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Abstract. The composition, morphology, and mixing structure of individual cloud residues (RES) and interstitial 31 

particles (INT) at a mountain-top site were investigated. Eight types of particles were identified, including sulfate-32 

rich (S-rich), S-organic matter (OM), aged soot, aged mineral, aged fly ash, aged metal, fresh mixture, and aged 33 

mixture. A shift of dominant particle types from S-rich (29%) and aged soot (27%) in the INT to S-OM (24%) 34 

and aged mixture (22%) in the RES is observed. In particular, particles with organic shells are enriched in the 35 

RES (30%) relative to the INT (12%). Our results highlight the in-cloud formation of more oxidized organic shells 36 

on the activated particles. We also show that in-cloud processes may result in less compact soot, with the fractal 37 

dimensions (Df) of soot in the RES (1.82 ± 0.12) lower than those in the INT (2.11 ± 0.09). This research 38 

emphasizes the role of in-cloud processes on the chemistry and microphysical properties of individual particles. 39 

Given that organic coatings may determine the particle hygroscopicity, activation ability, and heterogeneous 40 

chemical reactivity, the increase of OM-shelled particles upon in-cloud processes should have considerable 41 

implications. 42 
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1 Introduction 43 

Aerosol-cloud interaction is regarded as one of the most significant sources of uncertainty in assessing the 44 

radiative forcing of aerosols so far (IPCC, 2013). On the one hand, aerosols can participate in the formation of 45 

cloud droplets, which is primarily influenced by their chemical composition and size at a certain supersaturation 46 

(Fan et al., 2016; Maskey et al., 2017; Ogawa et al., 2016; Raymond and Pandis, 2002; Zelenyuk et al., 2010). On 47 

the other hand, in-cloud processes, including the formation of sulfate, nitrate, and water-soluble organics, and the 48 

physical processes such as collision and coagulation, would substantially change the physical and chemical 49 

properties of the activated particles (Kim et al., 2019; Ma et al., 2013; Roth et al., 2016; Wu et al., 2013). Given 50 

that the morphology and mixing state are vital in determining the optical properties of particles (Adachi et al., 51 

2010; Wu et al., 2018), changes of these properties upon in-cloud processes would further affect the subsequent 52 

atmospheric processes (e.g., cloud activation, heterogeneous reactions) and radiative forcing of particles after 53 

droplet evaporation. 54 

Understanding the morphology and mixing state of particles upon in-cloud processes is of considerable 55 

significance to improve the knowledge of aerosol-cloud interactions. For instance, Zelenyuk et al. (2010) found 56 

that both cloud droplet residues (RES) and interstitial particles (INT, or unactivated particles in the cloud) are 57 

mainly composed of organics, sulfate, biomass burning particles, and processed sea salt at the North Slope of 58 

Alaska. Kamphus et al. (2010) observed that 92% of RES are particles containing sulfates, organics, and nitric 59 

oxide at the Jungfraujoch (Swiss Alps). At Mt. Tai, Liu et al. (2018b) observed that main particle types are S 60 

(sulfate)-soot (36%), S-fly ash/metal-soot (26%) and S-rich (24%) for RES and S-rich (61%), S-soot (15%) and 61 

soot (15%) for INT. These results indicate that both RES and INT present complex mixtures, generally 62 

decomposed as mixing state between carbonaceous (i.e., organic materials (OM) and soot) and inorganic 63 

compositions. 64 

While there are extensive studies reporting the extent of aqueous phase processing on the modification of 65 

aerosol bulk (e.g., mass) and/or chemical (e.g., mixing state, hygroscopicity) properties (Chakraborty et al., 2016; 66 

Ervens et al., 2011), the influence of in-cloud processes on the physical properties (e.g., shape, mixing structure) 67 

of individual particles is still ambiguous. In particular, physical properties can become dominant in the role of 68 

cloud activation for particles with inorganic/organic mixed (Topping et al., 2007). A hydrophobic organic-rich 69 

coating will form on a hygroscopic particle core if liquid-liquid phase separation occurs (Song et al., 2013). 70 

