

Polar stratospheric nitric acid depletion surveyed from a decadal dataset of IASI total columns

Gaetane Ronsmans^{1,a}, Catherine Wespes^{1,a,*}, Lieven Clarisse¹, Susan Solomon², Daniel Hurtmans¹, Cathy Clerbaux^{1,3}, and Pierre-François Coheur¹

¹Université libre de Bruxelles (ULB), Spectroscopy, Quantum Chemistry and Atmospheric Remote Sensing (SQUARES), Brussels, Belgium

²Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

³LATMOS/IPSL, Sorbonne Université, UVSQ, CNRS, Paris, France

* Corresponding author: Catherine Wespes (catherine.wespes@ulb.be)

^a Co-first authors

Abstract

In this paper, we exploit the first 10-year data-record (2008-2017) of nitric acid (HNO_3) total columns measured by the IASI-A/Metop infrared sounder, characterized by an exceptional daily sampling and a good vertical sensitivity in the lower-to-mid stratosphere (around 50 hPa), to monitor the relationship between the temperature decrease and the observed HNO_3 loss that occurs each year in the Antarctic stratosphere during the polar night. Since the HNO_3 depletion results from the formation of polar stratospheric clouds (PSCs) which trigger the development of the ozone (O_3) hole, its continuous monitoring is of high importance. We verify here, from the 10-year time evolution of HNO_3 together with temperature (taken from reanalysis at 50 hPa), the recurrence of specific regimes in the annual cycle of IASI HNO_3 and identify, for each year, the day and the 50 hPa temperature ("drop temperature") corresponding to the onset of strong HNO_3 depletion in the Antarctic winter. Although the measured HNO_3 total column does not allow the uptake of HNO_3 by different types of PSC particles along the vertical profile to be differentiated, an average drop temperature of 194.2 ± 3.8 K, close to the nitric acid trihydrate (NAT) existence threshold (~ 195 K at 50 hPa), is found in the region of potential vorticity lower than -10×10^{-5} K.m 2 .kg $^{-1}$.s $^{-1}$ (similar to the $70^\circ - 90^\circ$ S equivalent latitude region during winter). The spatial distribution and inter-annual variability of the drop temperature are investigated and discussed. This paper highlights the capability of the IASI sounder to monitor the evolution of polar stratospheric HNO_3 , a key player in the processes involved in the depletion of stratospheric O_3 .

1 Introduction

The cold and isolated air masses found within the polar vortex during winter are associated with a strong denitrification of the stratosphere due to the formation of PSCs (composed of HNO_3 , sulphuric acid (H_2SO_4) and water ice (H_2O)) (e.g. Peter, 1997; Voigt et al., 2000; von König, 2002; Schreiner et al., 2003; Peter and Groß, 2012). These clouds strongly affect the polar chemistry by (1) acting as surfaces for the heterogeneous activation of chlorine and bromine compounds, in turn leading to enhanced O_3 destruction (e.g. Solomon, 1999; Wang and Michelangeli, 2006; Harris et al., 2010; Wegner et al., 2012) and by (2) removing gas-phase HNO_3 temporarily or permanently through uptake by PSCs and sedimentation of large PSC particles to lower altitudes. The denitrification of the polar stratosphere during winter delays the reformation of ClONO_2 , a chlorine reservoir, and, hence, intensifies the O_3 hole (e.g. Solomon, 1999; Harris et al., 2010; Tritscher et al., 2021). The heterogeneous reaction rates on PSC surfaces and the uptake of HNO_3 strongly depend on the temperature and on the PSC particle type. The

49 PSCs are classified into three different types based on their composition and optical properties: type Ia
50 solid nitric acid trihydrate - NAT ($\text{HNO}_3 \cdot (\text{H}_2\text{O})_3$), type Ib liquid supercooled ternary solution - STS
51 ($\text{HNO}_3 / \text{H}_2\text{SO}_4 / \text{H}_2\text{O}$ with variable composition) and type II, crystalline water-ice particles (likely
52 composed of a combination of different chemical phases) (e.g. Toon et al., 1986; Koop et al., 2000;
53 Voigt et al., 2000; Lowe and MacKenzie, 2008). In the stratosphere, they mostly consist of mixtures of
54 liquid/solid STS/NAT particles in varying number densities, with HNO_3 being the major constituent of
55 these particles. The large-size NAT particles of low number density are the principal cause of
56 sedimentation (Lambert et al., 2012; Pitts et al., 2013; Molleker et al., 2014; Lambert et al., 2016). The
57 formation temperature of STS (T_{STS}) and the thermodynamic equilibrium temperatures of NAT (T_{NAT})
58 and ice (T_{ice}) have been determined, respectively, as: ~ 192 K (Carslaw et al., 1995), ~ 195.7 K (Hanson
59 and Mauersberger, 1988) and ~ 188 K (Murphy and Koop, 2005) for typical 50 hPa atmospheric
60 conditions (5 ppmv H_2O and 10 ppbv HNO_3). While the NAT nucleation was thought to require pre-
61 existing ice nuclei, hence, temperatures below T_{ice} (e.g. Zondlo et al., 2000; Voigt et al., 2003), recent
62 observational and modelling studies have shown that HNO_3 starts to condense in early PSC season in
63 liquid NAT mixtures well above T_{ice} (~ 4 K below T_{NAT} , close to T_{STS}) even after a very short temperature
64 threshold exposure (TTE) to these temperatures but also slightly below T_{NAT} after a long TTE, whereas
65 the NAT existence persists up to T_{NAT} (Pitts et al., 2013; Hoyle et al., 2013; Lambert et al., 2016; Pitts
66 et al., 2018). It has been recently proposed that the higher temperature condensation results from
67 heterogeneous nucleation of NAT on meteoritic dust in liquid aerosol (Voigt et al., 2005; Hoyle et al.,
68 2013; Groß et al., 2014; James et al., 2018; Tritscher et al., 2021). Further cooling below T_{STS} and T_{ice}
69 leads to nucleation of liquid STS, of solid NAT onto ice and of ice particles mainly from STS (type II
70 PSCs) (Lowe and MacKenzie, 2008). The formation of NAT and ice has also been shown to be triggered
71 by stratospheric mountain-waves (Carslaw et al., 1998; Hoffmann et al., 2017). Although the formation
72 mechanisms and composition of STS droplets in stratospheric conditions are well described (Toon et al.,
73 1986; Carslaw et al., 1995; Lowe and MacKenzie, 2008), the NAT and ice nucleation processes still
74 require further investigation (Tritscher et al., 2021). This could be important as the chemistry-climate
75 models (CCMs) generally oversimplify the heterogeneous nucleation schemes for PSC formation (Zhu
76 et al., 2015; Spang et al., 2018; Snels et al., 2019), preventing an accurate estimation of O_3 levels.
77

78 Over the last few decades, several satellite instruments have measured stratospheric HNO_3 (e.g.
79 MLS/UARS (Santee et al., 1999), MLS/Aura (Santee et al., 2007), MIPAS/ENVISAT (Piccolo and
80 Dudhia, 2007), ACE-FTS/SCISAT (Sheese et al., 2017) and SMR/Odin (Urban et al., 2009)).
81 Spaceborne instruments such as the CALIOP/CALIPSO lidar and MIPAS/Envisat measuring in the
82 infrared are capable of detecting and classifying PSC types, allowing their formation mechanisms to be
83 investigated (Lambert et al., 2016; Pitts et al., 2018; Spang et al., 2018; Tritscher et al., 2021 and
84 references therein); these satellite data complement in situ measurements (Voigt et al., 2005) and ground-
85 based lidar (Snels et al., 2019). From these available observational datasets, HNO_3 depletion has been
86 linked to PSC formation and detected below the T_{NAT} threshold (Santee et al., 1999; Urban et al., 2009;
87 Lambert et al., 2016; Ronsmans et al., 2018), but its relationship to PSCs still needs further investigation
88 given the complexity of the nucleation mechanisms that depend on several parameters (e.g. atmospheric
89 temperature, water and HNO_3 vapour pressure, time exposure to temperatures, temperature history).
90

91 In contrast to the limb satellite instruments mentioned above, the infrared nadir sounder IASI offers a
92 dense spatial sampling of the entire globe, twice a day (Section 2). While it cannot provide a vertical
93 profile of HNO_3 similar to that from the limb sounders, IASI provides reliable total column
94 measurements of HNO_3 characterized by a maximum sensitivity in the low-middle stratosphere around
95 50 hPa (20 km) during the dark Antarctic winter (Ronsmans et al., 2016, 2018) where PSCs form (Voigt
96 et al., 2005; Lambert et al., 2012; Spang et al., 2016, 2018). This study aims to explore the 10-year
97 continuous HNO_3 measurements from IASI to provide a long-term global picture of depletion and of its

