are -0.46 (p<0.0001), 0.38
821 (p<0.0001), and -0.19 (p=0.019); those between PC2 and AMO, PDO and CNPO
822 indices are -0.44 (p<0.0001), 0.38 (p<0.0001), and -0.26 (p=0.0009).

823

824

825


826

827

828

829

830

831

832 Figure 1. Spatial patterns of SOM nodes for daily wintertime (December, January, and February)
 833 surface air temperature anomalies ($^{\circ}\text{C}$) without removing their linear trends from ERA-Interim
 834 reanalysis over the 1979-2019 period. The number in brackets denotes the frequency of the
 835 occurrence for each node.

836

837

838

839

840

841

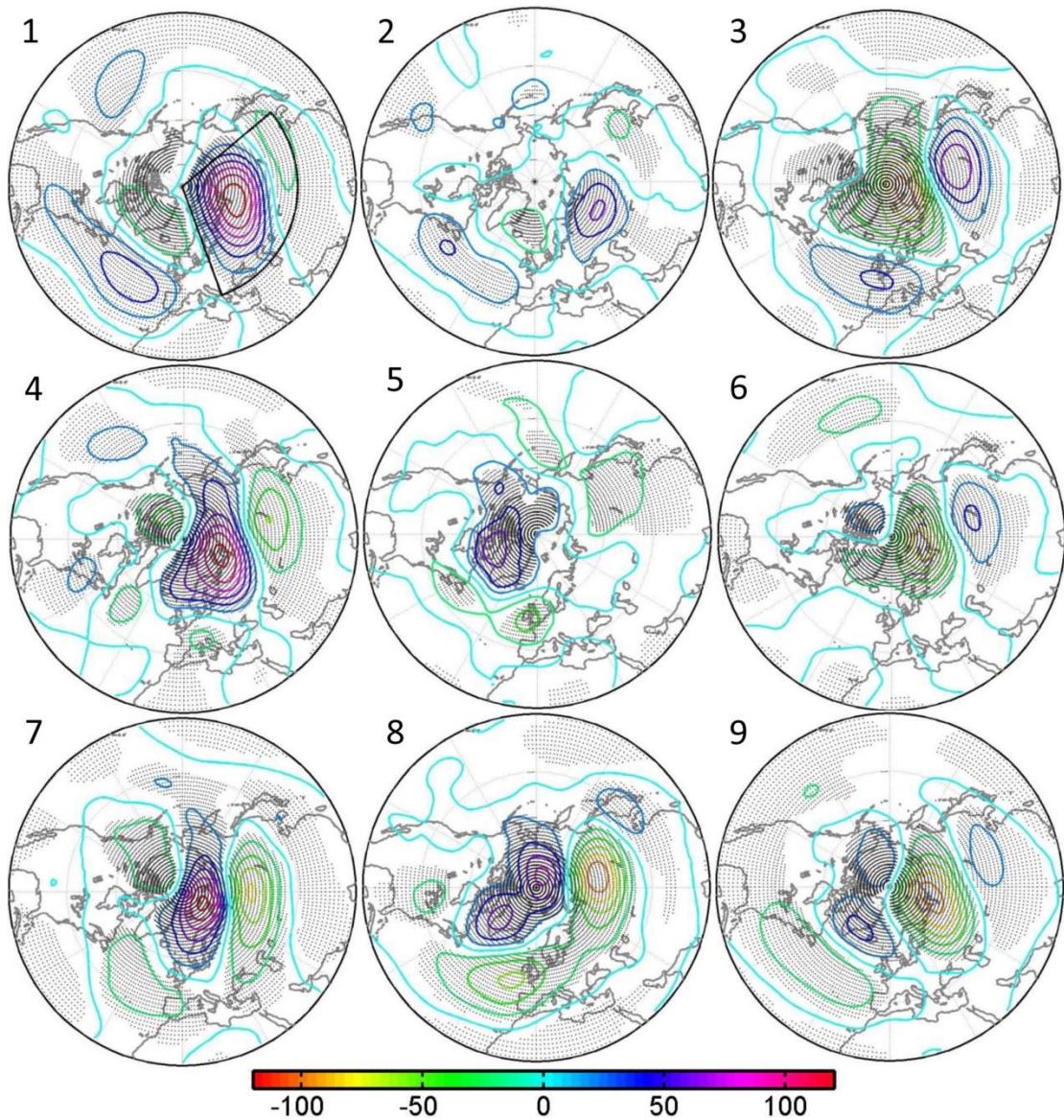
842

843

844

845

846


847

848

849

850

851

852

Figure 2. Corresponding 500-hPa geopotential height anomalies (gpm) without removing their linear trends from ERA-Interim reanalysis over the 1979-2019 period for each node in Figure 1. Dotted regions indicate the above 95% confidence level. The thick black lines show the study region.

