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Reply by the authors to Referee #1’s comments on 
“Quantifying methane emissions from Queensland’s coal seam gas producing Surat Basin using 
inventory data and an efficient regional Bayesian inversion” (#acp-2020-337) 
 
 
Anonymous Referee #1 (RC1) 
 
We are grateful to the Referee for taking the time to read our manuscript and making a number of 
valuable comments. In the following, we provide our responses to these comments (the Referee’s 
comments are shown in blue). The locations of the changes made refer to those in the non-tracked 
version of the revised manuscript. 
 
This paper employs a dataset of quasi-continuous measurements over an 18-month period from two 
monitoring stations in the middle of a region characterized by a mix of largely anthropogenic 
methane sources to optimize gridded methane emission inventory estimates. It aims to scale 
inventory emission estimates for individual grid boxes with a focus on the coal seam gas (CSG) 
industry. Given the current lack of atmospheric data to inform CSG methane emissions in Australia 
and elsewhere, this paper is a useful addition to the literature to help researchers improve their 
methods to quantify emissions from this source. The analysis is very detailed, the paper is well 
written, and the tables and figures are well presented.  
Response: Thank you for your comments. 
 
However, I have two major comments/questions that may be important for the bottom-line 
implications of the study:  
1. The background methane mole fraction estimation (Supplementary S3) requires some more 
discussion. As Figure 3 shows, both monitoring stations are surrounded by known methane sources 
that are being quantified here. The monitoring stations do not measure the background air entering 
the spatial domain for which the emissions are being quantified here (hence background 
estimation). Filtering peaks during the early afternoon may exclude the largest point sources, but 
not necessarily the area sources that are clearly shown to exist in Figure 3. Does this estimation 
method create a high bias for the background levels, and in extension a low bias for the posterior 
emissions (especially from distributed sources like CSG wells)? Could this explain why all inverse 
setups produce smaller posterior total emissions than the prior despite the acknowledgment in the 
paper that the inventory may miss some sources (so the inventory itself may be underestimated)? 
Note that the opposite is true when looking only at the CSG sub-domain, which is situated largely 
between both monitoring stations (thus the sources in the CSG sub-domain affect estimated 
background values to a lesser extent), which appears to underscore this conundrum. It is also 
noteworthy that such underestimation may be masked also in the q-q plots comparing observed and 
modeled concentrations because a potentially underestimated prior and overestimated background 
would compensate each other.  
Response: The reviewer has a valid point. Specification of background in a regional model is 
tricky. Ideally, this requires methane measurements at many locations around the perimeter of the 
study domain or modelling methane at much larger scale (preferably global), with all sources, sinks 
and chemical processes accounted for, which could then provide concentration boundary conditions 
needed for the regional modelling. Notwithstanding the difficulty in carrying out such a major 
computational task, there are modelling difficulties and uncertainties associated with emissions, 
representation of processes, model resolution issues etc. There could be other ways to calculate 
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background too, such as satellite data and model-data assimilation. Nevertheless, we believe that 
for the hourly-averaged, ground-level background concentrations needed in regional modelling 
study like ours, in-situ observations near the ground are still a better means to derive the 
background provided there are sufficient number of monitors sited at favourable locations than 
using a larger scale model. 
In our case, we are limited by only two monitors (i.e. Ironbark and Burncluith) within a relatively 
large study domain. This reflects the operational and budget constraints of this project and is likely 
typical of many others. We calculated the hourly background using a methodology described in the 
Supplement S3 that utilised methane concentration measurements from the two monitors. It 
assumes that under vigorous atmospheric mixing conditions in the daytime, the measured 
concentrations within study domain represent methane levels both within and outside the domain 
boundaries, so that the measured concentrations can be taken to represent the background under 
such conditions. Figure 4 in the paper shows how the derived background defines the baseline for 
the methane measurements, which we have treated as the real background. 
Because the background concentration is calculated from the measurements within the source 
region under study, there is a possibility that it represents an upper limit on the magnitude of the 
background, meaning that the real background is potentially lower than what we have used (as 
alluded to by the referee). 
To examine the sensitivity of the emission inference to the background methane, we have done an 
additional inversion using an alternate background time series and this is described in detail in the 
new Supplement S5. The alternate background was constructed using our original background 
methane and marine baseline methane measurements from the Cape Grim Baseline Air Pollution 
Station (https://capegrim.csiro.au), located on the north-west tip of Tasmania (40.7ºS, 144.7ºE) (see 
the Supplement S5). The measurements from the Station were filtered for the marine baseline air 
(in southern mid latitudes), and the baseline methane thus represents concentration levels without 
the direct influence of the continental sources. As shown in Figure 1 below, the alternate 
background falls between the Surat Basin background as used in our study and the Cape Grim 
baseline (i.e. between the two bounds), and is, on average, lower than the previously used Surat 
background by 2.8 ppb. (On average, the Cape Grim marine baseline was 8.4 ppb lower than the 
original Surat background used). 
 

