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Abstract. Persistent winter–time heavy haze incidents caused by anthropogenic aerosols have repeatedly shrouded North 25 

China in recent years, while natural dust from west and northwest of China also frequently affects air quality in this region. 

Through continuous observation by a multi–wavelength Raman lidar, here we found that winter–time aerosols in North China 

are typically characterized by a pronounced vertical stratification, where scattering non–spherical particles (dust or mixtures 

of dust and anthropogenic aerosols) dominated above the planetary boundary layer (PBL), and absorbing spherical particles 

(anthropogenic aerosols) prevailed within the PBL. This stratification is governed by meteorological conditions that strong 30 

northwesterly winds usually prevailed in the lower free troposphere, and southerly winds are dominated in the PBL, producing 

persistent and intense haze pollution. With the increased contribution of elevated dust to the upper aerosols, the proportion of 

aerosol and trace gas at the surface in the whole column increased. Model results show that, besides directly deteriorating air 

quality, the key role of the elevated dust is to depress the development of PBL and weaken the turbulence exchange, mostly 



2 
 

by lower–level cooling and upper–level heating, and it is more obvious during dissipation stage, thus inhibiting the dissipation 

of heavy surface anthropogenic aerosols. The interactions of natural dust and anthropogenic aerosols under the unique 

topography of North China increases the surface anthropogenic aerosols and precursor gases, which may be one of the reasons 

why haze pollution in North China is heavier than that in other heavily polluted areas in China. 

1 Introduction 5 

Booming industrialization and urbanization in China is releasing large amounts of atmospheric anthropogenic pollutants, 

especially in the Beijing–Tianjing–Heibei (BTH) and surrounding regions, where the air pollution is the highest in the country 

(Zhang et al., 2019a; Zhang et al., 2019b). Accumulation of air pollutants from stationary and transportation sources and 

explosive increase of new particles under stagnant weather conditions (Guo et al., 2014; Huang et al., 2014; Zheng et al. 2015) 

through chemical reaction, such as multiphase chemical formation (Cheng et al. 2016) as well as regional transport (Li et al., 10 

2017), cause PM2.5 (particle mass less than 2.5 μm in diameter) mass concentrations to increase several–fold within a few 

hours. Recent studies have shown that the radiative effect of aerosols reduces solar shortwave radiation, increases the strength 

of the capping inversion, and enhances the stability of the planetary boundary layer (PBL) (Zhong et al., 2018). Such 

unfavorable meteorological conditions will enhance the explosive growth of surface air pollutants. Simulation results from 

atmospheric chemical transport models have also led to similar conclusions (Ding et al., 2016; Huang et al., 2018), i.e., that 15 

absorbing aerosols, particularly black carbon (BC), will increase the temperature at the top of PBL and induce a cooling effect 

near the surface, thereby inhibiting the dispersion of air pollutants. 

In addition to BC, dust is also an important source of air pollution. Besides directly acting as an important component of 

PM10 (particle mass less than 10 μm in diameter) and PM2.5, it scatters solar shortwave radiation and absorbs longwave 

radiation and thus leads to a cooling at the earth surface (Xia and Zong, 2009). Compared with the impact of other aerosol 20 

types, such as nitrates and sulfates, the effect of dust on decreasing radiation is more serious (Sokolik and Toon, 1996). Recent 

studies have also shown that dust can function as a reactant or a catalyst affecting atmospheric chemical reactions (Cwiertny 

et al., 2008). However, the current understanding of the effects of dust on meteorology and air pollution in North China remains 

insufficient. 

To elucidate the role of dust during heavy air pollution, multi–wavelength Raman lidar (RL) was deployed to monitor the 25 

vertical structure of atmospheric aerosols with high spatial and temporal resolution. RL can provide several optical parameters 

of aerosols to distinguish anthropogenic aerosols, dust, and other aerosol types (de Foy et al., 2011; Freudenthaler et al., 2009; 

Groß et al., 2013; Müller et al., 2007; Tesche et al., 2009), including the aerosol extinction coefficient (EXT), particle linear 

depolarization ratio (PLDR), and lidar ratio (LR). The RL measurements were performed at the Central Weather Bureau Farm 

(CWBF) since 17 December 2016 (Fig. S1). The CWBF (39.15o N, 115.73o E) is located 120 km southwest of Beijing and 30 

approximately 40 km away from the Baoding urban district. It is surrounded by wheat fields, and there are no nearby stationary 

pollution sources. Combined with Weather Research and Forecasting (WRF) model coupled with Chemistry (WRF–Chem) 
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simulations and multi–axis differential optical absorption spectroscopy (MAX–DOAS) observations, the mechanism of dust’s 

impact on meteorology and air pollution was explored. 

2 Measurements and methodology 

2.1 Raman lidar system 

Ground based RL measurements were performed at CWBF during Jan to Mar 2017. The RL was placed in an air–5 

conditioned room to monitor air pollution through the roof skylight in a continuous mode (7 min for data collection with 15–

minute intervals). A schematic of the multi–wavelength RL system is shown in Fig. S2 in the supplement. The light source of 

the RL system uses an Nd:YAG laser (QSmart850) with a pulse repetition rate of 10 Hz, producing two wavelengths: second 

harmonic generation 532 nm and third harmonic generation 355 nm, with an output energy of 300 mJ and 230 mJ, respectively. 

The backscatter signals of the Raman, Rayleigh, and Mie scattering were received by a Cassegrain telescope with a diameter 10 

of 400 mm and field of view of 0.2 mrad. In addition, the 532 nm return signal was divided into parallel (532p) and vertical 

(532s) polarization components. Thus, the receiver had 5 channels: 532p, 355 nm Mie scattering channel, nitrogen (387 nm), 

water vapor (408 nm) Raman scattering channel, and polarization channel 532s. The data collector was a transient recorder 

(LICEL, TR20–160) with five acquisition channels. For each channel, the signal was acquired in both analog and photon 

counting modes with a spatial resolution of 7.5 m. Signals from 4000 laser shots were accumulated to produce a single sampled 15 

signal profile (approximately 7 min). More details of the RL system can be found in Table 1. 

