1 Supplement of

2 Impact of in-cloud aqueous processes on the chemical

3 compositions and morphology of individual atmospheric

- 4 aerosols
- 5 Yuzhen Fu et al.
- 6 **Correspondence to*: Guohua Zhang (<u>zhanggh@gig.ac.cn</u>) and Xinhui Bi (<u>bixh@gig.ac.cn</u>)

7 1 Air mass backward trajectories and meteorology conditions

8 The backward trajectory and the height (above sea level) of air masses during sampling were calculated 9 by the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model 10 (http://ready.arl.noaa.gov). During three cloud events, the sampling site was greatly influenced by air 11 masses from Southeast Asia, northern China and the South China Sea. Compared with the cloud event 12 #1, the air masses of cloud event #2 and #3 passed through a relatively low path on the way to the 13 sampling site. Thus, the air masses of cloud event #2 and #3 were affected more by the ground 14 anthropogenic emissions. The ambient temperature at the sampling station varied from 12.1 to 18.6 °C 15 during three cloud events, which means the generation of liquid cloud droplets. All samples were 16 collected during the stable period of cloud events, when the mass concentration of PM_{2.5} was less than 5 17 µg m⁻³ and visibility was less than 100 m. The concentrations of PM_{2.5} during cloud event #1 were lower 18 than those during cloud event #2 and #3. Consistently, the mean concentrations of O₃, SO₂ and NO_X were 19 higher in the cloud event #2 and #3 (Table S3).

20 2 Identification of several components within RES and INT

21 Base on various element spectra, residual particles (RES) and interstitial particles (INT) were mainly 22 classified as sulfate-rich (S-rich), carbonaceous material, mineral, metal, and fly ash (Twohy and 23 Anderson, 2008;Li et al., 2016). Elemental compositions of S-rich were dominated by S, O, and some of 24 them were associated with minor N, K and Na. Low intensity of N could be due to the evaporation of 25 ammonia nitrate under the high energy electron beam (Smith et al., 2012). This led to the bubbly 26 appearance of S-rich. It was found that the characteristic peaks of sulfate $(m/z - 97 \text{HSO}_4)$ and nitrate $(m/z - 46NO_2^{-} / - 62NO_3^{-})$ often coincide in the mass spectra of single RES and INT by SPAMS (Lin et 27 28 al., 2017). In this case, S-rich represented secondary inorganic particles. The proportion of sulfate-29 containing particles was similar in the RES and INT (93% vs 94%). The elemental compositions of 30 carbonaceous materials were characteristics of abundant C and minor O. Carbonaceous materials were 31 divided into soot and OM according to different morphology. Soot were composed of tens to hundreds 32 of carbon spheres ranging from 21 to 108 nm in diameter (average diameter was 47.7 nm), which often 33 displayed botryoidal aggregates. OM did not have chain-like structure, which generally exhibited

34 amorphous state and spherical or irregular shapes. Mineral particles were consisted of Si, Al, Ca, O and 35 minor Fe. Mineral were mainly clay, feldspar, calcite and gypsum, usually showing irregular shapes. 36 Metal particles were represented as Fe, Zn, Ti, Mn, or Ni. Metal particles were characteristic of spherical, 37 rectangular or irregular morphologies. They were largely from natural dust and industrial combustion 38 (Silva et al., 2000;Ye et al., 2018). The presence of spherical metal particles indicated that they 39 experienced melting at high temperature (Giere et al., 2003;Giere et al., 2006). Fly ash particles mainly 40 contained Si, Al and O. Fly ash particles tended to be spherical in morphology and they were generally 41 produced from the process of coal combustion (Chen et al., 2012; Henry and Knapp, 1980).