 
 

Figure 1. The average hourly background CH4 concentration (ppbv) time series (green line) as used in the present paper. 
The hourly-averaged Cape Grim baseline methane is shown as a red line. Blue line is the alternate background. 
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The inversion results in Table 1 below show that compared to the inferred emissions obtained using 
the original background methane the alternate background gives total emissions that are 6.8% 
higher, while the increase is smaller at 3.9% in the CSG subdomain and larger at 8.5% in the non-
CSG region. The overall increase is expected because the increase in the measured concentrations 
by 2.8 ppb as a result of the use of the alternate background needs to be accounted for by the 
inversion by enhancing the amount of inferred emissions. 
We also find that the amount of increase in the inferred emissions with the alternate background is 
almost uniformly spread through the study domain relative to the total emission, and that there are 
no significant spatial distributional shifts in the inferred emissions with the two background 
choices. This means that if these enhanced emissions are used in a forward model simulation, they 
would lift the modelled concentrations throughout the region by a very similar amount (likely by 
2.8 ppb). 
 
Table 1: Inferred emissions (×106 kg yr-1) obtained using the original methane background variation used in the paper (Case 

3c in the paper, with the bottom-up inventory as a Gaussian prior with 3% uncertainty relative to the mean) and those 
obtained using the alternate methane background variation. The values in the parentheses are % change over the original 

inferred emissions. 

Methane background Total 
 

CSG subdomain
 

Non-CSG 
subdomain  

Original background 
(as used in the paper)

165.8 63.6 102.2 

Alternate 
background 

177.0 
(+6.8%)

66.1 
(+3.9%) 

110.9 
(+8.5%) 

 
The above analysis demonstrates that there is an increase in the amount of inferred emissions with 
the alternate background and that this increase is smaller in the CSG subdomain relative to the 
original inferred emission. 
 
Changes in manuscript: The new Supplement S5 given with full details of the above calculation, 
and the results are also summarised in Section 7.5 of the revised paper. 
 
2. How are the higher-end modelled methane concentrations (but low occurrence, potentially not 
due to the infrequent emission, but rather due to their being point sources with fewer opportunities 
to be sampled) weighted against the overall average methane (but high occurrence) in the inversion 
model framework? Is this objectively weighted in the model (and if so, how), or is it a model 
design choice?  
Response: In our inversions, the hourly-averaged methane measurements obtained during July 
2015–December 2016 are combined in one Bayesian calculation to derive time invariant top-down 
emissions on an 11 × 11 source grid within the domain. Our inverse model framework is, in 
principle, able to discriminate between a source with a high emission rate but with infrequent 
impact at a sampling point and a source with a low emission rate but with frequent impact at the 
sampling point. This is because the concentration observations at the sampling point would reflect 
representative signals from these two types of sources, and this information when used in the 
source-receptor relationship would optimise the source emission rates accordingly such that they 
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best describe the concentration observations. In practice, however, the success in discriminating 
sources depends on the quality and quantity of available concentration observations, their spatial 
coverage, and on the number of source parameters that need to be quantified. This is where the 
specification of the prior plays a very important role because the information available (through 
concentration observations) may not be adequate to estimate the source parameters properly. This is 
demonstrated in our study. 
Therefore, essentially, the only source weighting in our inverse framework is through the 
specification of the prior, and there is no other source weighting included/needed in the model apart 
from what is implicit through the Bayesian approach. 
Changes in manuscript: We do not think that there is any change needed in the paper and hope 
that the above clarification is satisfactory. 
 
