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Abstract. We conducted continuous measurement of nanoparticles down to 3 nm size in the Arctic at Mount Zeppelin, Ny 13 

Å lesund, Svalbard, from Oct 2016 to Dec 2018, providing a size distribution of nanoparticles (3–60 nm). A significant number 14 

of nanoparticles as small as 3 nm were often observed during new particle formation (NPF), particularly in summer, suggesting 15 

that these were likely produced near the site rather than being transported from other regions after growth. The average NPF 16 

frequency per year was 23 % having the highest percentage in August (63 %). The average formation rate (J) and growth rate 17 

(GR) for 3–7 nm particles were 0.04 cm–3 s–1 and 2.07 nm h–1, respectively. Although NPF frequency in the Arctic was 18 

comparable to that in continental areas, the J and GR were much lower. The number of nanoparticles increased more frequently 19 

when air mass originated over the south and southwest ocean regions; this pattern overlapped with regions having strong 20 

chlorophyll-α concentration and dimethyl sulfide (DMS) production capacity (southwest ocean), and was also associated with 21 

increased NH3 and H2SO4 concentration, suggesting that marine biogenic sources were responsible for gaseous precursors to 22 

NPF. Our results show that previously developed NPF occurrence criteria (low loss rate and high cluster growth rate favor 23 

NPF) are also applicable to NPF in the Arctic. 24 

1 Introduction 25 

The Arctic climate system is affected by the region’s snow-covered land, sea ice, and ocean, making the region 26 

vulnerable to global climate change (Jeffries and Richter-Menge, 2012). Greenhouse gases and aerosols are significant factors 27 

affecting the regional climate (Quinn et al., 2007; IPCC, 2014). In particular, aerosols in the ambient atmosphere affect the 28 

radiation balance by scattering or absorbing incoming solar light (direct effect) (Toon and Pollack, 1980; Satheesh et al., 2005) 29 

and forming clouds by acting as cloud condensation nuclei (CCN) (indirect effect) (Merikanto et al., 2009).  30 
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New particle formation (NPF), which significantly enhances the number of particles in the ambient atmosphere, has 31 

been observed in various locations and at various times (Kulmala et al., 2004; Wang et al., 2017; Yu et al., 2017). In favourable 32 

conditions, newly formed nanoparticles can, through condensation and coagulation, grow to sizes allowing the formation of 33 

CCN. NPF is observed regardless of pollution level, from very clean (e.g., background sites) to heavily polluted (e.g., urban 34 

sites), suggesting that various pathways are involved depending on the location and time (Kulmala et al., 2004; Wang et al., 35 

2017). Nucleation can occur almost anywhere in diverse environments, but NPF is observed only when freshly nucleated 36 

clusters grow to a detectable size (1–3 nm) (McMurry et al., 2010). Previously developed criteria for NPF occurrence suggest 37 

that a low loss (or scavenging) rate and high growth rate (GR) of clusters increase fresh nuclei survival probability and thus 38 

favoring NPF, while a high loss rate and low cluster GR suppress it (Kuang et al., 2012). 39 

In the Arctic, specific phenomenon called “Arctic haze” related to long range transport of polluted air masses 40 

typically occurs in the late winter and early spring (Iziomon et al., 2006; O’Neill et al., 2008, Hirdman et al., 2010).  The Arctic 41 

haze is associated with elevated concentrations of accumulation-mode particles. (Radke et al., 1984; Shaw, 1995; Law and 42 

Stohl, 2007; Quinn et al., 2007). High concentration of accumulation-mode particles results in a high condensational sink (CS) 43 

for precursor vapors, which could suppress NPF. The NPF in the Arctic was often reported in summer, when the CS was 44 

smaller (Wiedensohler et al., 1996; Covert et al., 1996; Sharma et al., 2013; Willis et al., 2016; Croft et al., 2016). In addition, 45 

strong biogenic production from marine and coastal environments in the Arctic region (e.g., Alaska, Alert, and Svalbard) was 46 

reported to be linked to NPF due to an increased amount of biogenic sulfur compounds such as dimethyl sulfide and its 47 

oxidative products (methane sulfonate and biogenic sulfate) (Leaitch et al., 2013; Park et al., 2017). Like in sulfuric acid-rich 48 

regions, organic-based new particles were observed in pristine environments (Quinn et al., 2002; Karl et al., 2013; Leaitch et 49 

al., 2013; Heintzenberg et al., 2015). Asmi et al. (2016) reported that NPF was more common in air masses of oceanic origin 50 

compared to continental ones in the Arctic (Tiksi station, Russia). Dall’Osto et al. (2018) suggested that NPF at Station Nord 51 

in North Greenland was related to seasonal sea-ice cycles (i.e., the NPF was associated with air masses coming from open 52 

water and melting sea-ice regions). 53 

There are several past studies of NPF at the Zeppelin Observatory at Mount Zeppelin in Svalbard, Norway (Tunved 54 

et al., 2013; Dall’Osto et al., 2017; Heintzenberg et al., 2017). The location of the station is 474 m above sea level and ~2 km 55 

from a small scientific community, with minimal effects from anthropogenic sources; its unique geographical location is ideal 56 

for investigating NPF in the Arctic environment. Tunved et al. (2013) studied seasonal variations in particle size distribution 57 

and NPF based on aerosol size distribution data (10–790 nm) from 2000 to 2010. Heintzenberg et al. (2017) developed a new 58 

NPF search algorithm using size distribution data (5–630 nm) from 2006 to 2015. Dall’Osto et al. (2017) determined the 59 

relationship between NPF and the extent of Arctic sea-ice melt using size distribution data (10–500 nm) from 2000 to 2010 60 

and used hourly data to classify the size distributions and NPF types. It was reported that NPF at the Mount Zeppelin site 61 

mostly occur during summer, which was attributed to the low CS and high biological activity in summer (Leaitch et al., 2013; 62 