Besides, the distribution of organics and its association with other aerosol types is also crucial for the correct 71 

calculation of its radiative effects (Zhu et al., 2017). However, to what extent in-cloud processes play a role in 72 

reshaping the distribution of organic and inorganic compositions remains unknown, although such coating 73 

structures have been identified in ambient aerosols (Adachi and Buseck, 2008; Li and Shao, 2010; Yu et al., 2019). 74 

Considering that in-cloud processes contribute to a substantial fraction (up to 60%) of organic aerosols (Ervens et 75 

al., 2011; Liu et al., 2012; Myriokefalitakis et al., 2011; Spracklen et al., 2011), this process might not be neglected. 76 

For another type of carbonaceous material, soot, there is extensive evidence that the absorption and cloud 77 

activation of soot-containing particles can be significantly affected by coatings (Adachi et al., 2010; Wu et al., 78 
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2018). The critical factors to accurate predicting of such impact include the amount and nature of the coating 79 

material, the exact particle morphology, and the size distribution (Qiu et al., 2012; Radney et al., 2014). Fractal 80 

dimension (Df) is widely used to indicate the extent of branching of soot (Brasil et al., 1999), with densely packed 81 

or compacted soot particles having higher Df than chain-like branched clusters or open structures. While some 82 

studies have found that soot compaction occurs after cloud processing (Bhandari et al., 2019; Ma et al., 2013; 83 

Mikhailov et al., 2006), Khalizov et al. (2013) suggested that soot with thin organic coating did not become more 84 

compact under high humidity. However, the morphology and mixing structure of soot involving the formation of 85 

organics upon cloud processing is also poorly constrained because of the limited field observation. 86 

To further improve our understanding of the morphology and mixing structures between the various 87 

components within individual RES and INT, we conducted a 25-day field observation of cloud events at a 88 

background site in southern China. A transmission electron microscope (TEM) combined with energy-dispersive 89 

X-ray spectrometry (EDS) was used to analyze the chemical composition, size, morphology, and mixing structure 90 

of individual RES and INT. Previously, the chemical composition and mixing state of RES at the same site have 91 

been investigated with a single particle aerosol mass spectrometer (SPAMS) (Lin et al., 2017; Zhang et al., 2017a). 92 

Herein, we focus on the mixing structure (e.g., chemical compositions and morphology) of individual particles, 93 

in particular, OM-containing particles. Meanwhile, particle types and mixing state of RES and INT are also 94 

discussed. The difference between the mixing structure of RES and INT may indicate the impact of in-cloud 95 

aqueous processes. 96 

2 Materials and Methods 97 

2.1 Sampling site 98 

Sampling was conducted at the top of Mt. Tianjing (112°53′56″ E; 24°41′56″ N; 1690 m above sea level) in 99 

southern China from 18 May to 11 June 2017. The sampling site is located in a natural preserve, and it is almost 100 

unaffected by local anthropogenic sources. It is about 50 km and 350 km away from the north of the Pearl River 101 

Delta (PRD) region and the South China Sea, respectively. 102 

2.2 Collection of RES and INT 103 

A cloud event was identified with visibility below a threshold of 3 km and relative humidity (RH) above a 104 

threshold of 95%, using a ground-based counterflow virtual impactor (GCVI, model 1205, Brechtel Mfg. Inc., 105 

USA). The GCVI was automatically triggered when there was a cloud event, whereas it was not allowed to sample 106 

when a precipitation sensor detected rain or snow. Then cloud droplets were introduced into the GCVI, followed 107 

by removing water in an evaporation chamber (40 ℃) to obtain RES. The sampling process might experience 108 

some particle loss due to the evaporation of highly volatile substances. The droplet cut size, at which the 109 

transmission efficiency of CVI was 50%, was set at a size larger than 7.5 μm (Shingler et al., 2012). INT was 110 

sampled using another inlet (PM2.5 cyclone inlet, 5 lpm), followed by passing through a silica gel diffusion dryer. 111 