Below is a list of detailed comments that may help clarify arguments and language, and correct 
potential errors.  
Main article:  
1. Ln 39: For balance, there’s an ongoing discussion about the contrasting evidence (contemporary 
local measurements vs. ice-core 14C data) regarding the magnitude of the fraction of natural 
geologic seepage: https://www.elementascience.org/articles/10.1525/elementa.383/  
Response: We have included two references to the bottom-up global estimates of natural geologic 
seepage. 
Changes in manuscript:  
We have modified the original wording to: 
“However, a study using measurements of carbon-14 in methane recently showed that nearly all 
methane from fossil sources is anthropogenic, contrasting with the bottom-up estimates of 
significant natural geologic seepage (Etiope et al., 2019; Etiope and Schwietze, 2019), and that 
fossil fuel methane emissions may be underestimated by up to 40% (Hmiel et al., 2020).” 
References: 
Etiope, G, Ciotoli, G, Schwietzke, S and Schoell, M. 2019. Gridded maps of geological methane 
emissions and their isotopic signature. Earth Syst Sci Data 11: 1–22. DOI: 10.5194/essd-11-1-2019 
Etiope, G. and Schwietzke, S., 2019. Global geological methane emissions: an update of top-down 
and bottom-up estimates. Elem Sci Anth, 7(1), p.47. DOI: http://doi.org/10.1525/elementa.383 
 
2. Ln 58: “independent”: I suggest “atmospherically based” instead since inverse estimates are by 
definition not completely independent of the prior/inventory.  
Response: Point taken. 
Changes in manuscript: Modification made. 
 
3. Ln 71: Through this or any top-down approach? Would be valuable to mention if other top-down 
approaches have been used in Australia in the past.  
Response: Point taken. 
Changes in manuscript: We have added the following text: 
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“To our knowledge, this study is the first in Australia to quantify regional scale CH4 emissions 
through a top-down approach employing transport modelling and concentration measurements, 
although studies at other spatial scales with broadly similar approaches have been reported, e.g. by 
Luhar et al. (2014) and Feitz et al. (2018) for single point sources at local scale and by Wang and 
Bentley (2002) at continental scale with Australian methane emissions divided into eight source 
regions.” 
References: 
Luhar et al. (2014) and Feitz et al. (2018) already cited in the paper. 
Wang, Y. P., and S. T. Bentley, S. T.: Development of a spatially explicit inventory of methane 
emissions from Australia and its verification using atmospheric concentration data, Atmospheric 
Environment, 36, 4965–4975, https://doi.org/10.1016/S1352-2310(02)00589-7, 2002. 
 
4. Ln 158: Would re-phrase that the two operators account for 1.5% of CSG production activity in 
the region, not emissions (which would be difficult to establish with any accuracy).  
Response: Point taken. 
Changes in manuscript: The sentence is changed to “…but it was established that these two 
operators, with a total of 256 wells, only accounted for about 1.5% of the CSG activities that may 
be related to emissions.” 
 