857

858

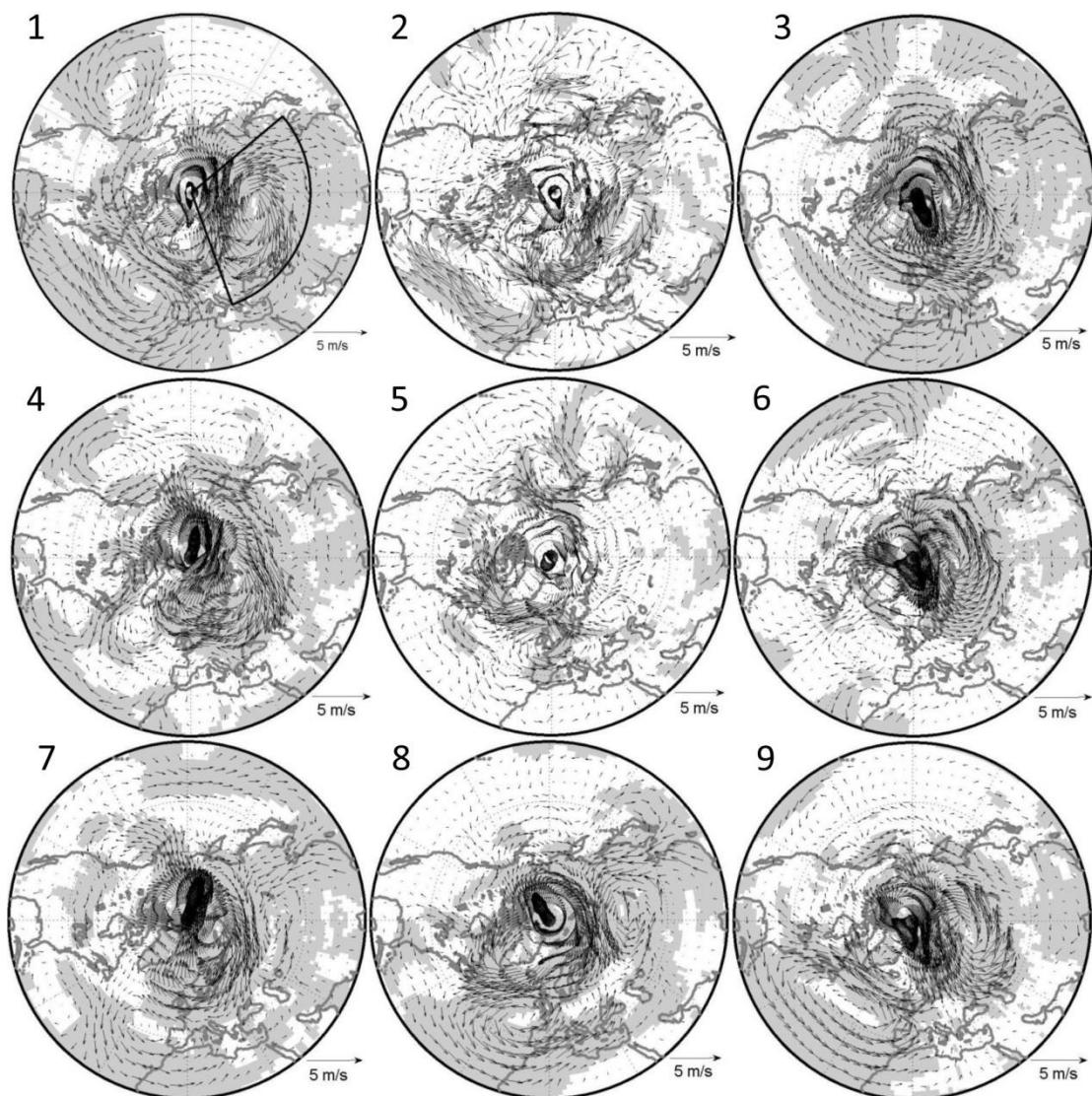
859

860

861

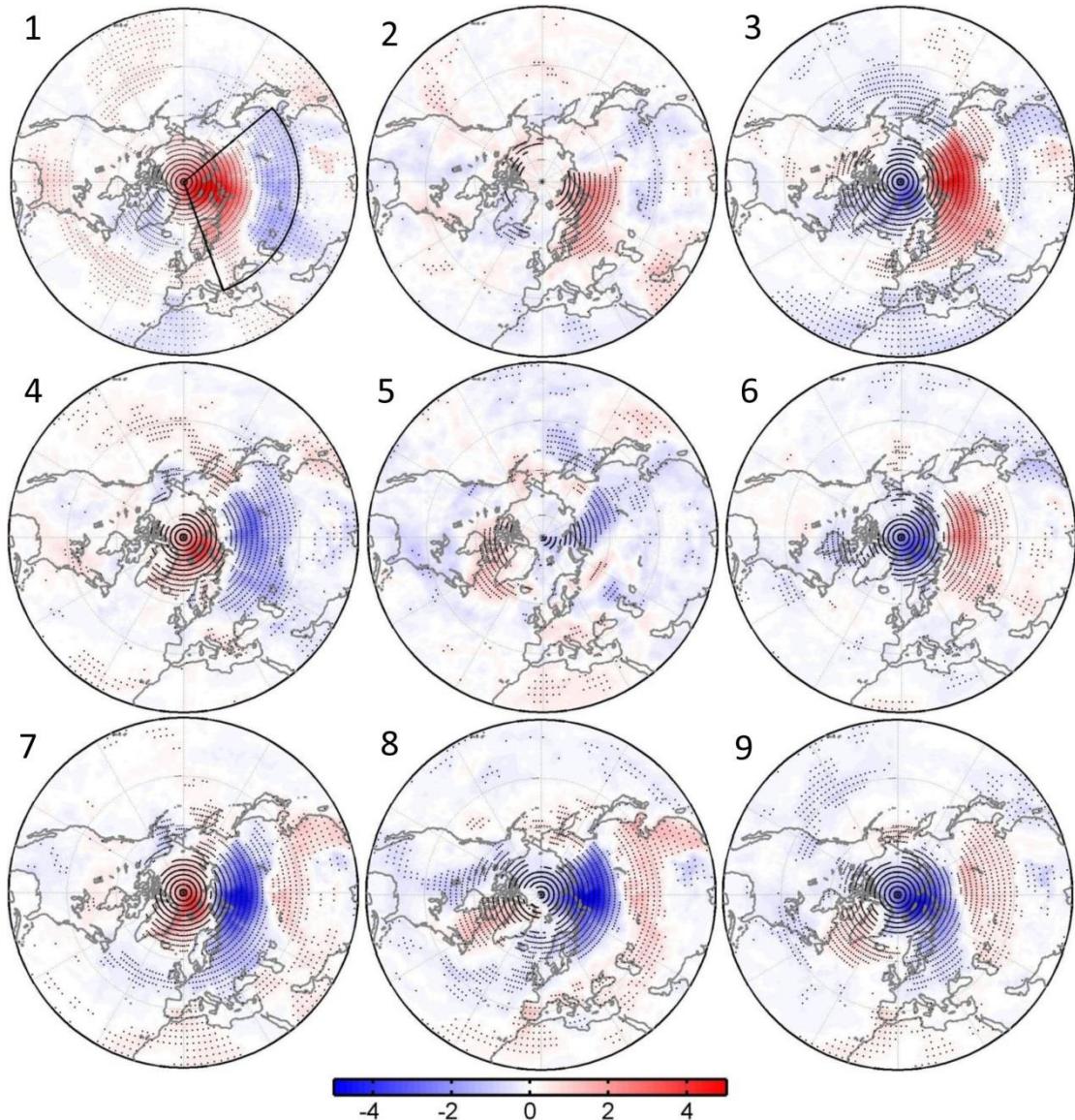
862

863


864

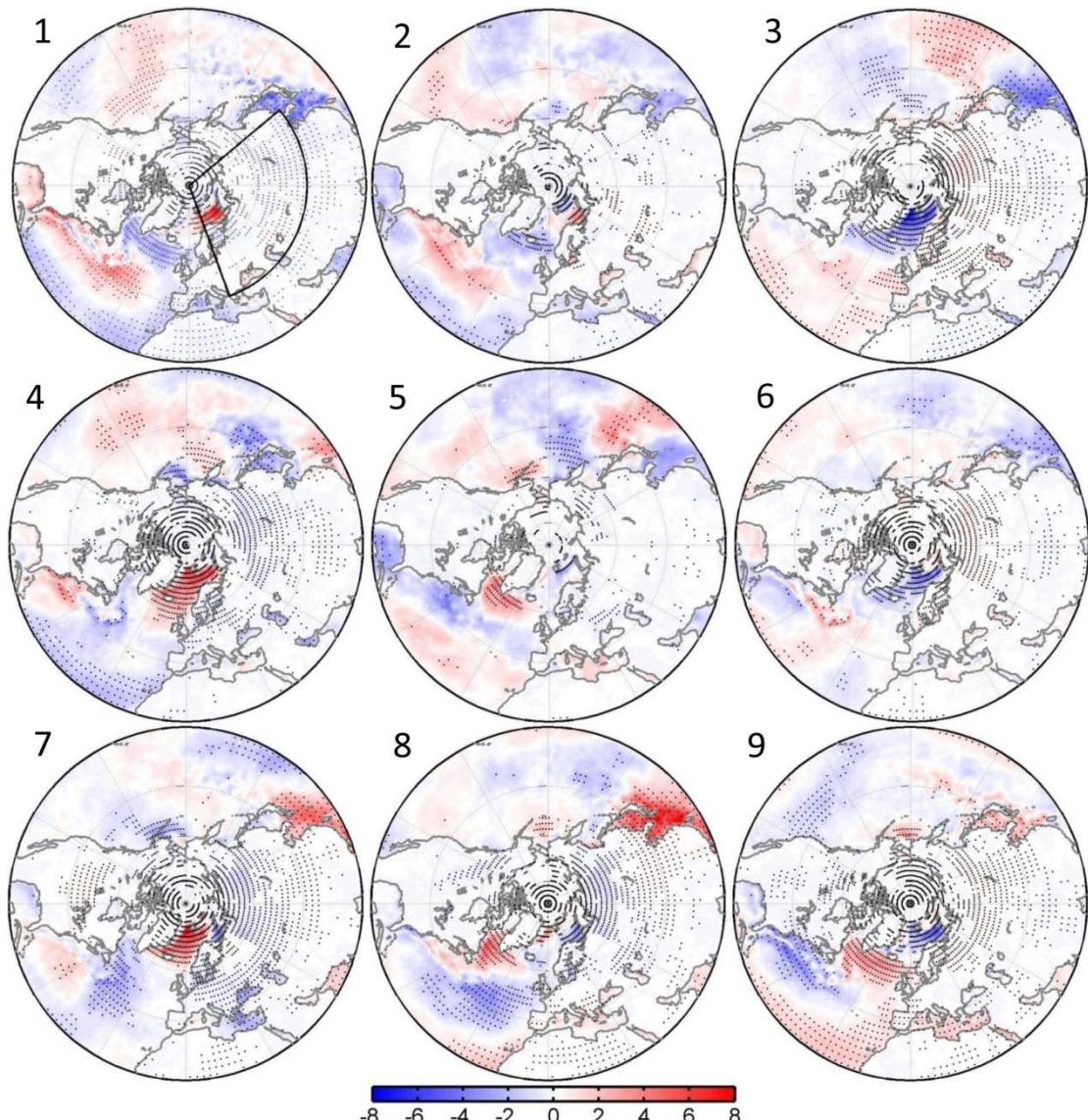
865

866

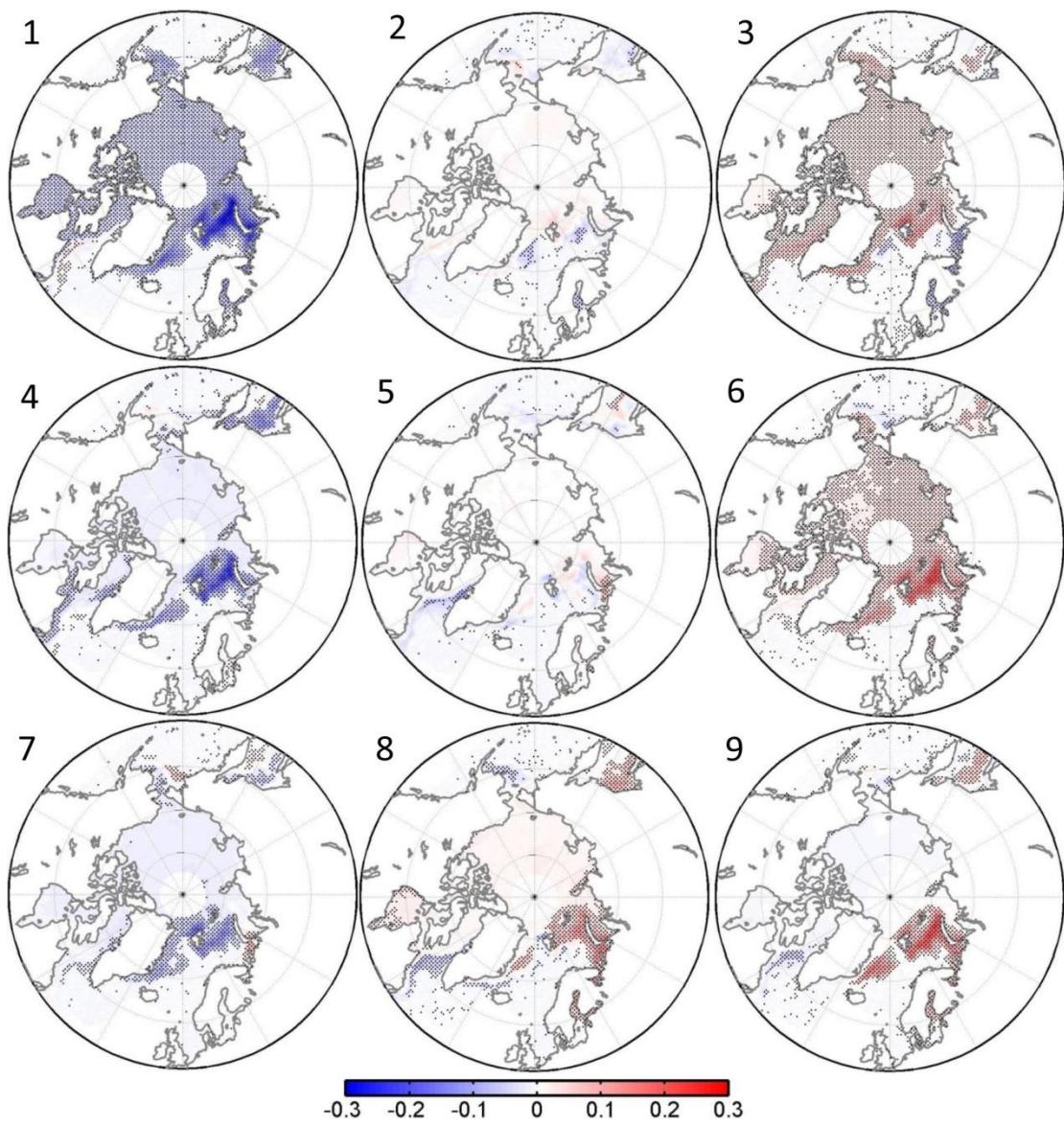

867

868
869
870

871
872 Figure 3. Corresponding anomalous 850-hPa wind field without removing its linear trend from
873 ERA-Interim reanalysis over the 1979-2019 period for each node in Figure 1. Shaded regions
874 indicate the above 95% confidence level. The thick black lines show the study region.
