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Abstract. The potential temperature is a widely used quantity in atmospheric science since it is conserved for air’s adiabatic

changes of state. Its definition involves the specific heat capacity of dry air, which is traditionally assumed as constant. However,

the literature provides different values of this allegedly constant parameter, which are reviewed and discussed in this study.

Furthermore, we derive the potential temperature for a temperature-dependent parameterization of the specific heat capacity of

dry air, thus providing a new reference potential temperature with a more rigorous basis. This new reference shows different5

values and vertical gradients in the upper troposphere and the stratosphere compared to the potential temperature that assumes

constant heat capacity. The application of the new reference potential temperature to the prediction of gravity wave breaking

altitudes reveals that the predicted wave breaking height may depend on the definition of the potential temperature used.

1 Introduction

According to the book Thermodynamics of the Atmosphere by Alfred Wegener (1911), the first published use of the expression10

potential temperature in meteorology is credited to Wladimir Köppen (1888)1 and Wilhelm von Bezold (1888), both following

the conclusions of Hermann von Helmholtz (1888) (Kutzbach, 2016). Over 130 years ago, von Helmholtz perceived that within

the atmosphere the heat exchange between air masses of different temperatures, which are relatively moved, is insufficiently

explained by heat transfer due only to radiation and convection. He argued that wind phenomena (e.g., the trade winds), storm

events, and the atmospheric circulation were more intense, of larger extent, and more persistent than observed if the air’s15

heat exchange within the discontinuity region (the friction surface of the different air masses) was not mainly due to eddy-

driven mixing. On his way to analytically describe the heat exchange of different air masses within the atmosphere, in May

of 1880, von Helmholtz introduced the air’s immanent heat while its absolute temperature changes with changing pressure

(von Helmholtz, 1888). In essence, von Helmholtz concluded that the temperature gained by a volume of dry air due to its

adiabatic descent from a certain initial pressure level (p) to ground pressure (p0) corresponds to the air’s immanent heat. In20

November of the same year, in agreement with von Helmholtz and probably inspired by a presentation that was given in

1In the publication year (1911) of Wegener’s book, Köppen’s daughter Else got engaged to Alfred Wegener (Reinke-Kunze, 2013) and they married in the

year 1913 (Hallam, 1975).
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June by Köppen (1888), this property was renamed and reintroduced as the air’s potential temperature (θ in the following) by

von Bezold (1888) with the following definition for strictly adiabatic changes of state:

θ = T

(
p0

p

) γ−1
γ

, (1)

where T and p are the absolute temperature and pressure, respectively, of an air parcel at a certain initial (pressure-) altitude25

level. The quantities θ and p0 are corresponding values of the same air parcel’s absolute temperature and pressure if the air was

exposed to conditions at ground level. The dimensionless coefficient γ, nowadays called the isentropic exponent, was specified

as 1.41 (von Bezold, 1888).

Moreover, in the same publication, von Bezold concluded that for moist air’s adiabatic changes of state, its potential temper-

ature remains unchanged as long as the change of state occurs within dry-adiabatic limits; and further, if there is condensation30

and precipitation, the potential temperature changes by a magnitude that is determined by the amount of water that falls out

of the air parcel. From a modern perspective, it is clear that the air parcel is an isolated thermodynamic system, and adiabatic

processes correspond to processes with conserved entropy (i.e., isentropic processes). The description of the immanent heat

is then equivalent to the thermodynamic state function entropy, which corresponds to potential temperature of dry air in a

one-to-one relationship.35

In general, the potential temperature has the benefit of providing a practicable vertical coordinate (equivalent to the pressure

level or the altitude above, e.g., sea level) to visualise and analyse the vertical distribution and variability of (measured) data

related to any type of atmospheric parameter. Admittedly, the use of the potential temperature as a vertical coordinate is initially

less intuitive than applying altitude or pressure coordinates. Indeed, the potential temperature bears a certain abstractness to

describe an air parcel’s state at a certain altitude level by its imaginary dry-adiabatic descent to ground conditions. However,40

one major advantage of using the potential temperature as a vertical coordinate is that the (measured) data are sortable with

respect to the entropy state at which the atmospheric samples were taken. Thus, the comparison of repeated measurements of

an atmospheric parameter on an equipotential surface (isentrope) or layer excludes any diabatic change of the air parcel’s state

due to an entropy-changing uplift or descent of the air mass.

Apart from characterising the isentropes, the vertical profiles of the potential temperature (θ as a function of height z)45

are used as the reference for evaluating the atmosphere’s actual vertical temperature gradient, which allows characterising its

static stability. Notably, von Bezold (1888) already proposed the potential temperature as an atmospheric stability criterion.

In its basic formulation, the potential temperature exclusively refers to the state of dry air, and thus the potential temperature

characterises the atmosphere’s static stability with respect to vertical displacements of a dry air parcel. In meteorology, the

static stability parameter is expressed in terms of the (squared) Brunt-Väisälä frequency N in the form50

N2 =
g

θ

∂θ

∂z
, (2)

where g is the gravitational acceleration. The potential temperature twice enters the formulation of the stability parameter, as the

denominator (θ−1) and as the vertical gradient ∂θ∂z . In the research field of dynamical meteorology, the potential vorticity (PV)

is often used. The PV is proportional to the scalar product of the atmosphere’s vorticity (the air’s local spinning motion) and its
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stratification (the air’s tendency to spread in layers of diminished exchange). More concretely, the PV is the scalar product of55

the absolute vorticity vector and the three-dimensional gradient of θ, i.e., not only the potential temperature’s vertical gradient

but also its partial derivatives on the horizontal plane add to the resulting PV, although, particularly at stratospheric altitudes,

the vertical gradient constitutes the dominant contribution. For the analytical description of a fluid’s motion within a rotational

system, as is the atmosphere, the PV provides a quantity that varies exclusively due to diabatic processes. Occasionally, by

means of the dynamical parameter PV, the tropopause height is defined (usually at 2 PV units, see, e.g., Gettelman et al., 2011)60

as is, e.g., the edge of a large-scale cyclone such as the polar winter vortex on specific θ levels (cf. Curtius et al., 2005).

While for a dry atmosphere (i.e., with little or no water vapour) the potential temperature is the correct conserved quantity

(corresponding to entropy) for reversible processes, for an atmosphere containing water in two or more phases (vapour, liquid,

and/or solid phases) energy transfers due to phase changes play a major role. Thus, the formulation of the potential temperature

has to be extended (since entropy is still the right quantity for reversible processes, including phase changes). Starting from65

Gibbs’ equation, some formulations are available, e.g., the entropy potential temperature defined by Hauf and Höller (1987) or

more general versions as derived by Marquet (2011). In these formulations, phase changes and deviations from thermodynamic

equilibrium are included. An approximation to these more general formulations is, e.g., the equivalent potential temperature,

which includes latent heat release, assuming thermodynamic equilibrium (e.g., Emanuel, 1994). These formulations always

rely on the assumption of reversible processes (i.e., conserved entropy). However, in the case of large hydrometeors, liquid or70

solid particles are removed due to gravitational acceleration, leading to an irreversible process. Sometimes for this situation

a so-called pseudo adiabatic potential temperature is defined, assuming instantaneous removal of hydrometeors from the air

parcel; usually, meaningful approximations to this quantity are given, since generally it cannot be derived from first principles.

In a strict sense, this is not a conserved quantity, since an irreversible process is considered. Equivalent potential temperature

including phase changes for vapour and liquid water is often used for the determination of convective instabilities. The general75

formulation can be easily adapted for an ice equivalent potential temperature, i.e., for reversible processes in pure ice clouds

(see, e.g., Spichtinger, 2014). Although the latent heat of sublimation is larger than the latent heat of vaporisation, the absolute

mass content of water vapour decreases exponentially with decreasing temperature, leading to only small corrections due to

phase changes in pure ice clouds.

At altitudes above the clouds’ top, within the upper troposphere and across the tropopause, the air is substantially dried80

out compared to tropospheric in-cloud conditions. Therefore, above clouds and further aloft, e.g., within the stratosphere, the

conventional dry-air potential temperature may suffice to provide a meaningful vertical coordinate. Moreover, the potential

temperature is commonly used as a prognostic variable in numerical models for the formulations of the energy equation.

Thereby, very often both variants, the potential temperature as well as the equivalent potential temperature, are involved to

account for dry air situations and cloud conditions.85

In any case, the use of the potential temperature requires the following preconditions to be fulfilled:

1. θ should be based on a rigorous derivation to ensure its validity as a function of atmospheric altitude in order not to

corrupt its character as a vertical coordinate that allows for appropriately comparing (measured) atmospheric parameters,

and
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2. θ should approximate to the greatest possible extent the true entropy state of a probed air mass and should preferably90

account for the implied dependencies on atmospheric variables, even under the assumption that air behaves as an ideal

gas,

with the aim that the potential temperature behaves as a rational physical variable. Thus, still abiding by the ideal gas as-

sumption, a re-assessment of the fundamental atmospheric quantity θ is suggested, which is based on the state-of-knowledge

of air’s thermodynamic properties, and this re-assessed θ is comprehensively examined concerning its ability to hold also for95

atmospheric conditions above the troposphere.

In principle, the concept of the potential temperature is transferable to all systems of thermally stratified fluids as is a

planetary gas atmosphere or an ocean, to investigate heat fluxes (advection or diffusion) or the static stability of the fluid. In

astrophysics, the potential temperature is used almost identically as in atmospheric sciences to describe dynamic processes and

thermodynamic properties (e.g. static stability or vorticity) in the atmosphere of planets other than the Earth. Here, the same100

value p0 = 1000hPa, as applied to the Earth’s atmosphere, is frequently used as a reference pressure for the atmosphere of

other planets (Catling, 2015, Table 4), whereby the formulations of the specific heat capacity require adaptations to account for

the individual gas composition of the respective planetary atmosphere. The Weather Research and Forecasting model (WRF)

was extended to ”planetWRF” to simulate the weather in the atmosphere of other planets. Here, the potential temperature is

included in the prognostic model equations (Richardson et al., 2007), while it was pointed out by Li and Chen (2019) that105

this approach could suffer from not accounting for the temperature dependence of the isobaric specific heat capacity cp of the

respective atmosphere’s gas composition. The atmosphere of Jupiter’s moon Titan, the only known moon with a substantial

atmosphere, was comprehensively studied with frequent application of the potential temperature based on profile measurement

of temperature and pressure in Titan’s atmosphere by the Huygens-probe (Müller-Wodarg et al., 2014). Moreover, the potential

temperature is a frequently used quantity in oceanography (e.g., McDougall et al., 2003; Feistel, 2008), while here the consider-110

ation of sea water’s salinity and its impact on the specific heat capacity of sea water implies additional complexity. In particular,

McDougall et al. (2003) suggests a re-assessment of the potential temperature as applied in oceanography to approximate the

adiabatic lapse rate, thus this study bears certain parallels to the present investigation aiming at the reappraisal of the potential

temperature for atmosphere-related purposes. These studies from other disciplines motivate the need for a re-assessment of

the potential temperature for the atmospheric sciences. Thus, the approach provided herein proposes a modified calculation of115

the widely used quantity of the potential temperature by additionally accounting for the current state of knowledge concerning

air’s properties.