5. Ln 189ff: Spatial resolution of 2.5º × 2.5º means (roughly) 250 x 250 km2. How, then, is it 
possible to apply it at 5 x 5 km2? Regarding the meaning of the 6 hour availability of met re-
analyses, does it means that the temporal resolution is 6 hours?  
Response: There is some misunderstanding here. The spatial resolution of 2.5º × 2.5º corresponds 
to the synoptic-scale fields of the horizontal wind components, temperature and moisture that are 
required as input boundary conditions for the outermost domain of TAPM. These fields given at 6-
hourly intervals were sourced from the U.S. NCEP (National Centers for Environmental Prediction) 
reanalysis database. The TAPM model outputs hourly-averaged fields of meteorology and 
concentration at a specified horizontal resolution, which in the present application was 5 km × 5km.   
Changes in manuscript: The above has been made clearer in the 2nd last paragraph of Section 4.1 
of the revised paper (lines 212-220). Some more details of the model are given in the 2nd paragraph 
of this Section (lines 193-204). 
 
6. Ln 291: I assume you’re referring to the bottom-up emission inventory?  
Response: Yes. Thanks for pointing that out. Correction made. 
Changes in manuscript: As above. 
 
7. Ln 666: Arguably Figure 14b cannot be used to support the trend in the CSG activity data. 
According to Ln 609, only 4% of the sub-domain emissions are due to CSG wells (and unclear 
whether the same processing facilities would emit more given more throughput), so any increase in 
well count may hardly be detectable by the monitoring stations. Thus, the insight here seems to be 
not that measurements aren’t supporting the CSG increase, but that the existing monitoring setup is 
likely unable to detect.  
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Response: We have modified the text to improve clarity. A curve for the number of wells is also 
included in Figure 16 (Figure 19 in the revised paper).   
Changes in manuscript: The paragraph revised as follows (lines 810-818): 
“However, Figure 19 (which is old Figure 16) also shows that there is a downward trend in the 
amount of flared/vented gas. Considering, based on the bottom-up inventory in Section 3, that 
venting (from processing) is the biggest contributor (88%) followed by flaring (8%) (from both 
processing and production) to the total CSG methane emissions, it is plausible that despite the 
increase in the CSG development in the area the CSG-related methane emissions have not 
increased, and that they may have even gone down. The temporal variation of the inferred 
emissions in Figure 17b (which is old Figure 14b) for the CSG dominated area also does not 
indicate any consistent increase in emissions from 2015 to 2016. Thus, the 33% higher top-down 
emission estimate from the CSG area compared to the inventory estimate cannot be explained in 
terms of the growth in the CSG production from 2015 to 2016 and is possibly related to 
underestimated or missing emissions in the inventory. This also implies that the emissions from 
CSG may be more closely related to practices in the industry than to the amount of CSG produced.” 
 
Supplementary:  
1. Ln 99: Emissions of methane due to incomplete combustion of CSG  
Response: Change made. 
Changes in manuscript: As above. 
 
2. Ln 100ff: Why are methane GWPs used for methane emissions from incomplete combustion, 
fugitives, and coal extraction? It sounds like the underlying EFs are given in CO2e, which seems 
illogical. 
Response: The calculation methods used to estimate methane emissions from CSG activities are 
consistent with the Australian National Greenhouse and Energy Reporting (NGER) program. We 
now attach the Katestone report “Surat Basin Methane Inventory 2015 – Summary Report” in the 
Supplement S6 of the paper, which explains in full detail how these emissions were calculated. 
Changes in manuscript: As above. 
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Reply by the authors to Referee #2’s comments on 
“Quantifying methane emissions from Queensland’s coal seam gas producing Surat Basin using 
inventory data and an efficient regional Bayesian inversion” (#acp-2020-337) 
 
 
Anonymous Referee #2 (RC2) 
 
We are grateful to the Referee for taking the time to read our manuscript and making a number of 
valuable comments. In the following, we provide a response to these comments (the Referee’s 
comments are shown in blue). The locations of the changes made refer to those in the non-tracked 
version of the revised manuscript. 
 