Heintzenberg et al., 2015; Park et al., 2017). NPF occurrence was low during the Arctic haze (with high CS) period (Tunved 63 

et al., 2013; Croft et al., 2016). Heintzenberg et al. (2017) suggested that NPF at the Mount Zeppelin site was related to solar 64 
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flux and sea surface temperature, affecting marine biological processes and photochemical reactions with less CS. They 65 

reported the potential source regions for NPF to be the marginal-ice and open-water areas between northeastern Greenland and 66 

eastern Svalbard. Although particle size distribution data from the Mount Zeppelin site are available (Ström et al., 2003; 67 

Tunved et al., 2013; Dall’Osto et al., 2017; Heintzenberg et al., 2017), no data regarding the size distribution of nanoparticles 68 

smaller than 5 nm are available, though these could provide greater insight into NPF characteristics. Currently, the initial 69 

formation and growth of nanoparticles below 10 nm cannot be resolved, and weak NPF events with no substantial particle 70 

growth up to 10 nm cannot be detected. 71 

In this study, we measured number size distribution of nanoparticles down to 3 nm for the first time at Zeppelin 72 

station, and obtained continuous size distributions of 3–60 nm particles every 3 min from Oct 2016 to Dec 2018. This allowed 73 

the size distribution of nanoparticles to be determined with a lower size limit than before, enabling better identification of 74 

whether freshly nucleated particles formed on-site or were transported from other regions after substantial growth. We were 75 

also able to detect NPF events when particle growth was terminated below 10 nm. The particle size distributions were classified 76 

into several clusters, and the seasonal (monthly), daily, and diurnal variations of the nanoparticle concentrations were examined. 77 

We also applied the NPF criteria to Arctic data to determine whether or not NPF should occur and investigated the 78 

characteristics of NPF events related to formation rate, GR, CS, and meteorological parameters. Finally, potential source 79 

regions for NPF were explored using air mass backward trajectory and satellite-derived chlorophyll-α concentration data. The 80 

chlorophyll-α which is involved in oxygenic photosynthesis in ocean has been considered as a proxy for phytoplankton biomass 81 

only. Recent studies showed that there was a strong correlation between sea-surface chlorophyll-α concentration (estimated 82 

by MODIS-aqua) and atmospheric DMS levels at Zeppelin station (Park et al., 2013; Park et al., 2018). 83 

2 Methods 84 

The measurement site was located at the Zeppelin Observatory at Mount Zeppelin, Svalbard (78º54' N, 11º53' E), 85 

which is 474 m above sea level and ~2 km from the small scientific community in Ny-Å lesund, Norway (78º55' N, 11º56' E) 86 

(Figure 1). Ny-Å lesund lies within the west Spitsbergen current at the northernmost point of the warm Atlantic influx; this 87 

location provides an ideal location for observing climate parameters and investigating the long-range transport route by which 88 

contamination is often carried via southerly air masses (Neuber et al., 2011). The dominant wind patterns (east and southeast 89 

from the Kongsvegen glacier (40 %) and northwest from the Kongsfjorden channels (14 %) during the measurement period 90 

(Oct 2016 to Dec 2018)) and elevation suggest that the effects of local sources on the Zeppelin Observatory are small (Beine 91 

et al., 2001).  92 

An air inlet with a flow rate of 100 L min–1 was used to introduce ambient aerosols into the instruments. The flow 93 

temperature was maintained above 0 ℃ to prevent ice and frost formation in the tube. The observatory was kept warm and 94 

dry, with an indoor temperature and relative humidity (RH) of ~20 ℃ and < 30 %, respectively (Tunved et al., 2013; 95 

Heintzenberg et al., 2017). A nano-scanning mobility particle sizer consisting of a nano-differential mobility analyzer (nano-96 
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DMA) (model 3085, TSI, USA) and an ultrafine condensation particle counter (model 3776, TSI, USA) was used to measure 97 

the size distribution of nanoparticles (3–60 nm) every 3 min; the aerosol flow rate was 1.5 L min–1 and the sheath flow rate 98 

was 15 L min–1. The size distribution data were processed using the method described by Kulmala et al. (2012). 99 

Daily ionic species (Na+, Mg2+, K+, NH4
+, NO3

–, SO4
2–, and Cl–) in particulate matters and gas data (NH3 and SO2) 100 

at Zeppelin Observatory, along with meteorological parameters (temperature, RH, wind, and pressure), were obtained from 101 

the Norwegian national monitoring program (Aas et al., 2019) via the EBAS database (http://ebas.nilu.no/). Daily ionic species 102 

and gas data are daily measurements collected with a 3-stage filterpack sampler (NILU prototype) with no pre-impactor. The 103 

size cut off of the inlet section is approximately 10 µm. Field blanks were prepared in the same as the other samples. It should 104 

be noted that for the nitrogen compounds the separation of gas and aerosol might be biased due to the volatile nature of NH4NO3. 105 

The detection limits were 0.05 µg N m–3 and 0.01 µg S m–3 for NH3 and SO2, respectively, and 0.01 µg m–3 for Na+, Mg2+, K+, 106 

and Cl–, 0.01 µg N m–3 for NO3
–, 0.05 µg N m–3 for NH4

+, and 0.01 µg S m–3 for SO4
2–. The data quality management and 107 

system are accredited in accordance to NS-EN ISO / IEC 1702 standards. The detailed information of sampling method and 108 

analysis can be found elsewhere (EMAP 2014; Aas et al., 2019). Solar radiation (SRAD) at the AWIPEV (the Alfred Wegener 109 

Institute Helmholtz Centre for Polar and Marine Research and the French Polar Institute Paul Emile Victor) observatory in 110 

