Supporting Information

Probing key organic substances driving new particle growth initiated by iodine nucleation in coastal atmosphere

Yibei Wan,¹ Xiangpeng Huang,² Bin Jiang,³ Binyu Kuang,⁴ Manfei Lin,⁴ Deming Xia⁵, Yuhong Liao,³ Jingwen Chen,⁵ Jianzhen Yu,⁴ and Huan Yu¹

¹ Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China

² School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China

³ Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China

⁴ Department of Chemistry, Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China

⁵ School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China

Corresponding author: H. Yu (yuhuan@cug.edu.cn)

Text:

ESI-FT-ICR MS operation conditions

Figures:

Figure S1: Particle number size distribution spectra monitored by a SMPS and a NAIS at Xiangshan gulf of China during the 3 nano-MOUDI sampling periods. (a) Iodine initiated NPF days from 9 to 11 May, (b) continental regional NPF days from 11 to 13 February, (c) the non-NPF days from 16 to 18 April.

Figure S2. Reconstructed mass spectra of the 7 elemental groups in ESI-and ESI+ modes for the four size bins.

Figure S3: DBE vs. C atom number diagrams of all the CHON and CHO formulas detected in 10–18 nm particles in ESI+ mode. (a) (b) +H adducts, (c) (d) +Na adducts. The color bar denotes the O number in the formulas. The size of the circles reflects the relative intensities of molecular formulas on a logarithmic scale.

Figure S4: Relative intensities of subgroups according to O atom number in CHON, CHO, CHONI and CHOI formulas in the four size bins in ESI+ (in red) and ESI- (in blue). The intensity of the most abundant subgroup is defined as 1 and those of other subgroups are normalized by it. The relative intensities of non-iodinated OC formulas (iodinated OC formulas) are plotted in the region above (below) zero line.

Figure S5: O atom number of *vs*. N atom number of $C_{10}H_xO_yN_z$ compounds detected in 180–560 nm particles (a) and $C_{18}H_xO_yN_z$ compounds detected in 10–18 nm particles in ESI- mode (b).

Figure S6: Simplified reaction scheme showing the formation of oxygenated and nitrated CHO and CHON compounds from α -linolenic acid oxidation in the atmosphere. Figure S7: Simplified reaction scheme showing the formation of oxygenated CHO compounds from unsaturated C₂₈ FA (C₂₈H₅₂O₂) oxidation in the atmosphere.

Figure S8: Simplified reaction scheme showing the formation of oxygenated CHON compounds containing a $-NH_2$ group from unsaturated C₁₈ amino alcohol (C₁₈H₃₇NO₄) oxidation in the atmosphere.

Tables:

Table S1. Predicted saturation concentration (C*) range of most abundant CHON and CHO formulas, as well as their possible precursors.

ESI-FT-ICR MS operation conditions

A syringe pump infused the sample extract continuously into the ESI unit with a flow rate of 180 μ L h-1. The ESI source conditions were as follows: the nebulizer gas pressure was 1 bar; the dry gas (N₂) pressure was 4 bar and its temperature was 200 °C; the capillary voltage was 4.5 kV. The ion accumulation time in the argon-filled hexapole collision pool with 1.5 V of direct current voltage and 1400 Vp-p of radio frequency (RF) amplitude was 0.05 s, followed by transport ions through a hexapole ion guide to the ICR cell for 0.7 ms. 4 M words of data were recorded over the mass range of 150-1000 Da for each run. A total of 128 scans were collected to enhance the signal/noise (S/N) ratio and dynamic range.

Figure S1. Particle number size distribution spectra monitored by a SMPS and a NAIS during the 3 nano-MOUDI sampling periods. (a) Iodine-initiated NPF (I-NPF) days from May 9 to 11, (b) continental regional NPF (C-NPF) days from February 11 to 13, (c) non-NPF days from April 16 to 18.

Figure S2. Reconstructed mass spectra of the 7 elemental groups in ESI- (left panels) and ESI+ (right panels) modes for the four size bins. The signals are normalized against the intensity of the most abundant molecular ions in a size bin.