The RL used in this study can provide various aerosol optical parameters, including EXT, PLDR, LR, and relative 

humidity (RH). The PLDR distinguishes between non–spherical and spherical particles (Freudenthaler et al., 2009; Tesche et 

al., 2009), and non–spherical particles are identified by a high PLDR (over 15%). The LR is related to the absorption (>70 sr) 

and scattering (<40 sr) of particles (Müller et al., 2007). The input signal of aerosol optical parameters are provided in Table 20 

1. The relative error was calculated in accordance with the law of error propagation, and primarily depends on the signal–to–

noise ratio (Heese et al., 2010) of the input signal given in Table 1. Data with a signal–to–noise ratio of the input signal less 

than 1 were discarded. Given that the uncertainty of the overlap correction (Wandinger and Ansmann, 2002) was too high 

below 400 m, data below 400 m were not used for subsequent analysis. The water vapor sounding experiment was conducted 

on 16 Aug 2017 at the Beijing Observatory near Beijing’s South Fifth Ring (39°48ʹ23ʺ N, 116°28ʹ03ʺ E). The RH comparison 25 

of the RL and radiosonde is provided in Fig. 1, which shows that the RL and radiosonde were consistent in measuring RH at 

noon and night. The details of data inversion and data validation can be found in Supplementary materials section S1 and our 

previous studies (Ji et al., 2019). 
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2.2 Multi–axis differential optical absorption spectroscopy 

MAX–DOAS was performed at CWBF since Jan 2017. The instruments used for MAX–DOAS include a telescope, two 

spectrometers [ultraviolet (303–370 nm) and visible (390–550 nm)] with the temperature stabilized at 20 °C, and a computer 

that acts as a control and data acquisition unit. The elevation angle (1°–6°, 8°, 10°, 15°, 30°, and 90°) of the telescope is 

controlled by a stepping motor. The scattered sunlight collected by the telescope is redirected by a prism reflector and a quartz 5 

filter to the spectrometer for data analysis. MAX–DOAS can retrieve aerosol profiles with the corresponding aerosol properties 

and trace gas profiles using the measured spectrum information. Further data screening was conducted using the root mean 

squares of the residuals of the trace gas (NO2) slant column densities. The system is only operational during the day (from 

08:00 to 16:00 local time) with a temporal resolution of 15 min and a spatial resolution of 100 m, respectively. The complete 

description of the MAX–DOAS system and retrieval algorithm can be found in our previous studies (Xing et al., 2017; Xing 10 

et al., 2019). 

To explore the effects of upper–level dust on low–level anthropogenic aerosols, the percentage of bottom EXT360 in total 

EXT360 and percentage of bottom NO2 volume mixing ratio (VMR) in total NO2 VMR measured via MAX–DOAS were used 

to represent the low–level air pollution. The percentage of bottom EXT360 in total EXT360 is defined as 
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Where z is the height, and the EXT360_per and NO2_per are the percentage of bottom EXT360 and percentage of bottom NO2 

VMR, respectively.  

The EXT comparison of RL and MAX–DOAS during our observation period was shown in Fig. 1. The hourly and 20 

spatially average EXT from 400 m to 600 m and 600 m to 800 m were selected due to the blind zone of RL and different spatial 

resolution between RL (7.5 m) and MAX–DOAS (100 m). The comparison of average EXT profile during HPI 1 and HPI 2 

between RL and MAX–DOAS was shown in Fig. S3. In general, the EXT comparisons of RL and MAX–DOAS show a 

reasonably good agreement (R > 0.8), while the slope of linear regression between RL and MAX–DOAS measured EXT is 

considerably less than 1. Because the sensitivity of the MAX–DOAS measurements decreases with increasing altitude in the 25 

troposphere (Frieß et al., 2006). In addition, MAX–DOAS and lidar measurements were made with different geometries (a 

combination of zenith–sky and off–axis versus zenith–sky only, respectively) and different integration times for completing a 

set of measurements (15 versus 22 min, respectively), which may also explain part of the differences (Irie et al., 2008). 
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2.3 WRF–Chem simulations 

The air pollution and meteorology parameters from 20 Jan to 5 Feb 2017 were simulated by WRF–Chem version 3.6.1. 

The model domain was centered at 110.68° E, 39.34° N with a 20 km × 20 km grid resolution, encompassing North China, 

especially the Mongolia region and its surrounding areas. There are 44 vertical layers from the ground level to the top pressure 

of 50 hPa, in which 17 layers were located below 2 km to well describe the vertical structure of the air pollutants below PBL. 5 

The simulation was conducted from 15 Jan to 5 Feb 2017. Each run covered 48 hours and the last 24–hour results were used 

for the analysis. The initial and boundary conditions of meteorological fields for simulation were adopted from the 6–hour 

final operational global analysis (FNL) data generated by the National Environmental Prediction Center (NCEP) with a spatial 

resolution of 1° × 1°. The Multi–resolution Emission Inventory for China (MEIC, http://www.meicmodel.org/, last access: 6 

January 2020) (Liu et al., 2015; Li et al., 2014) was used to obtain anthropogenic emissions. The biogenic emissions were 10 

calculated online using the Model of Emissions of Gases and Aerosols from Nature (MEGAN) embedded in the WRF–Chem 

model. The chemical outputs from previous runs were used as the initial conditions for the following run. The first 5 days were 

simulated and considered as model spin–up period to minimize the influence of the initial conditions. NCEP’s ADP global 

upper air observations (NCAR archive ds351.0 and ds461.0) were assimilated every 6 hours to reproduce the meteorological 

field more effectively. Details of model configuration options can be found in Table 2 and our previous studies (Liu et al., 15 

2016a). 