98 dependence on temperatures during polar winter (Section 3). The temperature corresponding to the onset
99 of the strong depletion in HNO_3 records (here referred to as ‘drop temperature’) is identified in Section
100 4 for each observed year and discussed in the context of previous studies.
101

102 **2 Data**

103

104 The HNO_3 data used in the present study are obtained from measurements of the Infrared Atmospheric
105 Sounding Interferometer (IASI) onboard the Metop-A satellite. IASI measures the Earth’s and
106 atmosphere’s radiation in the thermal infrared spectral range (645 - 2760 cm^{-1}), with a 0.5 cm^{-1} apodized
107 resolution and a low radiometric noise (Clerbaux et al., 2009; Hilton et al., 2012). Thanks to its polar
108 sun-synchronous orbit with more than 14 orbits a day and a field of view of four simultaneous footprints
109 of 12 km at nadir, IASI provides global coverage twice a day (9.30 AM and PM mean local solar time).
110 That extensive spatial and temporal sampling in the polar regions is key to this study.
111

112 The HNO_3 vertical profiles are retrieved on a uniform vertical 1 km grid of 41 layers (from the surface
113 to 40 km with an extra layer above to 60 km) in near-real-time by the Fast Optimal Retrieval on Layers
114 for IASI (FORLI) software, using the optimal estimation method (Rodgers, 2000). Detailed information
115 on the FORLI algorithm and retrieval parameters specific to HNO_3 can be found in previous papers
116 (Hurtmans et al., 2012; Ronsmans et al., 2016). For this study, only the total columns (v20151001) are
117 used, considering (1) the low vertical resolution of IASI with only one independent piece of information
118 (full width at half maximum - FWHM - of the averaging kernels of ~ 30 km), (2) the limited sensitivity
119 of IASI to tropospheric HNO_3 , (3) the dominant contribution of the stratosphere to the HNO_3 total
120 column and (4) the largest sensitivity of IASI in the region of interest, i.e. in the low and mid-stratosphere
121 (from ~ 70 to ~ 30 hPa), where the HNO_3 abundance is the highest (Ronsmans et al., 2016). The IASI
122 measurements capture the expected depletion of HNO_3 within the polar night, as illustrated in Fig. 1 that
123 shows examples of vertical HNO_3 profiles retrieved within the dark Antarctic vortex (above Arrival
124 Heights) and outside the vortex (above Lauder). The retrieved profiles are shown along with their
125 associated total retrieval error and averaging kernels (the total column averaging kernel and the so-called
126 “sensitivity profile” are also represented; see Ronsmans et al., 2016 for more details). The total column
127 averaging kernel (in black) indicates the sensitivity of the total column measurement to changes in the
128 vertical distribution of HNO_3 , hence, the altitude to which the retrieved total column is mainly
129 sensitive/representative, while the sensitivity profile indicates the extent to which the retrieval at one
130 specific altitude comes from the spectral measurement rather than the a priori. Above Arrival Heights
131 during the dark Antarctic winter, we clearly see depleted HNO_3 levels in the low and mid-stratosphere
132 and the altitude of maximum sensitivity at around 30 hPa for this case (values of ~ 1 along the total
133 column averaging kernel around that level). In contrast, at Lauder, HNO_3 levels larger than the a priori
134 are observed in the stratosphere with a larger range of maximum sensitivity. The total columns are
135 associated with a total retrieval error ranging from around 3% at mid- and polar latitudes (except above
136 Antarctica) to 25% above cold Antarctic surface during winter and with a low absolute bias smaller than
137 12% when compared to ground-based FTIR measurements, in polar regions over the altitude range
138 where the IASI sensitivity is the largest (see Hurtmans et al., 2012 and Ronsmans et al., 2016 for more
139 details). The highest error measured over the Antarctic arises from weaker sensitivity above very cold
140 surface with a degrees of freedom for signal (DOFS) of 0.95 and from a poor knowledge of the seasonally
141 and wavenumber-dependent emissivity above ice surfaces, which induces larger forward model errors).
142 In order to expand on the comparisons against FTIR measurements, which cannot be made during the
143 polar night, Fig. 2 (top panel) presents the time series of daily IASI total HNO_3 columns co-located with
144 MLS measurements within $2.5^\circ \times 2.5^\circ$ grid boxes, averaged in the 70°S – 90°S equivalent latitude band.
145 In order to account for the vertical sensitivity of IASI, the averaging kernels associated with each co-
146 located IASI retrieved profile were applied to the MLS profiles for this cross-comparison. The MLS

147 mixing ratio profiles over the 215-1.5 hPa pressure range were first interpolated to the FORLI pressure
148 grids and extended down to the surface by using the FORLI-HNO₃ a priori profile, and then converted
149 into partial columns. Similar variations in the HNO₃ column are captured by the two instruments, with
150 an excellent agreement in particular for the timing of the strong HNO₃ depletion within the inner vortex
151 core. Note that a similar good agreement between the two satellite datasets is obtained in other latitude
152 bands (see Fig. 2 bottom panel for the 50°S–70°S equivalent latitude band; the other bands are not
153 shown).

154

155 Quality flags similar to those developed for O₃ in previous IASI studies (Wespes et al., 2017) were
156 applied a posteriori to exclude data (i) with a corresponding poor spectral fit (e.g. based on quality flags
157 rejecting biased or sloped residuals, fits with maximum number of iteration exceeded), (ii) with less
158 reliability (e.g. based on quality flags rejecting suspect averaging kernels, data with less sensitivity
159 characterized by a DOFS lower than 0.9) or (iii) with tropospheric cloud contamination (defined by a
160 fractional cloud cover $\geq 25\%$). Note that the HNO₃ total column distributions illustrated in sections
161 below use the median as a statistical average since it is more robust against the outliers than the mean.
162

163 Temperature and potential vorticity (PV) fields are taken from the ECMWF ERA Interim Reanalysis
164 dataset, respectively at 50 hPa and at the potential temperature of 530 K (corresponding to ~ 20 km
165 altitude where the IASI sensitivity to HNO₃ is the highest during the Southern Hemisphere (S.H.) winter
166 (Ronmans et al., 2016)). Because the HNO₃ uptake by PSCs starts within a few degrees below T_{NAT}
167 (~ 195.7 K at 50 hPa (Hanson and Mauersberger, 1988)) depending on the meteorological conditions
168 (Pitts et al., 2013; Hoyle et al., 2013; Lambert et al., 2016; Pitts et al., 2018), a threshold temperature of
169 195 K is considered in the sections below to identify regions of potential PSC existence. The potential
170 vorticity is used to delimit dynamically consistent areas in the polar regions. In what follows, we use
171 either the equivalent latitudes ("eqlat", calculated from PV fields at 530 K) or the PV values to
172 characterize the relationship between HNO₃ and temperatures in the cold polar regions. Uncertainties in
173 ERA-Interim temperatures will also be discussed below.
174

175 3 Annual cycle of HNO₃ vs temperatures

176

177 Figure 3a shows the yearly HNO₃ cycle (solid lines, left axis) in the southernmost equivalent latitudes
178 (70° - 90° S) as measured by IASI over the whole study period (2008–2017). The total HNO₃ variability
179 in such equivalent latitudes has already been discussed in a previous IASI study (Ronmans et al., 2018),
180 where the contribution of the PSCs to the HNO₃ variations was highlighted. The temperature time series,
181 taken at 50 hPa, is represented as well (dashed lines, right axis). From this figure, different regimes of
182 HNO₃ total columns vs temperature can be observed throughout the year and from one year to another.
183 In particular, we define here three main regimes (R1, R2 and R3) during the HNO₃/temperature annual
184 cycle. The full cycle and the main regimes in the 70° - 90° S eqlat region are further represented in Fig.
185 3b that shows a histogram of the HNO₃ total columns as a function of temperature for the year 2011.
186 Similar histograms are observed for the other years in the 10-year study period (not shown). The orange
187 horizontal and vertical lines in Fig. 3a and Fig. 3b, respectively, represent the 195 K threshold
188 temperature used to identify the onset of HNO₃ uptake by PSCs (see Section 2). The three regimes
189 identified are:
190

- 191 - R1 is defined by the maxima in the total HNO₃ abundances covering the months of April and
192 May ($\sim 3 \times 10^{16}$ molec.cm⁻²), when the 50 hPa temperature strongly decreases (from ~ 220 to ~ 195
193 K). These high HNO₃ levels result from low sunlight, preventing photodissociation, along with
194 the heterogeneous hydrolysis of N₂O₅ to HNO₃ during autumn before the formation of polar
195 stratospheric clouds (Keys et al., 1993; Santee et al., 1999; Urban et al., 2009; de Zafra and