A DKL-2 sampler (Genstar Electronic Technology Co., Ltd., China) was used to collect RES and INT on copper 112 

grids coated with carbon film with an airflow of 1 L min-1. The collection efficiency of the sampler is 50% at 80 113 
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nm, assuming the particle density is 2 g cm-3. To avoid particle overlapping, the sampling duration was set within 114 

10 minutes. All samples were placed in a sealed plastic sample box and stored in a desiccator at room temperature 115 

for subsequent analysis. 116 

The information about cloud events and samples are summarized in Table S1. We focused on three cloud events 117 

(#1, #2, and #3), with a duration of 14, 34, and 47 hours, respectively. RES and INT samples from these cloud 118 

events were analyzed, with INT not available for the cloud event #1. To minimize the influence of rapid change 119 

of cloud condition, all the samples were collected during the stable and mature periods (Visibility ＜100 m).  120 

2.3 Analysis of RES and INT 121 

Chemical composition, size, and morphology of individual RES and INT were characterized by a TEM (FEI 122 

Talos F200S) operated at 200 kV. TEM/EDS is a very effective tool to analyze the microscopic characteristics of 123 

individual particles. The resolution of images between 1 μm and 100 nm can be magnified from 7,000 to 36,000 124 

folds, which depended on the size of particles. The EDS is coupled with TEM to detect the intensity of elements 125 

heavier than carbon (Z ≥ 6). The produced X-rays signal in the EDS system is detected by a silicon (Si) drift 126 

detector (SSD), and thus Si is not considered in the discussion. Cu is also not considered due to the interference 127 

from the copper grids. In the TEM vacuumed chamber, some volatile substances (e.g., NH4NO3 and volatile 128 

organic matter) would be lost. Moreover, volatile materials are often sensitive to strong electron beams. Due to 129 

the analysis error of volatile materials, TEM/EDS studies typically focus on refractory compositions. Using an 130 

image analysis software (ImageJ), the equivalent circle diameters (ECD) of all particles can be obtained from the 131 

scanned images from the TEM. For particles with rim, only the nucleus is counted, because the rims contain only 132 

a small amount of OM. Overall, 780 particles, including RES and INT, were analyzed. A SPAMS (Hexin 133 

Analytical Instrument Co., Ltd., Guangzhou, China) was used to analyse the chemical composition of RES and 134 

INT simultaneously in real-time, and the data of SPAMS is not the focus of this study. 135 

2.4 Calculating morphology parameters of soot  136 

The fractal dimension of soot is characterized in the following statistical scaling law (Brasil et al., 1999; Köylü 137 

et al., 1995): 138 

𝑁 = 𝑘𝑔 (
2𝑅𝑔

𝑑𝑝
)

𝐷𝑓
 139 

Where N is the number of monomers within a certain soot aggregate, kg is the fractal pre-factor, Rg is the radius 140 

of gyration, dp is the diameter of the monomer, and Df is the mass fractal dimension. Rg can be obtained by using 141 

a simple relationship between Rg and Lmax, the maximum length of the soot aggregate (Brasil et al., 1999): 142 

𝐿𝑚𝑎𝑥 2𝑅𝑔⁄ = 1.50 ± 0.05 143 

And, the number of monomers, N, can be calculated by a power-law correlation of projected area of monomer 144 

and aggregate: 145 
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𝑁 = 𝑘𝑎 (
𝐴𝑎
𝐴𝑝
)

𝛼

 146 

Where ka is a constant, Aa and Ap are the projected area of aggregate and monomer, respectively, and α is an 147 

empirical projected area exponent. The value of ka and α depends on the degree of monomer overlap in the 148 

aggregate. The detailed calculation process has been described elsewhere (Wang et al., 2017). 149 