In addition, to explore the role of dust in aerosol–meteorology interactions and its impact on surface air pollution during 

the dissipation stage, the simulation period of each heavy pollution incident dissipation stage was performed five simulations 

with five different initial times. i.e., the simulation period was from 00:00 to 23:00 on 26 Jan 2017, the five initial times were 

set to 22:00 on 24 Jan 2017, 23:00 on 24 Jan 2017, 00:00 on 25 Jan 2017, 01:00 on 25 Jan 2017, and 02:00 on 25 Jan 2017. 20 

Particularly, four–dimensional data assimilation (FDDA) for wind, temperature, and water vapor mixing ratio was not adopted 

in the five simulations. The average of five simulations of each simulation period was used for the final analysis.  

In this study, we selected the MOSAIC aerosol scheme (Zaveri and Peters, 1999; Zaveri et al., 2008), and the analysis 

variables here were the 3–D mass mixing ratios of the 32 MOSAIC aerosol variables at each grid point. The model includes 

organic compounds, black carbon, sulfate, nitrate, ammonium, and other air pollutants with four bin size ranges: (1) 3 nm to 25 

156 nm, (2) 156 nm to 625 nm, (3) 625 nm to 2.5 μm, and (4) 2.5 μm to 10 μm. Thus, model simulated PM10 concentrations 

was given as:  

4

10 d 3i 4i 4i i i i i i
i=1

PM =ρ (NO +SO +NH +OC +BC +CL +NA +OIN )                                                 (3) 

Where i denotes the bin numbers in the MOSAIC aerosol scheme, the NO3, SO4, NH4, OC, BC, CL, NA, and OIN are 3–

D mass mixing ratios of nitrate, sulfate, ammonium, organic compounds, black carbon, chloride, sodium, and other inorganic 30 

compounds, respectively. The dρ  is dry air density, which is used to converts the units of 32 MOSAIC aerosol mixing ratios 

from µg/kg to µg/m3.  
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We conducted two parallel experiments using WRF–Chem to investigate the mechanism of the elevated dust layer 

enhancing the pollution near the ground: 1. without considering the dust (dust_off); 2. with consideration of the dust (dust_on). 

The dust concentrations is calculated as 

4

d idust_on idust_off
i=1

Dust  ρ (OIN - OIN )                                                                      (4) 

Where the idust_onOIN
 and idust_offOIN

 represent the other inorganic compounds in each bin when the influence of dust 5 

was considered and ignored, respectively. The non–dust particles concentration is defined as 

4

d 3i 4i 4i i i
i=1

Non-dust = ρ (NO +SO +NH +OC +BC )                                                            (5) 

The concentrations of upper–level suspended dust is calculated as 
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Where the Dustup is the suspended dust concentration above the PBL, lpbl is the number of the model layer closest to the 10 

PBL, Dusti is the dust concentration in each model layer. The height of the 18th model layer is appoximately 2888 m. The 

turbulence change within the PBL is calculated as 
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Where the Tur_exch is average turbulent exchange coefficient within the PBL, exchi is the turbulent exchange coefficient 15 

of each model layer. Tur_exchon and Tur_exchoff are the average turbulent exchange coefficients for the two experiments 

dust_on and dust_off, respectively. 

To ensure the accuracy of the WRF–Chem model, the key meteorology parameters, including temperature, relative 

humidity, and wind speed/direction were compared with radiosonde data (http://weather.uwyo.edu/, last access: 6 Jan 2020) at 

Beijing (39.93 oN, 116.28 oE, WMO station number 54511). The radiosondes were launched twice a day (08:00 and 20:00 LT) 20 

and measured profiles of atmospheric variables such as air temperature, water mixing ratio, wind speed, etc. As shown in Fig. 

S4, the WRF–Chem model can effectively reproduce the meteorology parameters. Observed hourly surface–layer PM2.5 

concentrations from 21 Jan to 6 Feb 2017 at Chengde (40.97 oN, 117.82 oE, station number 1065A), Zhangjiakou (40.81 oN, 

114.88 oE, station number 1059A), Beijing (40.14 oN, 116.72 oE, station number 1008A), Tianjing (39.03 oN, 117.71 oE, station 

number 1023A), Baoding (38.88 oN, 115.44 oE, station number 1055A), Cangzhou (38.30 oN, 116.89 oE, station number 25 

1071A), Shijiazhuang (38.14 oN, 114.50 oE, station number 1031A), and Hengshui (37.73 oN, 115.69 oE, station number 1076A) 
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were compared with the model results from the dust_on case (Fig. S5). The observed PM2.5 values were downloaded from the 

environmental monitoring station (http://beijingair.sinaapp.com/, last access: 5 January 2020). Generally, the WRF–Chem 

model can reasonably reproduce the evolutional characteristics of the observed PM2.5 concentrations in the eight cities (Li et 

al., 2016; Wang et al., 2019; Gao et al., 2016) (R: 0.52–0.81). Both the observed and simulated PM2.5 concentrations exhibit a 

heavy pollution period from 22 to 26 Jan 2017 and 1 to 5 Feb 2017. 5 

2.4 Characteristics of dust, ice clouds and anthropogenic aerosols 

Based on RL measurements, the PLDR at 532 nm and LR at 355 nm were derived to represent the characteristics of 

different aerosol types. The PLDR can distinguish between non–spherical and spherical particles (Tesche et al., 2009), which 

is useful to identify ice clouds (Sassen, 1991) and dust layers (Murayama et al., 1999) (the value is typically greater than 20%). 

Many researchers have reported the PLDR of dust and ice clouds (see Table 3). The typical PLDR of Asian dust is between 10 

20% and 33%, which can be distributed at different heights. In addition, the different height distributions of Asian dust may 

be related to the different origins. The dust from Mongolia generally accumulates between 0 and 3,000 m (Sun et al., 2001), 

and the dust from the Taklimakan Desert is distributed above 5,000 m (Liu et al., 2008; Sun et al., 2001). Unlike dust, ice 

clouds have a wider PLDR distribution between 20% and 60%, and are usually located above 4,000 m. Therefore, 

distinguishing Asian dust via high PLDR is difficult due to the wide height distribution of dust and a PLDR comparable to ice 15 

clouds (Sakai et al., 2003). 

