
Response to reviewers 
Title: Satellite Retrieval of Aerosol Combined with Assimilated Forecast 
Authors: M. Yoshida et al. 
MS No.: acp-2020-356 
 
Response to Dr. Alexander Kokhanovsky (Referee #1) 
We would like to thank Dr. Alexander Kokhanovsky for the constructive comments and 
recommendations for publication. We modified the manuscript accordingly, and we 
believe the revised paper is improved. Our point-by-point responses and actions 
regarding the comments are listed below. The comments from the reviewers are 
emphasized, and our responses and actions are shown in blue. Modified parts in the 
revised manuscript are shown in red. English correction by several native speakers is 
shown in green. The original sentences removed in the revised manuscript are shown in 
orange.  
 
This work is aimed to the retrieval of aerosol properties such as aerosol optical 
thickness(AOT),Angstromexponent(AE)andsinglescatteringalbedo(SSA)usingsatellite 
observations. The authors use the short/term forecats from an aerosol assimilation 
system for a priori estimate of parameters to be retrieved. I would suggest the 
publication of this paper taking into account the comments given below:  
1). Please, give equations related the parameters AOT, AE, SSA with fine particles 
mixing ratio and the imaginary part of their refractive index. Please, specify all 
assumptions used to derive the corresponding relationships.  
 
Thank you very much for your comment. We are sorry for the inadequate explanation. We added the 

detailed explanation of the aerosol model (appendix A), and the relationship of α and 𝜔𝜔 with 𝜂𝜂𝑓𝑓 and 

𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 (appencndix B) in the revised manuscript. We also added the Figure B1, which shows the relations 

of (a) 𝜔𝜔 and (b) α with 𝜂𝜂𝑓𝑓 and 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 as follows. 

 

[P4_L112] 
The α and 𝜔𝜔 are calculated from the retrieved 𝜂𝜂𝑓𝑓 and 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 (i.e., 𝑚𝑚𝑖𝑖 for fine aerosol model) using the 

tables previously calculated by radiative transfer code called the System for the Transfer of Atmospheric 

Radiation, whose development was initially led by the University of Tokyo (STAR, Nakajima and 

Tanaka 1986, 1988; Stamnes et al., 1988). The detailed aerosol setting is explained in Yoshida et al. 



(2018), and is outlined in Appendix A. Appendix B shows the relationship of the final retrieval 

parameters (α and 𝜔𝜔) with the set of aerosol parameters (𝜂𝜂𝑓𝑓 and 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑). 

 
[P10_L299] 

Appendix A: Aerosol Setting 

We assume that the aerosol model is an external mixture of fine and coarse particles (𝜂𝜂𝑓𝑓 is the external 

mixing ratio of the dry volume concentration of fine particles). We set the fine aerosol model based on the 

average properties of fine mode for categories 1–6 by Omar et al. (2005). For the coarse aerosol model, we 

set the external mixture of the pure marine aerosol on the basis of the model illustrated by Sayer et al. 

(2012) and the dust model based on the coarse model of category 1 (dust) as illustrated by Omar et al. 

(2005). 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 is the external mixing ratio of the dry volume concentration of dust particles for the coarse 

model. 

 

Regarding each aerosol size, we use a monomodal lognormal volume size (rd) distribution, which is defined 

as follows: 
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where Cv is the particle volume concentration, rv is the volume median radius, and σ is the standard 

deviation. rv is set to 0.143, 2.59, and 2.834 (σ is 1.537, 2.054, and 1.908) for fine, coarse marine, and 

coarse dust, respectively, based on the observations by Omar et al. (2005) and Sayer et al. (2012). 

Regarding the aerosol shape, we assume a spherical model for the fine and coarse marine models, and a 

non-spherical model for the coarse dust model (Nakajima et al. 1989). The aerosol vertical distribution is 

set to the same distribution that was used for rural (dominant at 0–2 km), sea-spray (below 2 km), and 

yellow sand (4-8 km), for fine, coarse marine, and coarse dust in the STAR code, respectively. The real part 

of the refractive index is set to 1.439, 1.362, and 1.452 for fine, coarse marine, and coarse dust, respectively, 

and the imaginary part of the refractive index (𝑚𝑚𝑖𝑖) is set to 3.0×10-9 and 0.0036 at all wavelengths for 

coarse marine, and coarse dust, respectively, based on Sayer et al. (2012) and Omar et al. (2005). The 𝑚𝑚𝑖𝑖 

for the fine aerosol model is perturbed to represent non-absorbing and absorbing aerosols. To decrease the 

number of derived parameters, the 𝑚𝑚𝑖𝑖 for the fine aerosol model varies with change in 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 such that the 

fine and coarse models exhibit the same 𝜔𝜔 at 500 nm. 



Appendix B: Relationship of α and 𝝎𝝎 with 𝜼𝜼𝒇𝒇 and 𝜼𝜼𝒄𝒄𝒅𝒅𝒅𝒅𝒅𝒅 

Figure B1 shows the relations of the final retrieval parameters α, and 𝜔𝜔 with the external mixing ratio of 

dry volume concentration of fine particles (𝜂𝜂𝑓𝑓), and external mixing ratio of the dry volume concentration 

of dust particles for the coarse model (𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑). The 𝜔𝜔 at 500 nm can be uniquely determined by the 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑  

(Fig. B1 (a)), since 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 for the coarse aerosol changes in conjunction with 𝑚𝑚𝑖𝑖 for the fine aerosol so that 

the 𝜔𝜔 at 500 nm has the same value without depending on the 𝜂𝜂𝑓𝑓. Note that the 𝜔𝜔 at wavelengths other 

than 500 nm are dependent on not only 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 but also 𝜂𝜂𝑓𝑓. The α is mainly determined by 𝜂𝜂𝑓𝑓, but also 

depends slightly on 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 (Fig. B1 (b)). 

 

Figure B1: The relations of (a) single-scattering albedo at 500 nm (𝜔𝜔), and (b) Ångström exponent 

between 400 and 600 nm (α) with the external mixing ratio of dry volume concentration for fine particles 

(𝜂𝜂𝑓𝑓), and external mixing ratio of the dry volume concentration of dust particles for the coarse model 

(𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑). Each color represents a different 𝑚𝑚𝑖𝑖. 



2). Please, extend the discussion of Fig.6 pointing to the reasons for possible large 
deviations of ground and satellite derived aerosol products for the case of developed 
algorithm. 
 
Thank you very much for your valuable comment. We investigate the cause of the possible large 

deviation of validation results of this algorithm, and added Fig.8, 9, 10, 11 in the revised manuscript. Here, 

the validation results in Figs.6, 8, 9, 10, 11 are revised for the extended six months in response to 

Reviewers#3 comments. 

 
[P8_L247] 
We also investigated the cause of the possible large deviation between the retrieved parameters from the 

new algorithm and the ground observation. Figures 8, 9, and 10 show the validation results of 𝜏𝜏, α, and 

𝜔𝜔, respectively, when the chi-square value (𝜒𝜒2) and the uncertainties of the retrieved three parameters 

(𝜏𝜏,  𝜂𝜂𝑓𝑓, and 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑) are smaller than a threshold. The chi-square value (𝜒𝜒2) is calculated as follows: 

𝜒𝜒2[𝑹𝑹 −  𝑭𝑭(𝒙𝒙)] =  [𝑹𝑹 −  𝑭𝑭(𝒙𝒙)]𝑇𝑇𝑺𝑺𝒆𝒆−1[𝑹𝑹 −  𝑭𝑭(𝒙𝒙)] 𝑁𝑁⁄ ,   (7) 

and shows the closeness of the retrieved value to the observed value. The covariance matrix of the 

uncertainties of the retrieved parameters 𝐒𝐒𝐱𝐱� is calculated using the law of error propagation, as follows: 

𝐒𝐒𝐱𝐱�  =  (𝑨𝑨𝑇𝑇𝑺𝑺𝒆𝒆−𝟏𝟏𝑨𝑨)−1 , (8) 

where A is the Jacobian matrix. Se is the covariance matrix of R, and calculated from sum of sensor noise 

and the uncertainty in TOA reflectance that results from surface reflectance uncertainty (Yoshida et al., 

2018). In reality, the Se is almost determined by the uncertainty in TOA reflectance that results from 

surface reflectance uncertainty, because sensor noise is much smaller. Therefore, the 𝑺𝑺𝐱𝐱�  is mostly 

caused by the surface reflectance uncertainty. Figure 8 shows that RMSE for 𝜏𝜏 decreases as the 

threshold of 𝜒𝜒2 or 𝑺𝑺𝒙𝒙� becomes strict (i.e., decreases). On the other hand, RMSE for α (in Fig. 9) is not 

dependent on the threshold of 𝑺𝑺𝒙𝒙�, but decreases as the 𝜒𝜒2 threshold decreases. RMSE for 𝜔𝜔 (in Fig. 10) 

is little dependent on the threshold of 𝑺𝑺𝒙𝒙� and 𝜒𝜒2. Next, in Fig. 11 we investigated how the retrieved 

accuracy (difference between aerosol parameters retrieved from AHI and those of AERONET) depends 

on the model’s (i.e., a priori) accuracy. The retrieved accuracy of α and 𝜔𝜔 has strong linear relationships 

(a correlation of 0.801, and 0.739, respectively) to the model’s accuracy, while that of 𝜏𝜏 has a moderate 

linear relationship (a correlation of 0.622). Summarizing these results, the retrieved accuracy of 𝜏𝜏 

depends on all of the closeness to the observed value, accuracy of the surface reflectance estimation, and 

accuracy of a priori estimate, while the accuracy of a priori estimate is critical for the retrieved accuracy 

of α and 𝜔𝜔. Thus, introducing more realistic a priori estimates in the new retrieval algorithm instead of 

the constant values in the original algorithm led to the improvement of RMSE. It is also shown that the 

improvement of a numerical aerosol forecast by improving the aerosol transport model and the 

assimilation method, and increasing the assimilation frequency may further improve the retrieval 



accuracy in the future. 

 

Figure 8: Frequency distribution of 𝝉𝝉 retrieved from AHI and those from AERONET. The results retrieved 

from this algorithm in the case of 𝝌𝝌𝟐𝟐 less than 20, 0.5, 0.2, and uncertainties of the retrieved 𝝉𝝉 (𝐒𝐒𝛕𝛕) less than 

20, 1.0, 0.5 are plotted in each panel. E, B, and R above the figures show the root mean square error, mean bias, 

and correlation, respectively. 