42 3 Influence of air masses on the distribution of particle types in the RES

43 The different air masses are expected to affect the distribution of particle types. The distribution of 44 several types of particles in the RES were observed to be divergent in different cloud events, 45 corresponding to different air masses, as shown in Figure S1 and Figure S2. The number fraction of OM-46 containing particles was the highest (81%) in cloud event #2, which might be partly attributed to the 47 higher concentration of O₃ during cloud event #2 (Table S3). Higher solar radiation at the sampling time 48 might also promote heterogeneous photochemical oxidation reactions during the cloud process and 49 increased the generation of OM within cloud droplets (Xu et al., 2017). Aged metal particles accounted 50 a similar percentage (7-12%) for three cloud events. The proportion of aged mineral during cloud event 51 #1 (14%) was nearly four times those in the other two cloud events. Aged fly ash particles had the highest 52 proportion (10%) in cloud event #3 compared with the other two cloud events, which is most probably 53 influenced by the different air masses (Figure S2). Aged mineral particles of cloud event #1 may be 54 influenced by the long-distance transportation of dust from Southeast Asia (Salam et al., 2003). Clearly, 55 aged fly ash particles of cloud event #3 are associated with the air masses from the PRD region with a 56 dense distribution of industrial facilities there (Cao et al., 2006).

57 4 The size distribution of RES and INT

58

In this study, a PM_{2.5} cyclone inlet and a GCVI (ground-based counterflow virtual impactor) inlet were 59 used to collect INT and RES, which is similar to (Cozic et al., 2007). Additionally, the particle size in 60 this study is ECD (equivalent circle diameter) obtained from TEM images, which is larger than ESD

61 (equivalent spherical diameter). Liu et al. (2018) showed that the ECD of individual dry particles on the
62 substrate is 0.4952 times that of the ESD.

The size distribution data shows a higher median diameter of RES (1.20 μm) than INT (0.63 μm) (Figure S6), which are higher than those (0.8 and 0.45 μm, respectively) at Mount Tai in northern China (Li et al., 2011). This could be due to that Mount Tai is located in an industrial area, whereas our site represents a background region mainly influenced by long-range transport. Additionally, the formation of secondary compounds during cloud events increase the size of RES (Zhang et al., 2017).

68 5 SPAMS analysis

69 A single particle aerosol mass spectrometry (SPAMS, Hexin Analytical Instrument Co., Ltd., 70 Guangzhou, China) was used to analyzed chemical composition and size distribution of individual 71 particles. Particles entering SPAMS were first focused into a beam of particles, and then their vacuum 72 dynamic size were measured by two continuous diode Nd:YAG laser beams (532 nm). Next, the pulsed 73 laser (266 nm) was precisely excited to ionize target particle according to the intrinsic velocity of each 74 particle. Finally, we obtained the information of individual particles including vacuum dynamic particle 75 size and the positive and negative ion mass spectrometry. The SPAMS is quite different from Aerodyne 76 aerosol mass spectrometers (AMS). The latter can quantify the bulk chemical composition and size 77 distribution of submicron nonrefractory aerosols (i.e. organic aerosol, sulfate, ammonium, nitrate and 78 chloride), which obtain mass concentration of detected aerosols (Jimenez et al., 2003). Number fraction 79 of several type particles can be known by SPAMS, which cannot gain mass concentration of several 80 chemical compounds. However, for studying the chemical composition and mixing state of individual 81 particles, the SPAMS is more useful.

All particles with bipolar mass spectra and the size range of $d_{va} 0.1-1.9 \mu m$ were classified several clusters by an adaptive resonance theory neural network (ART-2a) with a learning rate of 0.05, a vigilance factor of 0.8 and 20 iterations, and merged similar clusters manually. Ten characteristic particle types (Figure S3) were obtained including BC (black carbon)-containing, OC (organic carbon), HMOC (highly molecular organic carbon), Dust, K-rich, Metal, Na-K, Amines, SS (sea salt) and Others. BCcontaining particles are characterized by elemental carbon cluster ions ($m/z \ 12C^{\pm}, \ 24C_{2}^{\pm}, \ 36C_{3}^{\pm}, \ 48C_{4}^{\pm}, \dots$). OC particles mainly contain fragment ions of organics ($m/z \ 27C_{2}H_{3}^{+}, \ 37C_{3}H^{+}, \ 43C_{2}H_{3}O^{+}, -$ 89 26CN⁻, ...). The mass spectra of HMOC particles show the presence of peaks of OC particles and some 90 other organic peaks (such as m/z 77C₆H₅⁺, 91C₇H₇⁺). Furthermore, HMOC particles are distinguished 91 from OC particles by marked ion fragments detected in range of m/z > 100. Dust particles present 92 significant ions at m/z 27Al⁺, 40Ca⁺ and 56CaO⁺/Fe⁺. K-rich particles are identified according to the 93 strong signal at m/z 39K⁺ only in positive mass spectra. Metal particles show the presence of metal ion 94 peaks (such as Fe⁺ (m/z 54 and 56), Mn⁺ (m/z 55), Pb⁺ (m/z 206, 207 and 208)) in positive mass spectra. 95 Na-K particles are characterized by peaks at m/z 23Na⁺, 39K⁺, and less intense peaks at m/z -46NO₂⁻, -96 62 NO₃⁻, -97 HSO₄⁻. The mass spectra of amines particles contain ions signals at m/z 59N(CH₃)₃⁺, 97 $86C_5H_{12}N^+$, $101C_6H_{15}N^+$. SS particles are mainly composed of ions peaks at m/z 23Na⁺, 46Na2⁺, 62Na2O⁺, 98 $63Na_2OH^+$ and $81Na_2Cl^+$. Most particles are observed to internally mixed with sulfate and nitrate (m/z -99 46, -62, -97). Particles with unconspicuous mass spectrum characteristics are named others. Specific