196 Smyshlyaev, 2001). This period also corresponds to the onset of the development of the southern
197 polar vortex, which is characterized by strong diabatic descent with weak latitudinal mixing
198 across its boundary, isolating polar HNO_3 -rich air from lower-latitude airmasses. The end of the
199 R1 period marks the start of the strong total HNO_3 decrease that intensifies later in R2.
200

201 - R2, which extends from June to October, follows the onset of the strong decrease in HNO_3 total
202 columns that starts around mid-May in most years when the temperatures fall below 195 K. After
203 a steep initial decline in total HNO_3 , R2 is characterized by a plateau of total HNO_3 minima. For
204 much of this regime, average HNO_3 total columns are below 2×10^{16} molec. cm^{-2} and the 50 hPa
205 temperatures range mostly between 180 and 190 K.
206

207 - R3 starts in October when sunlight returns and the 50 hPa temperatures rise above 195 K. Despite
208 50 hPa temperatures increasing up to 240 K in summer, the HNO_3 total columns stagnate at the
209 R2 plateau levels (around 1.5×10^{16} molec. cm^{-2}). This regime likely reflects the photolysis of NO_3
210 and HNO_3 itself (Ronmans et al., 2018) as well as the permanent denitrification of the mid-
211 stratosphere, caused by sedimentation of PSCs. The likely renitrification of the lowermost
212 stratosphere (e.g. Braun et al., 2019; Lambert et al., 2012), where the HNO_3 concentrations and
213 the IASI sensitivity to HNO_3 are lower (Ronmans et al., 2016), cannot be inferred from the IASI
214 total column measurements. The plateau lasts until approximately February, when HNO_3 total
215 column slowly starts increasing, reaching the April-May maximum in R1.
216

217 As illustrated in Fig. 3a, the three regimes are observed each year with, however, some interannual
218 variations. For instance, the sudden stratospheric warming (SSW) that occurred in 2010 (see the
219 temperature time series at 20 hPa for the year 2010; green dotted line) yielded higher HNO_3 total columns
220 (see green solid line in July - September) (de Laat and van Weele, 2011; Klekociuk et al., 2011; WMO,
221 2014; Ronmans et al., 2018).

222 Figure 3c shows the evolution of the relationship between the daily averaged HNO_3 (calculated from a
223 7-day moving average) with the highest occurrence (in bins of 0.1×10^{16} molec. cm^{-2} and of 2K) and the
224 50 hPa temperature, over the 10-year study period. The red vertical line represents the 195 K threshold
225 temperature. Figure 3c also highlights a large interannual variability in total HNO_3 in R3, while the
226 strong depletion in HNO_3 in R2 is consistent every year. Given that PSC formation spans a large range
227 of altitudes (typically between 10 and 30 km) (Höpfner et al., 2006, 2009; Spang et al., 2018; Pitts et al.,
228 2018) and that IASI has maximum sensitivity to HNO_3 around 50 hPa (Hurtmans et al., 2012; Ronmans
229 et al., 2016), the temperatures at two other pressure levels, namely 70 and 30 hPa (i.e. ~ 15 and ~ 25 km),
230 have also been tested to investigate the relationship between HNO_3 and temperature in the low and mid-
231 stratosphere. The results (not shown here) exhibit a similar HNO_3 -temperature behavior at the different
232 levels with, as expected, lower and higher temperatures in R2, respectively, at 30 hPa and at 70 hPa
233 (temperatures down to ~ 180 K at 30 hPa and down to ~ 185 K at 70 hPa, as compared to temperatures
234 down to ~ 182 K at 50 hPa, are observed), but still below the NAT formation threshold at these pressure
235 levels ($T_{\text{NAT}} \sim 193$ K at 30 hPa and ~ 197 K at 70 hPa) (Lambert et al., 2016). Therefore, the altitude range
236 of maximum IASI sensitivity to HNO_3 (see Section 2) is characterized by temperatures that are below
237 the NAT formation threshold at these pressure levels, enabling PSC formation and the denitrification
238 process. Furthermore, the consistency between the 195 K threshold temperature taken at 50 hPa and the
239 onset of the strong total HNO_3 depletion seen in IASI data (see Fig. 3a) is in agreement with the largest
240 NAT area that starts to develop in June around 20 km (Spang et al., 2018), which justifies the use of the
241 195 K temperature at that single representative level in this study.
242

244 4 Onset of HNO_3 depletion and drop temperature detection

245 To identify the spatial and temporal variability of the onset of the depletion phase, the daily time
246 evolution of HNO_3 during the first 10 years of IASI measurements and the temperatures at 50 hPa are
247 explored. In particular, the second derivative of HNO_3 total column with respect to time is calculated to
248 detect the strongest rate of decrease seen in the HNO_3 time series and to identify its associated day and
249 50 hPa temperature.

250

251 **4.1 HNO_3 vs temperature time series**

252

253 Figure 4 shows the time series of the second derivative of HNO_3 total column with respect to time (blue)
254 and of the temperature (red) averaged in the area of potential vorticity smaller than $-10 \times 10^{-5} \text{ K} \cdot \text{m}^2 \cdot \text{kg}^{-1} \cdot \text{s}^{-1}$
255 at the potential temperature of 530 K to encompass the region inside the inner polar vortex where
256 the temperatures are the coldest and the largest depletion of total HNO_3 occurs (Ronsmans et al., 2018).
257 The use of that PV threshold value explains the gaps in the time series during the summer when the PV
258 does not reach such low levels, while the time series averaged in the 70° - 90° S eqlat band (dashed blue
259 for the second derivative of HNO_3 and grey for the temperature) covers the full year. Note that the HNO_3
260 time series has been smoothed with a simple spline data interpolation function to avoid gaps in order to
261 calculate the second derivative of HNO_3 total column with respect to time as the daily second-difference
262 in HNO_3 total columns. The horizontal red line shows the 195 K threshold.

263

264 As already illustrated in Fig. 3a and Fig. 3c, the strongest rate of HNO_3 depletion (i.e. the second
265 derivative minimum) is found around the time that temperatures drop below the 195 K threshold (at
266 exactly or a few days after the detection of the 195 K threshold temperature, particularly for the year
267 2009), within a few days to a few weeks (4 to 23 days) after total HNO_3 reaches its maximum, i.e.
268 between the 11th of May (2013) and the 8th of June (2009). The 50 hPa drop temperatures, i.e. the
269 temperature associated with the strongest rate of HNO_3 depletion detected from IASI, are between 189.2
270 K and 198.6 K, with the exception of the year 2014, which shows a drop temperature of 202.8 K. On
271 average over the 10 years of studied IASI measurements, a 50 hPa drop temperature of $194.2 \text{ K} \pm 3.8 \text{ K}$
272 (1σ standard deviation) is found. Knowing that T_{NAT} can be higher or lower depending on the
273 atmospheric conditions and that NAT starts to nucleate from ~ 2 – 4 K below T_{NAT} (Pitts et al., 2011;
274 Hoyle et al., 2013; Lambert et al., 2016), the results here tend to demonstrate the consistency between
275 the 50 hPa drop temperature and the PSC existence temperature in that altitude region. Note that the
276 range observed in the 50 hPa drop temperature could reflect variations in the preponderance of one type
277 of PSCs over another from one year to the next. The results further justify the use of the single 50 hPa
278 level for characterizing and investigating the onset of HNO_3 depletion from IASI. Nevertheless, given
279 the range of maximum IASI sensitivity to HNO_3 around 50 hPa, typically between 70 and 30 hPa
280 (Ronsmans et al., 2016), the drop temperatures are also calculated at these two other pressure levels (not
281 shown here) in order to estimate the uncertainty of the calculated drop temperature defined in this study
282 at 50 hPa. The 30 hPa and 70 hPa drop temperatures range respectively over 185.7 K – 194.9 K and over
283 194.8 K – 203.7 K, with an average of $192.0 \pm 2.9 \text{ K}$ and $198.0 \pm 3.2 \text{ K}$ (1σ standard deviation) over the
284 ten years of IASI. The average values at 30 hPa and 70 hPa fall within the 1σ standard deviation
285 associated with the average drop temperature at 50 hPa. It is also worth noting the agreement between
286 the drop temperatures and the NAT formation threshold at these two pressure levels ($T_{\text{NAT}} \sim 193 \text{ K}$ at 30
287 hPa and $\sim 197 \text{ K}$ at 70 hPa) (Lambert et al., 2016). Finally, it should be noted that, because the size, shape
288 or location of the vortex vary slightly over the altitude range to which IASI is sensitive (from ~ 30 to ~ 70
289 hPa during the polar night), the use of a single potential temperature surface for the calculation of drop
290 temperatures could introduce some uncertainties into the results. However, several tests suggest that
291 these variations of the vortex are overall minor and, hence, have only limited influence on the

292

293 identification of the inner polar vortex (delimited by a PV value of $-10 \times 10^{-5} \text{ K} \cdot \text{m}^2 \cdot \text{kg}^{-1} \cdot \text{s}^{-1}$ at 530 K) and
294 on the determination of the average drop temperature inside that region.