 
 

Figure 9: Frequency distribution of α retrieved from AHI and those from AERONET. The results retrieved 

from this algorithm in the case of 𝝌𝝌𝟐𝟐 less than 20, 0.5, 0.2, and uncertainties of the retrieved𝜼𝜼𝒇𝒇 (𝐒𝐒 𝜼𝜼𝒇𝒇) less than 

20, 0.5, 0.2 are plotted in each panel. E, B, and R above the figures are the same as in Fig. 8. 

 



 

Figure 10: Frequency distribution of 𝝎𝝎 retrieved from AHI and those from AERONET. The results retrieved 

from this algorithm in the case of 𝝌𝝌𝟐𝟐 less than 20, 0.5, 0.2, and uncertainties of the retrieved𝜼𝜼𝒄𝒄𝒅𝒅𝒅𝒅𝒅𝒅 (𝐒𝐒𝜼𝜼𝒄𝒄𝒅𝒅𝒅𝒅𝒅𝒅) less 

than 20, 0.5, 0.2 are plotted in each panel. E, B, and R above the figures are the same as in Fig. 8. 



 

 

Figure 11: Frequency distribution of the difference between 𝝉𝝉 (a), 𝜶𝜶 (b), and 𝝎𝝎 (c) retrieved from 

AHI and those from AERONET, as a function of the difference between 𝝉𝝉 (a), 𝜶𝜶 (b), and 𝝎𝝎 (c) of 

a priori estimate and AERONET. R shows the correlation. 

 

 

 
  



Response to Refree #3 
We would like to thank Anonymous Refree #3 for the constructive comments and 
recommendations for publication. We modified the manuscript accordingly, and we 
believe the revised paper is improved. Our point-by-point responses and actions 
regarding the comments are listed below. The comments from the reviewers are 
emphasized, and our responses and actions are shown in blue. Modified parts in the 
revised manuscript are shown in red. English correction by several native speakers is 
shown in green. The original sentences removed in the revised manuscript are shown in 
orange.  
 

The paper “Retrieval of Aerosol Combined with Assimilated Forecast” is an interesting paper that 

uses model forecast to improve the aerosol satellite retrieval especially over aerosol absorption and size 

parameters. However, there are couple major problems need to be clarified. First of all, what is the 

relations between Angstrom exponent and particle mixing ratio? If this ratio is similar to fine mode 

fraction, which defined as fine mode AOD over total AOD, then the Angstrom Exponent is not only 

depending on this parameter. Similarly, the single scattering albedo is not only dependent on 

imaginary part of the refractive index, it is also function of size distribution.  

 

Thank you very much for your comment. The ηf  is the external mixing ratio of the dry volume 

concentration of fine particles. For the coarse aerosol model, we set the external mixture (ηcdst is the 

mixing ratio) of a pure marine aerosol and a dust model. For the fine aerosol model, the imaginary part of 

the refractive index 𝑚𝑚𝑖𝑖 was perturbed to represent a non-absorbing and absorbing aerosol. To decrease the 

number of derived parameters, the 𝑚𝑚𝑖𝑖 varied with ηcdst such that the fine and coarse models exhibited the 

same 𝜔𝜔 at 500 nm. 

As you pointed out the angstrom Exponent α  is not only depending on the ηf, but also depending on 

𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑. We modified the following sentence in the revised manuscript. 

 

[P5_L155] 
𝜎𝜎𝜂𝜂𝑓𝑓𝑎𝑎
𝐴𝐴 (0.093) is calculated from RMSE of the model’s α (0.223 in Fig. 6 (f)) at α of 1.2 and 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 of 0.5. 

The original manuscript was: 
𝜎𝜎𝜂𝜂𝑓𝑓𝑎𝑎
𝐴𝐴 (0.110) is calculated from RMSE of the model’s α (0.233 in Fig. 6 (f)), which is uniquely determined 

by 𝜂𝜂𝑓𝑓. 

 

  



The single scattering albedo 𝜔𝜔 is function of 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑(or 𝑚𝑚𝑖𝑖) and 𝜂𝜂𝑓𝑓, but 𝜔𝜔 at 500nm can be uniquely 

determined by 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑(𝑜𝑜𝑜𝑜 𝑚𝑚𝑖𝑖), since 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 moves in conjunction with 𝑚𝑚𝑖𝑖 so that the 𝜔𝜔 at 500 nm has the 

same value without depending on the 𝜂𝜂𝑓𝑓. We added the detailed explanation of the aerosol model 

(appendix A), and the relationship of α and 𝜔𝜔 with 𝜂𝜂𝑓𝑓 and 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 (appendix B) in the revised 

manuscript. We also added the Figure B1, which shows the relations of (a) 𝜔𝜔 and (b) α with 𝜂𝜂𝑓𝑓 and 

𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 as follows. 

 
[P4_L107] 
In the retrieval process, the final retrieval parameters ( 𝜏𝜏, α , and 𝜔𝜔 ) are calculated from the set of aerosol 

parameters (𝜏𝜏, external mixing ratio of dry volume concentration of fine particles 𝜂𝜂𝑓𝑓, and external mixing 

ratio of the dry volume concentration of dust particles for the coarse model 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑) defined by Yoshida et al. 

(2018). Here, the imaginary part of the refractive index (𝑚𝑚𝑖𝑖) for the fine aerosol model varies with change 

in 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 such that the fine and coarse models exhibit the same 𝜔𝜔 at 500 nm (see Yoshida et al., 2018 for 

more details). The α and 𝜔𝜔 are calculated from the retrieved 𝜂𝜂𝑓𝑓 and 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 (i.e., 𝑚𝑚𝑖𝑖 for fine aerosol 

model) using the tables previously calculated by radiative transfer code called the System for the Transfer 

of Atmospheric Radiation, whose development was initially led by the University of Tokyo (STAR, 

Nakajima and Tanaka 1986, 1988; Stamnes et al., 1988). The detailed aerosol setting is explained in 

Yoshida et al. (2018), and is outlined in Appendix A. Appendix B shows the relationship of the final 

retrieval parameters (α and 𝜔𝜔) with the set of aerosol parameters (𝜂𝜂𝑓𝑓 and 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑). 

 
 
[P10_L299] 

Appendix A: Aerosol Setting 

We assume that the aerosol model is an external mixture of fine and coarse particles (𝜂𝜂𝑓𝑓 is the external 

mixing ratio of the dry volume concentration of fine particles). We set the fine aerosol model based on the 

average properties of fine mode for categories 1–6 by Omar et al. (2005). For the coarse aerosol model, we 

set the external mixture of the pure marine aerosol on the basis of the model illustrated by Sayer et al. 

(2012) and the dust model based on the coarse model of category 1 (dust) as illustrated by Omar et al. 

(2005). 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 is the external mixing ratio of the dry volume concentration of dust particles for the coarse 

model. 

 

Regarding each aerosol size, we use a monomodal lognormal volume size (rd) distribution, which is defined 

as follows: 
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where Cv is the particle volume concentration, rv is the volume median radius, and σ is the standard 

deviation. rv is set to 0.143, 2.59, and 2.834 (σ is 1.537, 2.054, and 1.908) for fine, coarse marine, and 

coarse dust, respectively, based on the observations by Omar et al. (2005) and Sayer et al. (2012). 

Regarding the aerosol shape, we assume a spherical model for the fine and coarse marine models, and a 

non-spherical model for the coarse dust model (Nakajima et al. 1989). The aerosol vertical distribution is 

set to the same distribution that was used for rural (dominant at 0–2 km), sea-spray (below 2 km), and 

yellow sand (4-8 km), for fine, coarse marine, and coarse dust in the STAR code, respectively. The real part 

of the refractive index is set to 1.439, 1.362, and 1.452 for fine, coarse marine, and coarse dust, respectively, 

and the imaginary part of the refractive index (𝑚𝑚𝑖𝑖) is set to 3.0×10-9 and 0.0036 at all wavelengths for 

coarse marine, and coarse dust, respectively, based on Sayer et al. (2012) and Omar et al. (2005). The 𝑚𝑚𝑖𝑖 

for the fine aerosol model is perturbed to represent non-absorbing and absorbing aerosols. To decrease the 

number of derived parameters, the 𝑚𝑚𝑖𝑖 for the fine aerosol model varies with change in 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 such that the 

fine and coarse models exhibit the same 𝜔𝜔 at 500 nm. 

Appendix B: Relationship of α and 𝝎𝝎 with 𝜼𝜼𝒇𝒇 and 𝜼𝜼𝒄𝒄𝒅𝒅𝒅𝒅𝒅𝒅 

Figure B1 shows the relations of the final retrieval parameters α, and 𝜔𝜔 with the external mixing ratio of 

dry volume concentration of fine particles (𝜂𝜂𝑓𝑓), and external mixing ratio of the dry volume concentration 

of dust particles for the coarse model (𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑). The 𝜔𝜔 at 500 nm can be uniquely determined by the 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑  

(Fig. B1 (a)), since 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 for the coarse aerosol changes in conjunction with 𝑚𝑚𝑖𝑖 for the fine aerosol so that 

the 𝜔𝜔 at 500 nm has the same value without depending on the 𝜂𝜂𝑓𝑓. Note that the 𝜔𝜔 at wavelengths other 

than 500 nm are dependent on not only 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 but also 𝜂𝜂𝑓𝑓. The α is mainly determined by 𝜂𝜂𝑓𝑓, but also 

depends slightly on 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 (Fig. B1 (b)). 



 

Figure B1: The relations of (a) single-scattering albedo at 500 nm (𝜔𝜔), and (b) Ångström exponent 

between 400 and 600 nm (α) with the external mixing ratio of dry volume concentration for fine particles 

(𝜂𝜂𝑓𝑓), and external mixing ratio of the dry volume concentration of dust particles for the coarse model 

(𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑). Each color represents a different 𝑚𝑚𝑖𝑖. 

  



Also in the paper, it claims that imaginary part of the refractive index is between 0-1, but realistically, 

this value is between 0.00001 to 0.01 at 550nm. Look at the value the author cited in line36 these 

values are around e-8. So I am not sure how is this value in case study can be above 0.1 (which 

wavelength are we talking about here)? Is mi really the imaginary part of the refractive index? 

