Supplement for manuscript

Measurement report: Characterization of severe spring haze episodes and influences of long-range transport in the Seoul metropolitan area in March 2019

Hwajin Kim ${ }^{1,2}$, Qi Zhang ${ }^{3}$, Yele Sun ${ }^{4}$
${ }^{1}$ Center for Environment, Health and Welfare Research, Korea Institute of Science and Technology, Seoul, 02792, Korea
${ }^{2}$ Department of Energy and Environmental Engineering, University of Science and Technology, Daejeon, 34113, Korea
${ }^{3}$ Department of Environmental Toxicology, University of California, Davis, CA 95616, USA
${ }^{4}$ State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China *Correspondence to: Hwajin Kim (hjkim@kist.re.kr)_

Table S1. Average (± 1 standard deviation), minimum and maximum concentrations of the particulate matter $\left(\mathrm{PM}_{1}\right)$ species and the total PM_{1} mass over the whole campaign, and the average contribution of each of the PM_{1} species to the total PM_{1} mass.

	Average conc. one standard deviation $\left(\mu \mathrm{g} \mathrm{m}^{-3}\right)$Minimum conc. $\left(\mu \mathrm{g} \mathrm{m}^{-3}\right)$	Maximum conc. $\left(\mu \mathrm{g} \mathrm{m}^{-3}\right)$	Fraction of total $\mathrm{PM}_{1}(\%)$	Detection limit $(3 \mathrm{~min} / 6 \mathrm{~min})$ $\left(\mu \mathrm{g} \mathrm{m} \mathrm{m}^{-3}\right)$	
Organics	13.3 ± 7.51	1.29	45.0	38	$0.03 / 0.02$
Nitrate	10.6 ± 9.68	0.21	52.0	30	$0.01 / 0.01$
Sulfate	4.20 ± 3.49	0.60	20.0	12	$0.01 / 0.01$
Ammonium	4.70 ± 3.99	0.28	21.2	13	$0.02 / 0.01$
Chloride	0.60 ± 0.54	0	4.03	2	$0.00 / 0.00$
Black carbon	1.60 ± 0.93	0.05	5.55	5	$0.1 / 0.05$
Total PM	35.1 ± 23.8	3.85	129	-	$0.05 / 0.03$

Species	Ratio	Aiken-Ambient	CanagaratnaAmbient
OA	O/C	0.41	0.52
	H/C	1.45	1.61
	OM/OC	1.70	1.86
HOA	O/C	0.08	0.10
	H/C	1.97	1.88
	OM/OC	1.29	1.33
COA	O/C	0.10	0.12
	H/C	1.74	1.88
	OM/OC	1.29	1.33
SFOA	O/C	0.41	0.53
	H/C	1.41	1.55
	OM/OC	1.71	1.87
LO-OOA1	O/C	0.47	0.59
	H/C	1.45	1.61
	OM/OC	1.76	1.93
LO-OOA2	O/C	0.50	0.65
	H/C	1.45	1.62
	OM/OC	1.81	2.02
MO-OOA1	O/C	0.99	0.99
	H/C	1.56	1.56
	OM/OC	2.46	2.46
MO-OOA2	O/C	0.93	1.11
	H/C	1.20	1.32
	OM/OC	2.44	2.69

Table S2. Comparison of the average O/C, H/C, and OM/OC ratios of total OA and the four OA factors identified from PMF analysis calculated using the Aiken-Ambient method (Aiken et al., 2008) and the improved Canagaratna-Ambient method (Canagaratna et al., 2015).

		Open signal				Closed signal			
		V-mode		W -mode		V-mode		W-mode	
	Natual Isotope Ratio	m	R	m	R	m	R	m	R
${ }^{206} \mathrm{~Pb}^{+} / 208 \mathrm{~Pb}^{+}$	0.46	0.48	0.92	0.41	0.63	0.44	0.84	0.32	0.36
${ }^{207} \mathrm{~Pb}^{+} / 208 \mathrm{~Pb}^{+}$	0.422	0.45	0.77	0.37	0.5	0.36	0.42	0.22	0.18
${ }^{206} \mathrm{~Pb}^{++} / 208 \mathrm{~Pb}^{+}$	0.46	0.29	0.06	0.35	0.08	.	.	0.04	0
${ }^{207} \mathrm{~Pb}^{++/ 208} \mathrm{~Pb}^{++}$	0.422	0.4	0.33	0.01	0.03	0.05	0.39	0.01	0.02

Table S3. Expected(deLaeter et al., 2003) and calculated lead isotopic ratios from linear fits (Figs. Sx and x); slope (m) and Pearsons R are shown.