Ny-Å lesund were obtained from the Baseline Surface Radiation Network (BSRN) (Maturilli, 2019). Hourly data for number 111 

size distributions of particles from 5–810 nm and 10–790 nm, measured with discrete mobility particle sizers (DMPS), were 112 

obtained from Stockholm University and the Norwegian Institute for Air Research (NILU), respectively. The data from the 113 

DMPS and filterpack measurements are reported to several international monitoring programmes (EMEP (European 114 

Monitoring and Evaluation Programme), ACTRIS (Aerosols, Clouds and Trace gases Research InfraStructure Network), and 115 

GAW-WDCA (Global Atmosphere Watch-the World Data Centre for Aerosols)), and they are openly available from the 116 

database infrastructure EBAS. In addition, the hourly black carbon (BC) data at Zeppelin were used to examine the effect of 117 

primary combustion sources on the NPF. 118 

Satellite-derived chlorophyll-α concentration data in the Svalbard region (70–85º N, 25º W–50º E) was obtained 119 

from the level-3 product of the Aqua-Moderate Resolution Imaging Spectroradiometer (MODIS) at a 4 km resolution. Air 120 

mass backward trajectories arriving at the Zeppelin Observatory were calculated for up to 5 days using the National Oceanic 121 

and Atmospheric Administration (NOAA) Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model based 122 

on Global Data Assimilation System (GDAS) 1° data. A potential source contribution function (PSCF) method (Pekney et al., 123 

2006; Wang et al., 2009; Fleming et al., 2012) was also used to relate the air mass to NPF occurrence by analyzing the residence 124 

time of the air mass relative to the concentration of nanoparticles at the receptor site (Wang et al., 2009). In addition, the k-125 

means clustering method, an unsupervised data classification/partitioning approach, was used to classify potential air mass 126 

origin along with the size distributions (Beddows et al., 2009; Dall’Osto et al., 2017). 127 

The particle GR was calculated as the change rates of representative particle diameters (d1 and d2) with the highest 128 

concentrations at particular times (t1 and t2) (Hussein et al., 2005; Kulmala et al., 2012). The CS, which determines how rapidly 129 

condensable vapor molecules will condense on the existing aerosols (Kulmala et al., 2012), was calculated from the size 130 
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distribution data (3–810 nm) with an assumed H2SO4 diffusion coefficient of 0.117 cm–2 s–1 (Gong et al., 2010; Cai et al., 131 

2017). The number concentration in the size range di to dj (Ni–j) was derived from the measured size distribution data. 132 

Considering the particle loss and production processes allowed the following balance equation for N i–j to be derived: 133 

 134 

dNi−j

dt
= Ji−j − Fcoag − Fgrowth      (1) 135 

 136 

where Ji–j is the particle formation rate in the size range of di to dj, Fcoag is the particle loss rate related to coagulation scavenging 137 

in the size range of di to dj, and Fgrowh is the condensational GR of the nucleation-mode particles. Based on methods suggested 138 

by Kulmala et al. (2012), the particle formation rate (Ji–j) was calculated as: 139 

 140 

Ji−j =
dNi−j

dt
+

Ni−j

dj − di

∙ GR + Ni−jCoagSi−j      (2) 141 

 142 

where CoagSi–j represents the mean of the coagulation sink (CoagS) in the size range of di to dj.  143 

The dimensionless criterion (LΓ), which can be used to predict the occurrence of NPF events (McMurry et al., 2005; 144 

Cai et al., 2017), was calculated as: 145 

 146 

LΓ =
c̅1AFuchs

4β11N1Γ
      (3) 147 

 148 

where c̅1 is the mean thermal velocity of vapor (H2SO4), AFuchs is the Fuchs surface area (a coagulation scavenging parameter), 149 

β11 is the free molecule collision frequency function for monomer collisions, N1 is the H2SO4 molecular concentration during 150 

the nucleation event, and Γ is the growth enhancement factor obtained by dividing the measured GR by the growth determined 151 

based on the condensation of only H2SO4. The H2SO4 molecular concentration was predicted from the measured daily SO2, 152 

hourly CS, hourly solar radiation, and hourly meteorological data (RH and temperature) using the method proposed by 153 

Mikkonen et al. (2011). The empirical proxy model of H2SO4 is given by: 154 

 155 

[H2SO4] = 𝑎 ∙ 𝑘 ∙ [SO2]𝑏 ∙ SRAD𝑐 ∙ (CS ∙ RH)𝑑         (4) 156 

 157 

where [SO2] is the SO2 molecular concentration (molecules cm–3), SRAD is the solar radiation (W m–2), CS is the condensation 158 

sink (s–1), RH is the relative humidity (%), and k is the reaction rate constant depending on ambient temperature (see detailed 159 

definition for k in Eq. (3) of Mikkonen et al., 2011) with coefficients of a = 8.21×10–3, b = 0.62, c = 1, and d = –0.13. The 160 
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H2SO4 concentration at Zeppelin was 5.98×104–3.19×106 molecules cm–3 during the summer in 2008 (Giamarelou et al., 2016) 161 

which is in a similar range to ours (2.69×104–7.68×106 molecules cm–3).  162 

3 Results and discussion 163 

The data coverage for the size distribution data collected by nano-SMPS was about 89 % during the 27 months 164 

sampling period (Oct 2016 to Dec 2018). The monthly variations of the number concentrations of the 3–25 nm nanoparticles 165 

(N3–25) and 25–60 nm nanoparticles (N25–60) (averaged from hourly data) are shown in Figure 2. We compared our nano-SMPS 166 

data with DMPS data at the same station as shown in Figure S1 in the Supplement, suggesting that they were in a good 167 

agreement. Both N3–25 and N25–60 were highest in summer and lowest in winter, indicating that NPF occurred frequently in 168 

summer. The higher SRAD and lower CS (calculated from the 3–810 nm size distribution data) in summer also favored 169 

nanoparticle production. The highest monthly SRAD (199 W m–2) was observed in June. Due to the higher latitude of the site, 170 

the SRAD was lower than values reported at other continental sites (449 W m–2 during NPF in Lanzhou, China (Gao et al, 171 