3 Results and Discussion 150 

3.1 Particle type and mixing state of RES and INT 151 

According to mixing state, RES and INT were divided into following eight types (Figure 1): S-rich, S-OM, 152 

fresh mixture (soot/mineral/metal/fly ash), aged soot (S/OM-soot), aged mineral (S/OM-mineral), aged metal 153 

(S/OM-metal), aged fly ash (S/OM-fly ash), and aged mixture (S/OM-soot/mineral/metal/fly ash). The details 154 

involving the identification of each component (S, OM, soot, mineral, metal, fly ash) are provided in the 155 

Supporting Information. S-rich or OM, generally considered to be aged since they are mainly secondarily 156 

produced in the atmosphere, are internally mixed with refractory fractions (soot/mineral/metal/fly ash) 157 

(Canagaratna et al., 2007; Huang et al., 2012; Jiang et al., 2019). Such internally mixed S/OM-refractory particles 158 

are named as aged refractory particles herein. Particle types containing two or more refractory components are 159 

named as “mixture”. It is worth noting that fresh mixture are refractory particles without S-rich and OM, which 160 

are collectively defined as the fresh mixture due to the small amount. 161 

Figure 2 shows the number fraction of different particle types in the RES and INT during cloud events #2 and 162 

#3. S-rich, S-OM, aged soot, and aged mixture particles are dominant particle types. The most abundant particles 163 

in the RES are aged mixture (23%), followed by S-OM (22%), aged soot (20%), S-rich (16%), aged metal (9%), 164 

aged fly ash (5%), aged mineral (4%), and fresh mixture (1%). Differently, INT is predominated by S-rich (29%), 165 

aged soot (27%), S-OM (15%), aged mixture (10%), and the lesser percentage of aged fly ash (8%), fresh mixture 166 

(5%), aged mineral (4%), and aged metal (2%) were also observed. Among three cloud events, the RES are 167 

dominated by S-OM in cloud event #1 and #2 and aged mixture particles in cloud event #3 (Figure S1). Influenced 168 

by air masses (Figure S1, S2), the proportion of aged mineral particles in the RES during cloud event #1 (14%) is 169 

nearly four times those in the other two cloud events. Aged fly ash particles have the highest proportion in cloud 170 

event #3 (10%) compared with the other two cloud events. However, the influence of air masses on the 171 

compositions of the RES during cloud events #2 and #3 is limited, as confirmed by the SPAMS data (Figure S4). 172 

It is also shown that the RES and INT analyzed by TEM/EDS can represent their compositions throughout cloud 173 

events #2 and #3, since such compositions were relatively stable throughout these periods (Figure S5). 174 

3.2 The morphology and mixing structure of carbonaceous particles 175 

OM-containing particles, including all the S-OM particles, part of aged refractory (S-OM/OM-refractory), and 176 

aged mixture (S-OM/OM-soot/mineral/metal/fly ash) particles, accounted for 60% of RES and 33% of INT during 177 

cloud events #2 and #3. According to the mixing structures between OM and other materials (Figure 3), OM-178 

containing particles are classified into the following five categories: coating (Figure 3b), core-shell (Figure 3c), 179 
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embedded (Figure 3d), attached (Figure 3e) and homogenous-like (Figure 3f) structures (Li et al., 2016). A particle 180 

is classified as coating structure when wrapped with a thin layer of OM. The thickness of the coating layer ranges 181 

from 12 to 150 nm. Generally, the shapes of OM-containing particles with coating structure are elliptical or 182 

irregular. The difference between the core-shell structure and coating structure is the relative thickness of OM: 183 