RL can provide independent measurements of backscatter and extinction profiles (Ansmann et al., 1990; Ferrare et al., 

1998) to compute LR. As LR is related to the absorption and scattering of particles (Müller et al., 2007; Omar et al., 2009), a 

higher LR indicates that the particles tend to be more absorbing. The typical value of LR for Asian dust is 40–60 sr (Omar et 

al., 2009). The LR of Asian dust observed in Beijing is smaller, from 30 sr to 47 sr, and it is usually located below 3,000 m 20 

(see Table 3). By contrast, the LR for ice clouds is lower, less than 30 sr. Therefore, a threshold of 30 sr can be set to distinguish 

between dust and ice clouds (Sakai et al., 2003). The combined PLDR and LR can distinguish between dust and ice clouds. 

Asian dust has a higher PLDR (20%–33%) and the LR is usually greater than 30 sr. The PLDR of ice clouds is even higher 

(20%–60%), but the LR is typically less than 30 sr. In addition to Asian dust and ice clouds, the LR and PLDR of anthropogenic 

aerosols also summarized in Table 3. The low PLDR of anthropogenic aerosols (less than 10%) indicates spherical particles 25 

(Tesche et al., 2009). The high LR of anthropogenic aerosols is very distinct compared with Asian dust and ice clouds, and the 

values range from 40 sr to 80 sr.  
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3 Results and discussions 

3.1 Vertical layering of particles in North China 

We focused on the transmission, explosive growth, and dissipation of air pollution along with the interactions between 

aerosol and meteorology in North China. The EXT355 (EXT at 355 nm wavelength) measured via RL shows a periodic cycle 

of 2–5 days, rising rapidly from less than 0.5 km-1 in the early stage of each heavy pollution incident (HPI) to 3–5 km-1 within 5 

1–2 days (Fig. 2). For the subsequent discussion, the whole observation set was classified into clean stages, cumulative growth 

stages (CS), and dissipation stages (DS) based on the surface EXT360 (EXT at 360 nm wavelength) measured via MAX–DOAS 

and the surface winds from model simulations. Clean stages are defined as the times when the surface EXT360 is less than 0.5 

km-1. The surface EXT360 during CS and DS is typically greater than 0.5 km-1, and the surface winds during CS were dominated 

by southerly weak winds or a static atmosphere, while much stronger northwesterly surface winds were most prevalent in the 10 

DS. An entire HPI includes a clean period plus the subsequent CS and DS. During our whole observation (Fig.S6, Fig. S7, 

Table S1), Nine HPIs has been observed, the PLDR in the upper lidar layer of 8 HPIs is significantly higher than that of the 

lower lidar layer (except HPI 3), indicating the contribution of dust in the upper lidar layer and anthropogenic aerosols in the 

lower lidar layer, and the aerosols were stratified. The aerosol stratification was most prominent in HPI 1, HPI 2, and HPI 5, 

HPI 5 lasted for less than 2 days during the whole observation period (Table S1), whereas the other two HPIs persisted for 15 

more than 4 days and had peak PM2.5 mass concentrations greater than 500 µg m-3. Thus, two HPIs (Table 4), namely, 22 to 

26 Jan 2017 (HPI 1), and 1 to 5 Feb 2017 (HPI 2) measured via RL and MAX–DOAS, were selected to represent the typical 

wintertime pollution cycles in North China (Fig. 2, and Fig. S8).  

We evaluated the aerosol optical parameters, including the PLDR and LR provided by RL during the HPI 1 and HPI 2 in 

the upper lidar layer (700–1,300 m) and lower lidar layer (400–600 m). Aerosols that accumulated in the upper lidar layer had 20 

a relatively broad PLDR value (4%–43% in most cases) and LR range of 32–72 sr (34–60 sr in more than 90% of the cases) 

during HPI 1 and HPI 2 (Fig. 3a and 3b). Therefore, aerosols accumulated in the upper lidar layer are mainly scattering non–

spherical particles. We also selected several RH profiles to identify the aerosol types in the upper lidar layer (Fig. S9). All of 

the available RH values of aerosols in the upper lidar layer was less than 80%, whereas the RH of ice clouds were usually 

greater than 100% (Ferrare et al., 1998; Sakai et al., 2003). Furthermore, the non–spherical scattering particles in the upper 25 

lidar layer during the two HPIs had the same origin (Fig. S1) and also had similar distribution heights (700–1,300 m). Because 

anthropogenic aerosols also occurred in the upper lidar layer due to the southerly industrial transport, the non–spherical 

particles in the upper lidar layer during the HPI 1 and HPI 2 are mainly dust or mixtures of dust and anthropogenic aerosols 

(polluted dust).    

By contrast, a low PLDR of less than 10% (1%–9% in most cases) in the lower lidar layer was always found during HPI 30 

1 and HPI 2, and a much higher LR (53–85 sr) in the lower lidar layer (Fig. 3c and 3d) indicating the aerosol’s trend to be 

more absorbing (Müller et al., 2007). The RH of pollutants in the lower lidar layer varied from 25% to 85% and increased as 
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the pollution grew more severe (see Fig. S9). Moreover, aerosols accumulated in the lower lidar layer came from the polluted 

industrial regions (Zhang et al., 2019a; Zhang et al., 2019b) (Fig. S1). Therefore, these spherical absorbing particles were 

mainly anthropogenic aerosols. Based on these measured lidar parameters, we conclude that the aerosols in the upper lidar 

layer primarily consisted of dust or polluted dust, while the aerosols in the lower lidar layer are mainly anthropogenic aerosols. 