The manuscript presented by Luhar and co-workers presents an analysis of methane emissions from 
a region in Queensland, Australia, that contains a mix of different source processes of which coal 
seam gas production is the one mostly targeted and discussed in the study. Overall the study used 
valid and up to date methods. The manuscript is well structured and easy to follow. Quantifying 
uncertain methane emissions on the regional scale by in-situ observations and atmospheric 
inversion techniques is an important task supporting emission reductions and as such the study 
deserves publication. However, the authors should include some additional discussion of how their 
results may be used in the future by gas companies and/or authorities. I recommend the manuscript 
for publication after a number of minor issues (as listed below) are addressed/clarified by the 
authors.  
Response: Thank you for your comments.  
Changes in manuscript: Regarding some additional discussion of how the results may be used in 
the future by gas companies and/or authorities, we have included the following text at the end in 
Conclusions (lines 904-913): 
“The methods developed in this study could be used to improve the monitoring and management of 
greenhouse gas and other air emissions from the onshore gas industry, including that in the Surat 
Basin. They provide independent information to industry and communities living in gas 
development regions on one of the main environmental impacts potentially arising from onshore 
gas developments. Improved quantification of methane emissions on the regional scale is an 
important step in emissions reductions from the onshore gas sector and possibly other industries. 
The present top-down method is particularly suited to distributed emissions with potentially 
unknown locations across a large geological gas reservoir and gas production infrastructure. If 
monitoring is deployed before gas exploration and production begins then a baseline would be 
established from which emissions from the industry might be detected. Ongoing top-down 
quantification, with monitoring stations located close to where emissions appear and with source-
specific information from tracers could provide the information necessary to validate emissions 
from the gas industry to support greenhouse gas inventories.”   
 
Minor comments  
Page 1, Line 2: Why is the term ’efficient’ used in the title? What is efficient about this inversion 
approach? Further explain or omit from title. 
Response: We have decided to omit the term ‘efficient’ from the title. The reason for its use was 
the application of the MCMC sampling method and the backward plume approach which make 
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computations very efficient. However, we admit that this is not the first time these approaches have 
been used in inverse modelling in general. 
Changes in manuscript: ‘efficient’ omitted in the title. 
 
P2, L58: Given the involved uncertainties in transport and inverse modeling, ’verification’ may be 
a too strong term. Validation is often the preferred terminology.  
Response: Point taken. ‘Verification’ replaced by ‘validation’. 
Changes in manuscript: As above. 
 
Figure 1: A zoom into the study region including the location of the observational sites would be 
useful. This would also help to understand any orographic features of the domain.  
Response: Point taken. We include an orographic map (Figure 1b) and also a Google Earth map 
showing the surface characteristics (Figure 1c) of the study domain. The Ironbark and Burncluith 
monitoring sites and the three biggest towns in the area are also shown.  
Changes in manuscript: As above. 
 
P4, L90: Were the inlets mounted on small towers or on rooftops? Please briefly mention even if 
described elsewhere. 
Response: Inlets were mounted on masts. 
Changes in manuscript: At line 103, we say ‘…with inlets placed on masts at a height of 10 m’. 
 
Bottom-up inventory: Which emission processes were separated for the agricultural sources? 
Enteric fermentation, manure handling, etc.? The information in the supplement is very brief and I 
was not able to obtain the cited report by Katestone. Since this is the dominating emission source in 
the area, it would be good to give a few more details and also to briefly discuss the uncertainties in 
these estimates. 
Response: We have now included the full Katestone report “Surat Basin Methane Inventory 2015 – 
Summary Report” in the Supplement S6 (it was prepared for us, i.e. CSIRO, by Katestone). It 
provides a comprehensive detail as to how the bottom-up inventory was constructed (largely by 
Lisa Smith of Katestone, who is a co-author on the present paper), including agricultural sources 
and uncertainties. 
Changes in manuscript: As above. 
 