875
876
877
878
879
880
881
882
883
884
885

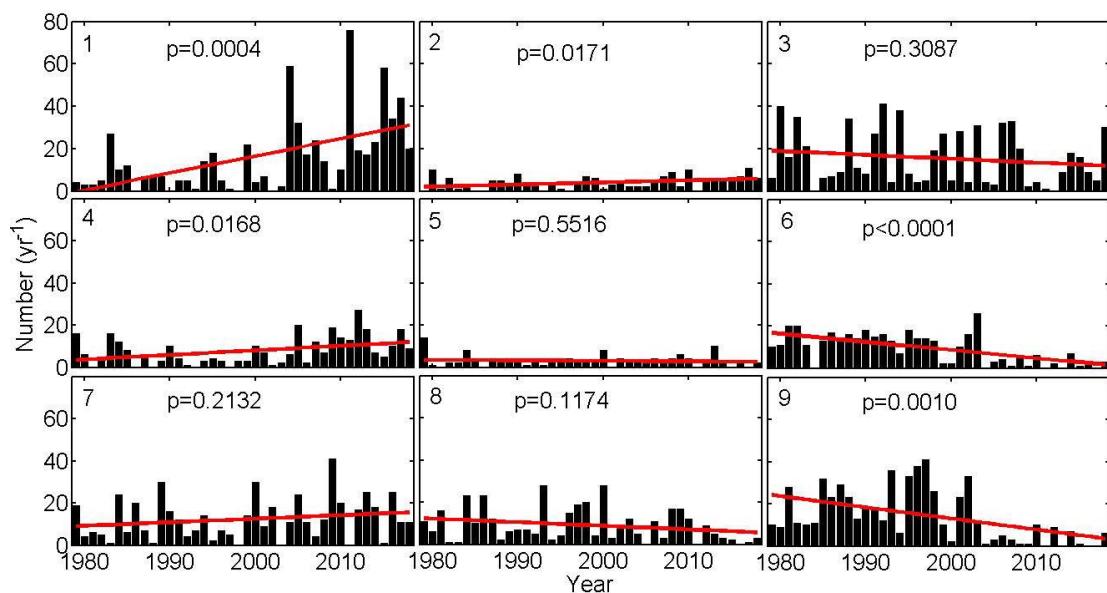

886
887
888
889
890

891
892 Figure 4. Corresponding anomalous daily accumulated downward longwave radiation (10^5 W m^{-2})
893 without removing its linear trend from ERA-Interim reanalysis over the 1979-2019 period for each
894 node in Figure 1. Dotted regions indicate the above 95% confidence level. The thick black lines
895 show the study region.


896
897
898
899
900
901
902

903
904
905
906