During the period from 20 Jan to 5 Feb 2017, weak southerly winds (47%) typically prevailed in the lower lidar layer 5 

between the polluted periods (Fig. S1), carrying polluted air masses from industrial areas and resulting in a sharp increase in 

EXT355. The strong northwesterly winds in the lower lidar layer from the Gobi desert (37%) and sparsely populated northern 

mountain areas (16%) were most prevalent in the dissipation stage and clean period, causing EXT355 to drop distinctly (Fig. 

2d). The average EXT355 in the lower lidar layer during the weak southerly wind conditions was 1.76 km-1, followed by winds 

from Gobi desert (1.35 km-1) and sparsely populated northern mountain areas (0.62 km-1). The measured PLDR in the lower 10 

lidar layer was relatively low, and fluctuated with the PLDR in the upper lidar layer. In the upper lidar layer, strong 

northwesterly winds (66%) from the Gobi desert prevailed, carrying dust to the CWBF, leading to a significant increment in 

PLDR. The strong northwesterly winds (7%) in the upper lidar layer from the sparsely populated northern mountain areas 

usually occurred during the period of PLDR decline (Fig. 2e). The EXT355 in the upper lidar layer is less than 1.5 km-1 in the 

most cases, except that during the period of southerly wind (27%) transmission, EXT355 increased considerably. The average 15 

EXT355 in the upper lidar layer during the weak southerly wind conditions was 1.00 km-1, which is clearly higher than that 

during the winds from Gobi desert (0.66 km-1) and sparsely populated northern mountain areas (0.38 km-1). 

The shift of the origin of the air mass from northerly to southerly, together with a considerable decrease in wind speed, 

promotes the southerly transport of industrial pollutants and explosive increase of new particles under stagnant weather 

conditions (Guo et al., 2014; Zheng et al. 2015) through chemical reaction, such as multiphase chemical formation (Cheng et 20 

al. 2016), which is conducive to the accumulation of aerosols in the lower and upper lidar layers. The air mass origin in the 

upper lidar layer shifts from industrial areas to the Gobi desert with a substantially increasing wind speed, driving the 

increasement of dust concentrations in the upper lidar layer. As a consequence of these shifts, aerosols are stratified in distinct 

layers, with anthropogenic aerosols in the lower lidar layer and dust or polluted dust in the upper lidar layer. Thus, the 

meteorological conditions not only regulate the transmission, accumulation, and dissipation of aerosols, but also control the 25 

stratification of air pollutants, which is one of the most powerful factors that promote haze pollution in North China. 

3.2 Correlation between elevated dust and surface haze pollution  

Stratified aerosol typically shrouded CWBF during 20 Jan to 5 Feb 2017. The maximum value of PLDR in the upper lidar 

layer usually appeared during the DS. Moreover, the percentage of EXT355 of total EXT355 in the lower lidar layer during the 

DS is considerably higher than during the CS and clean periods (Fig. S10). To further investigate the relationship between 30 

elevated dust and surface anthropogenic aerosols, HPI 1 and HPI 2 were examined in detail. During HPI 1, the upper dust layer 

formed slightly later than the accumulation of the anthropogenic aerosols in the lower lidar layer (Fig. 2), indicating the 
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formation of upper dust is independent of the formation of anthropogenic aerosols in the lower lidar layer. At the end of the 

CS during HPI 1, the air mass in the upper lidar layer was mainly from the northwest, and the wind speed increased significantly. 

Particularly, the upper PLDR and the percentage of bottom EXT355 rose considerably. The weak southerly winds in the lower 

lidar layer rapidly shifted to strong northwesterly winds during DS during HPI 1. The value of PLDR reached a maximum, 

while the percentage of bottom EXT355 rose at first, and then declined. The upper dust layer during HPI 2 appeared earlier than 5 

the anthropogenic aerosols in the lower lidar layer (Fig. 2). Similar to HPI 1, the northwesterly winds in the lower lidar layer 

increased significantly during DS in HPI 2, and both upper PLDR and the percentage of bottom EXT355 reached a maximum.  

We selected hourly and spatially (950 m–1,050 m) average PLDR as an indicator of dust in the upper lidar layer. Also, 

the percentage of bottom EXT360 in total EXT360 and the percentage of bottom NO2 VMR in total NO2 VMR measured via 

MAX–DOAS were used to represent the air pollution near the ground. We find that the hourly and spatially average PLDR 10 

roughly correlates with the hourly average percentage of bottom EXT360 and percentage of bottom NO2 VMR during HPI 1 

and HPI 2 (Fig. 4). This positive correlation suggests that the increase in upper–level PLDR is related to the aggravation of the 

proportion of aerosol and trace gas at the surface in the whole layer. 

3.3 Mechanism of the elevated dust layer enhances surface air pollution 

We conducted two parallel experiments using WRF–Chem to investigate the mechanism by which the elevated dust 15 

layer enhances air pollution near the ground, especially during DS: 1. without considering the dust (dust_off); 2. with 

consideration of the dust (dust_on). In the MOSAIC aerosol scheme, dust is represented by the difference of “other inorganic 

compounds” (OIN) between dust_on and dust_off, and non–dust particles include nitrate, sulfate, ammonium, organic 

compounds, and BC.  

The dust concentrations is derived from the OIN difference between the two scenarios of dust_on and dust_off (Equation 20 

4), model simulations well reproduced the spatial and temporal variations of dust concentration at CWBF (Fig. 5 and Fig. 6). 