We truly appreciate your effort to read our paper carefully. We are sorry that the 𝑚𝑚𝑖𝑖 was a mistake of 

𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑. We modified from 𝑚𝑚𝑖𝑖 to 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 in the revised manuscript. Here, the qualitative characteristics 

shown in the manuscript do no change, since the 𝑚𝑚𝑖𝑖 varied with 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 such that the fine and coarse 

models exhibited the same 𝜔𝜔 at 500 nm. 

[P4_L107] 
In the retrieval process, the final retrieval parameters ( 𝜏𝜏, α , and 𝜔𝜔 ) are calculated from the set of aerosol 

parameters (𝜏𝜏, external mixing ratio of dry volume concentration of fine particles 𝜂𝜂𝑓𝑓, and external mixing 

ratio of the dry volume concentration of dust particles for the coarse model 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑) defined by Yoshida et al. 

(2018). Here, the imaginary part of the refractive index (𝑚𝑚𝑖𝑖) for the fine aerosol model varies with change 

in 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 such that the fine and coarse models exhibit the same 𝜔𝜔 at 500 nm (see Yoshida et al., 2018 for 

more details).  

 

Also setting aerosol to non-absorbing totally causes big problem when there is transported dust/smoke 

over ocean.  

Thank you very much for your valuable comment. We tried to use model’s 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 as a priori over ocean, 

in order to handle the absorbing aerosol over ocean, but using the model’s 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎 as 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 over the ocean 

sometimes leads to a large 𝜏𝜏 estimation, since the model’s 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 over ocean is not good at this time. We 

we will use the model’s 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎 as 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 over the ocean after obtaining a better model 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎 in the future. In 

the revised manuscript, we clearly added this problem as follows. 

[P6_L166] 
Therefore, 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑  over the ocean, which is the least sensitive to satellite observation, is set to 0 (i.e., 

non-absorbing aerosol) at this time, because the aerosol over the ocean is generally less absorbing than that 

over land, and using the model’s 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎 as 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 over the ocean leads to a worse estimation of 𝜏𝜏 (not 

shown). However, using non-absorbing aerosol over ocean causes a big problem in case of dust/smoke 

transported over the ocean, so we will use the model’s 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎 as 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 over the ocean after obtaining a 

better model’s 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎 in the future. Note that 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 over land is properly retrieved from satellite data (i.e., 

not set to 0) using the model’s 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎 as a priori estimate, since the number of satellite channels (five) used 

over land is greater than the number of retrieval parameters (three). 

 

 

  



The case study shown the improved relation of Angstrom exponent/single scattering albedo vs ground 

truth, I think it is worth exploring with more cases with more discussion of the error sources in each 

cases. 

 

Thank you very much for your constructive comment. We increased the case by extending the validation 

period from three months to six months.  

 

[P7_L206] 
Initial validation was conducted for six months (March, April, May, June, July, 2018, and February 2019). 

Long-term validation will be required in future studies.  

 

In addition, we investigated the appropriate setting for Sa by validating the results for various conditions, 

and change slightly the setting for Sa. 

The original manuscript used the following Sa. 

[P6_L2] 
we assume that non-diagonal component of Sa and 𝑺𝑺𝒂𝒂𝑬𝑬 is the same, and calculate the non-diagonal 

component of Sa as follows: 

𝜎𝜎𝜏𝜏𝑎𝑎𝜂𝜂𝑓𝑓𝑎𝑎 =
𝜎𝜎𝜏𝜏𝑎𝑎∙𝜎𝜎𝜂𝜂𝑓𝑓𝑎𝑎
𝜎𝜎𝜏𝜏𝑎𝑎
𝐸𝐸 ∙𝜎𝜎𝜂𝜂𝑓𝑓𝑎𝑎

𝐸𝐸 𝜎𝜎𝜏𝜏𝑎𝑎𝜂𝜂𝑓𝑓𝑎𝑎
𝐸𝐸 ,        (7)                                                                          

𝜎𝜎𝜏𝜏𝑎𝑎𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎 =
𝜎𝜎𝜏𝜏𝑎𝑎∙𝜎𝜎𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎
𝜎𝜎𝜏𝜏𝑎𝑎
𝐸𝐸 ∙𝜎𝜎

𝜂𝜂𝑐𝑐
𝑑𝑑𝑑𝑑𝑑𝑑

𝑎𝑎

𝐸𝐸 𝜎𝜎𝜏𝜏𝑎𝑎𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎
𝐸𝐸 ,            (8)                                                                          

𝜎𝜎𝜂𝜂𝑓𝑓𝑎𝑎𝜂𝜂𝑐𝑐
𝑑𝑑𝑑𝑑𝑑𝑑

𝑎𝑎
=

𝜎𝜎𝜂𝜂𝑓𝑓𝑎𝑎
∙𝜎𝜎
𝜂𝜂𝑐𝑐
𝑑𝑑𝑑𝑑𝑑𝑑

𝑎𝑎
𝜎𝜎𝜂𝜂𝑓𝑓𝑎𝑎
𝐸𝐸 ∙𝜎𝜎

𝜂𝜂𝑐𝑐
𝑑𝑑𝑑𝑑𝑑𝑑

𝑎𝑎

𝐸𝐸 𝜎𝜎𝜂𝜂𝑓𝑓𝑎𝑎𝜂𝜂𝑐𝑐
𝑑𝑑𝑑𝑑𝑑𝑑

𝑎𝑎

𝐸𝐸 .       (9) 

The revised manuscript uses the following Sa. 

we use the non-diagonal components of 𝑺𝑺𝒂𝒂𝑬𝑬 as those of Sa. 

 

With the above changes, and minor bug fixes, Fig.4, 5, 6, 7, 8 (12 in the revised manuscript) changed 

slightly. The major results are not changed, but the numerical values were changed as follows. 

 

[P7_L218] 
For the 𝜏𝜏 estimations (Fig. 6 (a), (b), (c)), the root mean square error (RMSE), mean bias (MB), and 

correlation (0.290, -0.099, and 0.758) from this algorithm (Fig. 6 (b)) are all better than those (0.399, -0.224, 

and 0.572) from the model forecast (i.e., a priori estimate) in Fig. 6 (c), which means that satellite 

information is very effective for the retrieval of 𝜏𝜏. In addition, the RMSE (0.290) in Fig. 6 (b) is better than 

that (0.307) without the forecast model (Fig. 6 (a)), which means that the model information is also 

effective and the improved algorithm shows better performance than the original algorithm. The MB 



(-0.099) in Fig. 6 (b) is worse than that (-0.023) in Fig. 6 (a), probably because the large outlier in Fig. 6 (a) 

is improved in Fig. 6 (b).  
 
[P7_L230] 
For the α estimations (Fig. 6 (d), (e), (f)), large variance in the original method is considerably reduced by 

this method. The RMSE and correlation (0.271 and 0.581) from this algorithm (Fig. 6 (e)) are much better 

than those (0.429 and 0.353) from the original algorithm without the forecast model (Fig. 6 (d)), which 

indicates that the new algorithm could improve the precision of α estimations by adding more accurate 

α (RMSE of 0.223) information from the model. In addition, the MB (-0.052) from this algorithm (Fig. 6 

(e)) is better than that (-0.057) from the model forecast (Fig. 6 (f)), due to the improvement of negative bias 

in the large α in the model forecast.  

 
[P7_L238] 
For the 𝜔𝜔 estimations (Fig. 6 (g), (h), (i)), the RMSE, MB, and correlation (0.032, -0.004, and 0.530) from 

this algorithm (Fig. 6 (h)) are better than those (0.046, -0.014, and 0.218) from the model forecast (Fig. 6 

(i)), which indicates the effectiveness of satellite information for 𝜔𝜔 retrieval. 

The following sentence  

“In addition, while statistic scores (i.e., RMSD, correlation, MB) show little modification, this algorithm 

improved the slope and intercept of the regression line by introducing the model forecast. This is probably 

because the model’s ω is not very consistent with AERONET (RMSE of 0.053), but less biased (-0.001 

of MB) due to the possibility that the model’s ω, whose determinants are complex (e.g., different ω for 

the same type of aerosol), generally reflects reality, but not enough in individual cases.” 

was changed to 

In addition, this algorithm improved RMSE, MB, and correlation by introducing the model forecast. 

 

We also added the comparison of the total number of validation points and successfully retrieved area. 

[P7_L210] 
The validation of α and 𝜔𝜔 is limited to cases where the simultaneously retrieved 𝜏𝜏 are greater than 0.3 

because there is little information of α and 𝜔𝜔 from satellite observation for thin aerosol layer. The total 

number of validation points (14711, 14031, and 521) from this algorithm (Fig. 6 (b), (e), and (h)) is about 

6-7% higher than those (13714, 13137, and 493) from the original algorithm (Fig. 6 (a), (d), and (g)), 

which means that the new algorithm successfully retrieved the aerosol in more cases than the original 

algorithm. Here, the total number of validation points for 𝜔𝜔 is less than those for 𝜏𝜏 and α,  because the 

number of 𝜔𝜔 data from AERONET inversion products is less than those of 𝜏𝜏 and α from the direct sun 

measurements. 

 



 

[P8_L225] 
In addition, the retrieval results around the red circles show that the new algorithm successfully retrieved 
the 𝜎𝜎𝜏𝜏𝑎𝑎, 𝜎𝜎𝜂𝜂𝑓𝑓𝑎𝑎, 𝜎𝜎𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎 even where the original algorithm failed to retrieve. 

 

Further, we investigate the cause of the possible large deviation of validation results of this algorithm, and 

added Fig.8-11 in the revised manuscript. 