907
908
909
910

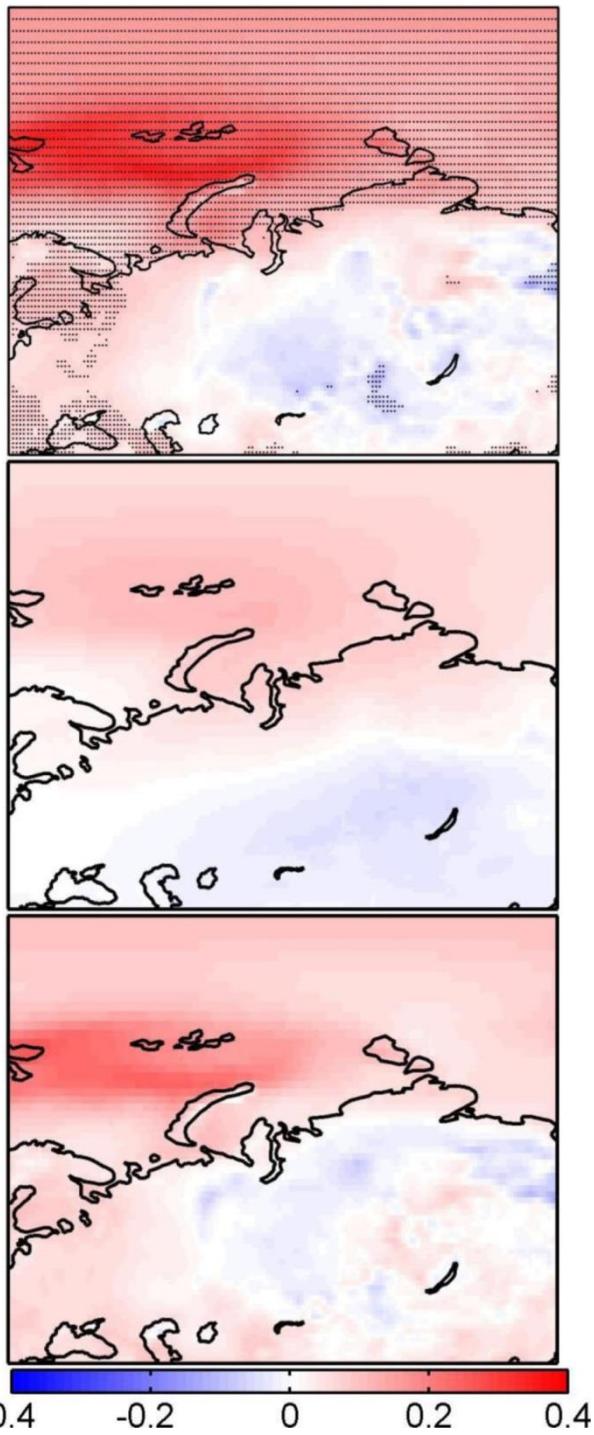
911
912 Figure 5. Corresponding anomalous daily accumulated turbulent heat flux (sensible and latent heat)
913 (10^5W m^{-2}) without removing their linear trends from ERA-Interim reanalysis over the 1979-2019
914 period for each node in Figure 1. Positive values denote heat flux from atmosphere to ocean and
915 vice versa. Dotted regions indicate the above 95% confidence level. The thick black lines show the
916 study region.
917
918
919