2 Derivation of the potential temperature for an ideal gas

The Gibbs equation (see, e.g., Kondepudi and Prigogine, 1998) is a general thermodynamic relation to describe the state of a

system with m components and reads as120

T dS = dH −V dp−
m∑

k=1

µk dMk, (3)
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where T denotes the absolute temperature in K, S the entropy in J K−1, H the enthalpy in J, V the volume in m3, µk the

chemical potential of component k in J kg−1, Mk the mass of component k in kg, and p the static pressure in Pa. Assuming

no phase conversion or chemical reaction within the system, the mass of each component does not change, hence dMk = 0 for

each component k.125

In the following, dry air is assumed to be the single component in the system. Expressing the Gibbs equation in its specific

form (i.e., division by the total mass Ma of dry air; note, lowercase letters indicate specific variables, e.g., h=H/Ma, etc.)

leads to

T ds= dh− V

Ma
dp ⇔ ds=

1
T

dh− V

MaT
dp. (4)

Furthermore, approximating dry air as an ideal gas leads to the following simplifications:130

– The ideal gas law

pV =MaRaT (5)

can be applied with the specific gas constant Ra of dry air, which is

Ra =
R

Mmol,a

=
8.31446261815324J mol−1K−1

0.0289586kg mol−1± 0.0000002kg mol−1
,

(6)

where R is the molar gas constant in J mol−1K−1 (Tiesinga et al., 2020; Newell et al., 2018) and Mmol,a is the molar135

mass of dry air (Lemmon et al., 2000), composed of nitrogen N2, oxygen O2, and argon Ar.

– The specific enthalpy is given by

dh= cpdT (7)

with cp the specific heat capacity of dry air.

Based on these assumptions, the change of the specific entropy (within the fluid dry air) is given by140

ds=
cp
T

dT −Ra
dp
p
. (8)

For isentropic changes of state, i.e., ds= 0, equation (8) reduces to

cp
T

dT =Ra
dp
p
. (9)

Note that the assumption of dry air being an ideal gas does not imply that in (9) the specific heat capacity cp is constant. While

statistical mechanics excludes any pressure dependence in the ideal-gas heat capacity, the general derivation (cf. Appendix A)145

permits a temperature dependence of cp. However, usually the temperature dependence is neglected in atmospheric physics
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and, instead, cp is assumed as constant. Immediately below and in Section 3, the treatment of cp as a temperature-independent

constant is discussed. The introduction of the temperature dependence then follows in Section 4.

Treating cp as a constant, rearrangement of (9) leads to

dT
T

=
Ra
cp

dp
p
. (10)150

Integration of (10) over the range from ground-level pressure and temperature (p0, T0) to the pressure and temperature at a

specific height (p, T ) yields

ln
(
T

T0

)
=

T∫

T0

dT ′

T ′
=
Ra
cp

p∫

p0

dp′

p′
=
Ra
cp

ln
(
p

p0

)
, (11)

and, after another straightforward conversion, one arrives at

ln
(
T0

T

)
=
Ra
cp

ln
(
p0

p

)
. (12)155

With the definition θcp = T0, equation (12) is transformed into the commonly used expression for determining the potential

temperature

θcp = T

(
p0

p

)Ra
cp

, (13)

for which the ground-level pressure p0 is arbitrary but usually set to p0 = 1000hPa. This choice coincides with the definition

of the World Meteorological Organisation (WMO, 1966) and the standard-state pressure (Tiesinga et al., 2020), but should160

not be confused with the standard atmosphere 101325Pa (Tiesinga et al., 2020). In the following, θcp denotes the potential

temperature based on a constant cp and, when a specific value of cp is applied, the subscript cp in the potential temperature’s

notation is replaced by the corresponding cp value.

3 Examining the assumption of constant cp for dry air

The general theory of thermodynamics, assuming dry air as an ideal gas, gives the expression165

cp =
(

1 +
f

2

)
Ra (14)

for the constant specific heat capacity, which is based on the results of statistical mechanics and the equipartition theorem (e.g.,

Huang, 1987). In (14), the parameter f = ftrans + frot + fvib is equal to the total number of degrees of freedom of the gas

molecules of which dry air consists. The individual contributions to f comprise the degrees of freedom of translation ftrans,

rotation frot, and vibration fvib. Assuming further that dry air exclusively consists of the linear molecules N2 and O2 (implying170

ftrans = 3 and frot = 2, while the contribution of Ar remains disregarded) and additionally neglecting the vibrational degrees

of freedom (fvib = 0), the general relation (14) reduces to

cp =
(

1 +
3 + 2

2

)
Ra =

7
2
Ra. (15)
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Figure 1. Vertical profiles of (a) atmospheric pressure and (b) temperature as functions of height, corresponding to the US Standard Atmo-

sphere.

Although the neglect of vibrational excitation, particularly at very low temperatures, seems plausible and appropriate, errors

are already introduced by this assumption for the temperature range relevant in the atmosphere.175

In atmospheric sciences, for the majority of computations that require the specific heat capacity of dry air, a constant value

of cp may be appropriate. According to the WMO (1966), the recommended value for cp of dry air is 1005J kg−1K−1 and,

furthermore (ibid.), it is defined that γ = cp
cv

= 7
5 = 1.4, cf. (1). This definition is consistent with the general thermodynamic

theory together with all aforementioned additional assumptions and results in (15) as well.

Even assuming a universally valid constant cp, a single consistently used value of cp was not found. Instead, the specified180

values of cp vary among different textbooks and other sources. In Table 1, some of the available values of constant specific

heat capacity for dry air are compiled, indicating a variability of cp that ranges from 994J kg−1K−1 to 1011J kg−1K−1.

These different values of constant cp scatter within a small range (below ±1.1%) around the WMO’s recommendation

1005J kg−1K−1, which may seem negligible if cp contributes only as a linear coefficient within an equation (e.g., in the

expression of the correction factor ξ, cf. Weigel et al., 2016). Unfortunately, however, in the formulation of the potential185

temperature θcp , cf. (13), the specific heat capacity cp does not contribute linearly but rather as the denominator in the exponent.

Thus, the variety of different cp values, although scattering within a small range, impacts the resulting θcp significantly. To

quantify this impact, a computation of θcp by using (13) was based on the values of static pressure (p, cf. Figure 1a) and

absolute temperature (T , cf. Figure 1b) corresponding to the US Standard Atmosphere (United States Committee on Extension

to the Standard Atmosphere, 1976).190

From the list of the different cp (cf. Table 1), two extreme values were selected, namely 994J kg−1K−1 (Wegener and We-

gener, 1935) and 1011J kg−1K−1 (WMO, 1966), in order to initially illustrate the sensitivity of the resulting θcp to variations

in cp in the range of ∼ 1%, as referenced by literature. Specific distinctions will be discussed at a later stage, then mainly

in relationship to the commonly used recommendation of the WMO (cp = 1005J kg−1 K−1, WMO, 1966). In Figure 2a, the

individual profiles of θcp are shown, and panel (b) exhibits the absolute difference ∆θcp = θ994− θ1011, based on the cp val-195

ues selected. Figure 2b shows the sensitive response of calculated θcp to a small variability in cp. At an altitude of 5km, the

difference ∆θcp already exceeds 1K. The values of ∆θcp reach approximately 2.5K at 10km altitude and rise further, above

7
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constant dry air’s

specific heat capacity

cp in J kg−1K−1

literature source

994 Wegener and Wegener (1935)

(converted from units other than SI)

1000 Vallis (2006)

Roedel and Wagner (2011)

1003 “minimum of range of actual values” (WMO, 1966)

Tripoli and Cotton (1981)

1004 Holton (2004)

Wallace and Hobbs (2006)

Schumann (2012)

Wendisch and Brenguier (2013)

1004.8 Pruppacher and Klett (2010)

(converted from units other than SI)

1005 recommended by WMO (1966)

Bohren et al. (1998)

Houghton (2002)

Zdunkowski and Bott (2003)

Brasseur and Solomon (2005)

Seinfeld and Pandis (2006)

Cotton et al. (2010)

1005.7± 2.5 Bolton (1980)

Emanuel (1994)

1006 Wendisch and Brenguier (2013)

(potential typo on p.69, a smaller value, cf. above, is given on

p.24 and in the list of constants)

1011 “maximum of range of actual values” (WMO, 1966)
Table 1. Temperature-independent constant values given mainly in textbooks for the specific heat capacity cp of dry air.
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Figure 2. Computed vertical course of the potential temperature θcp based on the two extremes of constant values for the specific heat

capacity cp provided in the literature (panel (a); cf. also Table 1), and (b) the absolute difference ∆θcp = θ994− θ1011 between the two

resulting curves of θcp .

7K, with increasing altitude up to 20km. At 50km, approximately where the stratopause is located, which is the chosen upper

height limit for this investigation, the computed ∆θcp reaches almost 75K.

The impact of this sensitivity becomes important at altitudes of ∼ 10km and above, thus, where the use of the potential200

temperature becomes increasingly meaningful. Here, and in particular above the cloud tops, the small-scale and comparatively

fast tropospheric dynamics (causing vertical transport and implying diabatic processes) become diminished, while further

above, towards the stratosphere, an increasingly layered vertical structure of the atmosphere is taking over.

As discussed above, the potential temperature is remarkably sensitive to small variations (within the per-cent range) of air’s

specific heat capacity, as these variations affect the exponent of the equation for θcp ; further proof of this, from the mathematical205

perspective, is provided in Appendix B. The studies of Ooyama (1990, 2001) document an interesting attempt to formulate,

e.g., the energy balance equations for the moist atmosphere, wherein entropy replaces the more common formulation using the

potential temperature. This substitution avoids the use of the potential temperature, which “is merely an exponential transform
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of the entropy expressed in units of temperature” (Ooyama, 2001), thus, within this equation, air’s specific heat capacity is

implied exclusively as a linear coefficient. Consequently, a parameterisation for the temperature dependence of the specific210

heat capacity (cp(T ), cf. Section 4) may be easily adopted. However, the crucial drawback of the entropy-based equations is

that to gain a numerical model for, e.g., weather forecast purposes, the parameterisations of most of the physical processes

within the atmosphere would require a reformulation.