2011); 442–445 W m–2 during NPF in Pallas, Finland (Asmi et al., 2011); and 700 W m–2 during NPF in Atlanta, USA (Woo 172 

et al., 2001)). The wind speed in summer was lower than in other seasons, as expected from local climatology (Maturilli et al., 173 

2013). In addition, marine biogenic sources, which provide gaseous precursors (e.g., DMS, H2SO4, and NH3) for nanoparticle 174 

formation, were known as abundant in summer. It was observed that the percentage of air mass passing over high chlorophyll-175 

α (MODIS data) region, and H2SO4 and NH3 concentrations measured at the site increased in summer (Figure S2 and Table 176 

S1 in the Supplement). For example, chlorophyll-α concentration (a proxy for marine phytoplankton biomass) in the Arctic 177 

Ocean surrounding the observation site during the measurement period began to increase in April and reached a maximum in 178 

May to June (Figure S2 in the Supplement). During the Arctic haze period, the amount of accumulation-mode particles (>100 179 

nm) increased considerably. A significant CS increase occurred in Mar (Figure 2). The high amount of accumulation-mode 180 

particles in spring and the high amount of nucleation-mode particles in summer are consistent with previous findings (Tunved 181 

et al., 2013; Dall’Osto et al., 2017; Heinzenberg et al., 2017).  182 

 The size distributions of the 3–60 nm particles during the measurement period (hourly data) were classified into 183 

several major groups using the k-means clustering method. Four distinct clusters were found (Figure 3 (a)), with mode 184 

diameters of around 10 nm (cluster 1), 20 nm (cluster 2), 30 nm (cluster 3), and 50 nm (cluster 4). Cluster 1 included newly 185 

formed particles with high population. Cluster 4 had the lowest ultrafine particles concentration, representing the background 186 

condition. The frequencies of each cluster by month are shown in Figure 3 (b). The annual average percentages of each cluster 187 

were 7 % (cluster 1), 15 % (cluster 2), 23 % (cluster 3), and 55 % (cluster 4). The frequencies of clusters 1 and 2 increased 188 

significantly and the cluster 2 was often appeared after the cluster 1 in the late spring and summer months (May, June, July, 189 

and August), suggesting that strong particle growth (i.e., increases in mode diameter) after NPF occurred during those months.  190 

We identified two distinct types of NPF (Figure 4). In type 1, N3–25 increased significantly with subsequent particle 191 

growth (the freshly formed particles experienced gradual growth), a typical banana-shaped nucleation event, which is regularly 192 
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observed at many locations worldwide. In type 2, N3–25 increased significantly without clear subsequent particle growth (almost 193 

no increase of the mode diameter with time, or not clear for growth); this type of event lasted more than 2 h. Therefore, the 194 

GR could be calculated only for type 1. The cases not matching either of these, they were classified as “undefined” NPF which 195 

N3–25 increased for a short period of time (less than 2 h). This NPF classification approach was similar to methods employed 196 

previously (Dal Maso et al., 2005; Kulmala et al., 2012; Nguyen et al., 2016). The mean occurrence percentage of NPF days 197 

(all types) per year from during the measurement period was 23 %. Dall’Osto et al. (2017) found that the average of yearly 198 

NPF occurrence from 2000 to 2010 was 18 %, lower than our value, and that this increased over time as the coverage of sea-199 

ice melt increased. Based on Heintzenberg et al. (2017) study, the mean occurrence percentage of NPF days per year from 200 

2006 to 2015 was estimated to be around 20 %. In addition, DMS originating from marine sources can be a key precursor 201 

contributing to NPF in the remote marine atmosphere (Leaitch et al., 2013; Park et al., 2017; Jang et al., 2019). In the Arctic 202 

region, the DMS concentration increased by 33 % per decade from 1998 to 2016 (Galí et al., 2019), potentially leading to the 203 

increase in the annual NPF occurrence in this area.  204 

It was shown that the concentration of fine particles could be affected by local combustion sources such as local port 205 

and cruise ships (Eckhardt et al., 2013). The effects of anthropogenic sources (e.g., downtown, local port, and cruise ship) on 206 

the NPF were examined by using local wind and air mass trajectory data to find whether air mass or wind passed over the Ny-207 

Å lesund downtown and local port during NPF events. Also, the concentration of black carbon (BC) at Zeppelin, typically 208 

emitted from primary combustion sources, was used to examine the effect of primary combustion sources on the NPF. We 209 

found that the air mass and wind passed over the downtown including the local port during only two NPF events out of whole 210 

NPF events (170 events). During these two NPF events, the BC concentration little increased. Thus, we believe the effect of 211 

anthropogenic sources on the NPF should be small. Also, in our NPF data analysis we filtered out two NPF events having 212 

increased BC concentration and wind direction coming from the Ny-Å lesund downtown or port. 213 

The highest percentage of NPF occurrence for all types was observed in August (63 %) and June (61 %), followed 214 

by May (47 %) and July (42 %) as shown in Figure 5. NPF was observed only occasionally in winter during the Arctic night 215 

from November to February, consistent with previous observations (Ström et al., 2009; Heintzenberg et al., 2017). Although 216 

NPF occurrence could be expected to be lowest in April due to highest CS (Figure 2), that was not the case. Our results showed 217 

that NPF occurrence increased significantly in April, was maintained at a high level from May to August, then decreased in 218 

September and October. The average values of CS during NPF event and non-event days were 0.57×10–3 s–1 and 0.69×10–3 s–219 