100 classification criteria were described in detail elsewhere (Zhang et al., 2015).

102 Figure S1. Number fraction of different particle types in the RES during three cloud events.

Figure S2. HYSPLIT back trajectories (72 h) for air masses arriving at our sampling site at the height of 1700
m (a) and 1800 m (b) hourly during the three cloud events. The HYSPLIT back trajectories at the height of
106 1800 m during sampling periods and heights (above sea level) of the air masses during transport (d). The
horizontal axis represents several time points (0-72 h) before the time point input into the HYSPLIT model.

108

109 Figure S3. Average positive and negative mass spectra of main nine types particles (BC-containing, OC,

110 HMOC, Dust, K-rich, Metal, Na-K, Amines, SS) measured by SPAMS.

112 Figure S4. The chemical composition of RES during cloud event #2 and #3 measured by SPAMS.

113

114 Figure S5. Time series of chemical composition of RES and INT during sampling periods of cloud event #2

¹¹⁵ and #3 measured by SPAMS.

117 Figure S6. Typical TEM images of soot particles in the RES (a-d) and INT (e-h).

119 Figure S7. The size distribution of S-rich and S-OM particles. There are few S-rich particles with the size of

120 less than 0.2 µm, and the median size are 0.56 µm and 0.76 µm for S-rich and S-OM particles, respectively.

122 Figure S8. Size distribution of RES and INT during cloud event #2 and #3. There are more INT particles

125 Figure S9. Average positive and negative mass spectra of OM particles (OC and HMOC) of RES and INT

126 particles during cloud event #2 and #3 measured by SPAMS.

127 Table S1. The information of cloud events and samples, including starting and ending time of each cloud event, the number and type of analyzed particles, the 128 mean value of visibility and number concentration of RES or INT during sampling time.

Cloud event	Starting Time*	Ending Time*	Particles	Туре	Visibility/m	Number Concentration/cm ⁻³
Cloud #1	2017/5/20 18:19	2017/5/21 8:34	190	RES	66	195
Cloud #2	2017/5/23 20:35	2017/5/25 6:35	161	INT	50	99
	2017/5/25 20.55	2017/3/23 0.33	162	RES	88	299
Cloud #3	2017/6/8 18:30	2017/6/10 17:30	132	INT	44	996
	2017/0/0 10.30	2017/0/10 17.50	135	RES	33	111

129 * The time is the local time and that is Chinese Standard Time, UTC+8.