It should be noted that not only do literature values of air’s specific heat capacity cp vary, but also the values of the gas

constant Ra vary slightly due to different historical approximations for the molar gas constant R and for the composition of215

dry air. The variation of values for Ra is typically only on the order of 10−1 J kg−1K−1, whereas the variability in cp is on the

order of a few J kg−1K−1 (cf. Table 1). Therefore, within the exponent of the expression (13) for θcp , the variability of cp has

by far a stronger impact on the resulting θcp value than the variability of Ra.

However, accepting for a moment the WMO’s definition (15) of cp (WMO, 1966), the variability of air’s cp should naturally

be constrained to certain limits. With the specific gas constant Ra = 287.05J kg−1K−1 (WMO, 1966), the WMO’s definition220

leads to cp = 1004.675J kg−1K−1. In contrast, taking into account the uncertainty introduced in Ra by the molar mass of dry

air, cf. Equation (6), the resulting range for air’s specific heat capacity is 1004.897J kg−1K−1 ≤ cp ≤ 1004.912J kg−1K−1.

It may be surmised that the rounded value cp = 1005J kg−1K−1 as recommended by the WMO (1966) had the main goal to

simplify certain calculations, which at the time may have been mostly done by hand.

4 Accounting for the temperature dependence of air’s specific heat capacity225

Next, while retaining the ideal-gas assumption, we consider the dependence of air’s cp on temperature over the atmospherically

relevant range (180K to 300K). The temperature dependence of cp is, of course, not a new finding. Experimental approaches

for determining the calorimetric properties of air and the temperature dependence of a fluid’s specific heat capacity are de-

scribed by Witkowski (1896), who investigated the change of the mean cp as a function of temperature intervals between room

temperature (as a fixed reference) and various warmer and colder temperatures, for atmospheric pressures and slightly beyond.230

Despite the potentially high uncertainty of the experimental results from these times, Witkowski (1896) already indicated that

with decreasing temperature the experimentally determined cp values initially decline, then pass a minimum, and subsequently

increase again at lower temperatures (T < 170K). The description of refined experiments and ascertainable data of air’s cp(T )

for temperatures below 293K is summarised by Scheel and Heuse (1912), Jakob (1923), and Roebuck (1925, 1930), illustrat-

ing in comprehensive detail the experimental effort and providing the resulting data. The review by Awano (1936) compiled235

and compared the data of cp(T ) of dry air (“air containing neither carbon-dioxide nor steam”, Awano, 1936) and he attested—

at that time—the previously mentioned studies to constitute “the most reliable experiments”. During the decades following

these experiments, further insights were gained and landmarks were reached which are summarised in the comprehensive sur-

vey by Lemmon et al. (2000) of the progress of modern formulations for the thermodynamic properties of air and about the

experiments the previous formulations were based on.240
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Vassermann et al. (1966); 750 hPa
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Figure 3. Variety of suggested values for the specific heat capacity of air. Constant values of cp are displayed over the range documented

in Table 1 (dashed lines). The parameterisations of air’s cp(T ), accounting for its temperature dependence by Lemmon et al. (2000, solid

magenta curve) and by Dixon (2007, solid cyan curve) are displayed. Discrete measurement and literature data at about 1000hPa (i.e., as

often specified, at about one atmosphere) are indicated by dots. In addition, the studies by Awano (1936) and Vasserman et al. (1966) provide

data at other atmospheric pressures, as indicated by squares, diamonds, and triangles.
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Figure 3 illustrates the range of suggested constant values for the specific heat capacity (see Table 1) together with the

measurements that were made to obtain air’s behaviour as a function of temperature and pressure. In the same figure, calculated

values of cp(T ) of dry air are displayed resulting from the equation of state which was derived from experimental p, V , and

T data by Vasserman et al. (1966), who provided an extensive review of previous experimental and theoretical works and of

the state of knowledge at that time. In addition, Figure 3 exhibits two different parameterisations, by Lemmon et al. (2000)245

and by Dixon (2007), which account for the temperature dependence of the specific heat capacity cp(T ). Moreover, Figure

3 contains discrete values of dry air’s cp(T ) extracted from the database REFPROP (Reference Fluid Thermodynamic and

Transport Properties Database by NIST, the National Institute of Standards and Technology, Lemmon et al., 2018), which is

based on parameterisations resulting from thermodynamic considerations discussed later.

The measurement data, as well as the parameterisations, clearly indicate a dependence of air’s specific heat capacity on the250

temperature. At temperatures above 300K, the data points by Jakob (1923) are surprisingly well captured by the parameteri-

sations, while below 270K the course of the parameterised and measured cp(T ) diverge significantly. Possible reasons for this

include:

– the measurements of cp(T ) have a precision likely no better than 1%, and there could be systematic errors, especially at

low temperatures;255

– the measured data reflect the true thermodynamic behaviour of the real gas, rather than that of an ideal gas.

However, it is immediately obvious from Figure 3 that a good agreement among (i) the experimentally determined cp(T ) data,

(ii) a constant cp (e.g., 1005J kg−1K−1; WMO (1966)), and (iii) the parameterised cp(T ) is found only for a temperature

interval ranging from 270K to 290K. For all air temperatures below 270K, the constant value cp = 1005J kg−1K−1 fails to

coincide with either the parameterised or the experimentally determined values of cp(T ).260

4.1 The temperature dependence of the ideal-gas specific heat capacity

As already indicated by the data depicted in Figure 3, the specific heat capacity cp depends on the gas temperature. With regard

to measured values, the lack of constancy may be due to real-gas effects or to a dependence of the ideal-gas heat capacity on

temperature. In this section, we focus on the latter effect, denoting the ideal-gas isobaric specific heat capacity by c0p(T ), where

the superscript 0 indicates the underlying ideal-gas assumption. For an individual gas, there is always a contribution from the265

three translational degrees of freedom, c0p,trans = 5
2Ri, where Ri is the specific gas constant of the gas. If the molecule is

assumed to be a rigid rotor, there is also a rotational contribution given by

c0p,rot =




Ri, for linear (e.g., diatomic) molecules,

3
2Ri, for nonlinear molecules.

(16)

As mentioned previously, at finite temperatures molecules also have contributions to c0p(T ) from intramolecular vibrations

(and, at high temperatures, excited electronic states). To arrive at a temperature-dependent parameterisation for the ideal-270

gas specific heat capacity of dry air, the compounds’ individual contributions, considering all degrees of freedom, need to
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be parameterised and then combined according to each compound’s proportion in the mixture. For the following, dry air is

considered a three-component mixture: the diatomic gases nitrogen (N2) and oxygen (O2) and the monatomic gas argon (Ar).

To determine the contribution of N2 to c0p(T ), both Bücker et al. (2002) and Lemmon et al. (2000) use the ideal-gas heat

capacity from the reference equation of state of Span et al. (2000) that compares well with the findings from other studies275

within an uncertainty ∆c0p of less than 0.02%.

For the contribution of O2, Lemmon et al. (2000) use the formulation given by Schmidt and Wagner (1985). Alternatively,

Bücker et al. (2002) provide a slightly different formulation from the International Union of Pure and Applied Chemistry

(IUPAC, Wagner and de Reuck, 1987), after refitting it to more recently obtained data, thereby achieving an overall uncer-

tainty ∆c0p of less than ±0.015% for O2 (Bücker et al., 2002). However, the difference in the resulting specific heat capacity280

contribution by O2 between the two approaches (Lemmon et al. (2000) or Bücker et al. (2002)) is comparatively small.

For a monoatomic gas such as Ar, vibrational and rotational contributions to the heat capacity do not exist, and Bücker et al.

(2002) consider that argon’s excited electronic states are relevant only at temperatures above 3500K. Hence, the contribution

of argon Ar to the specific heat capacity of air reduces to c0p = 5
2RAr.

The approach by Bücker et al. (2002) additionally considers the contribution of further constituents of air, such as water,285

carbon monoxide, carbon dioxide, and sulfur dioxide. These authors provide an analytical expression for specific heat capacity,

accounting for this more complex but proportionally invariant air composition which is specified to deviate from the used

reference by ∆c0p ≤±0.015% in the temperature range of 200K≤ T ≤ 3300K. At atmospheric altitudes above the clouds’

top, i.e., on average above ∼ 11km, the air is assumed to have lost most of its water and is deemed as dry. Furthermore, for the

following, trace gases that contribute to air’s composition by molar fractions of less than that of Ar are neglected.290

4.2 NIST’s parameterisation of c0p(T )

Besides a comprehensive survey of the available experimental data for the specific heat capacity of air, Lemmon et al.

(2000) also provide state-of-the-art knowledge for other thermodynamic properties (isochoric heat capacity, speed of sound,

vapour-liquid-equilibrium, etc.). Additionally, they give two approaches to derive air’s thermodynamic properties, including

the vapour-liquid equilibrium:295

1. an empirical model-based equation of state for standard (dry) air considered as a pseudo-pure fluid, and

2. assembly of a mixture model from equations of state for each pure fluid.

Each approach allows calculating the thermodynamic properties, e.g., cp, of gas mixtures such as dry air, and both are real-

gas models with the ideal-gas behaviour as a boundary condition. The major difference between the models is that the first

approach considers air as a pseudo-pure fluid while the second, more rigorous approach treats air as a mixture composed of N2,300

O2, and Ar, in molar fractions of 0.7812, 0.2096, and 0.0092, respectively, following Lemmon et al. (2000, their table 3). This

fractional composition of dry air is assumed to be constant from ground level up to 80km height (United States Committee on

Extension to the Standard Atmosphere, 1976) and its fractional composition would have to be shifted significantly to cause a

serious deviation of the resulting potential temperature. The contribution to the composition by carbon dioxide (CO2) and of
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any other trace species was assumed to be negligible. The validity of both approaches is specified for various states of dry air,305

from its solidification point (59.75K) up to temperatures of 1000K, and for pressures up to 100MPa and even much further

beyond the pressure range that is relevant for atmospheric investigations. Both the pseudo-pure fluid model and the mixture

model are implemented in NIST’s REFPROP database (cf. https://www.nist.gov/srd/refprop) for various physical properties

of fluids over a wide range of temperatures and pressures. Lemmon et al. (2000) suggest that their mixture models allow

calculation of the specific heat capacity of a gas mixture within an estimated uncertainty of 1%.310

Both the pseudo-pure fluid model and the mixture model of Lemmon et al. (2000) use the same expression for the ideal-gas

heat capacity, which is rigorously given as a sum of the pure-component contributions:

C0
p(T )
R

= xN2

(
C0
p(T )
R

)

N2

+xAr

(
C0
p(T )
R

)

Ar

+xO2

(
C0
p(T )
R

)

O2

,

(17)

where xi denotes the molar fraction of species i, and C0
p as well as the molar gas constant R are given in units of J mol−1K−1.