1, respectively. The higher biological and photochemical activity, lower transport of pollutants from mid-latitudes, and 220 

increased wet scavenging of particles (low CS) in summer likely favored NPF (Ström et al., 2009). In addition, the melting of 221 

sea ice in summer can increase the availability of marine biogenic sources, promoting NPF (Quinn et al., 2008; Tovar-Sánchez 222 

et al., 2010; Dall’Osto et al., 2018). Overall, NPF occurrence is mainly affected by the availability of solar radiation 223 

(photochemistry) and gaseous precursors in addition to the survival probability of clusters or particles (Kulmala et al., 2017). 224 

In addition, it was suggested that fragmentation of primary marine polymer gels, which are derived from phytoplankton along 225 
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the marginal ice zone, could be a source for atmospheric nanoparticles (NPF events below 10 nm) in the high Arctic boundary 226 

layer (Heintzenberg et al., 2017; Karl et al., 2019; Mashayekhy Rad et al., 2019). 227 

A so-called “weak NPF” event, in which initial formation and growth were completed to < 10 nm without further 228 

growth, was observed. The weak NPF events documented here could not be detected in previous studies where the minimum 229 

detectable size was ~10 nm. The fraction of weak NPF occurrences (out of all NPF occurrences each month) was highest in 230 

April (58 %) and October (50 %), compared to values in May (20 %), June (14 %), July (8 %), August (15 %), and September 231 

(25 %). In April, this was likely caused by the combination of strong solar radiation (i.e., strong photochemistry for production 232 

of condensing vapors responsible for particle growth) and high CS; in contrast, October’s combination of the low solar 233 

radiation (i.e., weak photochemistry) and low CS led to a similar result.  234 

NPF lasted for several hours with similar start times (Figure 5). NPF duration was around 6–7 h on average and was 235 

longest in summer. Typically, NPF started between 13:00 and 14:00 (local time), suggesting that photochemical activity with 236 

strong solar radiation played an important role in NPF initiation. The variations in start time from month to month (Mar to 237 

Nov) were smaller than the monthly variations in NPF occurrence or duration. The nighttime NPF also occurred in late fall to 238 

winter (20 % out of total NPF events). The exact mechanism for this NPF was unclear. Nanoparticles formed at earlier times 239 

(daytime) in other places may be transported to the site during nighttime (Vehkamaki et al., 2004; Park et al., 2020). 240 

Figure 6 shows the MODIS monthly chlorophyll-α concentrations around Svalbard, which increased from April and 241 

decreased after August. The chlorophyll-α concentration was intense in the ocean regions southwest and southeast of Svalbard. 242 

A recent study revealed that the DMS production capacity of the Greenland Sea (to the southwest) was 3 times greater than 243 

that of the Barents Sea (to the southeast) (Park et al., 2018); this is further discussed in the context of air mass trajectory data 244 

in a later section. Full monthly values of average chlorophyll-α concentration over the area (70–85º N, 25º W–50º E) and “air 245 

mass exposure to chlorophyll-α” (Echl) which explains the DMS mixing ratio of the air mass arriving at Zeppelin (Park et al., 246 

2018) are summarized in Figure S2 in the Supplement. The Echl provides the measure of potential DMS production capacity 247 

of the ocean air mass passed over (Park et al., 2018). It was found that “air mass exposure to chlorophyll-α” (Echl) was correlated 248 

well (r = 0.69 and p-value < 0.05; not shown) with the NPF occurrence frequency, compared to the average chlorophyll-α 249 

concentration over the area (70–85º N, 25º W–50º E). 250 

To determine the characteristics of particle growth, we calculated the GR in the 3–7 nm, 7–25 nm, and 3–25 nm size 251 

ranges (i.e., GR3–7, GR7–25, and GR3–25) for NPF events (Figure 7). The average GR3–25 for all months was 2.66 nm h–1, 252 

comparable to previously reported GR data (0.2–4.1 nm h–1) in the Arctic region (Kerminen et al., 2018). The highest monthly 253 

average GR3–25 was observed in July (3.03 nm h–1) and the maximum individual value (6.54 nm h–1) occurred in June. The 254 

averages of GR3–7 and GR7–25 were 2.07 nm h–1 and 2.85 nm h–1, respectively. However, the GR was much lower than the 255 

values observed in typical urban areas (Table 1), suggesting a lower availability of condensing vapors contributing to particle 256 

growth in the Arctic atmosphere. The formation rates of particles in the same size range as calculated GR were also derived. 257 

The averages of J3–7, J7–25, and J3–25 during NPF events were 0.04 cm–3 s–1, 0.09 cm–3 s–1 and 0.12 cm–3 s–1, respectively. The 258 

highest monthly average and maximum for J3–7 were both found in June, but for J7–25 and J3–25 were found in July. The formation 259 
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rates (relative standard deviation (RSD) = 39–44 %) varied by month more significantly than for GR (RSD = 27–33 %). The 260 

formation rates in this study were much lower than those reported in continental areas (Stanier et al., 2004; Hamed et al., 2007; 261 

Wu et al., 2007; Manninen et al., 2010; Xiao et al., 2015; Shen et al., 2016; Cai et al., 2017). A good linear relationship was 262 

found between J3–7 and N3–7 (r = 0.97 and p-value < 0.001) as shown in Figure S3 in the Supplement, indicating that 3–7 nm 263 

particles were produced by gas-to-particle conversion rather than direct emissions in the particle phase (i.e., not primary) 264 

