Supplement of

Sources of nitrous acid (HONO) in the upper boundary layer and lower free troposphere of North China Plain: insights from the Mount Tai Observatory

Ying Jiang¹, Likun Xue^{1,4*}, Rongrong Gu¹, Mengwei Jia², Yingnan Zhang¹, Liang Wen¹, Penggang Zheng¹, Tianshu Chen¹, Hongyong Li¹, Ye Shan¹, Yong Zhao³, Zhaoxin Guo³, Yujian Bi³, Hengde Liu³, Aijun Ding^{2,4}, Qingzhu Zhang¹, Wenxing Wang¹

¹Environment Research Institute, Shandong University, Qingdao, Shandong, 266237, China
²School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
³Taishan National Reference Climatological Station, Tai'an, Shandong, 271000, China
⁴Collaborative innovation Center for climate Change, Jiangsu Province, Nanjing, 210023, China

*Correspondence to: Likun Xue (xuelikun@sdu.edu.cn)

Figure S1. Time series of HONO and related parameters measured at Mt. Tai in winter 2017. The gap of measurement data was mainly due to the instrument failure and maintenance.

Figure S2. Time series of HONO and related parameters measured at Mt. Tai in spring 2018. The gap of data was mainly due to the instrument failure and maintenance.

Figure S3. Time series of model-simulated OH concentrations (red) and measured-derived of J_{HONO} (black) at Mt. Tai in (a) winter 2017 and (b) spring 2018.

Figure S4. Scatter plots of the additional daytime HONO source strength (P_{other}) with $J_{NO2} * pNO_3^-$ in (a) winter 2017 and (b) spring 2018.

Figure S5. Model-simulated time series of atmospheric oxidation capacity (AOC) at Mt. Tai in (a) winter 2017 and (b) spring 2018.