Figure S1. (a) Time series of total particulate matter $\left(\mathrm{PM}_{1}\right)$, scanning mobility particle sizer (SMPS) volume concentrations and PM2.5 mass concentration measured at Gireum site ; (b) Time series of the organic aerosol density estimated using the method reported in Kuwata et al. (2012)
$\rho_{\text {org }}=[12+1 \cdot(\mathrm{H} / \mathrm{C})+16 \cdot(\mathrm{O} / \mathrm{C})] /[7+5 \cdot(\mathrm{H} / \mathrm{C})+4.15 \cdot(\mathrm{O} / \mathrm{C})]$
and bulk aerosol density estimated from the measured chemical composition, known inorganic species density and the organic density estimated above (Zhang et al., 2005). (c) Scatter plot of the total PM_{1} mass (NR- PM_{1} plus BC) versus SMPS volume, where the $\mathrm{NR}-\mathrm{PM}_{1}$ mass concentrations have been determined using the composition-dependent collection efficiencies; (d)
histogram of organic aerosol density (average $=1.27 \mathrm{~g} \mathrm{~cm}^{-3}$) and bulk aerosol density (average $=$ $1.47 \mathrm{~g} \mathrm{~cm}^{-3}$).

Figure S3. 2.5 minute averaged open V mode mass spectra at m/z 206, 207, 208 during Haze period at KIST site. Black lines and circles correspond to the HRAMS raw signal. Yellow (open), black(closed) and red(diff) are modified Gaussian functions that represent the signal of individuals ions whose exact mass is indicated by the vertical black lines. The height of the vertical lines corresponds to the peak height of the modified Gaussian functions. Purple lines are the sum of the individual ion peaks and represent the fitted total signal at the given nominal m / z.

Figure S3. 2.5 minute averaged open V mode mass spectra at m/z 103, 103.5 and 104 during Haze period at KIST site. Black lines and circles correspond to the HRAMS raw signal. Yellow (open), black(closed) and red(diff) are modified Gaussian functions that represent the signal of individuals ions whose exact mass is indicated by the vertical black lines. The height of the vertical lines corresponds to the peak height of the modified Gaussian functions. Purple lines are the sum of the individual ion peaks and represent the fitted total signal at the given nominal m / z.

Figure S5. (a,b) Time series of total open (red), closed (black) signal of lead from Vmode and the ratio between open and close (terquid) total signal of lead from V mode; and (c) Scatter plot of total open and close signal of lead from Vmode data. Note that total open and close signals were calculated as the sum of the ${ }^{208} \mathrm{~Pb}^{+},{ }^{207} \mathrm{~Pb}^{+},{ }^{206} \mathrm{~Pb}^{+},{ }^{208} \mathrm{~Pb}^{++},{ }^{207} \mathrm{~Pb}^{++}$and ${ }^{206} \mathrm{~Pb}^{++}$.

172
(e)

('h)

Figure S6. Summary of the key diagnostic plots of the chosen 7-factor from PMF analysis of the organic aerosol fraction: (a) $Q / Q_{\exp }$ as a function of the number of factors (p) explored in PMF analysis, with the best solution denoted by the open orange circle. Plots b-i are for the chosen solution set, containing 7 factors: (b) $Q / Q_{\exp }$ as a function of fPeak; (c) mass fractional contribution to the total mass of each of the PMF factors, including the residual (in purple), as a function of fPeak; (d) Pearson's r correlation coefficient values for correlations among the time series and mass spectra of the PMF factors. Here, $1=$ MO-OOA1, $2=$ LO-OOA1, $3=$ LO-OOA 2 , $4=$ MO-OOA2, $5=$ SFOA, $6=$ HOA, $7=$ COA; (e) box and whiskers plot showing the distributions of scaled residuals for each m / z; (f) time series of the measured mass and the reconstructed mass from the sum of the 6 factors; (g) time series of the variations in the residual (= measured - reconstructed) of the fit; (h) the $Q / Q_{\text {exp }}$ for each point in time; (i) the $Q / Q_{\text {exp }}$ values for each fragment ion.