Like Bücker et al. (2002), Lemmon et al. (2000) use the expression of Span et al. (2000) for the contribution of N2 to the315

heat capacity and adopt C0
p = 5

2R for Ar. Together with the contribution by O2 according to the formulation by Schmidt and

Wagner (1985), the expression provided by Lemmon et al. (2000) for the ideal-gas heat capacity of dry air is

C0
p(T )
R

=N1 +N2T +N3T
2 +N4T

3 +N5T
− 3

2

+N6

N2
9

T 2 exp
(
N9
T

)
(
exp

(
N9
T

)
− 1
)2 +N7

N2
10
T 2 exp

(
N10
T

)
(
exp

(
N10
T

)
− 1
)2

+
2N8

3

N2
11
T 2 exp

(
−N11

T

)
(

2
3 exp

(
−N11

T

)
+ 1
)2 ,

(18)

with the scalar coefficients Ni for dry air (ibid.),

N1 = 3.490888032, N2 = 2.395525583 · 10−6,

N3 = 7.172111248 · 10−9, N4 =−3.115413101 · 10−13,

N5 = 0.223806688, N6 = 0.791309509,

N7 = 0.212236768, N8 = 0.197938904,

N9 = 3364.011, N10 = 2242.45,

N11 = 11580.4,

(19)320

which is specified as valid for temperatures from 60K to 2000K.

The parameterisation (18) provides the isobaric specific heat capacity of dry air, considered as a mixture of ideal gases. This

represents a more rigorous and accurate behaviour than assuming it to be a constant.
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4.3 The parameterisation of c0p(T ) from an engineer’s perspective

The parameterisation from Dixon (2007) is not explicitly described to be based on particular assumptions or data sets. The325

author indicates his suggested parameterisation to hold within 0.1% for temperatures between 200K and 450K. For elevated air

temperatures, the deviation between the ideal-gas limit c0p(T ) (Lemmon et al., 2000) and Dixon’s parameterisation substantially

increases. This is most likely due to the chosen type of polynomial approximation (Dixon, 2007), which increasingly departs

from the reference c0p(T ) for gas temperatures exceeding 450K.

Concerning the thermophysical properties of humid air, the study by Tsilingiris (2008) provides further insight. Its purpose330

was to evaluate the transport properties as a function of different levels of the relative humidity and as a function of temperature

(from 273K to 373K) for the gas mixture of air with water vapour at a constant pressure (1013hPa). The atmospherically

relevant pressure range below 1013hPa and temperatures smaller than 273K were not considered. Although this study focused

on providing a comprehensive account of moisture within air, mainly for technical purposes and engineering calculations, the

possible usefulness of these findings to atmospheric investigations is also apparent. However, the impact of water vapour on335

the resulting gas mixture’s cp(T ) is significantly larger (cf. Tsilingiris, 2008) than the uncertainty of dry air’s cp(T ) that is

discussed in the present work. Furthermore, the consideration of water vapour as a component of air requires very individual

and case-specific computations of cp(T ) of moist air, as water vapour is among the most variable constituents of the atmosphere.

The effort required to produce an analytical formulation for gas properties which best reflects the true gas behaviour may

indicate that for engineering purposes (pneumatic shock absorbers, engines’ combustion efficiency, improvements of turbofan/-340

prop propulsion, aerodynamics, material sciences, etc.), especially where pressures exceed atmospheric, the assumption of

ideal-gas behaviour introduces excessive uncertainty.

5 The θcp(T ) from the temperature-dependent specific heat capacity of air

Previously introduced approaches for computing the specific heat capacity of dry air call for a brief discussion on how to use

the obtained cp(T ) to derive the potential temperature. In the following, θcp(T ) denotes the derived potential temperature that345

accounts for the temperature dependence of dry air’s specific heat capacity. Furthermore, it should be noted that simply substi-

tuting any cp(T ) value into the conventionally used and defining equation (13) for θcp (WMO, 1966) may appear seductive but

definitely leads to results inconsistent with θcp(T ) that is based on the reference parameterisation of dry air’s cp(T ). Therefore,

the thermodynamically consistent use of cp(T ) in the derivation of θ is described in the following.

5.1 Derivation of θcp(T ) based on the temperature-dependent specific heat capacity of dry air350

In the derivation of the potential temperature (cf. Section 2), we note that, until reaching the expression for isentropic changes

of state (9), no specific assumption was made about the specific heat capacity. As soon as the temperature dependence of the

specific heat capacity comes into play, the re-assessment of (9) leads to

cp(T )
T

dT = Ra
dp
p
. (20)
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Integration of (20) from the basic state (p0, θcp(T )) to any other state (p, T ) yields355

Ra ln
(
p

p0

)
=

p∫

p0

dp′

p′
=

T∫

θcp(T )

cp(z)
z

dz, (21)

where θcp(T ) is the desired potential temperature.

The rearrangement of (21) makes evident that the desired potential temperature is a zero of the function F (x), given by

F (x) =

T∫

x

cp(z)
z

dz−Ra ln
(
p

p0

)
. (22)

To arrive at the desired potential temperature θcp(T ) for any given temperature and pressure, the equation 0 = F (x) must be360

solved for the variable x, which is the desired θcp(T ). Equation (22) has at most only one real zero, since its integrand is strictly

positive which means F (x) is strictly monotonic.

In the following, the ideal-gas reference potential temperature θref is introduced, based on the formulation of the ideal-gas

limit of dry air’s specific heat capacity c0p(T ) in accordance with (18) as formulated by Lemmon et al. (2000). This reference

potential temperature θref represents the zero of F (x) in (22), wherein cp(z) is to be replaced by c0p(T ).365

It may be noted that further variants of a reference potential temperature are derivable by replacing cp(z) in (22) by any other

expression of the specific heat capacity of air which may appear sufficiently accurate. The steps to compute or approximate the

zero of the function (22), described in this study, are independent of the chosen heat capacity formulation.

Unfortunately, for a straightforward solution of the integral (22), the suggested parameterisation of cp is too complex and

an analytically insolvable nonlinear equation 0 = F (x) could result. Thus, an approximation of the equation’s desired zero is370

required. Newton’s method (cf., e.g., Deuflhard, 2011) provides a standard approach to numerically approximate the zero of

a nonlinear equation. Proceeding from an initial guess x0, Newton’s method constructs a sequence {xk}k∈N defined by the

recursion

xk+1 = xk −
F (xk)
F ′(xk)

= xk −
F (xk)

− cp(xk)xk

=
xk

cp(xk)
[cp(xk) +F (xk)]

=
xk

cp(xk)


cp(xk)−Ra ln

(
p

p0

)
+

T∫

xk

cp(z)
z

dz


 .

(23)

The constructed sequence {xk}k∈N converges to the equation’s desired zero. For the herein described computations, the itera-375

tion is stopped as soon as the absolute difference |xk+1−xk| of two consecutive iterations falls below 10−8 K.

For the reference of air’s specific heat capacity, c0p(T ), the integral (22) turns out not to be explicitly solvable. Therefore,

with each iteration, the solution of the integral
T∫
xk

c0p(z)

z dz is approximated by subdividing the entire integration range, [xk, T ],

into intermediate intervals with respective size of at most 0.1K, and by applying Simpson’s rule on each subinterval.
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Figure 4. (a) Reference potential temperature θref together with the potential temperatures θ994 and θ1011 relying on constant cp values (e.g.

994 and 1011J kg−1K−1, cf. Table 1). (b) Relative differences (θ994− θref)/θref and (θ1011− θref)/θref between the reference potential

temperature and potential temperatures relying on constant cp values. For comparison, also the relative difference (θ1005− θref)/θref is

displayed, for which cp = 1005J kg−1K−1 corresponds to the WMO recommendation. All profiles are based on the values for temperature

and pressure according to the US Standard Atmosphere. Note the linear axis-scaling inside and the logarithmic scaling outside of the grey-

shaded area in panel (b).

As a first guess x0 for the Newton iteration, the conventional definition of θcp based on a constant specific heat capacity380

(WMO, 1966) is inserted:

x0 = T

(
p0

p

) Ra
1005J kg−1K−1

= θ1005. (24)

In the course of Newton’s method, the sequence {xk}k∈N will converge to the unique zero for any initial guess x0 due to the

monotonicity of F (x). However, the right choice of the initial guess x0 substantially decreases the error of the first iteration x1,

speeding convergence to the desired zero of the function F (x). Therefore, it may be comprehensible to use the conventional385

definition of θcp as the first guess for the Newton iteration (23).

Solving the previously described root-finding problem by Newton’s method over the comprehensive range of iteration steps

(until the set requirement, i.e., |xk+1−xk|< 10−8 K, is fulfilled) finally leads to the reference potential temperature θref . This

θref is based on the ideal-gas limit of dry air’s specific heat capacity c0p(T ), which refers to the current thermodynamic state-of-

knowledge and, thus, we use θref as our reference for the potential temperature in the following. For evaluating the results, the390

air temperature and pressure from the US Standard Atmosphere are used once more to set up the vertical profiles of the potential

temperature. Figure 4a exhibits the resulting reference profile, i.e., θref . Additionally, for comparison with the reference, further

potential temperature profiles θcp are shown based on two extremes of given constant values of air’s specific heat capacity (cf.
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Table 1), cp = 994J kg−1K−1 and cp = 1011J kg−1K−1. Clearly, in particular at elevated altitudes, the courses of θ994 and

θ1011 significantly deviate from the reference. To quantitatively evaluate the match between the different profiles, the relative395

difference of the four profiles, θ994, θ1004, θ1005 and θ1011, with respect to the reference, i.e., ∆θ/θref =
(
θcp − θref

)
/θref , is

depicted in Figure 4b. The comparison impressively demonstrates that the θcp profiles significantly depart from the reference

by up to ∼ 250K at 50km altitude, corresponding to a relative difference of about 10%. With both extremes of constant cp,

the relative error level of 0.1% is exceeded at altitudes below 5km. While θ994 continues to increasingly deviate from the

reference, θ1011 re-enters and crosses the 0.1% relative error interval (grey-shaded area) at altitudes between ∼ 20km and400

22.5km, before it reaches similar errors to the other θcp profiles that are based on a constant cp. Notably, up to an altitude

of 15km, the reference potential temperature is comparably well matched by both the recommended θ1005 (WMO, 1966)

and θ1004 (based on the frequently used alternative cp = 1004J kg−1K−1, cf. Table 1). Until 15km altitude, both constant cp

values lead to errors of calculated θcp which remain comparatively small within the 0.1% relative error interval. However,

above∼ 17.5km, both θ1004 and θ1005 exceed the 0.1% relative error interval, and further aloft their relative error with respect405

to the reference θref increases rapidly.