295
296 Figures 5a and b show the climatological zonal distribution of HNO_3 total columns and of the
297 temperature at 50 hPa, respectively, spanning the 55°S - 90°S geographic latitude band over the first
298 ten years of IASI, with, superimposed, three isocontour levels of potential vorticity (-10, -8 and -5×10^{-5}
299 $\text{K} \cdot \text{m}^2 \cdot \text{kg}^{-1} \cdot \text{s}^{-1}$ in blue, cyan and black, respectively) and the isocontours for the 195 K temperature (pink)
300 and for the averaged 194.2 K drop temperature (purple) at 50 hPa. They further illustrate the relationship
301 between the IASI total HNO_3 columns and the 50 hPa temperatures. The climatological (2008-2017) PV
302 isocontour of $-10 \times 10^{-5} \text{ K} \cdot \text{m}^2 \cdot \text{kg}^{-1} \cdot \text{s}^{-1}$ is clearly shown to separate well the region of strong depletion in
303 total HNO_3 , according to the latitude and the time, until October. The red vertical dashed line indicates
304 the annual average of the dates on which the 50 hPa drop temperatures are calculated in the area of $\text{PV} \leq$
305 $-10 \times 10^{-5} \text{ K} \cdot \text{m}^2 \cdot \text{kg}^{-1} \cdot \text{s}^{-1}$ ($194.2 \pm 3.8 \text{ K}$; see Fig. 4) over the first ten years of IASI. It shows that the
306 strongest rate of HNO_3 depletion occurs on average at the end of May (24 May), a few days after the
307 temperature decreases below 195 K. The yearly zonally averaged time series over the 10-year study
308 period can be found in Fig. 6, which shows that IASI measures similar HNO_3 total column zonal
309 distributions every year, in particular with respect to the edge of the collar region and of the region of
310 strong depletion (respectively delimited by the PV isocontours of $-5 \times 10^{-5} \text{ K} \cdot \text{m}^2 \cdot \text{kg}^{-1} \cdot \text{s}^{-1}$ and of -10×10^{-5}
311 $\text{K} \cdot \text{m}^2 \cdot \text{kg}^{-1} \cdot \text{s}^{-1}$ at 530 K). An exact timing or a delay of a few days between the detection of the averaged
312 195 K threshold temperature and the start of the HNO_3 depletion is visible every year in Fig. 6. In
313 particular, the year 2009 shows the longest delay (see also Fig. 4). Note that the mismatch observed in
314 the 10-year average between the detection of the averaged 195 K threshold temperature and the average
315 date for the drop temperatures (see Fig. 5 a and b) is driven by the year 2013 which is characterized by
316 the lowest temperatures during the Antarctic winter over the 10-year study period and, hence, the earliest
317 date for the drop temperature (11th of May; see Fig. 4 and Fig. 6).

320 **4.2 Spatial distribution of drop temperatures**

321
322 To explore the capability of IASI to monitor the onset of HNO_3 depletion at a large scale, figure 7 shows,
323 for each year of the study period, the spatial distribution of the 50 hPa drop temperatures based on the
324 second derivative minima of total HNO_3 averaged in $1^\circ \times 1^\circ$ grid cells. The region of interest here is
325 delimited by a PV value of $-8 \times 10^{-5} \text{ K} \cdot \text{m}^2 \cdot \text{kg}^{-1} \cdot \text{s}^{-1}$ at 530 K, in order to investigate an area a bit larger
326 than the inner vortex core that was the focus of the preceding discussion (delineated in green in figure 7
327 by the PV isocontour of $-10 \times 10^{-5} \text{ K} \cdot \text{m}^2 \cdot \text{kg}^{-1} \cdot \text{s}^{-1}$ averaged over the interval 10 May to 15 July). The
328 isocontour of $-10 \times 10^{-5} \text{ K} \cdot \text{m}^2 \cdot \text{kg}^{-1} \cdot \text{s}^{-1}$ for the minimum PV (in cyan) encountered at 530 K over the 10
329 May to 15 July period for each year, as well as the isocontours of 195 K for the average temperatures
330 and the minimum temperatures, are also represented. The calculated drop temperatures corresponding
331 to the onset of HNO_3 depletion inside the averaged PV isocontour are found to vary between ~ 180 and
332 $\sim 210 \text{ K}$ and the corresponding dates range between \sim mid-May and mid-July (not shown here). Although
333 the range of drop temperatures and dates for $1^\circ \times 1^\circ$ bins is broader than that found for the inner vortex
334 averages discussed above, the results are qualitatively consistent. For example, the year 2014 that shows
335 the highest inner vortex average drop temperature in Figure 4 is characterized by the highest drop
336 temperatures above the eastern Antarctic. Note, however, that the high extremes in the drop temperature,
337 mainly found above the eastern Antarctic, should be considered with caution: they correspond to specific
338 regions above ice surfaces with emissivity features that are known to yield errors in the IASI retrievals
339 (Hurtmans et al., 2012; Ronsmans et al., 2016). Indeed, bright land surfaces such as ice might in some
340 cases lead to poor HNO_3 retrievals. Although wavenumber-dependent surface emissivity atlases are used
341 in FORLI (Hurtmans et al., 2012), this parameter remains critical and causes poorer retrievals that, in

342 some instances, pass through the series of quality filters and could affect the drop temperature
343 calculation.

344
345 The averaged isocontour of 195 K encircles fairly well the area of HNO_3 drop temperatures lower than
346 195 K (typically from ~ 187 K to ~ 195 K), which means that the bins inside that area include airmasses
347 that experience the NAT threshold temperature during a long time over the 10 May – 15 July period.
348 That area encompasses the inner vortex core (delimited by the isocontour of $-10 \times 10^{-5} \text{ K.m}^2.\text{kg}^{-1}.\text{s}^{-1}$ for
349 the PV averaged over the 10 May – 15 July period) and shows pronounced minima (lower than -0.5×10^{14}
350 $\text{molec.cm}^{-2}.\text{d}^{-2}$) in the second derivative of the HNO_3 total column with respect to time (not shown here),
351 which indicate a strong and rapid HNO_3 depletion. The area enclosed between the two isocontours of
352 195 K for the temperatures, the averaged one and the one for the minimum temperatures, shows generally
353 higher drop temperatures and weakest minima (larger than $-0.5 \times 10^{14} \text{ molec.cm}^{-2}.\text{d}^{-2}$) in the second
354 derivative of the HNO_3 total column (not shown). That area is also typically enclosed by the isocontour
355 of $-10 \times 10^{-5} \text{ K.m}^2.\text{kg}^{-1}.\text{s}^{-1}$ for the minimum PV, meaning that the bins inside correspond, at least for one
356 day over the 10 May – 15 July period, to airmasses located at the inner edge of the vortex and
357 characterized by temperature lower than the NAT threshold temperature. The fact that the weakest
358 minima in the second derivative of total HNO_3 are observed in that area (not shown) indicates a weak
359 and slow HNO_3 depletion that might be explained by air masses at the inner edge of the vortex
360 experiencing only a short period with temperatures below the NAT threshold temperature. It could also
361 reflect mixing with strongly HNO_3 -depleted and colder airmasses from the inner vortex core. Mixing
362 with these already depleted airmasses could also explain the higher drop temperatures detected in those
363 bins. These sometimes unrealistic high drop temperatures are generally detected later (after the strong
364 HNO_3 depletion occurs in the inner vortex core, i.e. after the 10 May – 15 July period considered here –
365 not shown), which supports the transport, in those bins, of previously HNO_3 -depleted airmasses and the
366 likely mixing at the edge of the vortex. Note, however, that previous studies have shown a generally
367 weak mixing in the Antarctic between the edge region and the vortex core (e.g. Roscoe et al., 2012).
368 Finally, these spatial variations might also partly reflect some uncertainty in the drop temperature
369 calculation, introduced by the use of temperature at a single pressure level (50 hPa) and of PV on a single
370 potential temperature surface (530 K) while the sensitivity of IASI to changes in the HNO_3 profiles
371 extends over a range from ~ 30 to ~ 70 hPa during the polar night. It should be noted that biases in the
372 ECMWF ERA Interim temperatures used in this work are too small to explain the large range of drop
373 temperatures calculated here. Indeed, Lambert and Santee (2018) found only a small warm bias, with
374 median differences around 0.5 K, reaching 0–0.25 K in the southernmost regions of the globe at ~ 68 – 21
375 hPa where PSCs form, through comparisons with the Constellation Observing System for Meteorology,
376 Ionosphere and Climate (COSMIC) data.
377

378 Except above some parts of Antarctica which are prone to larger retrieval errors and where unrealistic
379 high drop temperatures are found, the overall range in the 50 hPa drop temperature for total HNO_3 inside
380 the isocontour for the averaged temperature of 195 K typically extends from ~ 187 K to ~ 195 K, which
381 falls within the range of PSC nucleation temperature at 50 hPa: from slightly below T_{NAT} to around 3–4
382 K below the ice frost point - T_{ice} - depending on atmospheric conditions, on TTE and on the specific
383 formation mechanism (i.e., the type of PSC developing) (Pitts et al., 2011; Peter and Groß, 2012; Hoyle
384 et al., 2013). This underlines well the benefit of the excellent spatial and temporal coverage of IASI,
385 which allows the rapid and critical depletion phase to be captured in detail over a large scale.