 

[P8_L247] 
We also investigated the cause of the possible large deviation between the retrieved parameters from the 

new algorithm and the ground observation. Figures 8, 9, and 10 show the validation results of 𝜏𝜏, α, and 

𝜔𝜔, respectively, when the chi-square value (𝜒𝜒2) and the uncertainties of the retrieved three parameters 

(𝜏𝜏,  𝜂𝜂𝑓𝑓, and 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑) are smaller than a threshold. The chi-square value (𝜒𝜒2) is calculated as follows: 

𝜒𝜒2[𝑹𝑹 −  𝑭𝑭(𝒙𝒙)] =  [𝑹𝑹 −  𝑭𝑭(𝒙𝒙)]𝑇𝑇𝑺𝑺𝒆𝒆−1[𝑹𝑹 −  𝑭𝑭(𝒙𝒙)] 𝑁𝑁⁄ ,   (7) 

and shows the closeness of the retrieved value to the observed value. The covariance matrix of the 

uncertainties of the retrieved parameters 𝐒𝐒𝐱𝐱� is calculated using the law of error propagation, as follows: 

𝐒𝐒𝐱𝐱�  =  (𝑨𝑨𝑇𝑇𝑺𝑺𝒆𝒆−𝟏𝟏𝑨𝑨)−1 , (8) 

where A is the Jacobian matrix. Se is the covariance matrix of R, and calculated from sum of sensor noise 

and the uncertainty in TOA reflectance that results from surface reflectance uncertainty (Yoshida et al., 

2018). In reality, the Se is almost determined by the uncertainty in TOA reflectance that results from 

surface reflectance uncertainty, because sensor noise is much smaller. Therefore, the 𝑺𝑺𝐱𝐱�  is mostly 

caused by the surface reflectance uncertainty. Figure 8 shows that RMSE for 𝜏𝜏 decreases as the 

threshold of 𝜒𝜒2 or 𝑺𝑺𝒙𝒙� becomes strict (i.e., decreases). On the other hand, RMSE for α (in Fig. 9) is not 

dependent on the threshold of 𝑺𝑺𝒙𝒙�, but decreases as the 𝜒𝜒2 threshold decreases. RMSE for 𝜔𝜔 (in Fig. 10) 

is little dependent on the threshold of 𝑺𝑺𝒙𝒙� and 𝜒𝜒2. Next, in Fig. 11 we investigated how the retrieved 

accuracy (difference between aerosol parameters retrieved from AHI and those of AERONET) depends 

on the model’s (i.e., a priori) accuracy. The retrieved accuracy of α and 𝜔𝜔 has strong linear relationships 

(a correlation of 0.801, and 0.739, respectively) to the model’s accuracy, while that of 𝜏𝜏 has a moderate 

linear relationship (a correlation of 0.622). Summarizing these results, the retrieved accuracy of 𝜏𝜏 

depends on all of the closeness to the observed value, accuracy of the surface reflectance estimation, and 

accuracy of a priori estimate, while the accuracy of a priori estimate is critical for the retrieved accuracy 

of α and 𝜔𝜔. Thus, introducing more realistic a priori estimates in the new retrieval algorithm instead of 

the constant values in the original algorithm led to the improvement of RMSE. It is also shown that the 

improvement of a numerical aerosol forecast by improving the aerosol transport model and the 

assimilation method, and increasing the assimilation frequency may further improve the retrieval 

accuracy in the future. 



 

 

Figure 8: Frequency distribution of 𝝉𝝉 retrieved from AHI and those from AERONET. The results retrieved 

from this algorithm in the case of 𝝌𝝌𝟐𝟐 less than 20, 0.5, 0.2, and uncertainties of the retrieved 𝝉𝝉 (𝐒𝐒𝛕𝛕) less than 

20, 1.0, 0.5 are plotted in each panel. E, B, and R above the figures show the root mean square error, mean bias, 

and correlation, respectively. 



 
Figure 9: Frequency distribution of α retrieved from AHI and those from AERONET. The results retrieved 

from this algorithm in the case of 𝝌𝝌𝟐𝟐 less than 20, 0.5, 0.2, and uncertainties of the retrieved𝜼𝜼𝒇𝒇 (𝐒𝐒 𝜼𝜼𝒇𝒇) less than 

20, 0.5, 0.2 are plotted in each panel. E, B, and R above the figures are the same as in Fig. 8. 



 

Figure 10: Frequency distribution of 𝝎𝝎 retrieved from AHI and those from AERONET. The results retrieved 

from this algorithm in the case of 𝝌𝝌𝟐𝟐 less than 20, 0.5, 0.2, and uncertainties of the retrieved𝜼𝜼𝒄𝒄𝒅𝒅𝒅𝒅𝒅𝒅 (𝐒𝐒𝜼𝜼𝒄𝒄𝒅𝒅𝒅𝒅𝒅𝒅) less 

than 20, 0.5, 0.2 are plotted in each panel. E, B, and R above the figures are the same as in Fig. 8. 



 

 

Figure 11: Frequency distribution of the difference between 𝝉𝝉 (a), 𝜶𝜶 (b), and 𝝎𝝎 (c) retrieved from 

AHI and those from AERONET, as a function of the difference between 𝝉𝝉 (a), 𝜶𝜶 (b), and 𝝎𝝎 (c) of 

a priori estimate and AERONET. R shows the correlation. 

 
 

  



Other corrections 
 English correction 
The revised manuscript was corrected by native speakers once again, and shown in green in the revised 

manuscript. 
 
 Adding explanation 
We added ‘Satellite’ to the title in order to express the manuscript’s content accurately. 

The revised title is as follows: 

Satellite Retrieval of Aerosol Combined with Assimilated Forecast 
 

We added the following sentence to avoid misunderstanding. 
[P4_L104] 
The obtained retrieval at T1 is further used to derive the retrieval at the following time step (T=T2, not 

shown) by using L4 forecasts for a priori in the same manner.  

 

 

 Affiliation change 
We changed the first author’s affiliation after the discussion between the previous and present affiliation, 

because this paper was the results of the previous affiliation (Japan Aerospace Exploration Agency). The 

first author’s affiliation of the revised paper is as follows. 

1 Japan Aerospace Exploration Agency, Tsukuba, 305-8505, Japan, (Present affiliation is Remote Sensing 

Technology Center of Japan, Tsukuba, 305-8505, Japan) 
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Abstract. We developed a new aerosol satellite retrieval algorithm combining a numerical aerosol forecast. In the retrieval 

algorithm, the short-term forecast from an aerosol data assimilation system was used as a priori estimate instead of spatially 

and temporally constant values. This method was demonstrated using observation of the Advanced Himawari Imager 

onboard the Japan Meteorological Agency’s geostationary satellite Himawari-8. Overall, the retrieval results incorporated 15 

strengths of the observation and the model, and complemented their respective weaknesses, showing spatially finer 

distributions than the model forecast and less noisy distributions than the original algorithm. We validated the new algorithm 

using ground observation data and found that the aerosol parameters detectable by satellite sensors were retrieved more 

accurately than a priori model forecast by adding satellite information. Further, the satellite retrieval accuracy was improved 

by introducing the model forecast instead of the constant a priori estimates. By using the assimilated forecast for a priori 20 

estimate, information from previous observations can be propagated to future retrievals, leading to better retrieval accuracy. 

Observational information from the satellite and aerosol transport by the model are incorporated cyclically to effectively 

estimate the optimum field of aerosol. 

1 Introduction 

Aerosols have a fundamental influence on the energy budget of the earth’s climate system through the scattering and 25 

absorption of solar radiation. The fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC 2014) 

stated that radiative forcing of the total aerosol effect in the atmosphere, including cloud adjustments due to aerosols, is –0.9 

W m−2. The report also highlighted that the range of uncertainties in these radiative forcing estimations remains large (−1.9 

W m−2 to −0.1 W m−2). Identifying the frequency and properties of aerosols over the globe by satellite measurements is 

essential in estimating the radiation budget and the impacts of aerosols on climate systems. 30 

 



2 
 

In satellite aerosol remote sensing, not all aerosol properties can be accurately detected by satellite sensors, as there are more 

unknown aerosol parameters (e.g., particle size distributions, vertical density distribution, shape, refractive index) than the 

actual information obtained by the sensors. Most studies use assumptions or information about aerosol parameters, and limit 

the number of parameters retrieved. For example, Higurashi and Nakajima (1999), and Fukuda et al. (2013) assumed fixed 35 

complex refractive indices (1.5 - 0.005i in Higurashi and Nakajima (1999), and 1.503 – 7.16 × 10-8i for small mode particles 

and 1.445 – 1.00 × 10-8i for coarse mode particles based on sulfate and sea spray models, respectively, in Fukuda et al. 

(2013)), and retrieved the aerosol optical thickness and Ångström exponent. Some studies assumed aerosol particle models 

according to the location and season. For example, Kaufman et al. (1997), Remer et al. (2005), and Levy et al. (2007) 

estimated aerosol optical thickness and fine mode fraction over a dark target using the Moderate Resolution Imaging 40 

Spectroradiometer (MODIS), by selecting the fine-dominate particle models as a function of geography and season. Hsu et al. 

(2004) retrieved the optical thickness and type of aerosols over desert regions using blue channels (< 500 nm), where the 

surface reflectance was relatively low, assuming dust or a mixture of dust and smoke depending on the region and season. 

Jeong et al. (2016) used a priori information according to the location and season. However, these studies did not take 

temporal changes into account. Because it is impossible to completely fix aerosol type as a function of geographical location 45 

and season, the unrealistic assumptions hence implemented lead to one of the major causes of retrieval error. 

 

Aerosol data assimilation methods using satellite data have also been developed to obtain better initial conditions for the 

aerosol transport model. The aerosol data assimilation study was first developed with Low Earth Orbit (LEO) satellites 

(Benedetti et al., 2009; Saide et al., 2013; Dai et al., 2014; Rubin et al., 2015; Yumimoto et al., 2015). In recent years, 50 

assimilation studies have been extended to using geostationary satellites with large spatial coverage and fine observation 

frequencies (Saide et al., 2014; Lee et al., 2016; Yumimoto et al., 2016; Yumimoto et al., 2018; Die et al., 2019; Jin et al., 

2019). 

 

Due to the development of such assimilation studies, the satellite data have contributed to improving aerosol forecast 55 

simulations. However, no studies have utilized assimilated model forecast as a priori estimate of the retrieval. Since satellite 

sensors cannot accurately detect all parameters, and unrealistic assumptions of aerosol parameters are a major cause of 

retrieval errors as mentioned above, adding the model information is expected to improve the retrieval accuracy. Therefore, 

in this study, we utilize the forecast of an aerosol transport model for a priori estimates of the retrieval. This allows the 

aerosol information in the aerosol transport model to be used for retrieval. By using the assimilated forecast, information 60 

from previous satellite observations can be propagated to future satellite retrievals through the aerosol transport model. 

 

The sections in this study are organized as follows: Section 2 explains the retrieval methodology in detail. Section 3.1 

presents the results of application to the Advanced Himawari Imager (AHI) onboard Himawari-8. Section 3.2 describes the 
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validation of the estimations using ground observations, and Section 3.3 tests the worst-case scenario. Finally, Section 4 65 

summarizes our findings. 