P6, L145: What was the number of cattle in the feedlots? How do the emission factors per livestock 
unit compare between feedlots and free range? How were emissions from animal waste treated in 
the two cases? 
Response: We now give the Katestone report in the Supplement S6 which provides this 
information.  
Changes in manuscript: As above. 
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P7, L164f: What is this rough estimate based on? It seems to be rather large considering that the 
main source is cattle and per livestock emission factors are more certain than 50 %. Is the livestock 
number that uncertain?  
Response: Yes, this was a very rough estimate, and we do not have any solid justification for it. 
Therefore, we have decided to delete it and modify the paragraph. The Katestone report that we 
now provide in the Supplement S6 provides more information about the bottom-up emissions. 
Changes in manuscript: We have deleted this sentence. 
 
Figure 3: What is the reasoning about showing these specific towns? Is there any larger population 
in the area? 
Response: These are only given as reference points. We think that not all town locations are 
necessary. We now only present the locations of the three biggest towns, i.e. Dalby, Roma and 
Chinchilla (population 12700, 6850 and 6600, respectively), in the region. 
Changes in manuscript: The above is stated in the Figure 1 and Figure 3 captions. 
  
Section 4.3: The analysis in the supplement is quite useful. How does the wind rose comparison 
look for the filtered observation data. Does it improve? What is the mean bias for the filtered data? 
Next to wind speeds, mixing layer heights are critical when doing regional scale transport modeling 
and emission inversions. How is the mixing layer height treated in TAPM? Is there any way of 
comparing mixing layer heights for the target area and period or are their previous evaluations 
available for the model? 
Response: In the Supplement S4, we now present a wind rose comparison for the filtered data 
(Figure S4) and provide the corresponding model performance statistics for meteorology (Table 
S1). With the filtering, the mean wind speed is predicted slightly worse, but the wind components 
are predicted better, which implies that there is an improvement in the estimation of wind direction 
with filtering. 
The mean bias for the unfiltered and filtered data is now reported in Table S1.  
Regarding mixing height, because TAPM is a fully prognostic, coupled meteorological and 
dispersion model, the predicted three-dimensional meteorological and turbulence fields are used 
directly by the dispersion component to predict concentrations. Therefore, there is no explicit use of 
mixing height as a parameter and the atmospheric mixing is taken care of by the predicted 
turbulence fields. Some of the model parameters that represent turbulence (and hence mixing) 
include friction velocity (mechanical turbulence) and surface heat flux (buoyancy-generated 
turbulence) have previously been evaluated in some of the studies cited (e.g. Luhar and Hurley, 
2003; Hurley and Luhar, 2009; Luhar and Hurley, 2012; and Luhar et al., 2014) 
In the Supplement S4, the link 
https://scholar.google.com.au/scholar?oi=bibs&hl=en&cites=13876071272134760358 to TAPM 
citation database provides additional references for TAPM application and evaluation. 
 
Changes in manuscript: The Supplement S4 is modified with new Figure S4 and Table S1 
included. 
We provide some additional information about the meteorological component of the model in 
Section 4.1, which also details how turbulence is calculated (lines 193-204). 
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Modified paragraph: 
“The model has previously been applied to a variety of flow, turbulence and dispersion problems at 
various scales, such as those reported by Luhar and Hurley (2003), Luhar et al. (2008), Hurley and 
Luhar (2009), Luhar and Hurley (2012), Luhar et al. (2014), Matthaios et al. (2017), and Luhar et 
al. (2020), which include model evaluation studies.” 
 