386
387 **5 Conclusions**
388

389 In this paper, we have explored the added value of the dense HNO_3 total column dataset provided by the
390 IASI/Metop-A satellite over a full decade (2008–2017) for monitoring the stratospheric depletion phase

391 that occurs each year in the S.H. and for investigating its relationship to the NAT formation temperature.
392 To that end, we focused on and delimited the coldest polar region of the S.H. using a specific PV value
393 at 530 K (~ 50 hPa, PV of -10×10^{-5} K.m 2 .kg $^{-1}$.s $^{-1}$) and stratospheric temperatures at 50 hPa, taken from
394 the ECMWF ERA Interim reanalysis. That single representative pressure level has been considered in
395 this study given the maximum sensitivity of IASI to HNO $_3$ around that level, which lies in the range
396 where the PSCs formation/denitrification processes occur.
397

398 The annual cycle of total HNO $_3$, as observed from IASI, has first been characterized according to the
399 temperature evolution. Three regimes (R1 to R3) in the total HNO $_3$ - 50 hPa temperature relationship
400 were highlighted from the time series over the S.H. polar region: R1 is defined during April and May
401 and characterized by a rapid decrease in 50 hPa temperatures while HNO $_3$ accumulates over the pole;
402 R2, from June to October, follows the onset of the depletion that starts around mid-May in most years
403 when the 50 hPa temperatures fall below 195 K (considered here as the onset of PSC nucleation phase
404 at that level), with a strong consistency from year to year; R3, defined from October through March
405 when total HNO $_3$ remains at low R2 plateau levels, despite the return of sunlight and heat, characterizes
406 the strong denitrification of the stratosphere, likely due to PSC sedimentation to lower levels where the
407 IASI sensitivity is low. For each year over the 10-year study period, the use of the second derivative of
408 the HNO $_3$ column versus time was then found to be particularly valuable to detect the onset of the HNO $_3$
409 condensation into PSCs. It is captured, on average from IASI, a few days before June with a delay of 4–
410 23 days after the maximum in total HNO $_3$. The corresponding temperatures ('drop temperatures') were
411 detected between 189.2 K and 202.8 K (194.2 ± 3.8 K on average over the 10 years), which tends to
412 demonstrate the good consistency between the 50 hPa drop temperature and the PSC formation
413 temperatures in that altitude region. Finally, the annual and spatial variability (within $1^\circ \times 1^\circ$) in the drop
414 temperature was further explored from IASI total HNO $_3$. Inside the isocontours of 195 K for the average
415 temperatures and of -10×10^{-5} K.m 2 .kg $^{-1}$.s $^{-1}$ for the averaged PV at 530 K, the drop temperatures are
416 detected between \sim mid-May and mid-July, typically range between \sim 187 K to \sim 195 K and are associated
417 with the lowest minima (lower than -0.5×10^{14} molec.cm $^{-2}$.d $^{-2}$) in the second derivative of the HNO $_3$ total
418 column with respect to time, indicating a strong and rapid HNO $_3$ depletion. Except for unrealistic drop
419 temperatures (\sim 210 K) that were found in some years above eastern Antarctica and suspected to result
420 from unfiltered poor quality retrievals arising from emissivity issues above ice, the range of drop
421 temperatures is interestingly found to be in line with the PSC nucleation temperature that is known, from
422 previous studies, to strongly depend on several factors (e.g. meteorological conditions, HNO $_3$ vapour
423 pressure, temperature threshold exposure, presence of meteoritic dust). At the edge of the vortex,
424 considering the isocontours of 195 K for the minimum temperatures or of -10×10^{-5} K.m 2 .kg $^{-1}$.s $^{-1}$ for the
425 minimum PV, higher and later drop temperatures along with weakest minima in the second derivative
426 of the HNO $_3$ total column with respect to time, indicating a slow HNO $_3$ depletion, are found. These
427 likely result from a short temperature threshold exposure or mixing with already depleted airmasses from
428 the inner vortex core. The results of this study highlight the ability of IASI to measure the variations in
429 total HNO $_3$ and, in particular, to capture and monitor the rapid depletion phase over the whole Antarctic
430 region.
431

432 We show in this study that the IASI dataset allows the variability of stratospheric HNO $_3$ throughout the
433 year (including the polar night) in the Antarctic to be captured. In that respect, it offers observational
434 means to monitor the relation of HNO $_3$ to temperature and the related formation of PSCs. Despite the
435 limited vertical resolution of IASI which does not allow investigation of the HNO $_3$ uptake by the
436 different types of PSCs during their formation and growth along the vertical profile, the HNO $_3$ total
437 column measurements from IASI constitute an important new dataset for exploring the strong polar
438 depletion over the whole stratosphere. This is particularly relevant considering the mission continuity,
439 which will span several decades with the planned follow-on missions. Indeed, thanks to the three

440 successive instruments (IASI-A launched in 2006 and still operating, IASI-B in 2012, and IASI-C in
441 2018) that demonstrate an excellent stability of the Level-1 radiances, the measurements will soon
442 provide an unprecedented long-term dataset of HNO_3 total columns. Further work could also make use
443 of this unique data set to investigate the relation between HNO_3 , O_3 , and meteorology in the changing
444 climate.

445

446

447 **Data availability**

448 The IASI HNO_3 data processed with FORLI- HNO_3 v0151001 are available upon request to the
449 corresponding author.

450

451 **Author contributions**

452 C.W. and G.R. performed the analysis, wrote the manuscript and prepared the figures. L.C. contributed
453 to the analysis. S.S., P.-F. C. and L.C. contributed to the interpretation of the results. D.H. was
454 responsible for the retrieval algorithm development and the processing of the IASI HNO_3 dataset. All
455 authors contributed to the writing of the text and reviewed the manuscript.

456

457 **Competing interests**

458 The authors declare no competing interests.

459

460 **Acknowledgements**

461 IASI has been developed and built under the responsibility of the Centre National d'Etudes Spatiales
462 (CNES, France). It is flown on board the Metop satellites as part of the EUMETSAT Polar System. The
463 IASI L1 data are received through the EUMETCast near-real-time data distribution service. The research
464 was funded by the F.R.S.-FNRS, the Belgian State Federal Office for Scientific, Technical and Cultural
465 Affairs (Prodex arrangement 4000111403 IASI.FLOW) and EUMETSAT through the Satellite
466 Application Facility on Atmospheric Composition Monitoring (ACSAF). G. Ronsmans is grateful to the
467 Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture of Belgium for a PhD
468 grant (Boursier FRIA). L. Clarisse is a research associate supported by the F.R.S.-FNRS. C. Clerbaux is
469 grateful to CNES for financial support. S. Solomon is supported by the National Science Foundation
470 (NSF-1539972). We also would like to thank the three reviewers for their helpful comments and
471 corrections and, in particular, M. Santee for her in-depth reviews, which have substantially improved
472 the paper quality.

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489
490
491
492

Figure captions

494

495
496
497
498
499
500
501
502
503

Figure 1. Examples of IASI HNO_3 vertical profiles (in molec.cm^{-2}) with corresponding averaging kernels (in $\text{molec.cm}^{-2}/\text{molec.cm}^{-2}$; colored lines, with the altitude of each kernel represented by the colored dots) along with the total column averaging kernels (black) and the sensitivity profiles (grey) (both divided by 10) above Arrival Heights (77.49°S , 166.39°E , top panels) and Lauder (45.03°S , 169.40°E ; bottom panels). The error bars associated with the HNO_3 vertical profile represent the total retrieval error. The a priori profile is also represented. The total column and the DOFS values are indicated.