Figure S7. Overview of two other solution (6 factor and 8 factor solution) sets from PMF analysis: (a)(b) High resolution mass spectra and time series of the different OA factors from the 6-factor solution; (c)(d) High resolution mass spectra and time series of the different OA factors from the 8 -factor solution

Figure S8. Overview of the temporal variations of submicron aerosols at the Korea Institute of Science and Technology (KIST) in SMA from Feb. 22 to April 2 including three haze(red box) and two clean (yellow box) period: (a) Time series of ambient air temperature (T) and relative humidity (RH); (b) Time series of wind direction (WD), with colors showing different wind speeds (WS); (c) Time series of CO and SO_{2}; (d) Time series of O_{3}, and NO_{2}; (e) Time series of total particulate matter $\left(\mathrm{PM}_{1}\right)$, scanning mobility particle sizer (SMPS) volume concentrations and also shown are the 24 h averaged $\mathrm{PM}_{1}+\mathrm{BC}$ with bars. (f) Time series of the organic (Org.), nitrate $\left(\mathrm{NO}_{3}{ }^{-}\right)$, sulfate $\left(\mathrm{SO}_{4}{ }^{2-}\right)$, ammonium $\left(\mathrm{NH}_{4}^{+}\right)$and BC aerosols; (\mathbf{g}) Time series of the mass fractional contribution of organic aerosols (Org.), nitrate $\left(\mathrm{NO}_{3}{ }^{-}\right)$, sulfate $\left(\mathrm{SO}_{4}{ }^{2-}\right.$), ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$, chloride $\left(\mathrm{Cl}^{-}\right)$, and BC to total PM_{1} together with isoprene and toluene time series; (h) Time series of each factor derived from the positive matrix factorization (PMF) analysis

Figure S9. Scatterplot of the variations of NOR and NO3 as a function of RH (a)(b) during entire period; (c) (d) during haze period.

Figure S10. Scatterplot of the variations of SOR and SO4 as a function of RH (a)(b) during entire period; (c) (d) during haze period.

Figure S11. Averaged compositional pie chart of PM_{1} species (non-refractory- PM_{1} plus black carbon (BC)) in (a-c) three haze episodes and (d, e) two clean periods.

Figure S12. Overview of the OA compositions in SMA during entire study (early spring of 2019)

Figure S13. Triangular plots of (a) f_{44} versus f_{43} (b) $f_{55,00 \mathrm{~A} \text { sub }}$ versus $f_{57,00 \mathrm{~A} \text { sub }}$ and (c) f_{44} versus f_{60} for the seven OA factors and all of the measured OA data (dots), colored by the time of the day. f_{43}, f_{44}, and f_{60} are the ratios of the organic signal at $m / z=43,44$, and 60 to the total organic signal in the component mass spectrum, respectively. $f_{55, \mathrm{OOA}}$ sub and $f_{55, \mathrm{OOA}}$ sub are the ratios of the organic signal at $\mathrm{m} / \mathrm{z} 55,57$ after subtracting the contributions from LO-OOA1, LO-OOA2, MO-OOA1 and MO-OOA2(e.g., $f_{55, \mathrm{OOA} \text { sub }}=m / z 55-m / z 55_{\text {LO-OOA1- }}-m / z 55_{\text {LO-OOA2- }} m / z 55_{\text {MO-OOAI- }}$ $m / z 55_{\text {MO-OOA } 2} ; f_{57, \mathrm{OOA} \text { sub }}=m / z 57-m / z 57_{\text {LO-OOAI }}-m / z 57_{\text {LO-OOA2- }} m / z 57_{\text {MO-OOAI- }} m / z 57_{\text {MO-OOA } 2}$). 2016 winter BBOA is also shown with triangle for the comparison (Kim et al., 2017)

Figure S14. (a) mass spectra of the COAs from this study (spring) and the one from KORUSAQ (Kim et al., 2018); (b) scatter plots of both COA mass spectra; (c) diurnal profile of the COAs from this study (spring) and the one from KORUS-AQ (Kim et al., 2018);and (d) scatter plots of both COA diurnal profile.