130	Table S2.	The average value of O	/C ratio of OM-containing par	ticles with core-shell and coating	; mixing
131	structures.				
132					
133			coating	core-shell	
	-	RES	0.106	0.232	
		INT	0.076	0.056	

Table S3. The concentration of NO_X , SO_2 , O_3 , PM_{10} and $PM_{2.5}$ during three cloud events.

cloud event	NO _X (ppb)	SO ₂ (ppb)	O ₃ (ppb)	PM ₁₀ (µg m ⁻³)	PM _{2.5} (µg m ⁻³)
#1	2.6	0.4	30.5	3.6	1.1
#2	3.5	1.2	39.1	4.8	1.9
#3	4.3	0.6	34.4	11.4	4.7

137 **Table S4.** The ratios of relative peak area between organics (m/z 27, 29, 37, 43, 50, 51, 61, 63) and sulfate

138 (m/z -97) of OM particles (OC and HMOC) during in-cloud (RES and INT) and pre-cloud (Ambient)

- 139 periods.
- 140

141		RES	INT	Ambient
	Organics/Sulfates	1.676	1.566	1.594

142 **Table S5.** Morphological descriptors of soot particles within RES and INT.

1	parameters	A_p	d_p	L_{max}	Ν	D_f	kg
	RES	1658(175)	43(2)	255(12)	66(8)	1.82(0.12)	3.5(0.08)
	INT	1842(133)	46(2)	316(16)	68(6)	2.11(0.09)	2.72(0.05)

144 A_p , mean projected area of the monomer; d_p , monomer diameter; L_{max} , maximum length of soot 145 aggregates; N, number of monomers in a soot aggregate; D_f , mass fractal dimension; k_g , structural 146 coefficient. In parentheses are the standard error of A_p , d_p , L_{max} , N, D_f and k_g .

Table S6. Overlap (δ), constant (k_a) and empirical exponent (α).

parameters	δ	<i>k</i> _a	α
RES	1.54	1.52	1.13
INT	1.4	1.44	1.11

150 References

- Cao, G., Zhang, X., and Zheng, F.: Inventory of black carbon and organic carbon emissions from China,
 Atmospheric Environment, 40, 6516-6527, 10.1016/j.atmosenv.2006.05.070, 2006.
- 153 Chen, H., Laskin, A., Baltrusaitis, J., Gorski, C. A., Scherer, M. M., and Grassian, V. H.: Coal fly ash as
- a source of iron in atmospheric dust, Environmental Science & Technology, 46, 2112-2120,
- 155 10.1021/es204102f, 2012.
- 156 Cozic, J., Verheggen, B., Mertes, S., Connolly, P., Bower, K., Petzold, A., Baltensperger, U., and
- 157 Weingartner, E.: Scavenging of black carbon in mixed phase clouds at the high alpine site Jungfraujoch,
- 158 Atmospheric Chemistry and Physics, 7, 1797-1807, 10.5194/acp-7-1797-2007, 2007.
- 159 Giere, R., Carleton, L. E., and Lumpkin, G. R.: Micro- and nanochemistry of fly ash from a coal-fired
- 160 power plant, American Mineralogist, 88, 1853-1865, 10.2138/am-2003-11-1228, 2003.
- 161 Giere, R., Blackford, M., and Smith, K.: TEM study of PM_{2.5} emitted from coal and tire combustion in a
- 162 thermal power station, Environmental Science & Technology, 40, 6235-6240, 10.1021/es060423m,
- 163 2006.
- Henry, W. M., and Knapp, K. T.: Compound forms of fossil-fuel fly-ash emissions, Environmental
 Science & Technology, 14, 450-456, 10.1021/es60164a010, 1980.
- 166 Jimenez, J. L., Jayne, J. T., Shi, Q., Kolb, C. E., Worsnop, D. R., Yourshaw, I., Seinfeld, J. H., Flagan, R.
- 167 C., Zhang, X. F., Smith, K. A., Morris, J. W., and Davidovits, P.: Ambient aerosol sampling using the
- 168 Aerodyne Aerosol Mass Spectrometer, Journal of Geophysical Research-Atmospheres, 108, D7,
- 169 10.1029/2001jd001213, 2003.
- 170 Liu, L., Zhang, J., Xu, L., Yuan, Q., Huang, D., Chen, J., Shi, Z., Sun, Y., Fu, P., Wang, Z., Zhang, D.,
- 171 and Li, W.: Cloud scavenging of anthropogenic refractory particles at a mountain site in North China,
- 172 Atmospheric Chemistry and Physics, 18, 14681-14693, 10.5194/acp-18-14681-2018, 2018.
- 173 Li, W., Li, P., Sun, G., Zhou, S., Yuan, Q., and Wang, W.: Cloud residues and interstitial aerosols from
- 174 non-precipitating clouds over an industrial and urban area in northern China, Atmospheric
- 175 Environment, 45, 2488-2495, 10.1016/j.atmosenv.2011.02.044, 2011.
- 176 Li, W., Sun, J., Xu, L., Shi, Z., Riemer, N., Sun, Y., Fu, P., Zhang, J., Lin, Y., Wang, X., Shao, L., Chen,
- 177 J., Zhang, X., Wang, Z., and Wang, W.: A conceptual framework for mixing structures in individual
- aerosol particles, Journal of Geophysical Research-Atmospheres, 121, 13784-13798,
- 179 10.1002/2016jd025252, 2016.