920
921
922
923
924
925
926
927
928
929
930

931
932
933
934
935
936

Figure 6. Corresponding anomalous wintertime sea ice concentration without removing its linear trend from the NSIDC over the 1979-2019 period for each node in Figure 1. Dotted regions indicate the above 95% confidence level.

937
938
939
940
941
942
943
944
945
946
947
948
949
950

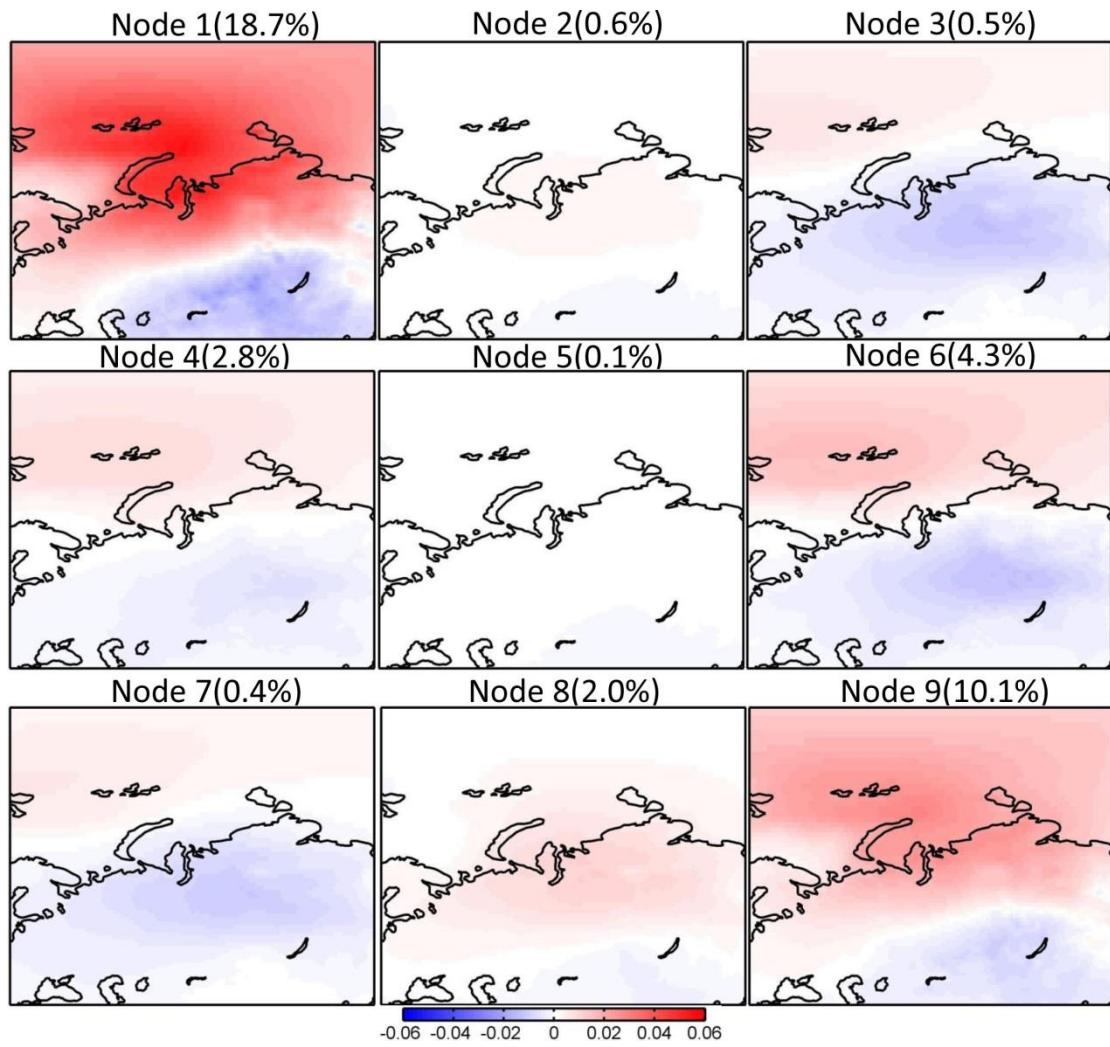

951

952 Figure 7. Time series of the number of days for occurrence of each SOM node in Figure 1 over the
953 1979-2019 period. The thick lines denote the trend in time series.