Core-shell structure possessed thicker organics than coating structure. The thickness of the shell varies from 86 184 

to 2110 nm, and the ratio of the projected area of the shell to particle ranges from 0.20 to 0.97. Moreover, OM-185 

containing particles with core-shell structure are round. Embedded structure refers to the particle with OM 186 

embedded in other materials (e.g., sulfate). The attached structure refers to the particle of OM attached to other 187 

materials. The homogenous-like structure represents particles with evenly mixed and no identifiable boundary 188 

between organic and non-organic matter.  189 

The first most abundant particles are coating geometry comprising 53% of RES and 59% of INT during cloud 190 

event #2 and #3, respectively. The second are core-shell particles for RES and attached particles for INT. The 191 

percentage of core-shell particles in the RES is almost 2.5 times that in the INT (27% vs. 12%). Embedded and 192 

homogenous-like particles account for minor proportions (< 4%) for both RES and INT. 193 

Soot-containing particles, including all the aged soot particles (S/OM-soot) and part of a fresh mixture 194 

(soot/mineral/metal/fly ash) and aged mixture particles (S/OM-soot/mineral/metal/fly ash), account for 36% of 195 

RES and 39% of INT during cloud event #2 and #3, respectively. The fraction is consistent with the range of those 196 

(< 30% – ~60%) observed at the same site by SPAMS (Zhang et al., 2017a). Most of the soot are distributed 197 

around the periphery of particles (Figure S6). Figure 4 shows the Df of soot within RES and INT of cloud event 198 

#2 and #3. The result shows that the Df of soot is smaller in the RES (1.82 ± 0.12) than in the INT (2.11 ± 0.09), 199 

which means that soot is more branched in the RES. It is noted that 62.5% of all soot-containing particles with 200 

clear boundaries are included in the Df calculation since thick coating around soot might make the boundary of 201 

monomers not clear enough (Bhandari et al., 2019). The obtained Df are close to those (1.83 – 2.16) reported at a 202 

background site (Wang et al., 2017). The Df of soot in the RES and INT likely represents partly coated soot (1.82 203 

± 0.05) (Yuan et al., 2019) and embedded soot (2.16 ± 0.05) (Wang et al., 2017), respectively. In addition to 204 

emission sources and coating processes, high relative humidity (RH) during nighttime is a critical factor to 205 

increase the compactness of soot (Yuan et al., 2019). 206 

3.3 In-cloud formation of OM 207 

It can be seen from Figure 2 that a shift of dominant particle types from S-rich (29%) and aged soot (27%) in 208 

the INT to the aged mixture (23%) and S-OM (22%) in the RES. In particular, the fraction of OM-containing 209 

particles increases from 33% in the INT to 60% in the RES. It is unlikely due to the favorable activation of S-OM 210 

or aged mixture, since mixing with OM generally lower the hygroscopicity of inorganic-dominant particles (e.g., 211 

S-rich) (Brooks et al., 2004; Pierce et al., 2012). OM coating at the same site has been shown to inhibit the CCN 212 

activation of soot-containing particles (Zhang et al., 2017a). Instead, it is most probably attributed to the in-cloud 213 

formation of OM on the surface of some S-rich particles, shifting the dominant particle type from S-rich to S-OM 214 

particles. It can be supported by the relatively larger median size of S-OM particles (0.76 μm) than S-rich particles 215 

(0.56 μm) (Figure S7), since in-cloud formation of OM is expected to enlarge the original S-rich particles (Pierce 216 

et al., 2012).  217 
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In addition, the fraction of OM-containing particles with core-shell mixing structure in the RES is almost 2.5 218 

times that in the INT (Figure 3a). Such a mixing structure is similar to those observed in the Arctic, background, 219 

or rural atmosphere (Hiranuma et al., 2013; Li et al., 2016; Yu et al., 2019), but is different from previous findings 220 

in polluted air where OM is typically mixed with sulfate (Li et al., 2016). It is also consistent with several 221 

laboratory simulations demonstrating that reactive uptake of volatile organic compounds (VOCs) on inorganic 222 

sulfate and follow-up strong interactions between there species would lead to a core-shell morphology (e.g., Zhang 223 