Figure S15. (a) Average mass fractional contributions of seven ion families to each of the OA factors and; (b) Average mass fractional contributions of seven OA factors to 8 each ion families

Figure S16. Mass fractional contribution of the seven factors from PMF analysis to various ions that are relevant to each significant tracer.

Figure S17. Conditional probability function of hourly averaged total $\mathrm{PM}_{1}+\mathrm{BC}, \mathrm{BC}$ and mixing ratios various gas phase species concentrations (top row), hourly averaged total PM_{1} species (middle row), and mass concentrations of the seven OA factors identified from PMF analysis (bottom row) as a function of WS and direction.

Figure S18. Correlations between MO-OOA2 and LO-OOA2 colored with date and time.

Figure S19. Forward trajectory from Beijing measurement site

Figure S20. Long range transportation of plums from China to Korea during Haze period. Plots are from MODIS, terra.

Figure 21. One-hour averaged diurnal profiles for nitrate and various parameters and proxies for formation pathways in entire, haze and clean period during 2019 spring; Temperature, relative humidity and KAN as the equilibrium constant for gas-to-particle partitioning for ammonium nitrate in (a-c) entire period (d-f) low loading period and (g-i) high loading period. Note that the one-hour averaged diurnal profiles of NO2, NO3, [NO2][O3] as a proxy for nighttime formation of HNO 3 and subsequently particulate nitrate, and [NO2] times solar radiation as a proxy for daytime HNO 3 formation are shown

Figure S22. One-hour averaged diurnal profiles for nitrate and various parameters and proxies for formation pathways in entire, haze and clean period during 2019 spring; Temperature, relative humidity and solar radiation as a proxy for daytime H 2 SO 4 formation in (a-c) entire period (d-f) low loading period and (g-i) high loading period.

Figure S23. Time series (a) and Scatterplot (b) that compares predicted $\mathrm{NH}_{4}{ }^{+}$versus measured $\mathrm{NH}_{4}{ }^{+}$concentrations. The predicted values were calculated assuming full neutralization of the anions (e.g., sulfate, nitrate, and chloride). The data points are colored by date.

References

Aiken, A. C., Decarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., Sueper, D., Sun, Y., Zhang, Q., Trimborn, A., Northway, M., Ziemann, P. J., Canagaratna, M. R., Onasch, T. B., Alfarra, M. R., Prevot, A. S. H., Dommen, J., Duplissy, J., Metzger, A., Baltensperger, U., and Jimenez, J. L.: O/C and OM/OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry, Environmental Science \& Technology, 42, 4478-4485, 10.1021/es703009q, 2008.
Canagaratna, M. R., Jimenez, J. L., Kroll, J. H., Chen, Q., Kessler, S. H., Massoli, P., Hildebrandt Ruiz, L., Fortner, E., Williams, L. R., Wilson, K. R., Surratt, J. D., Donahue, N. M., Jayne, J. T., and Worsnop, D. R.: Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications, Atmospheric Chemistry and Physics, 15, 253272, 10.5194/acp-15-253-2015, 2015.
Kim, H., Zhang, Q., Bae, G. N., Kim, J. Y., and Lee, S. B.: Sources and atmospheric processing of winter aerosols in Seoul, Korea: insights from real-time measurements using a high-resolution aerosol mass spectrometer, Atmos. Chem. Phys., 17, 2009-2033, 10.5194/acp-17-2009-2017, 2017.
Kuwata, M., Zorn, S. R., and Martin, S. T.: Using Elemental Ratios to Predict the Density of Organic Material Composed of Carbon, Hydrogen, and Oxygen, Environmental Science \& Technology, 46, 787-794, 10.1021/es202525q, 2012.
Middlebrook, A. M., Bahreini, R., Jimenez, J. L., and Canagaratna, M. R.: Evaluation of CompositionDependent Collection Efficiencies for the Aerodyne Aerosol Mass Spectrometer using Field Data, Aerosol Science and Technology, 46, 258-271, 10.1080/02786826.2011.620041, 2012.
Zhang, Q., Canagaratna, M. R., Jayne, J. T., Worsnop, D. R., and Jimenez, J. L.: Time- and size-resolved chemical composition of submicron particles in Pittsburgh: Implications for aerosol sources and processes, Journal of Geophysical Research-Atmospheres, 110, 10.1029/2004jd004649, 2005.