954
955
956
957
958
959
960
961
962
963
964
965
966

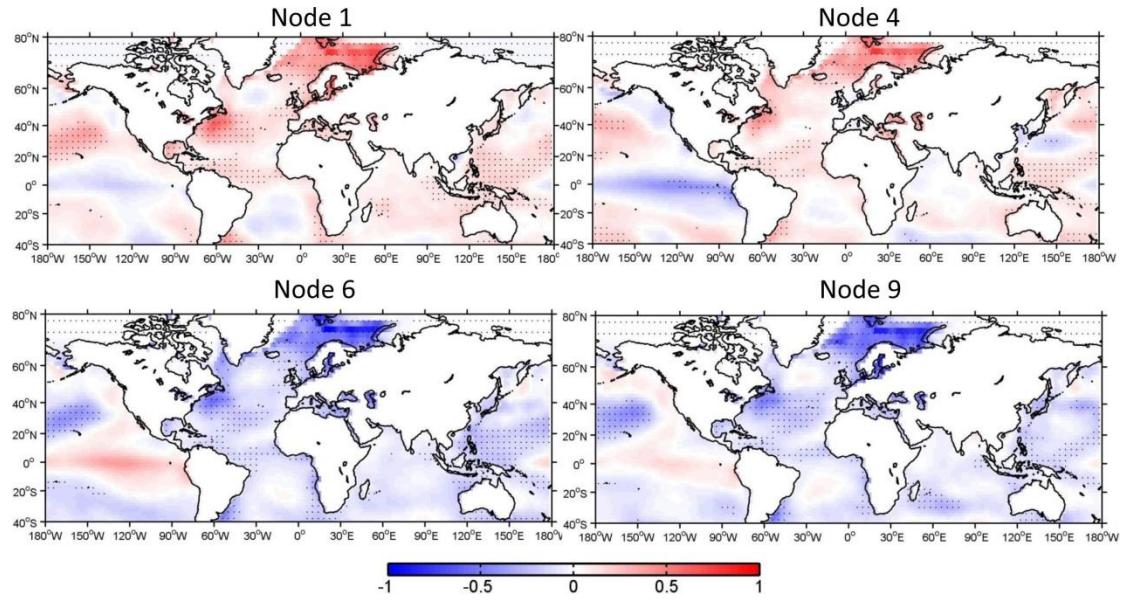
967

968



969

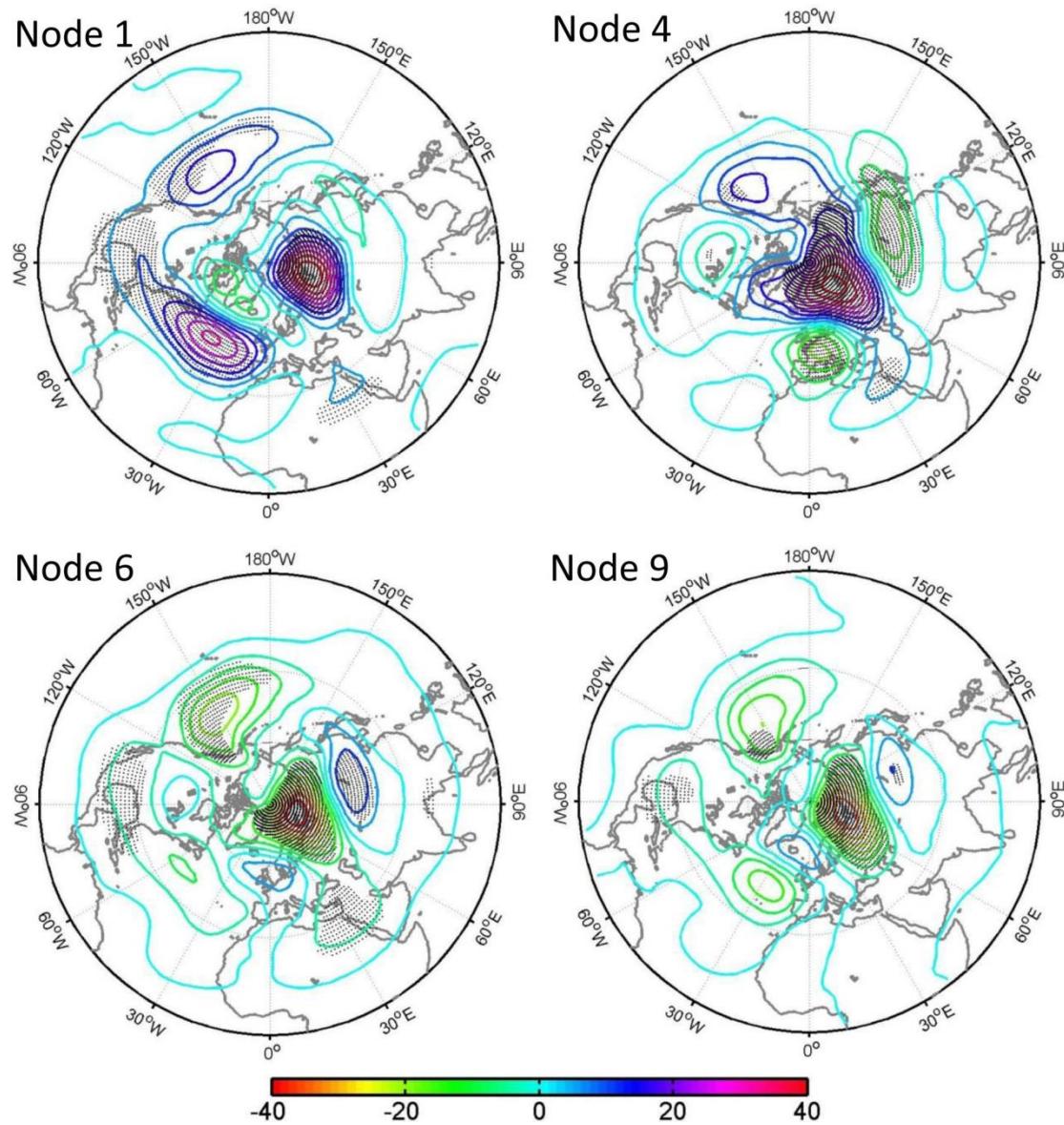
-0.4 -0.2 0 0.2 0.4


970

971 Figure 8. Total (top), SOM-explained (middle), and residual (bottom) trend in wintertime (DJF)
972 surface air temperature ($^{\circ}\text{C yr}^{-1}$) over the 1979-2019 period. Dots in the top panel indicate above
973 95% confidence level.