In the context of numerical models of the atmosphere, the energy balance equation is occasionally formulated based on the

potential temperature θ, thus θ constitutes a prognostic model variable. In such a case, the temperature T needs to be calculated

from a given pair of values of pressure p and potential temperature θ. Using once more the defining equation (21), a zero of the

function410

0 =−
θ∫

T

cp(z)
z

dz−Ra ln
(
p

p0

)
(25)

is to be computed. Since (25) corresponds to the function F defined in (22) with the exception of a negative sign, the identical

approximation procedure as outlined above in this section for the calculation of (T, p) 7→ θ may be applied mutatis mutandis

to calculate the transformation (θ, p) 7→ T .

In any case, a certain effort is required to implement the new formulation of the potential temperature in an atmospheric415

model, as this equation should be based on the implicit definition (21) and such a goal may be subject of future endeavours.

5.2 Approximations of the reference potential temperature

Of course, the previously described procedure to compute the potential temperature may appear to be anything but practical.

Indeed, due to the complications inherent with:

– the requirement to numerically solve the integral in the function F (x) and420

– the need to use Newton’s method for an iteration sequence to approach the zero of F (x),

a convenient approach to re-assess the conventional definition of the potential temperature is not provided at all. This mo-

tivates the development of a more practical approximation of the reference potential temperature. To arrive at a practicable
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approximation procedure, the two principal steps in the suggested procedure are briefly outlined in the following, whereas the

comprehensive details and intermediate derivation steps are found in Appendix C.425

Proceeding from the definition (22) of the function F (x), the computation of the integral
T∫
x

c0p(z)

z dz becomes the first obstacle

to a practical approximation. Therefore, a plausible initial step is to replace the integral by an expression that is easier to treat.

This expression may be proposed as f(T )− f(x), where the function f is defined as f(x) = b0 + b1 ln(x− b2) + b3x+ b4x
2

and which is recognisable as an approximated primitive of
c0p(z)

z , see Appendix C1. The choice of the functional form of f is

motivated by the exact primitive of the integral in the case of a constant cp.430

As previously discussed (cf. Section 5.1), the formulation of a new expression for the potential temperature based on the

temperature-dependent specific heat capacity cp(T ) requires finding the zero of the equation 0 = F (x), where the function

F (x) is defined in (22). Replacing the exact integral in (22) by the difference f(T )− f(x) means that F (x) is substituted by

the function

F̂ (x) = f(T )− f(x)−Ra ln
(
p

p0

)
. (26)435

Consequently, the resulting approximated reference potential temperature, i.e., the respective zero of the function F̂ (x), is

denoted as θapprox
ref .

The difference between the approximation result and the reference, i.e.,

θref − θapprox
ref , (27)

is then referred to as the basic error of the approximation. Note that the replacement of the function F by F̂ only circumvents440

the integration in F ; the root-finding problem 0 = F̂ (x) for the approximated reference potential temperature θapprox
ref remains

analytically not solvable.

Therefore, the second move towards a practical approximation procedure is to construct approximations θ(k) to the zero of

F̂ (x) by using Newton’s method, see Appendix C2. Newton’s method is an iterative procedure; the notation θ(k) refers to the

k-th computed iterate. Hence, θ(k) constitutes an approximation to θapprox
ref , and, in the limit k→∞, the approximation error445

θapprox
ref − θ(k) (28)

vanishes. Two formulations of Newton’s method are distinguished in Appendix C2, i.e., the principal application of Newton’s

method, and its further derivative, called Householder’s method. Both formulations require the stipulation of one of the iterates

θ(k) as sufficient to obtain a result of appropriate accuracy. The higher the number of iterations, of course, the smaller is the

error (28), whereas the basic error (27) remains unaffected by the number of iterations. Hence, in any case, the basic error (27)450

is to be accepted as at least implied in the final approximation, even though a well-chosen θ(k) could result in an approximation

error θref − θ(k) that is smaller than the basic error.

The various errors implied in the proposed approximation procedure combining for the approximation’s total error, as well

as accompanying details, are discussed in Appendix D. In brief, Figure 5a illustrates the basic error (27) based on the pressure

and temperature profiles of the US Standard Atmosphere, as these provide atmospherically meaningful averages of realistic455
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Figure 5. Absolute basic error ∆θ = θref −θapprox
ref , cf. (27), from approximating the reference potential temperature along the US Standard

Atmosphere (a) and for the extended pressure range 1000hPa to 0.5hPa and temperature range 180K to 300K (b). For orientation, the

white solid line indicates the p-T -profile from the US Standard Atmosphere. The relative basic error |∆θ|/θref is shown in panel (c) for the

extended pressure and temperature range. 20
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temperature-pressure data pairs. Based on the parameters of the US Standard Atmosphere, the basic error inherent with the

approximation remains below 1.25K up to altitudes of 50km. Thus, regarding the subsequent iteration process, a substantial

improvement of the error compared to ∼ 1.5K is not to be expected for the total error of approximating the reference potential

temperature.

An error analysis exclusively based on the US Standard Atmosphere is constrained to specific combinations of the air’s460

pressure and temperature, potentially suppressing latent errors that may emerge if certain fluctuations of the real atmosphere’s

temperature and pressure profiles are considered. Thus, the error analysis is extended to an atmospheric pressure (p) and tem-

perature (T ) range, from 1000hPa to 0.5hPa and from 180K to 300K, such that the conditions within the entire troposphere

and stratosphere, including the stratopause, are covered. Figure 5b illustrates the absolute basic error (27) for the extended

ranges of pressure and temperature while Figure 5c illustrates the relative basic error |θref − θapprox
ref |/θref . The contours in465

Figures 5b and 5c mainly highlight two regions: at∼ 100hPa where ∆θ never rises above 0.75K which corresponds to a max-

imum relative basic error of 0.15%, and in a pressure range from ∼ 5hPa to 1hPa where a ∆θ of 1.25K is never exceeded,

corresponding to relative errors of at most 0.1%. Note that the entire ∆θ scale ranges up to 3K, which may only be reached at

pressures below 0.8hPa combined with temperatures above 280K.

As previously discussed, the basic error is unavoidable and is to be accepted when applying the suggested substitution for the470

integral in the definition of the function F (x) in (22). However, as outlined in Appendix C2, the second iterate θ(2) of Newton’s

method (principal application), may thoroughly suffice for the final approximation to the reference potential temperature θref ,

as this iteration level already features an approximation error (28) which is negligibly small. Figure 6a illustrates the total

relative error of the suggested approximation θ(2) with respect to the ultimate reference θref for the extended ranges of pressure

and temperature. Indeed, the contour pattern in Figure 6a and the basic relative approximation error shown in Figure 5c are475

remarkably similar. Thus, the iteration process itself imparts only a minor contribution to the total error compared to the basic

approximation error.

The total approximation error, which is

θref − θ(2) = (θref − θapprox
ref ) +

(
θapprox
ref − θ(2)

)
, (29)

is dominated by the unavoidable basic error (first bracket) and augmented by a negligible error inherent to the iteration (second480

bracket), also supporting the conclusion that the second iterate of Newton’s method is an appropriate approximation procedure.

Figure 7 presents step-wise instructions for the computation of the second iterate approximation to the reference potential

temperature, and may serve as a guide to follow the numerous equations and intermediate analytical steps described throughout

the derivations in Appendix C.

For completeness, Figures 6b and 6c exhibit a final comparison by means of the logarithmic difference and the logarithmic485

relative difference between the reference potential temperature θref and the conventional definition θcp (WMO, 1966) based

on a constant specific heat capacity cp = 1005J kg−1K−1. Notably, over a wide altitude range within the troposphere (i.e.,

for atmospheric pressures greater than ∼ 100hPa), the absolute error ∆θ = |θ1005− θref | remains below 1K, cf. Figure 6b,

corresponding to a relative error ∆θ/θref of at most 0.1%. However, in the pressure range below ∼ 100hPa, deviations of
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Figure 6. (a) Relative error ∆θ/θref =
∣∣∣θ(2)− θref ∣∣∣/θref of the second iterate θ(2), obtained with Newton’s method for the ranges of

pressure and temperature from 1000hPa to 0.5hPa and from 180K to 300K, respectively. Panels (b) and (c) exhibit the difference ∆θ =

|θ1005− θref | and relative difference ∆θ/θref , respectively, on a logarithmic scale between the reference potential temperature θref and the

potential temperature θ1005 based on a constant specific heat capacity (cp = 1005J kg−1K−1). For orientation, the white solid line indicates

the p-T -profile from the US Standard Atmosphere.
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Compute x0 = θ1005 from equation (24).

Compute the quantities

f(x0) = b0 + b1 ln(x0− b2) + b3x0 + b4x
2
0

f(T ) = b0 + b1 ln(T − b2) + b3T + b4T
2

f ′(x0) =
b1

x0− b2
+ b3 + 2b4x0

by using the previously obtained x0 and the coefficients (C4).

Compute the first iterate x1 using (C5) with k = 0, i.e.

x1 = x0−
Ra ln

(
p
p0

)
− f(T ) + f(x0)

f ′(x0)
.

Compute

f(x1) = b0 + b1 ln(x1− b2) + b3x1 + b4x
2
1

f ′(x1) =
b1

x1− b2
+ b3 + 2b4x1

by using the previously obtained x1 and the coefficients (C4).

Compute the second iterate x2 using (C5), with k = 1 and the obtained x1, i.e.

x2 = x1−
Ra ln

(
p
p0

)
− f(T ) + f(x1)

f ′(x1)
.

Set θ(2)i = x2 as the final approximation to the reference potential temperature θref of the ideally behaving air.

Figure 7. Flowchart guiding through the process of computing the approximation θ(2) by using Newton’s formulation (C5) until its second

iteration, wherein T (in K) and p (in hPa) are the atmospheric air conditions in terms of temperature and pressure, respectively, and p0 is set

to 1000hPa (WMO, 1966). Table C1 collects values of θref and the approximation θ(2) together with intermediate results for selected pairs

of temperature and pressure to verify a computation according to this instruction.
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the real atmospheric conditions from those of the US Standard Atmosphere could increase the absolute error ∆θ from a few490

K to up to 10K, corresponding to an increase of the relative error to 1%. Further critical pressure levels are at ∼ 20hPa

and ∼ 5hPa, where the error’s magnitude increases to several tens and several hundreds of K, respectively. At a pressure of

0.5hPa, an absolute error ∆θ of up to 500K is reached, which corresponds to a relative error of 10% or even more.