2 Methodology 

The aerosol retrieval algorithm in this study is based on Yoshida et al. (2018). As a priori estimate of the retrieval, the 

algorithm introduces aerosol forecast from a transport model that has assimilated previous satellite observations. Given the 

general applicability of the retrieval algorithm by Yoshida et al. (2018), the methodology explained in this section can also 70 

be applied to various sensors. Here, we demonstrate the algorithm using the Himawari-8/AHI whose assimilation system is 

operationally available. The AHI has six observation bands from visible to near-infrared wavelength ranges, and observes 

the top of atmosphere radiance at a resolution of 0.5-2.0 km over Asia and Oceania at 10-minute intervals (Bessho et al., 

2016). 

 75 

Figure 1 depicts an overview of the algorithm, showing the process of using forecast data for a priori estimates of the 

retrieval. In the original retrieval process, the Level-2 (L2) aerosol optical thickness at 500 nm (𝜏𝜏), Ångström exponent 

between 400 and 600 nm (α), and single-scattering albedo at 500 nm (𝜔𝜔) are retrieved using Level-1 (L1) AHI-observed 

radiance every 10 minutes around time T0 as per Yoshida et al. (2018). The Level-3 (L3) 𝜏𝜏 and α at T0 are then estimated 

using L2 products in one hour by an hourly-combined algorithm (Kikuchi et al., 2018). The hourly-combined algorithm is a 80 

method that (1) minimizes cloud contamination using the difference between aerosol and cloud spatiotemporal variability 

characteristics, and (2) interpolates the aerosol retrievals using one hour of data and the movement of clouds within the hour 

(see Kikuchi et al., 2018 for more details).  

 

The L3 𝜏𝜏 at T0 is then assimilated into a global aerosol transport model by the 2D-Var assimilation system (Yumimoto et al., 85 

2018). For the aerosol transport model, we use MASINGAR (Model of Aerosol Species IN the Global AtmospheRe; Tanaka 

et al., 2003; Tanaka and Chiba, 2005) developed at the Meteorological Research Institute (MRI) of the Japan Meteorological 

Agency (JMA). MASINGAR covers the major tropospheric aerosol components (i.e., black and organic carbon, mineral dust 

(10-size bins), sea salt (10-size bins), sulfate aerosols)) and their precursors (e.g., sulfur dioxide (SO2), dimethyl sulfide, 

terpenes)), and is coupled online with an atmospheric general circulation model (MRI-AGCM3; Yukimoto et al., 2012). The 90 

model’s grid resolution is set to horizontal Gaussian TL479 (960 x 480 grids, about 0.375 degree) and 40 vertical layers in 

hybrid sigma-pressure coordinates from the ground to 0.4 hPa. The integration time step is set to 600 seconds. 

Anthropogenic emissions of SO2, black and organic carbon are taken from the MACCity emission inventory (Granier et al., 

2011). Daily biomass burning emission flux is taken from the Global Fire Assimilation System (GFAS, Kaiser et al., 2012) 

version 1.2 provided by the European Centre of Medium Range Forecast (ECMWF). The horizontal wind components and 95 

sea surface temperature are nudged toward the global analyses and forecasts of JMA (GANAL). The forecast from the 
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assimilation system serves as the operational sand and dust forecasting by JMA, the aerosol property model product in the 

JAXA Himawari Monitor (https://www.eorc.jaxa.jp/ptree/index.html), and a member of the ICAP multi-model ensemble 

(MME) (Xian et al., 2019). The volume concentration (then 𝜏𝜏) of each aerosol component at the next time (T1) is then 

forecasted using the assimilated aerosol transport model.  100 

 

In the new retrieval process, we retrieve the L2 aerosol properties ( 𝜏𝜏, α, and 𝜔𝜔) from AHI-observed radiance at T1 using 

these L4 forecasts for a priori estimates of the retrieval. In this way, the information from previous observations at T0 is used 

for the next aerosol retrievals at T1 through the aerosol transport model. The retrieval obtained at T1 is further used in the 

same way to derive the retrieval at the following time step (T=T2, not shown) by using L4 forecasts for a priori estimate. 105 

Figure 6 compares the improved retrieval with the original retrieval at T1 as later described in Section 3.2. The methodology 

for using the forecast as a priori estimates of the retrieval is detailed as follows: In the retrieval process, the final retrieval 

parameters ( 𝜏𝜏 , α , and 𝜔𝜔 ) are calculated from the set of aerosol parameters (𝜏𝜏 , external mixing ratio of dry volume 

concentration of fine particles 𝜂𝜂𝑓𝑓, and external mixing ratio of the dry volume concentration of dust particles for the coarse 

model 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑) defined by Yoshida et al. (2018). Here, the imaginary part of the refractive index (𝑚𝑚𝑖𝑖) for the fine aerosol model 110 

varies with change in 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 such that the fine and coarse models exhibit the same 𝜔𝜔 at 500 nm (see Yoshida et al., 2018 for 

more details). The α and 𝜔𝜔 are calculated from the retrieved 𝜂𝜂𝑓𝑓 and 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 (i.e., 𝑚𝑚𝑖𝑖 for fine aerosol model) using the tables 

previously calculated by radiative transfer code called the System for the Transfer of Atmospheric Radiation, whose 

development was initially led by the University of Tokyo (STAR, Nakajima and Tanaka 1986, 1988; Stamnes et al., 1988). 

The detailed aerosol setting is explained in Yoshida et al. (2018), and is outlined in Appendix A. Appendix B shows the 115 

relationship of the final retrieval parameters (α and 𝜔𝜔) with the set of aerosol parameters (𝜂𝜂𝑓𝑓 and 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑). We retrieve the 

aerosol parameters (𝜏𝜏,  𝜂𝜂𝑓𝑓, and 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑) using an optimal estimation method (Rodgers 2000). The state vector of a set of aerosol 

parameters 𝒙𝒙 =  �𝜏𝜏,  𝜂𝜂𝑓𝑓, 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑� is derived by minimizing object function J (Eq. (1)). It uses the measurement vector of a gas-

corrected observed reflectance set R = {𝜌𝜌i𝑜𝑜𝑜𝑜𝑑𝑑′, 𝑖𝑖 =  1, … , N } and simulated TOA reflectance 𝑭𝑭(𝒙𝒙)= {𝜌𝜌i𝑑𝑑𝑖𝑖𝑠𝑠, 𝑖𝑖 =  1, … , N}, 

where N is the channel number. 120 

𝐽𝐽 =  [𝑹𝑹 −  𝑭𝑭(𝒙𝒙)]𝑇𝑇𝑺𝑺𝒆𝒆−1[𝑹𝑹 −  𝑭𝑭(𝒙𝒙)]  + [𝒙𝒙 −  𝒙𝒙𝒂𝒂]𝑇𝑇𝑺𝑺𝒂𝒂−1[𝒙𝒙 −  𝒙𝒙𝒂𝒂]                                               (1) 

where 𝒙𝒙𝒂𝒂  =  �𝜏𝜏𝑎𝑎, 𝜂𝜂𝑓𝑓𝑎𝑎, 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎� is the vector of a prior estimate of 𝒙𝒙, and Se and Sa are the covariance matrices of R and 𝒙𝒙𝒂𝒂, 

respectively. The calculations of R, 𝑭𝑭(𝒙𝒙), and 𝑺𝑺𝒆𝒆 are the same as those of Yoshida et al. (2018), but we apply canonical 

correlation analysis to find the optimal coordinate system, and converted R, 𝑭𝑭(𝒙𝒙), and 𝑺𝑺𝒆𝒆 to the coordinate system whose 

dimension is reduced to the number of retrieved parameters (i.e., three). In the original retrieval process, we used spatially 125 

and temporally constant values of 𝒙𝒙𝒂𝒂, and Sa that were derived from climatology analysis, and assumed that the non-diagonal 

component of covariance matrices was set to 0 (Yoshida et al., 2018). 

 

https://www.eorc.jaxa.jp/ptree/index.html
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To introduce more realistic a prior estimate and covariances into the retrieval process, we employ the forecast from the 

aerosol assimilation system instead of the constants. The model forecast includes the total aerosol optical thickness at 500 130 

nm and 870 nm, and the absorption aerosol optical thickness at 500 nm derived from the modeled volume concentration and 

extinction cross section of each aerosol component (Yumimoto et al., 2017). We assign a priori estimate 𝒙𝒙𝒂𝒂 as follows: The 

model’s total aerosol optical thickness at 500 nm is used for 𝜏𝜏𝑎𝑎. 𝜂𝜂𝑓𝑓𝑎𝑎is derived from the ratio of total aerosol optical thickness 

between 500 nm and 870 nm. As the selection of 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎, we use the model’s 𝜔𝜔 as calculated from the total and absorption 

aerosol optical thickness at 500 nm. 135 

 

The assimilation system uses an ensemble method to calculate the background error covariance matrix (Yumimoto et al., 

2018). In the method, the ensemble was collected from forecast values within ±2 hours of the targeted hour of the five 

previous forecasts (Fig. 2). We employ this method to define Sa. The model ensemble enables Sa to include the non-diagonal 

component and express the error of aerosol transport. However, Sa from model ensemble may become too small when the 140 

model does not predict the aerosol event itself. For that reason, in order to estimate total 𝑺𝑺𝒂𝒂, we add a model absolute error 

(𝑺𝑺𝒂𝒂𝑨𝑨) to the error estimated from the ensemble (𝑺𝑺𝒂𝒂𝑬𝑬) as follows: 

𝑺𝑺𝒂𝒂 = 𝑺𝑺𝒂𝒂𝑬𝑬 + 𝑺𝑺𝒂𝒂𝑨𝑨 =  

⎣
⎢
⎢
⎢
⎡ 𝜎𝜎𝜏𝜏𝑎𝑎

2  𝜎𝜎𝜏𝜏𝑎𝑎𝜂𝜂𝑓𝑓𝑎𝑎 𝜎𝜎𝜏𝜏𝑎𝑎𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎
𝜎𝜎𝜏𝜏𝑎𝑎𝜂𝜂𝑓𝑓𝑎𝑎  𝜎𝜎𝜂𝜂𝑓𝑓𝑎𝑎