P12, L249f: Another important source of uncertainty is that of representativeness of the point 
measurement for the model grid cell (5x5 km). What are the observations compared to? Simulated 
values interpolated to the location of observation or grid cell containing the observation site? Are 
there any important sources in the closer vicinity of the sites (<10 km)? 
Response: The hourly-averaged model predictions on the innermost grid domain were extracted at 
the lowest model level (10 m) at the grid point nearest to each of the monitoring sites for 
comparison with the observations. This is now stated in the text. 
We agree that the model’s representation of point measurements by grid-cell averaged values is 
another source of uncertainty, and it is now stated in the text. 
The location of the two measurement stations was based on criteria given in Section 2, first 
paragraph, to “optimise the size and frequency of detection of methane emissions from the broader 
CSG source region without being unduly impacted by individual sources in the proximity of the 
measurement sites”. (Other practical considerations are noted in the reference (Day et al., 2015), 
namely access, power, security, landowner assistance and possible future developments that would 
impact the site.) The sites were selected to avoid potential large, sustained methane sources within 
10-20 km or even small sources within about a kilometre of the measurement inlet. Surveys of 
maps and by vehicle involving mobile methane monitoring of the area around the site identified 
few such sources. Small sources that were closer to the inlets (mainly Burncluith) were identified 
and their signals filtered from the data as described in Section 2. As a result, we expect that the 
hourly-averaged filtered data (Section 2) are as representative as possible of the atmospheric 
methane concentration across the 5 × 5 km grid cell containing the observation site, and can be 
directly compared to the model simulations. 
Changes in manuscript: As above is summarise in the first para of Section 4.4, and it is 
mentioned that this is another possible source of differences between the observations and model 
predictions. 
 
P13, L282: Not immediately clear what top 5 % refers to. How do these top 5 % simulated events 
compare to the observations? Are these also the highest observed concentrations?  
Response: These are the highest 5% of the modelled concentrations, i.e. all the values above the 
95th percentile. The idea here was to determine the dominant source types that contribute to highest 
modelled concentrations. A comparison of the modelled and observed concentrations has already 
been made in Figures 5 and 6, and it is clear that the highest concentrations are generally 
underestimated by the model at both sites (more so at Ironbark). 
Changes in manuscript: The sentence is modified to ‘… the highest 5% of the modelled hourly-
averaged methane concentrations (i.e. all the concentrations above the 95th percentile)’. 
 
P19, L405ff: So if I understand this correctly, the source receptor relationship for a time t is 
constructed from output of c* at different times according to the value of tr at individual grid 
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points. First, I am wondering if this could be illustrated for an example case where one would show 
the field c* for a given time and then the reconstructed source receptor relationship for the same 
time. Second, it seems that there will remain some form of smearing out of the transport history in 
time. How much does this conflict with filtering data by time of day instead of using the complete 
data set. Also what was the rational of using hourly data in this case instead of working with longer 
aggregation times for which the effect should be smaller?  
Response: The Referee is correct. We now explain it a bit better in the text and also present an 
illustrative example case in new Figure 7 that shows the field c* for a given time and the 
reconstructed source receptor relationship for the same time (lines 440-461). 
Occasionally, there may be some remains of smeared out transport history in time, but generally the 
intensity and the frequency of this is very small.  
We do not think our method of reconstructing the hourly source-receptor relationship would 
conflict with the filtering of the data. This relationship is continuous with time, and its value at a 
particular hour would match the data points at that hour. 
The rationale of using the hourly-averaged data rather (for which the effect of transport history 
would be smaller) was to maximise on the available information to constrain the inversions better. 
We could use longer averages, but that would have reduced the number of concentration data. Also, 
the wind direction variation inherent in the hourly data aids in better ‘triangulation’ of sources; the 
degree of this variation is progressively reduced as the averaging times are made longer. However, 
one could use longer aggregation times to see what difference that makes, but we have not 
attempted that. (Lines 493-497). 
Changes in manuscript: As above, and new Figure 7 (a, b, c). 
 