The PBL height during the CS was usually below 800 m and decreased with the daily accumulation of air pollutants. Dust 

typically concentrated above the PBL and the fraction of dust in total PM10 concentrations increased with height. The lower 

PBL height led to a reduction of dust entrainment into the PBL from the upper levels, thereby promoting the stratification of 

aerosol at CWBF. The northwest wind strengthened during the DS, accompanied by a rise of the PBL. The dust concentration 25 

within and above the PBL increased significantly, which may be related to the northwesterly transportation and the rise of the 

PBL. The model simulations show, consistent with the RL observations, that a large amount of suspended dust can be 

transported from the Mongolia to downstream urban/industrial regions in Northern China, causing a dust layer that covers the 

anthropogenic aerosols below. Also, the higher PLDR (0.3–0.35) value during the DS suggests that dust controls the optical 

properties of the upper–level aerosol (Freudenthaler et al., 2009). These invisible (at ground level) but common dust aerosols 30 

from northwestern China may induce strong aerosol–PBL feedbacks and affect the PBL structure along their transport path 

(Liu et al., 2002), and may also impede the dissipation of the underlying aerosol. 
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To explore the role of dust in aerosol–meteorology interactions and its impact on surface air pollution during the DS, we 

examined the dissipation process during HPI 1 and HPI 2. The suspended dust above the PBL is widely distributed in North 

China during HPI 1, whereas it is mainly located in the upper air over the BTH region during HPI 2 (Fig. 7a). Surface dust 

concentrations also increased but clearly less than those within the PBL (Fig. 7b). Unexpectedly, the concentration of surface 

non–dust particles increased by 0–11.4 µg/m3 after the upper–level suspended dust had passed across the downstream 5 

urban/industrial regions in Northern China (Fig. 7c). In addition, the gaseous pollutants (NO2) exhibited the same variation 

(increases by 0–4.4 ppb) as the non–dust particle concentration (Fig. 7d). The relative increment of surface non–dust particle 

and NO2 concentrations is 0%–21% (Fig. 7e and 7f). This indicates that, in addition to directly acting as an important 

component of air pollutants, suspended dust can also induce the enhancement of non–dust particles and precursor gases during 

DS, thus further increasing the surface anthropogenic aerosol concentrations. 10 

The interaction between dust and meteorology appears to be responsible for the enhancement of surface air pollution 

during DS. The dust layer during DS plays an important role in modifying the temperature vertical structure (Fig. 8a and 8b). 

The opposing effects of the dust on temperature, a net heating above the PBL and cooling within the PBL, favor formation of 

a capping inversion and thereby promote aerosol stratification. Consequently, the role of dust in aerosol–meteorology 

interactions result in more stagnant conditions, with the turbulent exchange coefficient within the PBL falling by over 60%. 15 

Similarly, a significant decrease in PBL height was also attributable to the stable stratification (Fig. 8c and 8d). Also, the 

maximum reduction of surface horizontal winds speed up to 1.2 m/s, the relative attenuation of surface horizontal winds speed 

is 0%–27% (Fig. S11), indicating that the elevated dust also weakens the surface advection. In addition, there is no active 

convection activity (Fig. S11) during our observed period (Baro et al., 2015; Gao et al., 2013). As a consequence, although the 

strong northwesterly winds during DS increase the horizontal and vertical diffusion in the atmosphere considerably, the upper–20 

level dust brought in simultaneously by the northwesterly wind strengthens the temperature inversion due to both scattering 

and absorption of solar radiation, thereby weakening convective motions. Enhanced horizontal and vertical atmospheric 

stability due to dust during DS hinders the air pollutants from being dispersed and leads to a reduction of the dissipation rates 

of surface air pollution (Li et al., 2017; Liu et al., 2016b; Wilcox et al., 2016). 

The results demonstrate that dust aerosols during DS can substantially affect meteorological conditions by strong 25 

radiative feedbacks, and hence increase the surface air pollution (aerosols and precursor gases) by inhibiting the vertical 

diffusion of air pollutants. Evidently, such a deterioration of surface air quality is ultimately driven by the emission of pollutants, 

but is also strongly related to the reduced vertical diffusion capacity of the atmosphere. Surface dimming and upper–PBL 

warming by dust aerosols help strengthen the capping inversion and weaken turbulent mixing (Li et al., 2017). Previous studies 

have also found that the levels of gaseous pollutants, such as NO2 (Wallace and Kanaroglou, 2009), are closely related to 30 

temperature inversion. Changes of atmospheric stability, precursor gases, and solar radiation could significant modify new 

particle formation (Zhang, 2017) and photochemical reactions (Zhou et al., 2007), which may also contribute to the surface air 

pollution. The decreasing upper–level dust concentration (usually less than 40 µg/m3 in the model) during CS has an 

insignificant impact on low–level meteorological conditions, while its mixing with anthropogenic aerosols affects upper–level 
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aerosol optical properties. Moreover, the mixing of dust and anthropogenic aerosols will promote the atmospheric chemical 

reactions (Cwiertny et al., 2008), and enhance the formation and growth rates of particles (Nie et al., 2014) to strengthen the 

particle concentrations in the upper lidar layer (Tao et al., 2014), which in turn further enhances the atmospheric stability and 

promotes the temperature inversion (Reichardt et al., 2002). 

4 Summary 5 

Our observations clearly show the stratification of aerosols over North China, especially during the DS. Absorbing 

spherical particles (anthropogenic aerosols) and scattering non–spherical particles (dust or polluted dust) prevailed in the lower 

and upper lidar layers, respectively. This stratification was primarily determined by the meteorological conditions. Firstly, the 

air mass origins of the different layers resulted in different aerosol types, where low–level anthropogenic aerosols came from 

the southerly polluted industrial regions (Wang et al., 2013) and the upper dust layers arrived mostly from Mongolia (Sun et 10 

al., 2001). Secondly, unfavorable vertical diffusion conditions, when strong northwesterly winds prevailed above the PBL with 

southerly air masses within the PBL, produced lengthy and intense temperature inversions and low PBL heights (Tao et al., 

2014). The suppressed convection constrained dust into the PBL, which may also have contributed to higher surface relative 

humidity (Wilcox et al., 2016). These unique and unfavorable meteorological conditions in North China promote the extremely 

serious haze pollution and lead to a stratification of aerosols. The PLDR in the upper lidar layer and the percentage of EXT355 15 

in total EXT355 in the lower lidar layer during the DS is considerably higher than during the CS and clean periods. Moreover, 

the increased share of elevated dust to the upper aerosols coincides with the increase in the proportion of surface aerosol and 

trace gas in the whole layer. Model simulations show that the elevated dust during DS reduces the lower–level atmospheric 

turbulent mixing and thereby weaken the diffusion and convection of surface aerosols.  