2 𝜎𝜎𝜂𝜂𝑓𝑓𝑎𝑎𝜂𝜂𝑐𝑐
𝑑𝑑𝑑𝑑𝑑𝑑

𝑎𝑎
 

𝜎𝜎𝜏𝜏𝑎𝑎𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎 𝜎𝜎𝜂𝜂𝑓𝑓𝑎𝑎𝜂𝜂𝑐𝑐
𝑑𝑑𝑑𝑑𝑑𝑑

𝑎𝑎
 𝜎𝜎𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎

2
⎦
⎥
⎥
⎥
⎤
,                                                  (2) 

𝜎𝜎𝜏𝜏𝑎𝑎 = 𝜎𝜎𝜏𝜏𝑎𝑎
𝐸𝐸 + 𝜎𝜎𝜏𝜏𝑎𝑎

𝐴𝐴 ,                                                         (3) 

𝜎𝜎𝜂𝜂𝑓𝑓𝑎𝑎 = 𝜎𝜎𝜂𝜂𝑓𝑓𝑎𝑎
𝐸𝐸 + 𝜎𝜎𝜂𝜂𝑓𝑓𝑎𝑎

𝐴𝐴 ,                                                 (4) 145 

𝜎𝜎𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎 = 𝜎𝜎𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎
𝐸𝐸 + 𝜎𝜎𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎

𝐴𝐴 ,                                                 (5) 

where 𝜎𝜎𝜏𝜏𝑎𝑎
𝐸𝐸 ,𝜎𝜎𝜂𝜂𝑓𝑓𝑎𝑎

𝐸𝐸 , and 𝜎𝜎ηcdst𝑎𝑎
𝐸𝐸      are the standard deviations of 𝜏𝜏𝑎𝑎, 𝜂𝜂𝑓𝑓𝑎𝑎, and 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎, respectively, estimated from the ensemble. 

𝜎𝜎𝜏𝜏𝑎𝑎
𝐴𝐴 ,𝜎𝜎𝜂𝜂𝑓𝑓𝑎𝑎

𝐴𝐴 , and 𝜎𝜎𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎
𝐴𝐴 are the same as those of the model absolute error. 

𝜎𝜎𝜏𝜏𝑎𝑎
𝐴𝐴  is set to 𝜎𝜎𝜏𝜏𝑎𝑎

𝐺𝐺 or 𝜎𝜎𝜏𝜏𝑎𝑎
𝑀𝑀  (whichever is larger) as follows: 

𝜎𝜎𝜏𝜏𝑎𝑎
𝐴𝐴 = �

𝜎𝜎𝜏𝜏𝑎𝑎
𝐺𝐺 𝑖𝑖𝑖𝑖 𝜎𝜎𝜏𝜏𝑎𝑎

𝐺𝐺 ≥ 𝜎𝜎𝜏𝜏𝑎𝑎
𝑀𝑀

𝜎𝜎𝜏𝜏𝑎𝑎
𝑀𝑀 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

�,                                              (6) 150 

where 𝜎𝜎𝜏𝜏𝑎𝑎
𝐺𝐺  is the Root Mean Square Error (RMSE) of the model’s 𝜏𝜏 from ground observation (0.399 in Fig. 6 (c)), and 𝜎𝜎𝜏𝜏𝑎𝑎

𝑀𝑀  is 

the standard deviation of 𝜏𝜏 for five years as calculated by the free run model without assimilation. The free run model’s 

spatial resolution is around 1.2 degrees, and the standard deviation is calculated for MAM (March, April and May), JJA 

(June, July and August), SON (September, October and November), and DJF (December, January and February) (Fig. 3). 

𝜎𝜎𝜂𝜂𝑓𝑓𝑎𝑎
𝐴𝐴 (0.093) is calculated from RMSE of the model’s α (0.223 in Fig. 6 (f)) at α of 1.2 and  𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 of 0.5. 𝜎𝜎𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎

𝐴𝐴  is set to 0.5 155 

because 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 takes a value from 0. to 1, and 𝜔𝜔 (which is uniquely determined by 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑) has little correlation with the ground 
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observation data (Fig. 6 (i)). As the non-diagonal component of 𝑺𝑺𝒂𝒂𝑨𝑨 cannot currently be calculated from our limited database, 

we use the non-diagonal components of 𝑺𝑺𝒂𝒂𝑬𝑬 as those of Sa. 

3 Results and Discussion 

3.1 Results of application to Himawari-8 160 

We applied the methodology described in Section 2 to the Himawari-8/AHI. We retrieved 𝜏𝜏,   𝜂𝜂𝑓𝑓 and 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑, and then derived 

ω and α at 10-minute intervals from the calibrated L1 data subsampled at 0.05° using the method described in Section 2. The 

channels used for the retrieval are the same as those used by Yoshida et al. (2018), which are channels 1 (0.46 µm), 2 (0.51 

µm), 3 (0.64 µm), 4 (0.86 µm), and 5 (1.6 µm) over land, and channels 4 and 5 over the ocean. As the number of satellite 

channels (two) used over the ocean is less than the number of retrieval parameters (three), not all parameters are stably 165 

retrieved by satellite data. Therefore, 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 over the ocean, which is the least sensitive to satellite observation, is set to 0 (i.e., 

non-absorbing aerosol) at this time, because the aerosol over the ocean is generally less absorbing than that over land, and 

using the model’s 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎 as 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 over the ocean leads to a worse estimation of 𝜏𝜏 (not shown). However, using non-absorbing 

aerosol over ocean causes a big problem in case of dust/smoke transported over the ocean, so we will use the model’s 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎 

as 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 over the ocean after obtaining a better model’s 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎 in the future. Note that 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 over land is properly retrieved from 170 

satellite data (i.e., not set to 0) using the model’s 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎 as a priori estimate, since the number of satellite channels (five) used 

over land is greater than the number of retrieval parameters (three). 

 

Figures 4 and 5 compare the retrieval results from the new algorithm using 𝑺𝑺𝒂𝒂𝑬𝑬 + 𝑺𝑺𝒂𝒂𝑨𝑨 for 𝑺𝑺𝒂𝒂with the original algorithm (Figs. 

4/5 (a) and (b)). The retrieval results from the new algorithms using only 𝑺𝑺𝒂𝒂𝑬𝑬 for 𝑺𝑺𝒂𝒂 are also shown to evaluate the effect of 175 

𝑺𝑺𝒂𝒂𝑨𝑨 on the retrieval result (Figs. 4/5 (c)). Figure 4 depicts the retrieved 𝜏𝜏, 𝜂𝜂𝑓𝑓 and 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 at 0200 UTC on May 19, 2016 when 

aerosols originating from wildfires near Lake Baikal in Russia reached Japan. The model’s 𝒙𝒙𝒂𝒂 used for retrieval in Fig. 4 (b) 

and (c) is indicated in Fig. 4 (d). The 𝜎𝜎𝜏𝜏𝑎𝑎 ,𝜎𝜎𝜂𝜂𝑓𝑓𝑎𝑎 , and 𝜎𝜎𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎 used for retrieval in Fig. 4 (b) are shown in Fig. 4 (e). The white 

regions indicate the area where retrieval is not executed due to the presence of clouds, etc. The two-hour forecasts starting 

from 0000 UTC on May 19 were assimilated with L3 merged 𝜏𝜏 at 0300, 0600, and 0900 UTC on May 18, and at 0000 UTC 180 

on May 19, and then used for a priori estimate (Fig. 4 (d)). Figure 5 is the same as Fig. 4 except for another case at 0500 

UTC on May 7, 2017, when Asian dust was observed in Japan. The five-hour forecast starting from 0000 UTC on May 7 

(and assimilated at 0300, 0600, and 0900 UTC on May 6, and at 0000 UTC on May 7) is used for a priori estimate (Fig. 5 

(d)). These short-term forecasts with data assimilation are considered relatively realistic compared to long-term forecasts or a 

free run without assimilation (Yumimoto et al., 2018). If only model ensemble error is used for Sa (Figs. 4 (c), 5 (c)), that is, 185 

the absolute error is not included in Sa, all retrieved parameters (especially 𝜂𝜂𝑓𝑓 and 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 over land) are highly dependent on a 
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priori estimate (Figs. 4 (d), 5 (d)). However, when using an appropriate Sa containing absolute error, the retrieved 𝜏𝜏, 𝜂𝜂𝑓𝑓, and 

𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑  are updated by satellite data or remain close to a priori estimate depending on the location (Figs. 4 (b), 5 (b)). 

Specifically, spatially finer 𝜏𝜏 distributions than the model forecast are retrieved for cases of both wildfire aerosol (Fig. 4 (b)) 

and Asian dust (Fig. 5 (b)) due to the relatively coarser model horizontal resolution. Similar 𝜂𝜂𝑓𝑓 is retrieved over open ocean 190 

in Fig. 4 (b) and Fig. 5 (b), and the large 𝜂𝜂𝑓𝑓 (i.e., small particle) and small 𝜂𝜂𝑓𝑓 (i.e., large particle) are successfully retrieved in 

areas corresponding to wildfire aerosol (Fig. 4 (b)) and Asian dust (Fig. 5 (b)), respectively. This distribution is also 

expressed in the forecast model in Fig. 5 (d), but cannot be expressed sufficiently in the forecast model in Fig. 4 (d) because 

information about the aerosol particle size (e.g., α, 𝜂𝜂𝑓𝑓) is not assimilated  into the model. That is, by using an appropriate Sa, 

both the model and satellite data are used for estimating the aerosol parameters. In addition, the local noise in 𝜏𝜏 and 𝜂𝜂𝑓𝑓 is 195 

apparently reduced for this algorithm (Figs. 4 (b), 5 (b)) as compared with the original algorithm (Figs. 4 (a), 5 (a)). This will 

be discussed in Subsection 3.2. 

3.2 Validation 

We conducted a preliminary validation of our method by comparing the retrieved 𝜏𝜏, α, and 𝜔𝜔 from the Himawari-8/AHI 

with those from ground observation known as the Aerosol Robotic Network (AERONET). AERONET’s τ and α were 200 

derived from Level 2.0 quality-assured Version 3 direct sun algorithm data (Giles et al., 2019; O'Neill et al., 2003), and 𝜔𝜔 

was derived from Version 3 AERONET inversion products (Dubovik and King, 2000a; Dubovik et al., 2000b; Dubovik et al., 

2002a; Dubovik et al., 2002b; Dubovik et al., 2006; Sinyuk et al., 2007). AERNET’s 𝜔𝜔 at 500 nm was calculated from linear 

interpolation of 𝜔𝜔 at 440 nm and 675 nm. In this study, the 60 AERONET sites on the full disk of Himawari-8 were used for 

the validation. We used the AERONET data averaged over 10 minutes of AHI observation time. For our retrieval data, we 205 

used τ, α, and 𝜔𝜔 estimated from AHI L1 radiance data subsampled at 0.05° nearest to the AERONET sites. Initial validation 

was conducted for six months (March, April, May, June, July, 2018, and February 2019). Long-term validation will be 

required in future studies.  