974
975 Figure 9. Trends in surface air temperature explained by each SOM node ($^{\circ}\text{C yr}^{-1}$) over the
976 1979-2019 period. The percentage in the upper of each panel indicates the fraction of the total
977 trend represented by each node.
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993

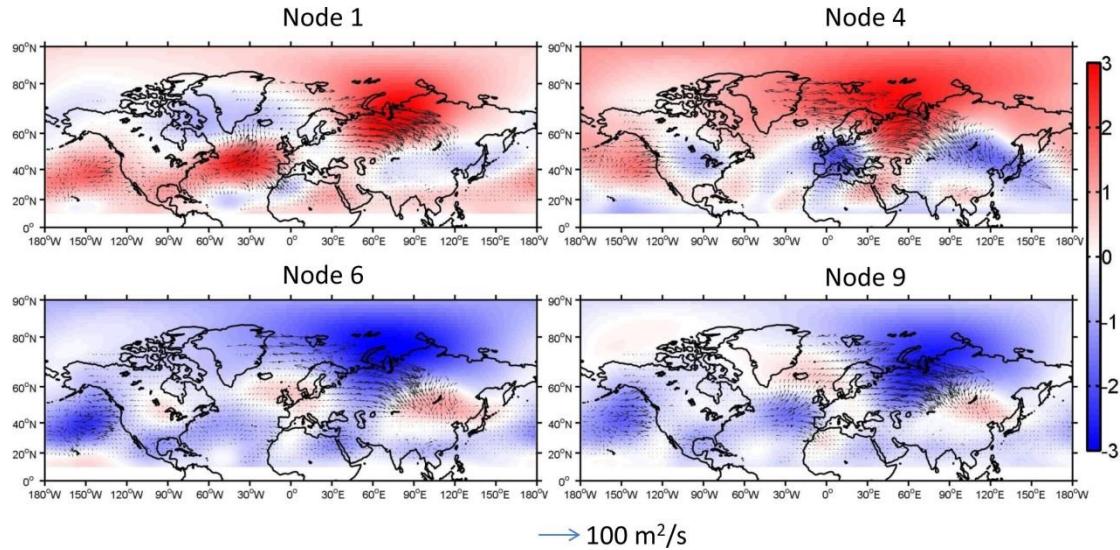
994
995



996

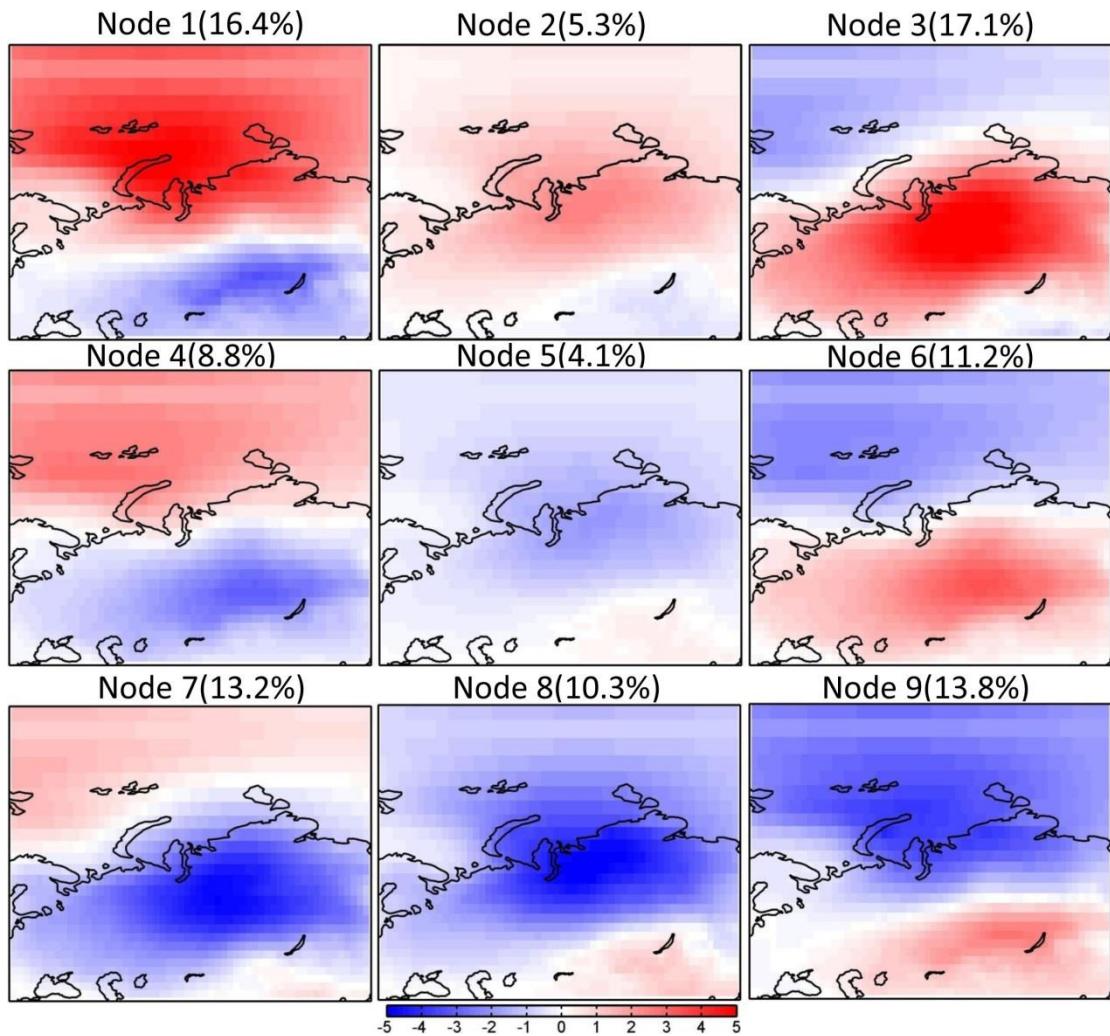
997 Figure 10. Anomalous SST (°C) regressed into the normalized time series of occurrence number
998 for nodes 1, 4, 6, and 9 without removing its linear trend from the NOAA over the 1979-2019
999 period.