During our three–month observations, we captured nine HPIs and eight of them showed meteorological conditions 20 

differences in the PBL and in the free troposphere, which has led to the stratification of aerosols. Therefore, aerosol 

stratification is common in North China. Here we conclude when southerly transmission dominant in the PBL (anthropogenic 

aerosols) and northwest transportation prevailed in the free troposphere (dust) usually lead to aerosol stratification. Upper dust 

aerosol induced dust–meteorology interactions, the dust-meteorology interactions mainly includes two aspects. Firstly, the 

difference in meteorological conditions between the upper and lower lidar layer leads to the aerosol stratification, upper dust 25 

and lower anthropogenic aerosols. Secondly, elevated dust alters the atmospheric thermodynamics and stability, mostly by 

lower–level cooling and upper–level heating, especially during dissipation stage. The suppressed turbulence exchange and 

decreased in PBL height impede dissipation of persistent heavy haze pollution. The dust-meteorology interactions provide 

very important information toward a complete understanding of the formation mechanism of winter haze in North China, and 

may also explain the special multiphase chemistry in this region.  30 

In summary, we use ground–based observations combined with WRF–Chem simulations to investigate the role of dust 

on meteorology and air pollution in North China, specifically focusing on the dissipation process during persistent heavy air 
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pollution events over 4 days. Our results show that, elevated dust not only directly affects the air quality, but also worsens the 

meteorological conditions to impede the rate of dissipation of surface air pollution, which may be one of the reasons why haze 

pollution in North China is heavier than that in other parts of the country. The interactions between natural dust and heavy 

anthropogenic surface air pollution events helps us better understand the transmission, explosive growth, and dissipation of 

persistent winter–time air pollution in North China. In a similar way, considering the extremely strong long–range transport 5 

potential of dust aerosol, Saharan dust could affect India (Deepshikha et al., 2006), Europe (Papayannis et al., 2008), and the 

United States (Prospero, 1999), since Asian dust can even be transported one full circuit around the globe (Uno et al., 2009). 

Similar stratification and effects should be investigated in other parts of the world that also suffer from severe particulate 

pollution (Wu et al., 2017). 
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Figure 1. Data comparison of RL and MAX–DOAS. Correlations between EXT from MAX–DOAS and RL for layers of (a) 
400–600 m and (b) 600–800 m. RH comparison between radiosonde and RL at (c) noon and (d) night. The envelopes in (c) 
and (d) represent the errors at each altitude. The error is calculated from the law of error propagation, which primarily depends 
on the signal–to–noise ratio (Heese et al., 2010) of the input signal given in Table 1. 5 
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Figure 2. Periodic air pollution cycles in North China. The color contours show the vertical structure of (a) Horizontal winds 
simulated by WRF–Chem, (b) EXT355 and (c) PLDR measured by RL. Temporal evolutions of spatially average PLDR and 
EXT355 at (d) 450 m–550 m and (e) 950 m–1,050 m. (f) The percentage of bottom EXT355. (g) Temporal evolutions of surface 5 
average PM2.5 and PM10 mass concentrations. The black arrow in (a) indicates the wind direction, upper arrow for south winds. 
The colors in (d), (e) and (f) represent the air masses originating from southwest (red), Gobi desert (yellow), and sparsely 
populated northern moutain areas (blue), similar to those in Fig. S1. The observed PM2.5 and PM10 mass concentrations are the 
averages of the six environmental monitoring stations in Baoding. The percentage of bottom EXT355 is used to characterize 

the aerosol concentrations in the lower layer, which is defined as: 
600 1000

355 355
z 

per_ bottom
= 400 z = 400

= 100%   EXT (z)/ EEXT XT (z)   . 10 

Where EXTper_bottom is the percentage of bottom EXT355, z is the height. 
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Figure 3. Frequency histogram of RL parameters during HPI 1 and HPI 2. Frequency distributions of (a) PLDR in the upper 
lidar layer, (b) lidar ratio in the upper lidar layer, (c) PLDR in the lower lidar layer, and (d) lidar ratio in the lower lidar layer. 
The steps of PLDR and lidar ratio are 0.01, and 2 sr, respectively.  
 5 
 
 
 
 
 10 
 
 
 
 
 15 
 
 
 
 
 20 
 
 
 
 
 25 
 
 



21 
 

 
Figure 4. Average PLDR trend in the upper lidar layer during the two HPIs and its impact on lower–level air pollution. 
Scatterplots showing relationships between the average PLDR and the average percentages of bottom (a) EXT360 during the 
HPI 1, (b) EXT360 during the HPI 2, (c) NO2 VMRs during the HPI 1, and (d) NO2 VMRs during the HPI 2. The colors in (a) 
and (b) represent the surface EXT360, and the colors in (c) and (d) represent the surface NO2 concentration. The spatially 5 
averaged range of PLDR is 950–1,050 m. The hourly averages of PLDR, percentage of bottom EXT360, and percentage of 
bottom NO2 VMR are used due to the different temporal resolution between RL and MAX–DOAS. The correlation coefficients 
are shown at the top left, N=number of samples. The analysis period was from 8:00–16:00 LT because MAX–DOAS can only 
be performed during the day. 
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Figure 5. Curtain plots of winds and dust concentrations in CWBF from 22 to 26 Jan 2017. (a) Winds simulated by WRF–
Chem, (b) vertical structure of dust concentrations, and (c) vertical structure of the composition of dust in total PM10 
concentrations. The black arrow in (a) indicates the wind direction, upper arrow for south winds. The black lines in (b) and (c) 
represent the PBL height evolution in WRF–Chem. 5 
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Figure 6. Same as Fig. 5 but from 1 to 5 Feb 2017.  
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Figure 7. Influence of upper–level dust on surface non–dust aerosol in HPI 1 and HPI 2 dissipation stages. Horizontal 
distribution of (a) upper–level suspended dust concentration and (b) surface dust concentration. Difference in (c) surface non–
dust particle concentration, (d) surface NO2 concentration between the experiments dust_on and dust_off. The percentage 
change of (e) surface non–dust particle concentration and (f) surface NO2 concentration between the experiments dust_on and 5 
dust_off. The time of each subgraph is the HPI 1 dissipation stage at 13:00 LT on 26 Jan 2017 (left panel) and HPI 2 dissipation 
stage at 16:00 LT on 4 Feb 2017 (right panel).  
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Figure 8. Influence of upper–level dust on meteorology parameters in HPI 1 and HPI 2 dissipation stages. (a) Maximum 
enhancement in temperature above the PBL, (b) Maximum temperature reduction within the PBL. Difference in (c) turbulence 
within PBL, and (d) PBL height between the experiments dust_on and dust_off. The time of each subgraph is the HPI 1 
dissipation stage at 13:00 LT on 26 Jan 2017 (left panel) and HPI 2 dissipation stage at 16:00 LT on 4 Feb 2017 (right panel).  5 
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Table 1. Characteristics of the RL system. 