e al., 2018; Riva et al., 2019; Zhang et al., 2019). Our results support the hypothesis that the core-shell morphology 224 

with secondary organic aerosol (SOA) in the shell phase is predominant (Gorkowski et al., 2020). Based on the 225 

measurements from aerosol optical tweezers experiments and literature data, the authors come up with a particle 226 

morphology prediction framework developed for mixtures of organic aerosol. 227 

 Moreover, we estimated the O/C ratio of coating and shell within OM-containing particles. It should be noted 228 

that the O/C ratio of organic coating and shell is underestimated herein due to the copper grid evenly covered by 229 

carbon film. Nevertheless, the average value of the O/C ratio of RES is higher than INT, and the average value of 230 

the O/C ratio of RES with core-shell structure is two times that with coating structure (Table S2), indicating that 231 

these RES with core-shell particles are more oxidized. At the same site, we have previously observed enhanced 232 

aqueous SOA, such as oxalate in the cloud (Zhang et al., 2017b). Higher O/C ratio of core-shell particles is also 233 

consistent with current studies reporting more oxidized organic species in cloud/fog residues (Brege et al., 2018; 234 

Chakraborty et al., 2016; Zhang et al., 2017b). With high levels of VOCs at the sampling site (Lv et al., 2019), 235 

prevalent formation of aqueous SOA through the uptake of VOCs in cloud droplets would be expected (Kim et 236 

al., 2019; Liu et al., 2018a). The contribution from photochemical processes may also be reflected by the 237 

association of the highest fraction (81%) of OM-containing particles with a higher concentration of O3 during 238 

cloud event #2 (Table S3). 239 

However, one may expect that such core-shell mixing structure in the RES can also be explained by the primary 240 

activation of S-OM particles with larger sizes. Unfortunately, no sample is available before cloud events. However, 241 

with evidence from the collocated SPAMS, we show that this is not convincing. As shown in Table S4, the ratios 242 

of relative peak area between organics and sulfate are similar between the INT and particles before cloud event, 243 

whereas they are higher in the RES. This is corresponding to the production of oxidized organics during in-cloud 244 

processes (Zhang et al., 2017b). It is noted that while some loss of volatile organic compounds during the 245 

TEM/EDS analysis may affect the O/C of particles, the relatively higher O/C ratio for the RES is still affirmative. 246 

Droplets are expected to dissolve more abundance of volatile organic compounds (Chakraborty et al., 2016), 247 

evaporation of which would result in an underestimate of O/C to a higher degree rather than the INT.  248 

3.4 The Df of soot in the RES and INT 249 

While some previous studies demonstrated that soot aggregates tend to be more compact (with larger Df) after 250 

aging or cloud processing (Adachi and Buseck, 2013; Wu et al., 2018), our results suggest that in-cloud processes 251 

may result in more branched soot, as shown in Figure 4. Considering that Df is controlled mainly by emission 252 

sources, combustion conditions, and aging processes (Adachi et al., 2007), we propose three possible explanations 253 

for the lower Df of soot in the RES than that in the INT. The first and the most likely reason is that the relatively 254 

large deformation and reconfiguration of soot aggregates are inhibited when non-volatile materials fill the spaces 255 
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between the branches during transport and activation into cloud droplets (Zhang et al., 2018). And, if the soot 256 

aggregates are not coated by non-volatile materials, they may shrink and become more compact during long-257 

distance transport (Adachi and Buseck, 2013). We show that soot aggregates in the INT have higher Df and lower 258 

average ECD (247 nm vs. 266 nm) than that in the RES, which means that smaller, tighter soot particles are less 259 

likely to act as CCN, and larger, less dense soot particles are likely to act as CCN. This is consistent with a study 260 

reporting that small particles are more compact than large particles (Adachi et al., 2014). The second is that water-261 

soluble substances within aerosols will be miscible after activating to cloud droplets (Gorkowski et al., 2020), and 262 

the coating materials of soot may be released, which makes soot more branched in the droplets and the following-263 

up droplet evaporation. The third possible explanation is that different combustion materials and combustion 264 

conditions produce soot-containing particles with different mixing states and morphology (China et al., 2014; 265 