- 180 Lin, Q., Zhang, G., Peng, L., Bi, X., Wang, X., Brechtel, F. J., Li, M., Chen, D., Peng, P., Sheng, G., and
- 181 Zhou, Z.: In situ chemical composition measurement of individual cloud residue particles at a
 182 mountain site, southern China, Atmospheric Chemistry and Physics, 17, 8473-8488, 10.5194/acp-17183 8473-2017, 2017.
- 184 Salam, A., Bauer, H., Kassin, K., Ullah, S. M., and Puxbaum, H.: Aerosol chemical characteristics of a
- 185 mega-city in Southeast Asia (Dhaka-Bangladesh), Atmospheric Environment, 37, 2517-2528,
- 186 10.1016/s1352-2310(03)00135-3, 2003.
- Silva, P. J., Carlin, R. A., and Prather, K. A.: Single particle analysis of suspended soil dust from Southern
 California, Atmospheric Environment, 34, 1811-1820, 10.1016/s1352-2310(99)00338-6, 2000.
- 189 Smith, S., Ward, M., Lin, R., Brydson, R., Dall'Osto, M., and Harrison, R. M.: Comparative study of
- single particle characterisation by Transmission Electron Microscopy and time-of-flight aerosol mass
- 191 spectrometry in the London atmosphere, Atmospheric Environment, 62, 400-407,
- 192 10.1016/j.atmosenv.2012.08.028, 2012.
- Twohy, C. H., and Anderson, J. R.: Droplet nuclei in non-precipitating clouds: composition and size
 matter, Environmental Research Letters, 3, 045002, 10.1088/1748-9326/3/4/045002, 2008.
- 195 Xu, W., Han, T., Du, W., Wang, Q., Chen, C., Zhao, J., Zhang, Y., Li, J., Fu, P., Wang, Z., Worsnop, D.
- 196 R., and Sun, Y.: Effects of aqueous-phase and photochemical processing on secondary organic aerosol
- 197 formation and evolution in Beijing, China, Environmental Science & Technology, 51, 762-770,
- 198 10.1021/acs.est.6b04498, 2017.
- 199 Ye, L., Huang, M., Zhong, B., Wang, X., Tu, Q., Sun, H., Wang, C., Wu, L., and Chang, M.: Wet and dry
- 200 deposition fluxes of heavy metals in Pearl River Delta Region (China): Characteristics, ecological risk
- assessment, and source apportionment, Journal of Environmental Sciences-China, 70, 106-123,
- 202 10.1016/j.jes.2017.11.019, 2018.
- 203 Zhang, G., Han, B., Bi, X., Dai, S., Huang, W., Chen, D., Wang, X., Sheng, G., Fu, J., and Zhou, Z.:
- 204 Characteristics of individual particles in the atmosphere of Guangzhou by single particle mass
- 205 spectrometry, Atmospheric Research, 153, 286-295, 10.1016/j.atmosres.2014.08.016, 2015.
- 206 Zhang, G., Lin, Q., Peng, L., Bi, X., Chen, D., Li, M., Li, L., Brechtel, F. J., Chen, J., Yan, W., Wang, X.,
- 207 Peng, P., Sheng, G., and Zhou, Z.: The single-particle mixing state and cloud scavenging of black
- 208 carbon: a case study at a high-altitude mountain site in southern China, Atmospheric Chemistry and
- 209 Physics, 17, 14975-14985, 10.5194/acp-17-14975-2017, 2017.