(Kalivitis et al., 2019). No significant correlation was found between J3–7 and GR3–7, suggesting that the vapors participating 265 

in the early stage of NPF could be at least partly different from the vapors contributing to subsequent particle growth (Nieminen 266 

et al., 2014). However, detailed chemical data for nanoparticles during formation and growth should be obtained to achieve 267 

complete understanding of the participating chemical species. Our data indicate that, although NPF occurrence frequency in 268 

the Arctic was comparable to continental areas, the J and GR were much lower. Time series of daily GR and J in different 269 

modes (GR3–7 and J3–7, and GR7–25 and J7–25), weekly N3–7 and N7–25, and weekly NH3 and H2SO4 are shown in Figure S4 in 270 

the Supplement. 271 

The existence of significant amounts of nanoparticles as small as 3 nm during NPF events at the study site suggests 272 

that NPF occurred there, rather than the particles being transported from other regions after growth. In other words, if NPF 273 

occurred at other locations far from the study site, the nanoparticles would have grown during transport to the site and few 3 274 

nm particles would have been detected there. The lifetime of the 3 nm particles in this study (growth to particles larger than 7 275 

nm) was estimated to be 2–3 h on average. It was reported that nanoparticles (< 5 nm) in the troposphere could survive for 276 

several hours or less (Anastasio and Martin, 2001). 277 

Five air mass clusters were found (Figure 8 (a)), representing the contributions of different air masses in different 278 

seasons: clusters 1, 2, 3, 4, and 5 represented southwest (slow), south (slow), southeast (fast), northwest (fast), and northeast 279 

(fast) air masses, respectively. The air mass speed (travel distance/time) was used to determine whether the air mass was slower 280 

or faster compared to the average air mass speed during the measurement period. Cluster 1 dominated in summer, when NPF 281 

occurrence was highest; it had the lowest air mass speed, the lowest fraction of land influence (15 %), and the highest fraction 282 

of time spent over the sea (50 %) compared to other air mass clusters. Time spent over sea-ice was 35 %. The CS values were 283 

0.54×10–3 s–1, 0.74×10–3 s–1, 0.77×10–3 s–1, 0.64×10–3 s–1, and 0.80×10–3 s–1 for cluster 1, cluster 2, cluster 3, cluster 4, and 284 

cluster 5, respectively., suggesting that cluster 1 had the lowest CS. Our data suggest that a slowly moving air mass, which 285 

spent most of the time over the ocean and sea-ice is the most favourable for NPF.  286 

We further explored the potential source regions of the air masses in relation to NPF using air mass backward 287 

trajectory data and the 75th percentile of N3–25 (Figure 8 (b)). Increases in the amount of nanoparticles (i.e., NPF events) 288 

occurred more frequently when the air mass passed over the oceanic regions to southwest and south of Svalbard (overall, 49 % 289 

of the air mass during NPF was southwest, i.e., cluster 1). As shown earlier (Figure 6), the chlorophyll-α concentration was 290 

strong in the southwest and southeast ocean regions, and the DMS production capacity of the southwest ocean was 3 times 291 

greater than that of the southeast ocean. The DMS production capacity was defined as the potential amount of DMS produced 292 

from the phytoplankton biomass (Park et al., 2018). Several previous studies also support the strong DMS production capacity 293 



10 

 

in the southwest ocean (Degerlund and Eilertsen, 2010; Galí and Simó, 2010). These results suggest that marine biogenic 294 

sources from the southwest ocean (Greenland Sea) region play an important role in NPF in the Arctic.  295 

The DMS in the ocean is produced by complicate microbial food-web processes (Stefels et al., 2007). In general, 296 

sea surface DMS maximum occurs following local phytoplankton biomass maxima, thereby leading to lag periods on the order 297 

of several weeks to months (so called DMS summer paradox) (Galí and Simó, 2015). This phenomenon could be explained 298 

by several key processes: a succession in phytoplankton composition, grazing by zooplankton on DMSP-containing 299 

phytoplankton and the bacterial degradation of DMSP into DMS (Polimene et al., 2012). However, a clear temporal correlation 300 

between atmospheric (and/or seawater) DMS level and phytoplankton biomass (i.e., chlorophyll-α concentration) has been 301 

observed for the ocean domains where the strong DMS-producer (both containing high intra cellular DMSP content and DMSP 302 

cleavage enzyme) such as haptophytes and dinoflagellates are predominating (e.g., Arnold et al., 2010; Park et al., 2013; Park 303 

et al., 2018; Uhlig et al. 2019; Zhang et al., 2020). Only limited number of phytoplankton class including dinoflagellates and 304 

haptophytes possess enzyme that can convert DMSP into DMS during their growth (Alcolombri et al., 2015). In particular, 305 

Emiliania huxleyi and Phaeocystis sp. which are highly abundant haptophyte in high latitude oceans play key roles in 306 

controlling global DMS emission because the DMS production capacity of these species is much higher than other globally 307 

abundant phytoplankton species (Liss et al., 1994; McParland and Levine, 2019). For example, multi-year measurements of 308 

atmospheric DMS mixing ratios at Zeppelin station showed a strong correlation between sea-surface chlorophyll-α 309 

concentration (estimated by MODIS-aqua) and atmospheric DMS levels (Park et al., 2013; Park et al., 2018). Furthermore, 310 

relationships between the atmospheric DMS and phytoplankton biomass were regionally and temporally varied with the 311 

relative abundance of strong DMS(P)-producer (Park et al., 2018). This is because the oceanic DMS production in vicinity of 312 

the observation site (i.e., Greenland and Barents Seas) largely governed by direct DMS exudation of phytoplankton that has 313 

both high cellular DMSP content and DMSP-cleavage enzyme during phytoplankton bloom period. Recent study conducted 314 

at remote Antarctic site also revealed that the number concentration of nano-size particles (3–10 nm in diameter) was positively 315 

correlated with the chlorophyll-α concentration during the period when strong DMS-producer predominate (dominance of 316 

Phaeocystis > 50 %; estimated by PHYSAT algorithm) (Jang et al., 2019).  317 

We then examined the chemical characteristics of particulate matter (PM) and daily concentration of gaseous NH3. 318 