Figure S3. DBE vs. C atom number diagrams of all CHON and CHO formulas detected in 10–18 nm particles in ESI+ mode. (a) (b) [M+H]⁺ adducts, (c) (d) [M+Na]⁺ adducts. The color bar denotes O number in the formulas. The size of the circles reflects the relative intensities of molecular formulas on a logarithmic scale.

Figure S4. Relative intensities of subgroups according to O atom number in CHON, CHO, CHONI and CHOI formulas in the four size bins in ESI+ (in red) and ESI- (in blue). The intensity of the most abundant subgroup in a size bin is defined as 1 and those of other subgroups are normalized by it. The relative intensities of non-iodinated OC formulas (iodinated OC formulas) are plotted in the region above (below) zero line.

Figure S5. O atom number of *vs*. N atom number of $C_{10}H_hO_oN_n^-$ compounds detected in 180–560 nm particles (a) and $C_{18}H_hO_oN_n^-$ compounds detected in 10–18 nm particles in ESI- mode (b).

Figure S6. Simplified reaction scheme of the formation of oxygenated and nitrated CHO and CHON compounds from α -linolenic acid (C₁₈H₃₀O₂) oxidation in the atmosphere. One representative structure is shown for each chemical formula. Chemical formulas in the boxes are found in the formula list detected in 10–18 nm particles. Pathway 1: OH and O₂ addition followed by reaction with NO to form a – ONO₂ group; pathway 2: OH and O₂ addition followed by reaction with NO to form an alkoxy radical that further reacts with O₂ to form a –C=O group.

Figure S7. Simplified reaction scheme of the formation of oxygenated CHO compounds from unsaturated C_{28} FA ($C_{28}H_{52}O_2$) oxidation in the atmosphere. One representative structure is shown for each chemical formula. Chemical formulas in the boxes are found in the formula list detected in 10–18 nm particles. Pathway 3: OH and O₂ addition followed by reaction with RO₂ to form a –OH or a –C=O group; Pathway 4: successive intermolecular H-shift/O₂ addition (autoxidation) to form RO₂ radicals with –OOH group. –OOH group is not stable and decomposed to -OH.

Figure S8. Simplified reaction scheme of the formation of oxygenated CHON compounds containing a $-NH_2$ group from unsaturated C₁₈ amino alcohol (C₁₈H₃₇NO₄) oxidation in the atmosphere. One representative structure is shown for each chemical formula. Chemical formulas in the boxes are found in the formula list detected in 10–18 nm particles. Pathway 3: OH and O₂ addition followed by reaction with RO₂ to form a -OHor a -C=O group; Pathway 4: successive intermolecular H-shift/O₂ addition autoxidation to form RO₂ radicals with -OOH group.

mode 3.40×10^{-1} 8.01
3 40 ~ 10-1 8 01
$3.40 \times 10 = 0.91$
$3.40 imes 10^{-1} - 88.7$
3.40×10^{-2} -8.91
3.40×10^{-2} -8.91
3.40×10^{-2} -8.91
3.40×10^{-2} -88.7
3.40×10^{-2} -88.7
3.40×10^{-2} -88.7
$1.34 \times 10-01-35.1$
$4.29 \times 10^{\text{-6}}1.16 \times 10^{\text{-3}}$
$4.29 \times 10^{\text{-6}}1.14 \times 10^{\text{-4}}$
$4.29 \times 10^{\text{-6}}1.16 \times 10^{\text{-3}}$
$4.29 \times 10^{\text{-6}}1.16 \times 10^{\text{-3}}$
4.29×10^{-6} - 1.16×10^{-3}
$4.36 \times 10^{\text{-5}}1.16 \times 10^{\text{-3}}$
$5.28 \times 10-01-13.9$
$2.07 \times 10-01-5.46$
8.15×10^{-2} -2.15
1.25×10^{-2} -0.330
$1.90 imes 10^{-3} - 5.05 imes 10^{-2}$
$7.42 \times 10^{\text{-4}}1.97 \times 10^{\text{-2}}$
$2.89 \times 10^{\text{-}4}7.67 \times 10^{\text{-}3}$
$2.89 \times 10^{\text{-4}}7.67 \times 10^{\text{-3}}$
$1.12 imes 10^{-4} - 2.98 imes 10^{-3}$
$2.54 \times 10^{\text{-6}}6.77 \times 10^{\text{-5}}$
$2.18 imes 10^{-8} - 5.85 imes 10^{-7}$
mode
$2.21 - 5.61 \times 10^{+2}$
$0.885 – 2.26 \times 10^{+2}$
$1.34 imes 10^{-01} - 0.223$
$1.34 \times 10^{-01} - 3.52$