504
505
506 **Figure 2.** Time series of daily IASI total HNO_3 column (blue) co-located with MLS and of MLS total HNO_3
507 columns (orange) within $2.5^\circ \times 2.5^\circ$ grid boxes, averaged in the 70°S – 90°S (top panel) and the 50°S – 70°S (bottom panel)
508 equivalent latitude bands. Note that the MLS total column estimates were obtained by extending the
509 MLS partial stratospheric column values using the FORLI- HNO_3 a priori information (see text for
510 details). The error bars (blue) represent 3σ , where σ is the standard deviation around the IASI HNO_3 daily
511 average.

520
 521
 522 **Figure 3.** (a) Time series of daily averaged HNO₃ total columns (solid lines) and temperatures taken at 50 hPa
 523 (dashed lines) in the 70° - 90° S equivalent latitude band, for the years 2008 – 2017. The green dotted line
 524 represents the temperatures at 20 hPa for the year 2010. (b) HNO₃ total columns versus temperatures (at 50 hPa)
 525 histogram during the year 2011, over the whole year (top) and for the 3 defined regimes (R1 - R3) separated in
 526 (a). The colors refer to the number of gridded measurements in each cell. (c) Evolution of daily averaged HNO₃
 527 total columns with the highest occurrence (in bins of 0.1×10^{16} molec.cm⁻² and 2 K) as a function of the 50 hPa
 528 temperature for the years 2008 – 2017. The orange horizontal or vertical lines represent the 195 K threshold
 529 temperature.

538
539

540 **Figure 4.** Time series of total HNO_3 second derivative (blue, left y-axis) and of the 50 hPa temperature (red, right y-axis), in the region of potential vorticity at 530 K lower than $-10 \times 10^{-5} \text{ K.m}^2\text{.kg}^{-1}\text{.s}^{-1}$. The red horizontal line
541 corresponds to the 195 K temperature. The vertical dashed lines indicate the second derivative minimum in HNO_3
542 for each year. The corresponding dates (in bold, on the x-axis) and temperatures are also indicated. The time series
543 of total HNO_3 second derivative (dashed blue) and of temperature (grey) in the $70^\circ - 90^\circ \text{S}$ eqlat band are also
544 represented.
545

546

547

548

549

550

551
552 **Figure 5.** Zonal distributions of (a) HNO_3 total columns (in molec.cm^{-2}) from IASI and (b) temperatures at 50
553 hPa from ERA Interim (in K) in the 55° S to 90° S geographical latitude band and averaged over the years 2008
554 – 2017. Three isocontours for the climatological (2008–2017) and zonally averaged PV of -5 (black), -8 (cyan)
555 and -10 ($\times 10^{-5} \text{ K.m}^2.\text{kg}^{-1}.\text{s}^{-1}$) at 530 K, as well as the isocontours for the 195 K climatological (2008–2017)
556 zonally averaged temperature (pink) and for the averaged 194.2 K drop temperature (purple) at 50 hPa are
557 superimposed. The vertical grey dashed lines mark the earliest and latest dates for the averaged drop temperature
558 in the 10-year IASI record and the red one indicates the average date for the drop temperatures calculated in the
559 area delimited by the $-10 \times 10^{-5} \text{ K.m}^2.\text{kg}^{-1}.\text{s}^{-1}$ PV contour.
560
561

562
563 **Figure 6.** Zonally averaged distributions of (top) HNO₃ total columns (in molec.cm⁻²) from IASI and (bottom)
564 temperatures at 50 hPa from ERA Interim (in K). The geographical latitude range is from 55° to 90° south and
565 the isocontours are PVs of -5 (black), -8 (cyan) and -10 (blue) ($\times 10^{-5}$ K.m².kg⁻¹.s⁻¹ at 530 K). The vertical red
566 dashed lines correspond to the second derivative minima each year in the area delimited by a -10×10^{-5} K.m².kg⁻¹.s⁻¹ PV contour.
567

568
569
570

571
 572 **Figure 7.** Spatial distribution ($1^\circ \times 1^\circ$) of the drop temperature at 50 hPa (K) (calculated from the total HNO_3
 573 second derivative minima) for each year of IASI (2008–2017), in a region defined by a PV of $-8 \times 10^{-5} \text{ K.m}^2.\text{kg}^{-1}.\text{s}^{-1}$.
 574 The isocontours of $-10 \times 10^{-5} \text{ K.m}^2.\text{kg}^{-1}.\text{s}^{-1}$ at 530 K for the averaged PV (in green) and the minimum PV (in
 575 cyan) encountered over the period 10 May–15 July for each year and the isocontours of 195 K at 50 hPa for the
 576 averaged (in red) and the minimum (in pink) temperatures over the same period are represented.
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589

590

References

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

Braun, M., Groß, J.-U., Woiwode, W., Johansson, S., Höpfner, M., Friedl-Vallon, F., Oelhaf, H., Preusse, P., Ungermann, J., Sinnhuber, B.-M., Ziereis, H., and Braesicke, P.: Nitrification of the lowermost stratosphere during the exceptionally cold Arctic winter 2015/16, *Atmospheric Chemistry and Physics Discussions*, <https://doi.org/10.5194/acp-2019-108>, 2019.

Carslaw, K. S., Luo, B. P., and Peter, T.: An analytical expression for the composition of aqueous $\{\text{HNO}_3\text{-H}_2\text{SO}_4\text{-H}_2\text{O}\}$ stratospheric aerosols including gas phase removal of HNO_3 , *Geophys. Res. Lett.*, 22, 1877–1880, <https://doi.org/10.1029/95GL01668>, 1995.

Carslaw, K. S., Wirth, M., Tsias, A., Luo, B. P., Dörnbrack, A., Leutbecher, M., Volkert, H., Renger, W., Bacmeister, J. T., Reimer, E., and Peter, T.: Increased stratospheric ozone depletion due to mountain-induced atmospheric waves, *Nature*, 391, 675–678, <https://doi.org/10.1038/35589>, 1998.

Clerbaux, C., Boynard, A., Clarisse, L., George, M., Hadji-Lazaro, J., Herbin, H., Hurtmans, D., Pommier, M., Razavi, A., Turquety, S., Wespes, C., and Coheur, P.-F.: Monitoring of atmospheric composition using the thermal infrared IASI/MetOp sounder, *Atmospheric Chemistry and Physics*, 9, 6041–6054, <https://doi.org/10.5194/acp-9-6041-2009>, 2009.

de Laat, A. T. J. and van Weele, M.: The 2010 Antarctic ozone hole: Observed reduction in ozone destruction by minor sudden stratospheric warmings, *Scientific Reports*, 1, 38, <https://doi.org/10.1038/srep00038>, 2011.

de Zafra, R. and Smyshlyaev, S. P.: On the formation of HNO_3 in the Antarctic mid to upper stratosphere in winter, *Journal of Geophysical Research*, 106, 23 115, <https://doi.org/10.1029/2000JD000314>, 2001.

Groß, J. U., Engel, I., Borrman, S., Frey, W., Günther, G., Hoyle, C. R., Kivi, R., Luo, B. P., Molleker, S., Peter, T., Pitts, M. C., Schlager, H., Stiller, G., Vömel, H., Walker, K. a., and Müller, R.: Nitric acid trihydrate nucleation and denitrification in the Arctic stratosphere, *Atmospheric Chemistry and Physics*, 14, 1055–1073, <https://doi.org/10.5194/acp-14-1055-2014>, 2014.

Hanson, D. and Mauersberger, K.: Laboratory studies of the nitric acid trihydrate: Implications for the south polar stratosphere, *Geophysical Research Letters*, 15, 855–858, <https://doi.org/10.1029/GL015i008p00855>, 1988.

Harris, N. R. P., Lehmann, R., Rex, M., and von der Gathen, P.: A closer look at Arctic ozone loss and polar stratospheric clouds, *Atmospheric Chemistry and Physics*, 10, 8499–8510, <https://doi.org/10.5194/acp-10-8499-2010>, 2010.

Hilton, F., Armante, R., August, T., Barnet, C., Bouchard, A., Camy-Peyret, C., Capelle, V., Clarisse, L., Clerbaux, C., Coheur, P.-F., Collard, A., Crevoisier, C., Dufour, G., Edwards, D., Fajian, F., Fourrié, N., Gambacorta, A., Goldberg, M., Guidard, V., Hurtmans, D., Illingworth, S., Jacquinot-Husson, N., Kerzenmacher, T., Klaes, D., Lavanant, L., Masiello, G., Matricardi, M., McNally, A., Newman, S., Pavelin, E., Payan, S., Péquignot, E., Peyridieu, S., Phulpin, T., Remedios, J., Schlüssel, P., Serio, C., Strow, L., Stubenrauch, C., Taylor, J., Tobin, D., Wolf, W., and Zhou, D.: Hyperspectral Earth Observation from IASI: Five Years of Accomplishments, *Bulletin of the American Meteorological Society*, 93, 347–370, <https://doi.org/10.1175/BAMS-D-11-00027.1>, 2012.