6 The potential temperature for air as a real gas

To calculate real-gas effects on the potential temperature, we use the model embedded in REFPROP (Lemmon et al., 2018), a495

standard reference database from NIST. This model treats air as a mixture and employs state-of-the art reference equations of

state for pure nitrogen (Span et al., 2000), oxygen (Schmidt and Wagner, 1985), and argon (Tegeler et al., 1999). The mixing

rule and binary interaction parameters are taken from the GERG-2008 model (Kunz and Wagner, 2012). From its definition in

terms of an isentropic process, the potential temperature θreal(T, p) is defined implicitly by

s(θreal, p0) = s(T, p), (30)500

where s is the specific entropy. Calculating θreal(T, p) is a two-step process. First, the specific entropy s is computed at

temperature T and pressure p. Then, the temperature θreal is found that gives the same entropy s at the ground pressure p0.

This is an iterative calculation, but it is accomplished automatically within the REFPROP software (Lemmon et al., 2018).

One caveat should be mentioned regarding the computed potential temperatures. The range of validity of the equations of

state for the air components (Span et al., 2000; Schmidt and Wagner, 1985; Tegeler et al., 1999) extends only up to 2000K. At505

very high altitudes, computed values of θreal exceed this limit. While all the equations extrapolate in a physically realistic way,

their quantitative accuracy is less certain above 2000K. This caveat also applies to the ideal-gas calculations; the correlations

for c0p(T ) for N2 and O2 are extrapolations beyond 2000K. However, since the same ideal-gas values are used in the real-gas

calculations, any inaccuracy in c0p(T ) will cancel when evaluating the difference between ideal-gas and real-gas values of θ.

Figure 8 illustrates the comparison between the real-gas potential temperature θreal and the ideal-gas reference potential510

temperature θref . Figure 8a shows the difference θreal−θref , once more along the p-T -profile of the US Standard Atmosphere.

Figure 8b accounts again for any p-T -combination of extended range but shows the relative difference instead. The difference

between θreal and θref never exceeds 0.1K for the absolute difference or 30 · 10−5 = 0.03% for the relative difference. As

may be anticipated from the deviation of c0p shown in Figure 3 at low temperatures both from the experimentally determined

values (which may be inaccurate) as well as from the REFPROP data, the real-gas effect on the specific heat capacity of dry515

air tends to increase towards the coldest gas temperatures. However, the difference between the real- and ideal-gas approaches

results in essentially no substantial difference between the resulting θ’s, neither at ground conditions (for any temperature at

∼ 1000hPa) nor at very high altitudes (at pressures below∼ 1hPa). While the negligible difference between θreal and θref near

ground levels is less surprising, the diminished difference at higher altitudes reflects that in this region the potential temperature

reaches such high values that the difference between the real-gas and the ideal-gas specific heat capacity becomes insignificant.520

Within the intermediate (stratospheric) region, the low pressures (and thus the low air densities) cause the ideal-gas assumption
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Figure 8. Difference θreal− θref reflecting the deviation of the potential temperature θreal, based on the properties of air behaving as a real

gas under variable temperature and pressure, from the herein derived potential temperature expression θref for the ideal-gas limit of the air’s

specific heat capacity c0p(T ). (a) Difference along the profile of the US Standard Atmosphere. (b) Relative difference in p-T -coordinates

covering any combination of atmospherically relevant temperatures and pressures.

to be an accurate approximation even at low temperatures. In general, the degree to which a gas can be treated as an ideal gas

is primarily a function of the (molar) density. For an ideal gas, the density is proportional to the quotient p
T ; this is almost true

also for real air. Hence, declining pressures together with rising temperatures both make the air’s behaviour increasingly close

to ideal.525

7 Implications of the potential temperature on the prediction of gravity waves’ breaking

As previously shown, the newly defined reference potential temperature θref deviates most from the WMO-defined potential

temperature θ1005 at high altitudes (cf. Figure 6). More particularly, not only do the values from both θ definitions differ,

but also their vertical derivatives, i.e., ∂θref
∂z and ∂θ1005

∂z . As the Brunt-Väisälä frequency N2 depends on both the potential
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temperature and its vertical derivative, cf. (2), the resulting N2, a measure of atmospheric stability, is affected by the definition530

of θ. This may have implications for the investigation of upward propagating gravity waves, which are emitted from the

upper troposphere or lower stratosphere by various processes, e.g., spontaneous imbalance (Plougonven and Zhang, 2014),

flow over mountains (Palmer et al., 1986), or convection (Choi and Chun, 2011). Various properties of gravity waves directly

depend on the vertical profile of the Brunt-Väisälä frequency N2. Specifically, the altitude of gravity wave breaking, if due to

static instability, depends on N2. To explore the implication of the θ definition on gravity wave breaking, vertical profiles of535

temperature and horizontal wind speed are used as shown in panels (a) and (b) of Figure 9. These are typical for mid latitudes

for the months June and December, respectively, and they have been taken from the Upper Atmosphere Research Satellite

Reference Atmosphere Project (URAP) data (Swinbank and Ortland, 2003).

Note that these profiles extend up to 85km, thus covering the entire stratosphere and most of the mesosphere, compared to

the previously used vertical range reaching at most to 50km (up to approximately stratopause level). Nevertheless, both the540

parameterised specific heat capacity of ideal-gas dry air (18) and the general derivation of the reference potential temperature

(Section 5.1) are valid also at altitudes above 50km. Consequently, the new reference potential temperature also remains valid

up to mesospheric altitudes, even though the approximate reference potential temperature θapprox
ref may not match very well

with θref for altitudes above 50km.

Based on the temperature profiles in Figure 9a and considering the hydrostatic assumption as fulfilled, the Brunt-Väisälä545

frequencies are determined as

N2
ref =

g

θref

∂θref
∂z

and N2
1005 =

g

θ1005

∂θ1005
∂z

, (31)

where g = 9.81m s−2 is the gravitational acceleration. The resulting vertical profiles of the Brunt-Väisälä frequencies are

depicted in Figure 9c. Evidently, the values of N2
ref and N2

1005 deviate from each other and, thus, lead to different predictions

of the atmosphere’s actual stability. Notably, the difference N2
ref −N2

1005 increases with altitude as already implied by the550

increase of the difference θref − θ1005 with altitude, shown in Figure 6b.

Following Lindzen (1981), static instability due to a gravity wave occurs whenever it can lead to an overturn of potential

temperature, which is expressed as (e.g., Bölöni et al., 2016)

m(z)B(z)>N2(z). (32)

Here m(z) is a gravity wave’s vertical wave number at the altitude z, and B(z) denotes the vertically varying buoyancy555

amplitude of the same wave. Thus, the (minimum) gravity wave breaking altitude zb > z0 is predicted as the lowermost altitude

where the condition m(zb)B(zb) =N2(zb) is satisfied.

To explore the implications of using the new reference potential temperature instead of the WMO-defined potential temper-

ature on the predicted altitude of gravity wave breaking, a typical altitude of z0 = 17.5km is chosen as the initiation level of a

gravity wave with horizontal wave number k(z0) = 2π
λx

and vertical wave number m(z0) = 2π
λz

. The initial buoyancy amplitude560

B(z0) is set to

B(z0) =Bfact
N2(z0)
m(z0)

, (33)
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Figure 9. Vertical profiles of (a) temperature and (b) horizontal wind speed as typical for mid-latitudes in June and December, up to 85km

altitude. Resulting Brunt-Väisälä frequency N2 (c), either based on θref (solid lines) or on θ1005 (dashed lines). Panels (d), (e), and (f):

vertical profiles of N2
ref and N2

1005 for December (solid and dashed blue lines, respectively) with the modulus |m(z) ·B(z)| (green lines),

either based on θref (solid lines) or on θ1005 (dashed lines), cf. text for further details. The panels’ titles document the individually chosen

values of the parameters λx, λz and Bfact. The thin grey horizontal lines indicate the altitude of the predicted wave breaking altitude, i.e.

where |m(z) ·B(z)| first coincides with N2(z) above the initiation height.
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with a scaling factor 0<Bfact < 1 defining the wave amplitude at the initiation level with respect to static instability. The

dependence of m and B on altitude is then determined by the classic steady-state approach as outlined, e.g., by Bölöni et al.

(2016). The selected parameter values for the scaling factor Bfact are565

Bfact ∈{0.05, 0.06, 0.08, 0.1, 0.12, 0.14, 0.16, 0.18,

0.2, 0.22, 0.24, 0.25, 0.3, 0.5, 0.75, 0.9} ,
(34)

while the selected horizontal wave lengths λx at initiation height are

λx ∈ {±100km,±50km,±10km,±5km,±1km} , (35)

and the vertical wave length is varied between 100m and 4000m with 100m increment. The aforementioned parameter values

are used to compute the vertical profiles of |mB| and N2 based on the mid-latitude December profiles which are displayed570

in panels (d), (e), and (f) in Figure 9. The green lines illustrate the modulus |mB| of the product of the vertical wave number

and the buoyancy amplitude, while the blue lines exhibit the altitude dependence of the Brunt-Väisälä frequency N2. The

results shown as solid lines are based on the new reference potential temperature θref ; the results of the computations using

θ1005 are represented by dashed lines. The predicted altitude of wave breaking is indicated by the first crossover of |mB|
and N2 above the wave’s initiation height, indicated by the thin grey horizontal lines. Apparently, the predicted altitudes of575

wave breaking differ by more than about 5km, depending on the definition of θ used (cf. panels (d), (e), (f) of Figure 9).

Note that deviations of this scale are only found for the mid-latitude December vertical profiles of temperature and wind speed

employed here, and hydrostatic gravity waves with initial horizontal wave lengths λx ∈ {100km, 50km} and initial vertical

wave lengths between approximately 1km and 3km. Significant differences of predicted wave breaking altitudes were most

frequently observed with initiation height amplitude scaling factors Bfact between 0.1 and 0.2, but larger values can also lead580

to significant differences, see Figure 9f. In essence, the improvement from the use of a more accurate potential temperature for

predicting the altitude of gravity wave breaking is non-negligible, although not excessive. Nonetheless, these improvements

may be of particular relevance for individual investigations, e.g., concerning the mesopause altitude, which involve specific

vertical profiles at concrete atmospheric conditions and at locations other than the mid-latitudes. It needs to be emphasised,

however, that predictions of the gravity wave breaking altitude are highly sensitive to variations along the vertical profiles of585

both the temperature and wind speed. Furthermore, the results of such predictions strongly depend on the chosen parameters

at the gravity waves’ initiation height.