Table S1. Predicted saturation concentration (C*) range of most abundant CHON and

$C_{19}H_{38}N_2O_3$	2.71×10^{-3} - 5.04×10^{-3}	1.34×10^{-2} -3.52
$C_{24}H_{46}N_2O_4$	$5.73 imes 10^{-9} - 4.39 imes 10^{-3}$	$1.24 \times 10^{-4} - 3.28 \times 10^{-2}$
C25H43NO4	$3.07 \times 10^{-7} - 1.72 \times 10^{-5}$	$4.83 \times 10^{4}1.28 \times 10^{2}$
C ₂₆ H ₅₁ NO ₅	$1.73 imes 10^{-9}$	$1.88 imes 10^{-4} extrm{}3.13 imes 10^{-4}$
$C_{27}H_{50}N_2O_4$	$6.42 \times 10^{10}3.29 \times 10^{7}$	$7.23 imes 10^{-6} - 1.95 imes 10^{-3}$
$C_{27}H_{50}N_2O_5$	$3.11\times 10^{11}1.05\times 10^{6}$	$7.23 \times 10^{\text{-6}}1.95 \times 10^{\text{-3}}$
C27H52N2O3	$4.94 imes 10^{-8} - 2.76 imes 10^{-6}$	$7.23 \times 10^{\text{-6}}1.95 \times 10^{\text{-3}}$
$C_{28}H_{52}N_2O_6$	$1.14 \times 10^{14}8.03 \times 10^{8}$	$2.81 \times 10^{\text{-6}}7.57 \times 10^{\text{-4}}$
$C_{28}H_{54}N_2O_6$	$5.95 \times 10^{15}1.03 \times 10^{7}$	$2.81 \times 10^{\text{-6}}7.57 \times 10^{\text{-4}}$
$C_{28}H_{56}N_2O_3$	$6.09\times 10^{\text{-8}}1.38\times 10^{\text{-6}}$	$2.81 \times 10^{\text{-6}}7.57 \times 10^{\text{-4}}$
$C_{28}H_{56}N_2O_6$	$1.89\times10^{14}5.88\times10^{\text{-}9}$	$2.81 \times 10^{\text{-6}}7.57 \times 10^{\text{-4}}$
$C_{28}H_{58}N_2O_3$	3.18×10^{-8}	$2.81 \times 10^{\text{-6}}4.66 \times 10^{\text{-6}}$
$C_{29}H_{56}N_2O_6$	$2.30\times10^{15}3.99\times10^{8}$	$1.09 \times 10^{\text{-6}}2.94 \times 10^{\text{-4}}$
C29H59NO7	$2.85\times 10^{\text{-}17}6.47\times 10^{\text{-}16}$	$1.11 imes 10^{-5} - 2.94 imes 10^{-4}$
C33H59NO5	$1.05\times10^{\text{-12}}3.02\times10^{\text{-8}}$	$2.49 \times 10^{76.65} \times 10^{6}$
C34H59NO6	$2.13\times10^{15}1.38\times10^{9}$	$9.64 \times 10^{\text{-8}}2.57 \times 10^{\text{-6}}$
C34H66N2O3	$1.15\times10^{11}3.58\times10^{9}$	$9.45 \times 10^{\text{-9}}2.57 \times 10^{\text{-6}}$
$C_{34}H_{68}N_2O_3$	$2.03 \times 10^{\text{-}10}4.61 \times 10^{\text{-}9}$	$9.45 \times 10^{\text{-9}}2.57 \times 10^{\text{-6}}$
C34H68N2O5	$3.75\times10^{15}2.88\times10^{9}$	$9.45 \times 10^{\text{-9}}2.57 \times 10^{\text{-6}}$