The seasonal characteristics of ionic species (Na+, Mg2+, K+, NH4
+, NO3

–, SO4
2–, and Cl–) in PM during the measurement period 319 

(Table S1 in the Supplement) revealed that the contributions of primary sea salt particles (Na+, Mg2+, and Cl–) increased in 320 

winter with high wind speeds, while the contributions of NH4
+, NO3

–, and SO4
2– (secondary species) increased in spring and 321 

summer. The slope of the cation equivalents (Na+, Mg2+, K+, and NH4
+) versus the anion equivalents (NO3

–, SO4
2–, and Cl–) (= 322 

0.98; not shown) suggested that the measured cations were mostly neutralized by the anions (Zhang et al., 2015). These ionic 323 

species can exist in large particles, and do not necessarily represent the chemical composition of the nanoparticles, but they 324 

can provide information about the overall chemical properties of the particles in different seasons. The non-sea salt sulfate 325 

(nss-SO4
2–) could have had a secondary origin from the DMS from the sea (Park et al., 2017; Kecorius et al., 2019). The SO4

2– 326 

could also come from sea salt particles (primary production of SO4
2–) (Karl et al., 2019). Thus, the concentration of nss-SO4

2– 327 
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was derived from nss-SO4
2– (µg m–3) = total SO4

2– (µg m–3) – 0.252×Na+ (µg m–3) by using the measured SO4
2– and Na+ 328 

concentrations (Zhan et al., 2017). The nss-SO4
2– ratio (nss-SO4

2–/total SO4
2–) was significantly higher on NPF event days than 329 

on non-event days (p-value < 0.01; Figure 9).  The NH3 concentration was higher on NPF event days than on non-event days 330 

as shown in Figure 9 (p-value < 0.001), similar to results shown in Dall’Osto et al. (2017), although daily NH3 concentration 331 

was not significantly correlated with the N3–25 as shown in Figure S5 in the Supplement. The NH3 in the Arctic can originate 332 

from biological and animal sources (e.g., seabird colonies) (Tovar-Sánchez et al., 2010; Croft et al., 2016; Dall’Osto et al., 333 

2017). The SO2 was not significantly higher on NPF event days than on non-event days (Figure 9), and not significantly 334 

correlated with the N3–25 (Figure S5 in the Supplement). On the other hand, the H2SO4 was found to be higher on the NPF 335 

event days (Figure 9) and was correlated with the N3–25 (Figure S5 in the Supplement), suggesting that the H2SO4 should play 336 

an important role in nucleation and growth. Our data were limited to fully explain the nucleation mechanism. Further studies 337 

should be required to elucidate the nucleation mechanism by directly measuring chemical composition of nanoparticles and 338 

various precursor vapors. 339 

The NPF event probability distribution with daily CS and temperature was included in Figure S6 in the Supplement. 340 

The NPF event probability was calculated by the ratio of the NPF event days per total days for the given CS and temperature. 341 

The NPF event probability increased at moderate temperatures when the CS was low, while when the CS was high, the 342 

probability increased at relatively high temperature as shown in Figure S6 in the Supplement. 343 

We calculated the NPF criterion (LΓ) values for NPF event and non-event days (Figure 10). The seven non-event 344 

days when GR could be obtained from pre-existing aerosols were selected for the calculation of the LΓ (Kuang et al., 2010). 345 

The NPF duration time was determined using the proposed method (Kulmala et al., 2012), with the time range of non-event 346 

days set as daytime (06:00–18:00). When NPF occurred, the LΓ ranged from 0.003–0.27 with a mean and median of 0.044 and 347 

0.041, respectively; all values were less than 1. The LΓ values of non-event days ranged from 0.34–2.59 with a mean and a 348 

median of 1.49 and 1.61, respectively; five days were larger than 1. These observations were consistent with previous studies 349 

of NPF events in clean or moderately polluted areas (Tecamac, Atlanta, Boulder, and Hyytiälä), ranging from 0.0075–0.66 350 

(Kuang et al., 2010), and in a highly polluted area (Beijing), ranging from 0.22–1.75 (Cai et al., 2017). Our data suggest that 351 

LΓ can also be useful for determining the occurrence of NPF in the Arctic, but not at 100 % certainty. Uncertainties in H2SO4 352 

concentration inferred from daily SO2 data (as discussed in the experimental section) and other parameters such as the 353 

measured GR and averaging time for LΓ (i.e., NPF duration time) could contribute to unclear separation of NPF event and non-354 

event days (Figure 10).  355 

4 Conclusions 356 

We examined the characteristics of Arctic NPF at the Mount Zeppelin site by conducting continuous measurements 357 

of nanoparticles down to 3 nm size from Oct 2016 to Dec 2018. The size distributions of 3–60 nm particles were classified 358 

into distinct clusters with strong seasonal variability and mode diameters of 10 nm (cluster 1), 20 nm (cluster 2), 30 nm (cluster 359 
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3), and 50 nm (cluster 4). A significant number of nanoparticles as small as 3 nm often appeared during NPF, particularly in 360 

summer, suggesting that there is a good chance that these were produced near the site rather than being transported from other 361 

regions after growth. The average NPF occurrence frequency per year was 23 %. J3–7 averaged 0.04 cm–3 s–1, ranging from 362 

0.001–0.54 cm–3 s–1, and GR3–7 averaged 2.07 nm h–1, ranging from 0.29–5.17 nm h–1. These data suggest that the NPF 363 

occurrence frequency in the Arctic is comparable to those in continental areas although the J and GR were lower in the Arctic. 364 

We next identified five major air mass clusters using backward trajectory analysis; PSCF results indicated that air masses from 365 

the south and southwest ocean regions were related to the elevated concentrations of nanoparticles at the site. This region was 366 

consistent with elevated chlorophyll-α and DMS production capacity, suggesting that marine biogenic sources should play an 367 

important role in Arctic NPF. The concentrations of NH3 and H2SO4 were higher on NPF event days than on non-event days. 368 

Previously developed NPF criteria (a low ratio of loss rate to growth rate of clusters favors NPF) were applicable to Arctic 369 