 

Figure 6 compares the 𝜏𝜏, α, and 𝜔𝜔 retrieved from the AHI with those from AERONET. The validation of α and 𝜔𝜔 is limited 210 

to cases where the simultaneously retrieved 𝜏𝜏 are greater than 0.3 because there is little information of α and 𝜔𝜔 from satellite 

observation for thin aerosol layer. The total number of validation points (14711, 14031, and 521) from this algorithm (Fig. 6 

(b), (e), and (h)) is about 6-7% higher than those (13714, 13137, and 493) from the original algorithm (Fig. 6 (a), (d), and 

(g)), which means that the new algorithm successfully retrieved the aerosol in more cases than the original algorithm. Here, 

the total number of validation points for 𝜔𝜔 is less than those for 𝜏𝜏 and α,  because the number of 𝜔𝜔 data from AERONET 215 

inversion products is less than those of 𝜏𝜏 and α from the direct sun measurements. 
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For the 𝜏𝜏 estimations (Fig. 6 (a), (b), (c)), the root mean square error (RMSE), mean bias (MB), and correlation (0.290, -

0.099, and 0.758) from this algorithm (Fig. 6 (b)) are all better than those (0.399, -0.224, and 0.572) from the model forecast 

(i.e., a priori estimate) in Fig. 6 (c), which means that satellite information is very effective for the retrieval of 𝜏𝜏. In addition, 220 

the RMSE (0.290) in Fig. 6 (b) is better than that (0.307) without the forecast model (Fig. 6 (a)), which means that the model 

information is also effective and the improved algorithm shows better performance than the original algorithm. The MB (-

0.099) in Fig. 6 (b) is worse than that (-0.023) in Fig. 6 (a), probably because the large outlier in Fig. 6 (a) is improved in Fig. 

6 (b). Figure 7 shows an example of the retrieval results of the outlier (red asterisks in Fig. 6 (a), (b), and (c)), and depicts 

that the outlier of the original algorithm (Fig. 7(a)) is improved in the new algorithm by constraining 𝜏𝜏 to the model’s 𝜏𝜏𝑎𝑎. In 225 

addition, the retrieval results around the red circles show that the new algorithm successfully retrieved the 𝜎𝜎𝜏𝜏𝑎𝑎, 𝜎𝜎𝜂𝜂𝑓𝑓𝑎𝑎, 𝜎𝜎𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑𝑎𝑎 

even where the original algorithm failed to retrieve. Thus, integrating the model and satellite information resulted in an 

improvement of the 𝜏𝜏 estimations. 

 

For the α estimations (Fig. 6 (d), (e), (f)), large variance in the original method is considerably reduced by this method. The 230 

RMSE and correlation (0.271 and 0.581) from this algorithm (Fig. 6 (e)) are much better than those (0.429 and 0.353) from 

the original algorithm without the forecast model (Fig. 6 (d)), which indicates that the new algorithm could improve the 

precision of α estimations by adding more accurate α (RMSE of 0.223) information from the model. In addition, the MB (-

0.052) from this algorithm (Fig. 6 (e)) is better than that (-0.057) from the model forecast (Fig. 6 (f)), due to the 

improvement of negative bias in the large α in the model forecast.  Thus, the new α can be retrieved with good accuracy by 235 

utilizing the relatively accurate model’s α  and correcting the bias by using the satellite data. 

 

For the 𝜔𝜔 estimations (Fig. 6 (g), (h), (i)), the RMSE, MB, and correlation (0.035, -0.000, and 0.550) from this algorithm 

(Fig. 6 (h)) are better than those (0.048, -0.002, and 0.176) from the model forecast (Fig. 6 (i)), which indicates the 

effectiveness of satellite information for 𝜔𝜔 retrieval. In addition, this algorithm improved RMSE, MB, and correlation by 240 

introducing the model forecast. Note that the current system assimilates only total 𝜏𝜏  (total amount of aerosols), and 

information about the fraction of fine and absorbing aerosols from the retrieval is not fed back to the model forecast. The 

improved retrieval accuracy of 𝜔𝜔  can be expected if the model’s 𝜔𝜔  becomes more realistic in the future, such as by 

assimilating the satellite’s 𝜔𝜔 to the model. Considering the validation results of 𝜏𝜏, α, and 𝜔𝜔, this new algorithm effectively 

improved the retrieval accuracy using information from both the model and the satellite by setting appropriate Sa and Se. 245 

 

We also investigated the cause of the possible large deviation between the retrieved parameters from the new algorithm and 

the ground observation. Figures 8, 9, and 10 show the validation results of 𝜏𝜏, α, and 𝜔𝜔, respectively, when the chi-square 

value (𝜒𝜒2) and the uncertainties of the retrieved three parameters (𝜏𝜏,  𝜂𝜂𝑓𝑓, and 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑) are smaller than a threshold. The chi-

square value (𝜒𝜒2) is calculated as follows: 250 
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𝜒𝜒2[𝑹𝑹 −  𝑭𝑭(𝒙𝒙)] =  [𝑹𝑹 −  𝑭𝑭(𝒙𝒙)]𝑇𝑇𝑺𝑺𝒆𝒆−1[𝑹𝑹 −  𝑭𝑭(𝒙𝒙)] 𝑁𝑁⁄ ,   (7) 

and shows the closeness of the retrieved value to the observed value. The covariance matrix of the uncertainties of the 

retrieved parameters 𝐒𝐒𝐱𝐱� is calculated using the law of error propagation, as follows: 

𝐒𝐒𝐱𝐱�  =  (𝑨𝑨𝑇𝑇𝑺𝑺𝒆𝒆−𝟏𝟏𝑨𝑨)−1 , (8) 

where A is the Jacobian matrix. Se is the covariance matrix of R, and calculated from sum of sensor noise and the 255 

uncertainty in TOA reflectance that results from surface reflectance uncertainty (Yoshida et al., 2018). In reality, the Se is 

almost determined by the uncertainty in TOA reflectance that results from surface reflectance uncertainty, because sensor 

noise is much smaller. Therefore, the 𝑺𝑺𝐱𝐱�  is mostly caused by the surface reflectance uncertainty. Figure 8 shows that RMSE 

for 𝜏𝜏 decreases as the threshold of 𝜒𝜒2 or 𝑺𝑺𝒙𝒙� becomes strict (i.e., decreases). On the other hand, RMSE for α (in Fig. 9) is not 

dependent on the threshold of 𝑺𝑺𝒙𝒙�, but decreases as the 𝜒𝜒2 threshold decreases. RMSE for 𝜔𝜔 (in Fig. 10) is little dependent on 260 

the threshold of 𝑺𝑺𝒙𝒙�  and 𝜒𝜒2 . Next, in Fig. 11 we investigated how the retrieved accuracy (difference between aerosol 

parameters retrieved from AHI and those of AERONET) depends on the model’s (i.e., a priori) accuracy. The retrieved 

accuracy of α and 𝜔𝜔 has strong linear relationships (a correlation of 0.801, and 0.739, respectively) to the model’s accuracy, 

while that of 𝜏𝜏 has a moderate linear relationship (a correlation of 0.622). Summarizing these results, the retrieved accuracy 

of 𝜏𝜏 depends on all of the closeness to the observed value, accuracy of the surface reflectance estimation, and accuracy of a 265 

priori estimate, while the accuracy of a priori estimate is critical for the retrieved accuracy of α and 𝜔𝜔. Thus, introducing 

more realistic a priori estimates in the new retrieval algorithm instead of the constant values in the original algorithm led to 

the improvement of RMSE. It is also shown that the improvement of a numerical aerosol forecast by improving the aerosol 

transport model and the assimilation method, and increasing the assimilation frequency may further improve the retrieval 

accuracy in the future. 270 

3.3 Worst-case scenario 

We have shown that the new retrieval algorithm using the forecast of an aerosol transport model improves the retrieval 

accuracy. However, in order to use this algorithm constantly (such as in an operational system), the effects of the model 

forecast (a priori estimate) that deviate from reality must be examined, because the model forecast may miss an aerosol event. 

Therefore, we conducted a sensitivity test to investigate the impact on the retrieval results of using unrealistic forecast as a 275 

priori estimate. Figure 12 shows the retrieval results on the same day as in Fig. 4, except for using the forecast on another 

day (April 27, 2018) as a priori estimate of the retrieval (Fig. 12 (d)). If only 𝑺𝑺𝒂𝒂𝑬𝑬 is used as Sa (Fig. 12 (c)), all parameters 

(especially 𝜂𝜂𝑓𝑓 and 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑) are retrieved unrealistically by being dependent on the unrealistic a priori estimate. However, when 

using an appropriate Sa (Eq. (2)), the retrieved parameters are well-updated by satellite data with less dependence on 

unrealistic a priori estimate (Fig. 12 (b)). Even in such an extremely worst-case scenario, this new algorithm is apparently 280 

not significantly worse than the current algorithm, especially where the model forecast is missing an aerosol event, which 

may occur in the model forecast for natural aerosols (e.g., mineral dust and smoke from biomass burning). 
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4 Summary 

We developed a new satellite aerosol retrieval algorithm combining a numerical aerosol forecast. In the retrieval algorithm, 

the short-term forecast from an aerosol data assimilation system was used for a priori estimate instead of spatially and 285 

temporally constant values. This is the first study that utilizes the assimilated model forecast of aerosol as a priori estimate of 

the satellite retrieval. We applied this new algorithm to the Himawari-8/AHI and confirmed that the aerosol parameters 

detectable by satellite sensors were retrieved more accurately (RMSE of 0.290 for 𝜏𝜏 and 0.035 for 𝜔𝜔) than a priori model 

forecast (RMSE of 0.399 for 𝜏𝜏 and 0.048 for 𝜔𝜔) by adding satellite information. Moreover, the satellite retrieval accuracy 

was improved (RMSE of 0.290 for 𝜏𝜏, 0.271 for α, and 0.035 for 𝜔𝜔) by using the model forecast as compared with those 290 

using constant a priori estimates (RMSE of 0.307 for 𝜏𝜏 and 0.429 for α, and 0.039 for 𝜔𝜔). As a result, aerosol retrievals were 

improved by effectively incorporating both model and satellite information, depending on each covariance. By using the 

assimilated forecast as a priori estimate, information from previous observations can be propagated to future retrievals, 

thereby leading to better retrieval accuracy. In this way, satellite observation and model simulation are used synergistically 

to continuously estimate the optimum field of aerosol. Future work would include applying the methodology proposed in this 295 

study to polar-orbiting satellites and combining them with geostationary satellite measurements, in order to offer consistent 

geostationary and polar-orbiting estimates, and thereby improve aerosol properties over the globe.  