8 Summary and Conclusions

Under the assumption that dry air is an ideal gas, a re-assessment of computing the potential temperature was introduced that

accounts for the hitherto unconsidered temperature dependence of air’s specific heat capacity. The new reference potential590

temperature θref was introduced, which is thermodynamically consistent and based on a state-of-the-art parameterisation of

the ideal-gas specific heat capacity of dry air from the National Institute of Standards and Technology (NIST). This reference

28

https://doi.org/10.5194/acp-2020-361
Preprint. Discussion started: 4 May 2020
c© Author(s) 2020. CC BY 4.0 License.



potential temperature was compared to a potential temperature θreal wherein the real-gas behaviour of dry air is considered.

In the range of temperatures from 180K to 300K and the range of pressures from 1000hPa to 0.5hPa, covering the atmo-

spheric conditions of roughly the entire troposphere and stratosphere, the relative differences between θref and θreal are smaller595

than 0.03% and may be considered negligible. Consequently, θref even provides a reasonable approximation to the potential

temperature of the real gas.

The difference between the newly derived reference potential temperature θref and the conventionally determined potential

temperature θcp (with constant cp = 1005J kg−1K−1, as recommended by the World Meteorological Organisation, WMO,

1966) increases with altitude, e.g., ∆θ ≥ 1K at pressures p≤ 60hPa.600

Derivation of a potential temperature that is consistent with thermodynamics and that accounts for the ideal-gas properties

of dry air requires integration of Gibbs’ equation and the subsequent solution of the resulting nonlinear equation. With a

constant cp, both analytical steps are straightforward, resulting in the conventional expression (13) as suggested by WMO

(1966). However, if instead the temperature dependence of air’s specific heat capacity cp(T ) is considered, the integrals as

well as the equations are not analytically solvable and, thus, the solution must be approximated. Both approximations were605

performed and described in detail. The integral was treated with the basic approximation and the solution of the nonlinear

equation was approached by using the second iterate of Newton’s method. As an alternative to Newton’s classical method, a

modified formulation of Householder’s iteration method is provided, featuring accelerated convergence properties.

The suggested approximation steps to obtain a reference potential temperature have two main sources of error: the error

θref − θapprox
ref inherent in the integral’s basic approximation and the error θapprox

ref − θ(k) of the k-th Newton iterate. The latter610

error approaches zero as k→∞, whereas the error resulting from the basic approximation remains well below 0.1% (along

the US Standard Atmosphere) for values of θref of up to ∼ 2000K, hence up to stratopause altitudes. To keep this low error

level also for θref > 2000K, the approximation may require an extension by means of a higher-order polynomial.

One of the foremost implications of the re-assessed potential temperature’s definition concerns the use of θ as a vertical co-

ordinate for the sorting, grouping, and comparison of (measured) data, e.g., along or across isentropes. Thereby, the re-assessed615

potential temperature constitutes a more accurate consideration of the air’s actual properties. This particularly concerns, e.g.,

the specific heat capacity which is conventionally assumed as constant and for which various values are given depending on

the textbook consulted.

Significant errors and biases may arise if, for instance, the conventional derivation of θ (WMO, 1966) is used together

with values for air’s specific gas constant (Ra) or air’s specific heat capacity (cp), which better comply with the most recent620

state-of-knowledge. Moreover, the use of the standard pressure 1013.25hPa instead of 1000hPa as defined by WMO (1966)

and consistently used herein as ground level pressure (p0), may cause an additional deviation of the resulting θ. Thus, the

re-assessment of θ’s definition could largely diminish such errors and biases and improve the comparability of data.

Concerning investigations of the propagation of gravity waves within the upper atmosphere, one further implication was

investigated that arises from using the re-assessed potential temperature instead of the conventional definition. For predictions625

concerning the altitude of a gravity wave’s breaking, the atmosphere’s static stability is analysed, which is a function of both

the potential temperature θ and its vertical derivative ∂θ
∂z . Using the re-assessed reference potential temperature instead of its
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conventional definition can result in a shift of predicted altitudes where the wave breaking occurs. The analysed cases revealed

the prediction’s high sensitivity to variations in the initiation conditions and the vertical profiles of temperature and wind.

Moreover, the predictions concerning the presence of critical layers within the atmosphere may be impacted by using θref630

instead of the conventional θ. Of all studied cases, a limited number of predictions produced a vertical deviation on the order

of 5km. Of course, a comprehensive sensitivity study concerning these altitude predictions of gravity waves’ breaking should

be based on a larger variety of initiation parameters and vertical profiles of the temperature and wind fields from different

geographical latitudes. However, such an investigation is beyond the scope of this study. The evaluation of the quantitative

and/or qualitative significance of identified vertical shifts and deviations may be left to the reader.635

On the one hand, such a re-assessment could take into account the current state of knowledge regarding the accuracy of

thermodynamic variables and substance-related properties. On the other hand, this way the conceptional abstractness already

inherent in θ is not further complicated by a misleading selection of parameters or reputed constants. There is no doubt that

the conventional method is suitable for the description of most processes occurring within the troposphere. However, at strato-

spheric or even mesospheric altitudes, the neglect of the temperature dependence of the ideal-gas heat capacity in the convential640

definition increasingly distorts the resulting absolute values as well as the vertical course of the potential temperature. Ulti-

mately, it seems obvious to profit from the computing capacities available today and from the known higher accuracy of

physical variables and atmospheric parameters to carry out a reappraisal of the potential temperature, a useful (but not always

consistently used) meteorological quantity.

Appendix A: Derivation of the specific heat capacity from thermodynamics645

In the following, the derivation of the air’s specific heat capacities CV , Cp (capital letters indicate molar units) at constant

volume and pressure, respectively, is summarised, mainly following the textbook exposition by Kondepudi and Prigogine

(1998). We start with the ideal gas law

pV =NRT, (A1)

with p the pressure, V the volume of the system, N the amount of gas within the volume, T the temperature, and R the650

universal gas constant. Additionally, the first law of thermodynamics is

dU = dQ− pdV, (A2)

with the internal energy U of the system and dQ specifies the change of heat. Insertion of the total derivative of the internal

energy U in (A2), and assuming the system as thermodynamically closed, i.e., the molar amount N remains conserved (dN =

0), leads to655

dQ− pdV =
∂U

∂T

∣∣∣∣
V,N

dT +
∂U

∂V

∣∣∣∣
T,N

dV, (A3)
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and subsequently

dQ=
∂U

∂T

∣∣∣∣
V,N

dT +

(
p+

∂U

∂V

∣∣∣∣
T,N

)
dV. (A4)

If the system’s volume is held constant, equation (A4) represents the definition of the constant-volume heat capacity CV in

molar units, i.e.,660

dQ=
∂U

∂T

∣∣∣∣
V,N

dT = CV (p,T )dT. (A5)

Alternatively, assuming the system’s pressure as constant, its volume is variable with total derivative

dV =
∂V

∂T

∣∣∣∣
p,N

dT +
∂V

∂p

∣∣∣∣
T,N

dp︸︷︷︸
=0

=
∂V

∂T

∣∣∣∣
p,N

dT (A6)

and, therefore, it results,

dQ=
∂U

∂T

∣∣∣∣
V,N

dT +

(
p+

∂U

∂V

∣∣∣∣
T,N

)
dV

=
∂U

∂T

∣∣∣∣
V,N

dT +

(
p+

∂U

∂V

∣∣∣∣
T,N

)(
∂V

∂T

∣∣∣∣
p,N

dT

)

=

[
∂U

∂T

∣∣∣∣
V,N

+

(
p+

∂U

∂V

∣∣∣∣
T,N

)
∂V

∂T

∣∣∣∣
p,N

]
dT

= Cp(p,T )dT,

(A7)665

defining the isobaric molar heat capacity Cp. In general, this quantity depends on pressure as well as on temperature. However,

if the gas is assumed as ideal, an important conclusion from the statistical description of an ideal gas is the fact that the internal

energy U must be independent of the pressure (see, e.g., Fay, 1965).

Using this result, together with (A7) and the ideal gas law (A1), it follows

Cp =
∂U

∂T

∣∣∣∣
V,N

+

(
p+

∂U

∂V

∣∣∣∣
T,N

)
∂V

∂T

∣∣∣∣
p,N

=
∂U

∂T

∣∣∣∣
V,N

+ p
∂V

∂T

∣∣∣∣
p,N

=
∂U

∂T

∣∣∣∣
V,N

+
∂

∂T
(pV )

∣∣∣∣
p,N

=
∂U

∂T

∣∣∣∣
V,N

+
∂

∂T
(NRT )

∣∣∣∣
p,N

=
∂U

∂T

∣∣∣∣
V,N

+NR.

(A8)670

In the previous computations, there is no restriction on the temperature dependence of the internal energy U(T ). Therefore,

even under the assumption of ideal-gas behaviour, the specific heat capacity Cp in (A8) is in general a function of temperature.
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Appendix B: Sensitivity of the conventional definition of θ to perturbations of cp

This section explores, from a mathematical perspective, the sensitivity of the potential temperature formulation (13) based on

a constant specific heat capacity. Considering the specific heat capacity cp as a variable, the sensitivity of θcp (13) to a small675

perturbation δ of cp is described by the Taylor expansion

θcp+δ = θcp +
∂θcp
∂cp

δ+O
(
δ2
)

= θcp − θcp
Ra
c2p

ln
(
p0

p

)
δ+O

(
δ2
)
.

(B1)

For any constant value of the specific heat capacity cp and for a minor perturbation δ, the second summand within the expansion

(B1) remains small for small values of ln
(
p0
p

)
. If the interval between the two pressure levels is very narrow, i.e., p≈ p0,

the expression ln
(
p0
p

)
approximates ln(1) = 0. Contrarily, if the pressure approaches very low values, i.e., p→ 0Pa, the680

logarithmic expression diverges to negative infinity, i.e., ln
(
p0
p

)
→−∞, implying that the impact of the second summand

intensifies with decreasing pressure, i.e., for increasing altitudes. Moreover, this may explain why the deviation between θ994

and θ1011, as illustrated in Figure 2b, remains comparatively small within the troposphere and systematically increases with

rising altitude, i.e., decreasing pressure levels.

Appendix C: Approximate computation of the reference potential temperature685

This section summarises the detailed steps of approximating the function F (x), defined in (22), by F̂ (x), defined in (26)

(Section C1), as well as the approximations of the solutions of the resulting nonlinear equations by Newton’s method (Section

C2).