Hoffmann, L., Spang, R., Orr, A., Alexander, M. J., Holt, L. A., and Stein, O.: A decadal satellite record of gravity wave activity in the lower stratosphere to study polar stratospheric cloud formation, *Atmospheric Chemistry and Physics*, 17, 2901–2920, <https://doi.org/10.5194/acp-17-2901-2017>, 2017.

Höpfner, M., Luo, B. P., Massoli, P., Cairo, F., Spang, R., Snels, M., Di Donfrancesco, G., Stiller, G., von Clarmann, T., Fischer, H., and Biermann, U.: Spectroscopic evidence for NAT, STS, and ice in MIPAS infrared limb emission measurements of polar stratospheric clouds, *Atmospheric Chemistry and Physics*, 6, 1201–1219, <https://doi.org/10.5194/acp-6-1201-2006>, 2006.

Höpfner, M., Pitts, M. C., and Poole, L. R.: Comparison between CALIPSO and MIPAS observations of polar stratospheric clouds, *Journal of Geophysical Research Atmospheres*, 114, 1–15, <https://doi.org/10.1029/2009JDO12114>, 2009.

Hoyle, C. R., Engel, I., Luo, B. P., Pitts, M. C., Poole, L. R., Groß, J. U., and Peter, T.: Heterogeneous formation of polar stratospheric clouds- Part 1: Nucleation of nitric acid trihydrate (NAT), *Atmospheric Chemistry and Physics*, 13, 9577–9595, <https://doi.org/10.5194/acp-13-9577-2013>, 2013.

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703

Hurtmans, D., Coheur, P.-F., Wesp, C., Clarisse, L., Scharf, O., Clerbaux, C., Hadji-Lazaro, J., George, M., and Turquety, S.: FORLI radiative transfer and retrieval code for IASI, *Journal of Quantitative Spectroscopy and Radiative Transfer*, 113, 1391–1408, <https://doi.org/10.1016/j.jqsrt.2012.02.036>, 2012.

James, A. D., Brooke, J. S. A., Mangan, T. P., Whale, T. F., Plane, J. M. C., and Murray, B. J.: Nucleation of nitric acid hydrates in polar stratospheric clouds by meteoric material, *Atmospheric Chemistry and Physics*, 18, 4519–4531, <https://doi.org/10.5194/acp-18-4519-2018>, 2018.

Keys, J. G., Johnston, P. V., Blatherwick, R. D., and Murcay, F. J.: Evidence for heterogeneous reactions in the Antarctic autumn stratosphere, *Nature*, 361, 49–51, <https://doi.org/10.1038/361049a0>, 1993.

Klekociuk, A., Tully, M., Alexander, S., Dargaville, R., Deschamps, L., Fraser, P., Gies, H., Henderson, S., Javorniczky, J., Krummel, P., Petelina, S., Shanklin, J., Siddaway, J., and Stone, K.: The Antarctic ozone hole during 2010, *Australian Meteorological and Oceanographic Journal*, 61, 253–267, <https://doi.org/10.22499/2.6104.006>, 2011.

Koop, T., Luo, B., Tsias, A., and Peter, T.: Water activity as the determinant for homogeneous ice nucleation in aqueous solutions, *Nature*, 406, 611–614, <https://doi.org/10.1038/35020537>, 2000.

Lambert, A., Santee, M. L., Wu, D. L., and Chae, J. H.: A-train CALIOP and MLS observations of early winter Antarctic polar stratospheric clouds and nitric acid in 2008, *Atmospheric Chemistry and Physics*, 12, 2899–2931, <https://doi.org/10.5194/acp-12-2899-2012>, 2012.

Lambert, A., Santee, M. L., and Livesey, N. J.: Interannual variations of early winter Antarctic polar stratospheric cloud formation and nitric acid observed by CALIOP and MLS, *Atmospheric Chemistry and Physics*, 16, 15 219–15 246, <https://doi.org/10.5194/acp-16-15219-2016>, 2016.

Lambert, A. and Santee, M. L.: Accuracy and precision of polar lower stratospheric temperatures from reanalyses evaluated from A-Train CALIOP and MLS, COSMIC GPS RO, and the equilibrium thermodynamics of supercooled ternary solutions and ice clouds, *Atmospheric Chemistry and Physics*, 18, 1945–1975, <https://doi.org/10.5194/acp-18-1945-2018>, 2018.

Lowe, D. and MacKenzie, A. R.: Polar stratospheric cloud microphysics and chemistry, *Journal of Atmospheric and Solar-Terrestrial Physics*, 70, 13–40, <https://doi.org/10.1016/j.jastp.2007.09.011>, 2008.

Molleker, S., Borrman, S., Schlager, H., Luo, B., Frey, W., Klingebiel, M., Weigel, R., Ebert, M., Mitev, V., Matthey, R., Woiwode, W., Oelhaf, H., Dörnbrack, A., Stratmann, G., Grooß, J.-U., Günther, G., Vogel, B., Müller, R., Krämer, M., Meyer, J., and Cairo, F.: Microphysical properties of synoptic-scale polar stratospheric clouds: in situ measurements of unexpectedly large HNO₃-containing particles in the Arctic vortex, *Atmospheric Chemistry and Physics*, 14, 10 785–10 801, <https://doi.org/10.5194/acp-14-10785-2014>, 2014.

Murphy, D. M. and Koop, T.: Review of the vapour pressures of ice and supercooled water for atmospheric applications, *Quarterly Journal of the Royal Meteorological Society*, 131, 1539–1565, <https://doi.org/10.1256/qj.04.94>, 2005.

Peter, T.: Microphysics and heterogeneous chemistry of polar stratospheric clouds, *Annual Review of Physical Chemistry*, 48, 785–822, <https://doi.org/10.1146/annurev.physchem.48.1.785>, 1997.

Peter, T. and Grooß, J.-U.: Chapter 4. Polar Stratospheric Clouds and Sulfate Aerosol Particles: Microphysics, Denitrification and Heterogeneous Chemistry, in: *Stratospheric Ozone Depletion and Climate Change*, pp. 108–144, Royal Society of Chemistry, <https://doi.org/10.1039/9781849733182-00108>, 2012.

Piccolo, C. and Dudhia, A.: Precision validation of MIPAS-Envisat products, *Atmospheric Chemistry and Physics*, 7, 1915–1923, <https://doi.org/10.5194/acp-7-1915-2007>, 2007.

Pitts, M. C., Poole, L. R., Dörnbrack, A., and Thomason, L. W.: The 2009–2010 Arctic polar stratospheric cloud season: A CALIPSO perspective, *Atmospheric Chemistry and Physics*, 11, 2161–2177, <https://doi.org/10.5194/acp-11-2161-2011>, 2011.

704 Pitts, M. C., Poole, L. R., Lambert, A., and Thomason, L.W.: An assessment of CALIOP polar stratospheric cloud
705 composition classification, *Atmospheric Chemistry and Physics*, 13, 2975–2988, <https://doi.org/10.5194/acp-13-2975-2013>,
706 2013.

707

708 Pitts, M. C., Poole, L. R., and Gonzalez, R.: Polar stratospheric cloud climatology based on CALIPSO spaceborne lidar
709 measurements from 2006 to 2017, *Atmospheric Chemistry and Physics*, 18, 10 881–10 913, <https://doi.org/10.5194/acp-18-10881-2018>, 2018.

710

711 Rodgers, C. D.: *Inverse Methods for Atmospheric Sounding - Theory and Practice*, vol. 2 of Series on Atmospheric Oceanic
712 and Planetary Physics, World Scientific Publishing Co. Pte. Ltd., <https://doi.org/10.1142/9789812813718>, 2000.

713

714 Roscoe, H. K., Feng, W., Chipperfield, M. P., Trainic, M., and Shuckburgh, E. F.: The existence of the edge region of the
715 Antarctic stratospheric vortex, *J. Geophys. Res.*, 117, D04301, doi:10.1029/2011JD015940, 2012.

716

717 Ronsmans, G., Langerock, B., Wespes, C., Hannigan, J. W., Hase, F., Kerzenmacher, T., Mahieu, E., Schneider, M., Smale,
718 D., Hurtmans, D., De Mazière, M., Clerbaux, C., and Coheur, P.-F.: First characterization and validation of FORLI-HNO₃
719 vertical profiles retrieved from IASI/Metop, *Atmospheric Measurement Techniques*, 9, 4783–4801,
720 <https://doi.org/10.5194/amt-9-4783-2016>, 2016.