NPF occurrence. 370 
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 662 

Figure 1. Measurement site (Zeppelin Observatory) in the Svalbard Archipelago, Ny-Å lesund, Norway. 663 

  664 
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 665 

Figure 2. Monthly variations of N3–25, N25–60, CS, and wind speed (upper panel), temperature, RH, and SRAD (lower panel) 666 

during the measurement period.  667 

  668 
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 669 

(a) 670 

 671 

(b) 672 

Figure 3. Major particle clusters by (a) size distribution and (b) monthly frequency of clusters during the measurement period.  673 

  674 
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 675 

Figure 4. Examples of distinct NPF types identified in this study. In type 1 (left), N3–25 increases significantly with continuous 676 

particle growth, while in type 2 (right) it increases significantly without significant particle growth. The x-axis is the local time 677 

(hour). 678 
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 680 

 681 

 682 

Figure 5. Monthly variations of NPF occurrence, start time (local time), and duration; the error bar represents standard 683 

deviation. 684 
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 686 

Figure 6. MODIS-derived monthly chlorophyll-α concentration during the measurement period at 4 km resolution. 687 

 688 

 689 
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 691 

 692 

Figure 7. Monthly variations of GR3–7, GR7–25, GR3–25, J3–7, J7–25, and J3–25 for NPF in the Arctic. Boxes and whiskers represent 693 

the 25th–75th percentiles and minimum–maximum, respectively; squares indicate means and horizontal lines within boxes 694 

indicate medians. 695 
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   697 

(a) 698 

  699 

(b) 700 

Figure 8. (a) Five major clusters for air mass back trajectories during the measurement period and the fraction of each cluster 701 

by seasons. (b) PSCF back-trajectory analysis for air mass origins affecting NPF at the 75th percentile of N3–25. 702 
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 704 

Figure 9. Comparison of average nss-SO4
2– ratio (nss-SO4

2–/total SO4
2–), NH3, SO2, and H2SO4 concentrations between NPF 705 

events and non-event days: error bar and stars represent the standard deviation and p-values of a t-test (ns: > 0.05, *: ≤ 0.05, 706 

**: ≤ 0.01, ***: ≤ 0.001), respectively. 707 
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 709 

Figure 10. Distribution of NPF criterion (LΓ) values for NPF event days (white) and non-event days (grey) in the Arctic. 710 

  711 



32 

 

Table 1. Summary of NPF frequency, J, and GR at various sampling sites, including the present study.  

Site name and 

characteristics 
Period 

NPF 

frequency 
GR (nm h–1) J (cm–3 s–1) Reference 

Zeppelin, 

Norway 
Arctic 

Oct 2016 

to Dec 

2018 

23 % 

GR3–7 

GR7–25 

GR3–25 

0.29–5.17 

0.45–6.94 

0.48–6.54 

J3–7 

J7–25 

J3–25 

0.001–0.54 

0.003–0.50 

0.007–0.61 

This study 

Finokalia, 

Greece 

Marine 

backgrou

nd 

Jun 2008 

to Jun 

2018 

27 % GR9–25 5.4 ± 3.9 J9–25 0.9 ± 1.2 
Kalivitis et al. 

(2019) 

Beijing, China Urban 

Mar 2004 

to Feb 

2005 

40 % GR3–25 0.1–11.2 J3–25 3.3–81.4 
Wu et al. 

(2007) 

Pittsburgh, 

USA 
Urban 

Jul 2001 to 

Jun 2002 
30 % N/A N/A N/A N/A 

Stanier et al. 

(2004) 

San Pietro 

Capofiume, 

Italy 

Sub-

urban 

Mar 2002 

to Mar 

2005 

36 % GR3–20 2.9–22.9 J3–20 0.2–36.9 
Hamed et al. 

(2007) 

12 European 

sites 

(EUCAARI 

project)a 

Rural 

and 

backgrou

nd 

2008 to 

2009 
21–57 % GR7–20 3.6–6.8 J2–3 0.7–32.4 

Manninen et 

al. (2010) 

Hyytiälä, 

Finland 
Rural 

1996 to 

2003 
> 24 % GR3–25 0.9–5.3 J3–25 0.2–1.1 

Dal Maso et 

al. (2005) 

ShangDianzi 

station, China  
Rural 

Mar 2008 

to Dec 

2013 

36 % GR3–25 0.7–13.4 J3–25 0.5–39.3 
Shen et al. 

(2016) 

Pyramid, 

Nepal 

Himalay

as 

Mar 2006 

to Aug 

2007 

> 35 % GR10–20 1.8 ± 0.7 J10–20 0.05–0.2 
Venzac et al. 

(2008) 

Dome C 
Antarctic

a 

Dec 2007 

to Nov 

2009 

5–54 % GR10–25 0.5–4.6 J10–25 0.022–0.11 
Järvinen et al. 

(2013) 
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Neumayer 
Antarctic

a 

Jan 2012 

to Mar 

2012 

Feb 2014 

to Apr 

2014 

N/A GR3–25 0.4–1.9 J3–25 0.02–0.1 
Weller et al. 

(2015) 

King Sejong 
Antarctic

a 

Mar 2009 

to Dec 

2016 

6 % GR10–25 0.02–3.09 J2.5–10 0.16–9.88 
Kim et al. 

(2019) 

Nord, 

Greenland 
Arctic 

Jul 2010 to 

Feb 2013 
17–38 % N/A N/A N/A N/A 

Nguyen et al. 

(2016) 

aPallas and Hyytiälä (Finland), Vavihill (Sweden), Mace Head (Ireland), Cavauw (Netherlands), Melpitz and 

Hohenpeissenberg (Germany), K-Puszta (Hungary), Jungfraujoch (Switzerland), Puy de Dome (France), San Pietro 

Capofiume (Italy), and Finokalia (Greece). 715 

 

 