Transmitter  

Laser type ND:YAG (QSmart850) 

Wavelength (nm) 355, 532 

Energy/pulse (mJ) 230, 300 

Pulse repetition (Hz) 10 

Beam divergence (mrad) 0.5 

Receiver  

Collector LICEL TR20–160 

Telescope type Cassegrain 

Field of view (mrad)  0.2 

Telescope diameter (mm) 400 

PMT 

532P (R9880–110) 
532S (R9880–110) 
355 (R9880–113) 
387 (R9880–113) 
408 (R9880–113) 

Signal detection Analog mode/Photo counting 

Range resolution (m) 7.5 

Detected species  

Mie/Rayleigh 355 

Raman nitrogen 387 

Raman water vapor 408 

Polarization 532p, 532s 

1Inputs of RL parameters  

EXT355 P355(z) 

EXT532 P532(z) 

PLDR P532p(z), P532s(z) 

LR P355(z), P387(z) 

Water vapor P355(z), P387(z), P408(z) 
1Inputs are the elastic or inelastic backscatter signal profiles of RL. The subscript indicates the wavelength. The total elastic 

backscatter signal (Freudenthaler et al., 2009) profiles at 532 nm is defined as 532 532p 532s
P (z)=P (z)+P (z) .  
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Table 2. WRF-Chem model Configuration options. 

Configuration options 

Long-wave radiation RRTMG 

Short-wave radiation RRTMG  

Cumulus parameterization Grell–Deveny (Grell and Dévényi, 2002) 

Land-surface Noah (Ek et al., 2003) 

PBL YSU (Mlawer et al., 1997) 

Microphysics Lin et al. (Lin et al., 1983) 

Gas chemistry CBMZ 

Aerosol chemistry MOSAIC (Zaveri et al., 2008) 
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Table 3. RL parameters for Asian dust, ice clouds and anthropogenic aerosols. 

 Sλ (sr) δ (%) Location Height (km) Reference 

Asian dust 

 147±18(S532) 220±7(δP) Tsukuba, Japan >5 Sakai et al., 2003 

 46±5(S532) 20–33(δP) Tsukuba, Japan 4–7 Sakai et al., 2002 

 42–55(S532)  Tsukuba, Japan >2.5 Liu et al., 2002 

 48.6±8.5(S355) ~20(δP) Tokyo, Japan 3.5–4.3 Murayama et al., 2004  

 46.5±10.5(S532) ~30(δP) Tokyo, Japan 4.5–6.5 Murayama et al., 2003 

 35±5(S532)  Beijing, China 4PBL Müller et al., 2007 

 36.2±4.7(S532) 319.5±0.5(δv) Beijing, China 0.2–1.2 Xie et al., 2008 

 40±5(S532) 20–25(δP) Beijing, China 0.75–2.5 Tesche et al., 2007 

Ice clouds 

 10±30(S355) 13–35(δP) Arctic >4 Reichardt et al., 2002 

 29±12(S532) 20–60(δP) Chung–Li, Taiwan ~12 Chen et al., 2002 

 ~20(S532)  North America >5 Burton et al., 2012 

 ~20(S355)  Germany >8 Ansmann et al., 1992 

 17±14(S532) 22±7(δP) Tsukuba, Japan >7 Sakai et al., 2003 

 25±1(S355)  Beijing, China ~13 Tao et al., 2012 

Anthropogenic aerosols 

 56±6(S532) 6±1(δp) Central Europe  Groß et al., 2013 

 50–70(S532) <10 North America  Burton et al., 2012 

 73.9±6(S532) 5.6±0.5(δv) Beijing, China  Xie et al., 2008 

 38.5±5(S532) 7.2±1.4(δv) Beijing, China  Xie et al., 2008 

 60–70(S532)  5GAW  Hänel et al., 2012 

 ~60(S532)  Pearl River Delta  Müller et al., 2006 
1± for one standard deviation. 
2The superscript “p” for particle linear depolarization ratio at 532 nm. 
3The superscript “v” for volume linear depolarization ratio at 532 nm. 
4PBL indicates the lower aerosol layer. 5 
5Global Atmospheric Watch (GAW) station of Shangdianzi (46°N, 117°E) in the North China Plain 100 km northeast of Beijing. 
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Table 4. Stages of HPI along with the horizontal surface wind speed during the different pollution stages. 

 Stage Period (LTC) 1Wind speed  

HPI 1 
CS1 2017/01/22 11:00–2017/01/26 05:00 1.8 

DS1 2017/01/26 06:00–2017/01/26 23:00 4.5 

HPI 2 
CS2 2017/02/01 11:00–2017/02/03 22:00 2.4 

DS2 2017/02/03 23:00–2017/02/05 06:00 2.8 
1 Spatially averaged wind speed below 100 m. Units: m/s. 
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