721

722

723 Ronsmans, G., Wespes, C., Hurtmans, D., Clerbaux, C., and Coheur, P.-F.: Spatio-temporal variations of nitric acid total
724 columns from 9 years of IASI measurements – a driver study, *Atmospheric Chemistry and Physics*, 18, 4403–4423,
725 <https://doi.org/10.5194/acp-18-4403-2018>, 2018.

726

727 Santee, M. L., Manney, G. L., Froidevaux, L., Read, W. G., and Waters, J. W.: Six years of UARS Microwave Limb Sounder
728 HNO₃ observations : Seasonal, interhemispheric, and interannual variations in the lower stratosphere, *Journal of Geophysical
729 Research*, 104, 8225–8246, <https://doi.org/10.1029/1998JD100089>, 1999.

730

731 Santee, M. L., Lambert, A., Read, W. G., Livesey, N. J., Cofield, R. E., Cuddy, D. T., Daffer, W. H., Drouin, B. J., Froidevaux,
732 L., Fuller, R. A., Jarnot, R. F., Knosp, B. W., Manney, G. L., Perun, V. S., Snyder, W. V., Stek, P. C., Thurstans, R. P.,
733 Wagner, P. A., Waters, J. W., Muscari, G., de Zafra, R. L., Dibb, J. E., Fahey, D. W., Popp, P. J., Marcy, T. P., Jucks, K. W.,
734 Toon, G. C., Stachnik, R. A., Bernath, P. F., Boone, C. D., Walker, K. A., Urban, J., and Murtagh, D.: Validation of the Aura
735 Microwave Limb Sounder HNO₃ measurements, *Journal of Geophysical Research*, 112, 1–22,
736 <https://doi.org/10.1029/2007JD008721>, 2007.

737

738 Schreiner, J., Voigt, C., Weisser, C., Kohlmann, A., Mauersberger, K., Deshler, T., Kröger, C., Rosen, J., Kjome, N., Larsen,
739 N., Adriani, A., Cairo, F., Donfrancesco, G. D., Ovarlez, J., Ovarlez, H., and Dörnbrack, A.: Chemical, microphysical, and
740 optical properties of polar stratospheric clouds, *Journal of Geophysical Research*, 108, 1–10,
741 <https://doi.org/10.1029/2001JD000825>, 2003.

742

743 Sheese, P. E., Walker, K. A., Boone, C. D., Bernath, P. F., Froidevaux, L., Funke, B., Raspollini, P., and von Clarmann, T.:
744 ACE-FTS ozone, water vapour, nitrous oxide, nitric acid, and carbon monoxide profile comparisons with MIPAS and MLS,
745 *Journal of Quantitative Spectroscopy and Radiative Transfer*, 186, 63–80, <https://doi.org/10.1016/j.jqsrt.2016.06.026>, 2017.

746

747 Snels, M., Scoccione, A., Liberto, L. D., Colao, F., Pitts, M., Poole, L., Deshler, T., Cairo, F., Cagnazzo, C., and Fierli, F.:
748 Comparison of Antarctic polar stratospheric cloud observations by ground-based and space-borne lidar and relevance for
749 chemistry–climate models, *Atmospheric Chemistry and Physics*, 19, 955–972, <https://doi.org/10.5194/acp-19-955-2019>,
750 2019.

751

752 Solomon, S.: Stratospheric ozone depletion: A review of concepts and history, *Reviews of Geophysics*, 37, 275–316,
753 <https://doi.org/10.1029/1999RG900008>, 1999.

754

755 Spang, R., Hoffmann, L., Höpfner, M., Giessbach, S., Müller, R., Pitts, M. C., Orr, A. M. W., and Riese, M.: A multi-
756 wavelength classification method for polar stratospheric cloud types using infrared limb spectra, *Atmospheric Measurement
757 Techniques*, 9, 3619–3639, <https://doi.org/10.5194/amt-9-3619-2016>, 2016.

758

759 Spang, R., Hoffmann, L., Müller, R., Groß, J.-U., Tritscher, I., Höpfner, M., Pitts, M., Orr, A., and Riese, M.: A climatology
760 of polar stratospheric cloud composition between 2002 and 2012 based on MIPAS/Envisat observations, *Atmospheric
761 Chemistry and Physics*, 18, 5089–5113, <https://doi.org/10.5194/acp-18-5089-2018>, 2018.

762
763 Toon, O. B., Hamill, P., Turco, R. P., and Pinto, J.: Condensation of HNO₃ and HCl in the winter polar stratospheres,
764 Geophysical Research Letters, 13, 1284–1287, <https://doi.org/10.1029/GL013i012p01284>, 1986.
765
766 Tritscher, I., Pitts, M. C., Poole, L. R., Alexander, S. P., Cairo, F., Chipperfield, M. P., et al.: Polar stratospheric clouds:
767 Satellite observations, processes, and role in ozone depletion, Reviews of Geophysics, 59, e2020RG000702,
768 <https://doi.org/10.1029/2020RG000702>.
769
770 Urban, J., Pommier, M., Murtagh, D. P., Santee, M. L., and Orsolini, Y. J.: Nitric acid in the stratosphere based on Odin
771 observations from 2001 to 2009 – Part 1: A global climatology, Atmospheric Chemistry and Physics, 9, 7031–7044,
772 <https://doi.org/10.5194/acp-9-7031-2009>, 2009.
773
774 Voigt, C., Schreiner, J., Kohlmann, A., Zink, P., Mauersberger, K., Larsen, N., Deshler, T., Kro, C., Rosen, J., Adriani, A.,
775 Cairo, F., Donfrancesco, G. D., Viterbini, M., Ovarlez, J., Ovarlez, H., and David, C.: Nitric Acid Trihydrate (NAT) in Polar
776 Stratospheric Clouds, Science, 290, 1756–1758, <https://doi.org/10.1126/science.290.5497.1756>, 2000.
777
778 Voigt, C., Larsen, N., Deshler, T., et al.: In situ mountainwave polar stratospheric cloud measurements: Implications for nitric
779 acid trihydrate formation, J. Geophys. Res., 108(D5), doi:10.1029/2001JD001185, 2003.
780
781 Voigt, C., Schlager, H., Luo, B. P., Dörnbrack, A., Roiger, A., Stock, P., Curtius, J., Vössing, H., Borrmann, S., Davies, S.,
782 Konopka, P., Schiller, C., Shur, G., and Peter, T.: Nitric Acid Trihydrate (NAT) formation at low NAT supersaturation in
783 Polar Stratospheric Clouds (PSCs), Atmospheric Chemistry and Physics, 5, 1371–1380, <https://doi.org/10.5194/acp-5-1371-2005>, 2005.
784
785 von König, M.: Using gas-phase nitric acid as an indicator of PSC composition, Journal of Geophysical Research, 107,
786 <https://doi.org/10.1029/2001jd001041>, 2002.
787
788 Wang, X. and Michelangeli, D. V.: A review of polar stratospheric cloud formation, China Particuology, 4, 261–271,
789 [https://doi.org/10.1016/S1672-2515\(07\)60275-9](https://doi.org/10.1016/S1672-2515(07)60275-9), 2006.
790
791 Wegner, T., Groß, J.-U., von Hobe, M., Stroh, F., Sumin'ska-Ebersoldt, O., Volk, C. M., Hösen, E., Mitev, V., Shur, G.,
792 and Müller, R.: Heterogeneous chlorine activation on stratospheric aerosols and clouds in the Arctic polar vortex,
793 Atmospheric Chemistry and Physics, 12, 11 095–11 106, <https://doi.org/10.5194/acp-12-11095-2012>, 2012.
794
795 Wespes, C., Hurtmans, D., Clerbaux, C., and Coheur, P.-F.: O₃ variability in the troposphere as observed by IASI over 2008–
796 2016: Contribution of atmospheric chemistry and dynamics, Journal of Geophysical Research: Atmospheres, 122, 2429–
797 2451, <https://doi.org/10.1002/2016JD025875>, <http://doi.wiley.com/10.1002/2016JD025875>, 2017.
798
799 800 WMO: Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project – Report No. 55,
801 World Meteorological Organization, Geneva, Switzerland, 2014.
802
803 Zhu, Y., Toon, O. B., Lambert, A., Kinnison, D. E., Brakebusch, M., Bardeen, C. G., Mills, M. J., and English, J. M.:
804 Development of a Polar Stratospheric Cloud Model within the Community Earth System Model using constraints on Type I
805 PSCs from the 2010–2011 Arctic winter, Journal of Advances in Modeling Earth Systems, 7, 551–585,
806 <https://doi.org/10.1002/2015ms000427>, 2015.
807
808 Zondlo, M. A., P. K. Hudson, A. J. Prenni, and M. A. Tolbert: Chemistry and microphysics of polar stratospheric clouds and
809 cirrus clouds, Annu. Rev. Phys. Chem., 51, 473–499, 2000.