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023

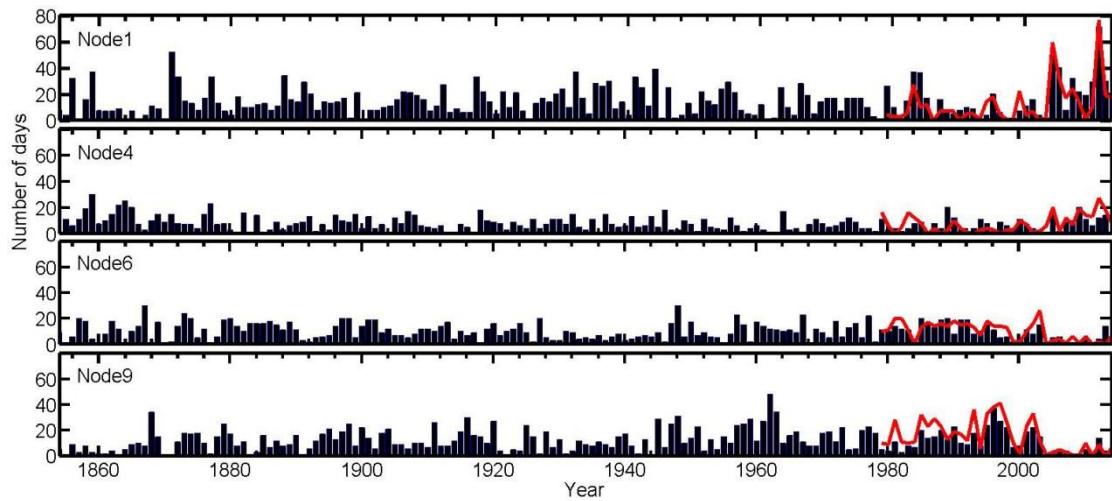

1024
1025
1026
1027

1029 Figure 11. Anomalous 500-hPa geopotential height (gpm) regressed into the normalized time
1030 series of occurrence number for nodes 1, 4, 6, and 9 without removing its linear trend from
1031 ERA-Interim reanalysis over the 1979-2019 period.

1032
1033
1034
1035
1036
1037
1038
1039

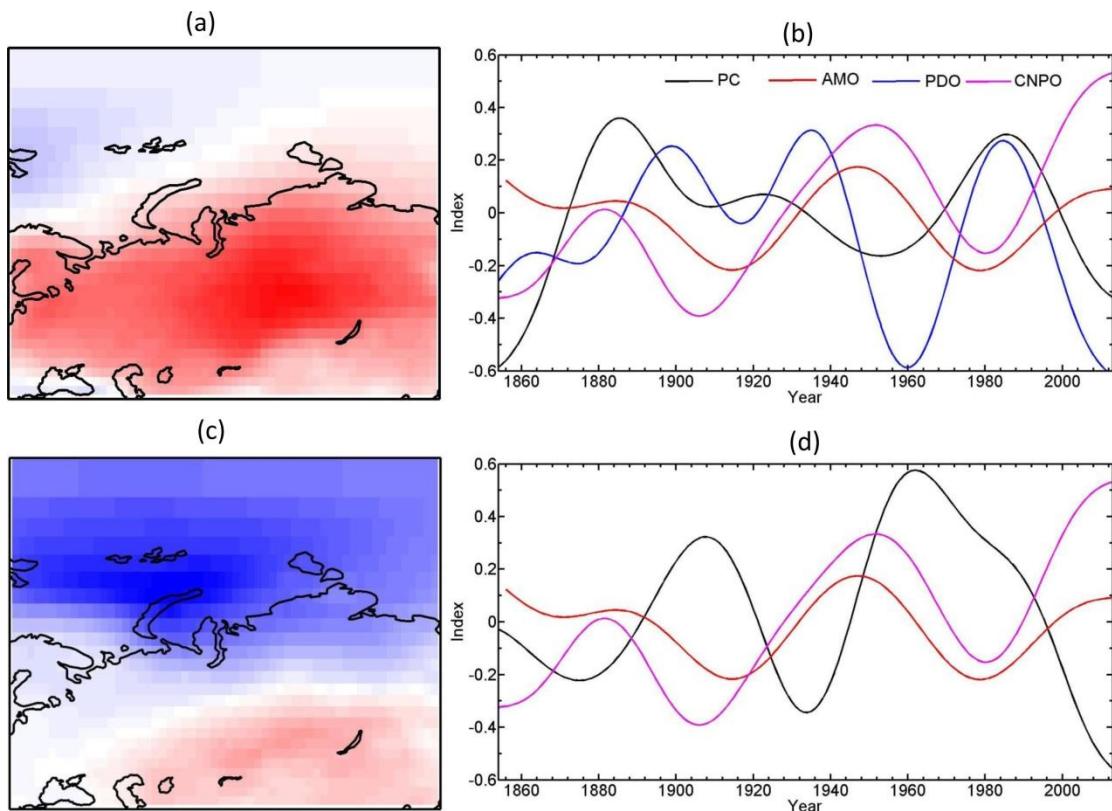

1040
1041
1042
1043
1044

1045
1046
1047
1048
1049


Figure 12. The anomalous wave activity flux (vectors) (Takaya and Nakamura, 2001) and stream function (colors, units: $10^7 \text{ m}^2 \text{s}^{-1}$) regressed onto the normalized time series of occurrence number for nodes 1, 4, 6, and 9 without removing their linear trends from ERA-Interim reanalysis over the 1979-2019 period.

1050
1051
1052
1053
1054
1055
1056
1057
1058

1059
1060 Figure 13. Spatial patterns of SOM nodes for detrended daily wintertime (December, January, and
1061 February) surface air temperature anomalies (°C) from the 20CR reanalysis for the 1851-2014
1062 period. The number in brackets denotes the frequency of the occurrence for each node.


1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

1080
1081 Figure 14. Time series of the number of days for occurrence of each SOM node in Figure 13 from
1082 the 20CR reanalysis for the 1851-2014 period. The thick red lines denote the result in Figure 7
1083 from the ERA-Interim reanalysis for the 1979-2019 period.
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112

1113

1114

1115

Figure 15. The (a) leading pattern and (b) its time series (PC1 and PC2) of EOF analysis of wintertime surface air temperature anomalies from the 20CR reanalysis for the 1851-2014 period.. Prior to EOF analysis, surface air temperature data are detrended. A 40-yr low-pass filtered is applied to the time series of PC1, PC2, AMO, PDO, and central North Pacific Ocean (CNPO) indices. The correlation coefficients between PC1 and AMO, PDO and CNPO indices are -0.46 ($p<0.0001$), 0.38 ($p<0.0001$), and -0.19 ($p=0.019$); those between PC2 and AMO, PDO and CNPO indices are -0.44 ($p<0.0001$), 0.38 ($p<0.0001$), and -0.26 ($p=0.0009$).

1123