C1 Reformulating the function F (x)

Proceeding from the definition of a function h(x)690

h(x) =

x∫

T1

cp(z)
z

dz, (C1)

with T1 = 180K, the function F (x) may be rearranged as

F (x) =

T∫

x

cp(z)
z

dz−Ra ln
(
p

p0

)

= h(T )−h(x)−Ra ln
(
p

p0

)
.

(C2)

The advantage of this reformulation of F (x) is the inclusion of h(x) which consists of an integral with fixed lower bound and

a sole variable as upper bound. This way, the function h(x) is numerically solvable, and subsequently h(x) can be substituted695
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by an approximation f(x) that is defined as

f(x) = b0 + b1 ln(x− b2) + b3x+ b4x
2. (C3)

Notably, if cp is constant, this function reduces to an exact primitive of the integrand cp
z with b3 = b4 = 0. Moreover, in this

case, the resulting root-finding problem 0 = F (x) is exactly solvable and finally leads to the known conventional definition

(13) of the potential temperature.700

As a further step, the function h(x) is numerically approximated, while cp(T ) in (C1) is replaced by the ideal-gas limit of

air’s specific heat capacity c0p(T ). The integration interval [T1, x] with T1 ≤ x≤ 2000K is traversed in steps of at most 0.001K

while each step of the integration process is carefully approximated by using Simpson’s rule.

By solving a least-squares problem, the coefficients in (C3) for the approximation of h(x) by the function f(x) are estimated

as705

b0 =−4072.2121328563667,

b1 = 797.09247926609601,

b2 = 29.587047521428016,

b3 = 0.41981158226925142,

b4 =−5.1008025097060311 · 10−5.

(C4)

In Figure C1a the function h(x) is graphed, together with the approximation f(x), as well as the respective deviations

h(x)− f(x) in Figure C1b. Evidently, the absolute error inherent to the approximations is comparatively small as, over the

entire temperature range above 190K, the approximation error never exceeds ±1J kg−1K−1. Thus, the approximation error

remains even smaller than the error caused by the scatter of given constant values of the specific heat capacity. Exclusively at710

temperatures below 190K, the approximation error rapidly rises above 1J kg−1K−1, bearing in mind that such absolute tem-

peratures are only occasionally found in the atmosphere within a relatively narrow altitude interval at the cold point tropopause.

Moreover, the deviation of f(x) and h(x) from each other appears negligible as the profiles almost ideally coincide (cf. Figure

C1a).

C2 Finalised approximation of the reference potential temperature715

As discussed in Section 5.1, the new formulation for the potential temperature based on the temperature-dependent specific heat

capacity cp(T ) requires solving the root-finding problem 0 = F (x), where the function F (x) is defined in (22). However, since

F (x) contains an integral that complicates the root-finding process, this integral is substituted by the difference f(T )− f(x),

where f is given in Section C1. Therefore, F (x) is replaced by the function F̂ (x) as defined in (26) and the zero of the equation

0 = F̂ (x) is denoted as θapprox
ref .720
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Figure C1. (a) Numerically evaluated function h(x) together with its approximation f(x); (b) the absolute approximation error h(x)−f(x).

The equation 0 = F̂ (x) is still not analytically solvable, so Newton’s method is once more required. Using again x0 = θ1005

as the initial guess, cf. (24), the iteration sequence for Newton’s method is given by the recursion

xk+1 = xk −
F̂ (xk)

F̂ ′(xk)
= xk −

f(T )− f(xk)−Ra ln
(
p
p0

)

−f ′(xk)

= xk −
Ra ln

(
p
p0

)
− f(T ) + f(xk)

f ′(xk)
.

(C5)
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Instead of this standard formulation of Newton’s method (C5), Householder’s formulation

xk+1 = xk −
F̂ (xk)

F̂ ′(xk)
− F̂ ′′(xk)

2F̂ ′(xk)

[
F̂ (xk)

F̂ ′(xk)

]2

= xk −
Ra ln

(
p
p0

)
− f(T ) + f(xk)

f ′(xk)

− f ′′(xk)
2f ′(xk)



Ra ln

(
p
p0

)
− f(T ) + f(xk)

f ′(xk)




2

(C6)725

may be used, which allows for reducing the computation time due to its accelerated convergence speed. For completeness, the

required derivatives f ′, f ′′ in the recursion formulas (C5) and (C6) are

f ′(x) =
b1

x− b2
+ b3 + 2b4x,

f ′′(x) = 2b4−
b1

(x− b2)2
.

(C7)

The final step on the way to formulate a new expression for the potential temperature requires defining one of the iterates xk

as appropriate enough for the approximations that result from applying the different methods:730

– the standard of Newton’s method (C5), simply referred to as Newton’s method in the sequel, or

– Householder’s method (C6).

While the mathematical expressions in (C5) and (C6) are of increasing complexity, the convergence rate of the approximating

sequence increases with rising mathematical complication. The preferred method is determined by the accuracy required,

i.e., an elevated accuracy level is necessarily associated with elevated computational effort for the approximation method. A735

discussion of the approximation errors is found in Appendix D.

Table C1 collects values of the new reference potential temperature θref , together with the first two iterates θ(1), θ(2) using

Newton’s method (C5) and the first iterate θ(1)Householder using Householder’s method (C6) for five pairs of temperature and

pressure along the US Standard Atmosphere, cf. Figure 1, which allows to verify a computation. The first height is chosen

midway along the linearly decreasing temperature profile within the troposphere, while the other heights correspond to the740

kinks of the temperature profile.

Appendix D: Approximation error for the reference potential temperature

The following aims at a comprehensive investigation of the errors inherent with approximating the ultimate reference potential

temperature θref . As discussed in Section 5.2, the total error is a combination of the basic error θref−θapprox
ref and, furthermore,

the approximation error that results from the approximation sequence θapprox
ref − θ(k), where θ(k) denotes the k-th iterate of the745

approximation sequence which is computed in accordance with either Newton’s or Householder’s method. The formulations of
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z in m T in K p in Pa θref in K θ(1) in K θ(2) in K θ
(1)
Householder in K

5500 252.4 50506.8 306.837 307.016 307.016 307.016

11000 216.65 22632.1 331.337 331.510 331.510 331.510

20000 216.65 5474.89 494.940 495.376 495.378 495.378

32000 228.65 868.019 855.324 855.172 855.656 855.660

47000 270.65 110.906 1637.052 1620.463 1637.726 1638.974

Table C1. Values of the new reference potential temperature θref , together with the first two iterates θ(1), θ(2) using Newton’s method and

the first iterate θ(1)Householder using Householder’s method for five pairs of temperature and pressure along the US Standard Atmosphere. The

computed values are rounded to three digits.

Newton’s (C5) and Householder’s (C6) method require replacing the function F (x) by F̂ (x), and the approximation sequences

θ(k) converge to θapprox
ref for k→∞. Consequently, the approximation error θapprox

ref − θ(k) tends to zero for k→∞.

The analysis of the approximation error is initially based on the pressure and temperature profiles of the US Standard At-

mosphere. Figure D1 shows the total relative errors
(
θref − θ(1)

)
/θref of the first iterate (Figure D1a) and

(
θref − θ(2)

)
/θref750

of the second iterate (Figure D1b), computed with Newton’s or Householder’s method. The first iterate still causes the ap-

proximation to have significant errors, especially at altitudes above 35km. However, the second iterate with either Newton’s or

Householder’s method yields results with negligible approximation error. Hence, the total error of the approximation procedure

is dominated by the unavoidable basic error, and may be deduced from the provided figures whenever the total error profile

nearly congruently follows the profile of the basic error (cf. Figures D1b and 5a).755

It may be noted that Householder’s method achieves a significantly lower error level than Newton’s method due to its

accelerated rate of convergence. Compared to the first iterate approximations, computation up to the second iterate (cf. Figure

D1b) achieves, in general, a considerable improvement for both methods, and both second iterate approximations approach

the basic error quite closely (cf. Figure D1b). As is also evident from Figure D1b, compared to Householder’s method, the

second iterate with Newton’s method results in a smaller total relative error
(
θref − θ(2)

)
/θref relative to the ultimate reference760

potential temperature (indicated by a smaller distance to the dashed zero-line above 45km altitude). Nevertheless, the relative

approximation error,
(
θapprox
ref − θ(2)

)
/θref , is larger compared to the second iterate with Householder’s method. So, luckily,

the second iterate with Newton’s method provides a better approach to the reference potential temperature than that with

Householder’s method.

As for the discussion of the basic error in Section 5.2, the analysis of the total error should include all possible combinations765

of pressure and temperature in order to take into account fluctuations in the real atmosphere that deviate from the profile of the

US Standard Atmosphere. Therefore, the extended analysis of the approximation error is summarised in Figure D2. The upper

panels illustrate the total relative error of the second iterate for Newton’s (Figure D2a) and Householder’s method (Figure

D2b). As previously shown, any further iteration with either method does not improve the approximation quality. The contour

patterns in these panels show a remarkable similarity to the contours for the relative error of the basic approximation in Figure770

5c. Also here (upper panels of Figure D2), two regions are highlighted by the contours, i.e., at ∼ 100hPa and in a pressure
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Figure D1. Total relative error along the US Standard Atmosphere arising from the iteration process by declaring (a) the first iterate θ(1)

or (b) the second iterate θ(2) as the final approximation to the reference potential temperature θref . Red curves: iterates computed using

Newton’s method (C5); blue curves: iterates computed using Householder’s method (C6). Note the different range of the abscissae.

range from∼ 5hPa to 1hPa, featuring the same impact on ∆θ/θref of identical strength as the basic error. This result may not

be surprising, since the second iteration step with both methods, Newton’s and Householder’s, was already proven to approach

the approximation comparatively well, without worsening the total error level (cf. Figure D1b).

Consequently, concerning the required number of iterations and the method to use, the second iteration of Newton’s method775

can be recommended to deliver appropriate results, with a relative error of less than 0.3%, up to the stratopause level (∼ 50km).

Householder’s method features an accelerated convergence rate, and its use up to its first iterate θ(1) may be already appropriate

for certain applications. According to the total error of Householder’s method up to its first iterate θ(1) (Figure D2c), the

resulting relative error remains below 7% to a pressure level of ∼ 50hPa and ∆θ stays below 0.3% to pressures of ∼ 2hPa.

Thus, Figure D2 may serve as guidance to decide how many iterations with one or the other method best meets the individual780

accuracy requirements.
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Figure D2. Relative error of the second iterates θ(2) with (a) Newton’s method and (b) Householder’s method for the the ranges of pressure

and temperature from 1000hPa to 0.5hPa and from 180K to 300K, respectively. (c) The absolute error arising from the first iterate θ(1)

with Householder’s method. The white solid line indicates the p-T -profile from the US Standard Atmosphere. Note the different ranges of

the ∆θ scales.
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