Khalizov et al., 2013; Liu et al., 2017; Zhang et al., 2018). 266 

This result is in contrast to the current study reporting that soot sampled after cloud droplet evaporating are 267 

more compact than freshly emitted and interstitial soot (Bhandari et al., 2019). Our observations in the background 268 

site show that the majority of soot aggregates in both RES and INT (~80%) are located in off-center positions, 269 

having less compact shapes even after being coated. This is quite different from the core-shell model currently 270 

used in the climate models (Bond and Bergstrom, 2006; Wu et al., 2018). Through theoretical calculation, Adachi 271 

et al. (2010) suggested that absorption cross-sections could be reduced by 20-30% with off-center positions of 272 

soot relative to center positions. This means that the models based on core-shell assumption may overestimate the 273 

absorption of soot-containing particles after cloud processing. 274 

4 Conclusion and atmospheric implications 275 

The result highlights the different morphology and mixing structures of activated and interstitial particles, 276 

which may imply the substantial role of in-cloud aqueous processes in reshaping the activated particles. While Yu 277 

et al. (2019) considered organic coatings on sulfate in the Arctic as a result of the increase of SOA following 278 

particle aging and growth during transport, our data further imply a specific role of in-cloud processes in the 279 

coating on sulfate. The prevalence of OM shelled particles upon in-cloud processes also supports a recent 280 

laboratory observation depicting that rapid film formation and fast heterogeneous oxidation can provide an 281 

efficient way of converting water-insoluble organic films into more water-soluble components in aerosols or cloud 282 

droplets (Aumann and Tabazadeh, 2008).  283 

Gorkowski et al. (2020) suggested that mixing structures of OM-containing particles are related to the oxidation 284 

degree of OM. We also show that OM shells formed in-cloud have a higher degree of oxidation. Such a chemical 285 

and morphology modification of aerosol particles may influence species diffusivities from the interior to the 286 

surface region of the shell and gas-particle partitioning between the shell and gas (Liu et al., 2016; Shiraiwa et al., 287 

2013). Such a reshaping may also have an influence on aerosol hygroscopicity. Extrapolating the linear 288 

relationship between the O/C ratio and the hygroscopicity parameter (κorg) indicates that κorg-shell is about 1.4 times 289 

κorg-coating (Jimenez et al., 2009; Lambe et al., 2011). In addition, the formation of the organic film could result in 290 

a change of surface tension and thus affect the critical supersaturation required for particle activation (Ovadnevaite 291 

et al., 2017). For mineral particles, the heterogeneous ice nucleation potential may be suppressed when coated by 292 
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OM (Möhler et al., 2008). Given the critical contribution of in-cloud aqueous SOA, several mixing structures of 293 

OM-containing aerosols upon in-cloud processes may have substantial implications in modeling the direct and 294 

indirect radiative forcing of aerosols (Scott et al., 2014; Zhu et al., 2017). 295 
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 543 

Figure 1. TEM images and EDS spectra of individual RES and INT particles with different particle types: (a) S-rich; 544 

(b) S-OM; (c) fresh mixture; (d) aged soot; (e) aged mineral; (f) aged metal; (g) aged fly ash; (h) aged mixture. 545 
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 546 

Figure 2. Number fractions of different particle types in the RES and INT of cloud event #2 and #3 measured by 547 

TEM/EDS. 548 
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 549 

Figure 3. Number fractions of OM-containing particles with different mixing structures in the RES and INT (a) and 550 

typical TEM images: coating (b); core-shell (c); embedded (d); attached (e); homogenous-like (f) during cloud event #2 551 

and #3. 552 
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 553 

Figure 4. Fractal dimensions of soot in the RES and INT during cloud event #2 and #3.  554 
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