 

Appendix A: Aerosol Setting 

We assume that the aerosol model is an external mixture of fine and coarse particles (𝜂𝜂𝑓𝑓 is the external mixing ratio of the 300 

dry volume concentration of fine particles). We set the fine aerosol model based on the average properties of fine mode for 

categories 1–6 by Omar et al. (2005). For the coarse aerosol model, we set the external mixture of the pure marine aerosol on 

the basis of the model illustrated by Sayer et al. (2012) and the dust model based on the coarse model of category 1 (dust) as 

illustrated by Omar et al. (2005). 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 is the external mixing ratio of the dry volume concentration of dust particles for the 

coarse model. 305 

 

Regarding each aerosol size, we use a monomodal lognormal volume size (rd) distribution, which is defined as follows: 
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where Cv is the particle volume concentration, rv is the volume median radius, and σ is the standard deviation. rv is set to 

0.143, 2.59, and 2.834 (σ is 1.537, 2.054, and 1.908) for fine, coarse marine, and coarse dust, respectively, based on the 310 

observations by Omar et al. (2005) and Sayer et al. (2012). Regarding the aerosol shape, we assume a spherical model for the 

fine and coarse marine models, and a non-spherical model for the coarse dust model (Nakajima et al. 1989). The aerosol 
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vertical distribution is set to the same distribution that was used for rural (dominant at 0–2 km), sea-spray (below 2 km), and 

yellow sand (4-8 km), for fine, coarse marine, and coarse dust in the STAR code, respectively. The real part of the refractive 

index is set to 1.439, 1.362, and 1.452 for fine, coarse marine, and coarse dust, respectively, and the imaginary part of the 315 

refractive index (𝑚𝑚𝑖𝑖) is set to 3.0×10-9 and 0.0036 at all wavelengths for coarse marine, and coarse dust, respectively, based 

on Sayer et al. (2012) and Omar et al. (2005). The 𝑚𝑚𝑖𝑖 for the fine aerosol model is perturbed to represent non-absorbing and 

absorbing aerosols. To decrease the number of derived parameters, the 𝑚𝑚𝑖𝑖 for the fine aerosol model varies with change in 

𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 such that the fine and coarse models exhibit the same 𝜔𝜔 at 500 nm. 

Appendix B: Relationship of α and 𝝎𝝎 with 𝜼𝜼𝒇𝒇 and 𝜼𝜼𝒄𝒄𝒅𝒅𝒅𝒅𝒅𝒅 320 

Figure B1 shows the relations of the final retrieval parameters α, and 𝜔𝜔 with the external mixing ratio of dry volume 

concentration of fine particles (𝜂𝜂𝑓𝑓), and external mixing ratio of the dry volume concentration of dust particles for the coarse 

model (𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑). The 𝜔𝜔 at 500 nm can be uniquely determined by the 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑  (Fig. B1 (a)), since 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 for the coarse aerosol 

changes in conjunction with 𝑚𝑚𝑖𝑖 for the fine aerosol so that the 𝜔𝜔 at 500 nm has the same value without depending on the 𝜂𝜂𝑓𝑓. 

Note that the 𝜔𝜔 at wavelengths other than 500 nm are dependent on not only 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 but also 𝜂𝜂𝑓𝑓. The α is mainly determined by 325 

𝜂𝜂𝑓𝑓, but also depends slightly on 𝜂𝜂𝑐𝑐𝑑𝑑𝑑𝑑𝑑𝑑 (Fig. B1 (b)). 
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Figure 1: Flowchart of data processing for aerosol retrieval at time T1. 
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 475 
Figure 2: Forecast of aerosol transport model used for retrieval at time T1. Solid and dashed lines show the assimilation period (1 
day) and forecast run, respectively. 

 

 
Figure 3: Mean (upper) and standard deviation (lower) of 𝜏𝜏 for free run model from 2011 to 2015 in (a) March, April and May, (b) 480 
June, July and August, (c) September, October and November, and (d) December, January and February. 
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Figure 4: aerosol optical thickness at 500 nm 𝝉𝝉 (upper), external mixing ratio of dry volume concentration of fine particles 𝜼𝜼𝒇𝒇 
(middle), and external mixing ratio of the dry volume concentration of dust particles for the coarse model 𝜼𝜼𝒄𝒄𝒅𝒅𝒅𝒅𝒅𝒅 (lower) that are (a) 
retrieved from the original algorithm (i.e., using constant a priori estimate), (b) retrieved from this algorithm, (c) retrieved from 485 
this algorithm but without model absolute error (𝑺𝑺𝒂𝒂𝑨𝑨), and (d) of the model forecast at 0200 UTC on May 19, 2016. (e) standard 
deviations of model forecast (𝝈𝝈𝝉𝝉𝒂𝒂, 𝝈𝝈𝜼𝜼𝒇𝒇𝒂𝒂, and 𝝈𝝈𝜼𝜼𝒄𝒄𝒅𝒅𝒅𝒅𝒅𝒅𝒂𝒂) used for retrieval in (b). 

 



19 
 

 

Figure 5: Same as Fig. 4, except for the case at 0500 UTC on May 7, 2017.  490 
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Figure 6: Frequency distribution of 𝝉𝝉 (a, b, c), 𝜶𝜶 (d, e, f), and 𝝎𝝎 (g, h, i) retrieved from AHI and those from AERONET. (a), (d), 
and (g) show the results from the original algorithm (i.e., using constant a priori), (b), (e), and (h) show the results from this 
algorithm, and (c), (f), and (i) are a priori estimate used for (b), (e), and (h), respectively. E, B, R, and N above the figures show the 
root mean square error, mean bias, correlation, and total number, respectively. Red asterisks in (a), (b), and (c) indicate the results 495 
at the red circles in Fig. 7 (a) and (b). 
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Figure 7: aerosol optical thickness at 500 nm 𝝉𝝉 (upper), external mixing ratio of dry volume concentration of fine particles 𝜼𝜼𝒇𝒇 
(middle), and external mixing ratio of the dry volume concentration of dust particles for the coarse model 𝜼𝜼𝒄𝒄𝒅𝒅𝒅𝒅𝒅𝒅 (lower) that are (a) 500 
retrieved from the original algorithm (i.e., using constant a priori estimate), (b) retrieved from this algorithm, and (c) from the 
model forecast at 0640 UTC on June 29, 2018. (d) standard deviations of model forecast (𝝈𝝈𝝉𝝉𝒂𝒂, 𝝈𝝈𝜼𝜼𝒇𝒇𝒂𝒂, and 𝝈𝝈𝜼𝜼𝒄𝒄𝒅𝒅𝒅𝒅𝒅𝒅𝒂𝒂) used for retrieval in 
(b). Red circles in (a) 𝝉𝝉 and (b) 𝝉𝝉 indicate the results for the red asterisks in Fig. 6 (a), (b), and (c). 

 

 505 
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Figure 8: Frequency distribution of 𝝉𝝉 retrieved from AHI and those from AERONET. The results retrieved from this algorithm in 
the case of 𝝌𝝌𝟐𝟐 less than 20, 0.5, 0.2, and uncertainties of the retrieved 𝝉𝝉 (𝐒𝐒𝛕𝛕) less than 20, 1.0, 0.5 are plotted in each panel. E, B, and 
R above the figures show the root mean square error, mean bias, and correlation, respectively. 510 



23 
 

 
Figure 9: Frequency distribution of α retrieved from AHI and those from AERONET. The results retrieved from this algorithm in 
the case of 𝝌𝝌𝟐𝟐 less than 20, 0.5, 0.2, and uncertainties of the retrieved𝜼𝜼𝒇𝒇 (𝐒𝐒 𝜼𝜼𝒇𝒇) less than 20, 0.5, 0.2 are plotted in each panel. E, B, 
and R above the figures are the same as in Fig. 8. 
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 515 
Figure 10: Frequency distribution of 𝝎𝝎 retrieved from AHI and those from AERONET. The results retrieved from this algorithm 
in the case of 𝝌𝝌𝟐𝟐 less than 20, 0.5, 0.2, and uncertainties of the retrieved𝜼𝜼𝒄𝒄𝒅𝒅𝒅𝒅𝒅𝒅 (𝐒𝐒𝜼𝜼𝒄𝒄𝒅𝒅𝒅𝒅𝒅𝒅) less than 20, 0.5, 0.2 are plotted in each panel. E, 
B, and R above the figures are the same as in Fig. 8. 
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 520 
Figure 11: Frequency distribution of the difference between 𝝉𝝉 (a), 𝜶𝜶 (b), and 𝝎𝝎 (c) retrieved from AHI and those from 
AERONET, as a function of the difference between 𝝉𝝉 (a), 𝜶𝜶 (b), and 𝝎𝝎 (c) of a priori estimate and AERONET. R 
shows the correlation. 
 
 525 
 
 

 

Figure 12: Same as Fig. 4, except for using the forecast on April 27, 2018 as a priori estimate. 
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 530 
Figure B1: The relations of (a) single-scattering albedo at 500 nm (𝝎𝝎), and (b) Ångström exponent between 400 and 
600 nm (α) with the external mixing ratio of dry volume concentration of fine particles (𝜼𝜼𝒇𝒇), and external mixing ratio 
of the dry volume concentration of dust particles for the coarse model (𝜼𝜼𝒄𝒄𝒅𝒅𝒅𝒅𝒅𝒅). Each color represents a different 𝜼𝜼𝒄𝒄𝒅𝒅𝒅𝒅𝒅𝒅. 
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