P20, L436: What about the sub-grid variability of these sources? Is it kept for the transport 
simulation and a factor for the larger grid boxes optimised or is the emission flux constant within 
the large grid boxes. What about the different source categories? Are they treated separately as was 
done for the forward simulation? Not clear from this description, later on it becomes clear that only 
total emissions are optimised. 
Response: For the purposes of inferring emission rates using the inverse modelling, 11 × 11 source 
grid points are considered within the study domain. No sub-grid variability of these emission rates 
is considered. Given the limitation as to the type and amount of concentration observations we have 
for inversion, the inverse methodology used does not distinguish between different source 
categories. This is mainly because the concentration of methane alone was monitored and not 
tracers specific to methane source types. Therefore, there are no separate sources categories in the 
inferred emissions, unlike what was done for the forward simulation - only total emissions are 
optimised. 
Changes in manuscript: This is clarified in the text (lines 500-507). 
 
P21, L460: Does high probability mean small uncertainty of the posterior? That would be 
surprising when starting from larger prior uncertainties.  
Response: The sentence is not correct and has been deleted. 
Changes in manuscript: As above. 
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P21, L461: Above, it was speculated that the uncertainty of the bottom-up approach was 50 %. 
Here it is suggested that 0.5 % should be used in an inversion. That seems to be a contradiction. 
Please elaborate on the small sigma_p. Also, is sigma_p the uncertainty of the total emissions in the 
inversion grid or that of individual grid cells?  
Response: We are not confident about the previously speculated uncertainty of 50% in the bottom-
up approach, and have, therefore, deleted the sentence. 
Following this comment and another comment below by the Referee, we revised Section 6 on 
inversion using the ‘synthetic’ concentration data considerably, with new model runs using an 
increased prior uncertainty (5% and 10%) and only considering times when the valid (or filtered) 
observations were actually available. This is more realistic, and the results now provide a better 
guidance to inversion using the real data. 
sigma_p is the uncertainty (standard deviation) in the prior of the individual source and is specified 
as % relative to the prior mean value (there are 11 × 11 sources considered for the emission 
inference). 
Changes in manuscript: Section 6 revised, with clarification in the text. 
 
Section 6.1: Usually, one would add random or auto-correlated noise to the synthetic observations 
as a test up to which degree of uncertainty the inversion can obtain useful information. Was this not 
done here at all?  
Response: We did not add any random or auto-correlated noise to the synthetic observations. But 
we performed new synthetic runs with the same 3.5 ppb uncertainty in the synthetic concentrations 
as that in the concentration observations for real inversions. 
Changes in manuscript: The synthetic inversion Section 6 modified (lines 514-586) with modified 
and new plots (Figures 9–11). 
 
Page 21, L464: How would the results change if only the synthetic observations were used at times 
when valid (filtered) observations were actually available? The latter was a considerably larger 
number of observations, so it is not clear how the results presented in this section can be propagated 
to the inversion with the more limited data set. 
 
Response: This is a valid point. Following the Referee comment, we have revised the section on 
“Inversion using the ‘synthetic’ concentration data” considerably. We now present inversion results 
by using the synthetic observations only for times when the valid (or filtered) observations were 
actually available. The uncertainty in the synthetic concentrations is now taken to be the same (i.e. 
3.5 ppb) as that in the concentration observations for real inversions. This now provides a better 
propagation of the results presented in this section to the next section on inversion using the real 
observations. 
Changes in manuscript: The synthetic inversion Section 6 modified (lines 514-586) with modified 
and new plots (Figures 9–11). 
 
Section 6.2: Next to the posterior emissions it would be good to show simulated time series 
(synthetic obs, prior, posterior) and some performance stats in order to get a feeling for the 
inversion performance. This is done later on with additional forward simulations, but it should also 
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be done with the concentrations directly obtained from the source receptor relationships and the 
coarse resolution emission setup as used in the inversion. Something to add to the supplement.  
Response: Good point, but because this is a case of synthetic time series, we thought that rather 
than presenting the simulated time series it would be better to actually compare the inferred 
emissions with the bottom-up inventory emissions that were used to simulate the ‘synthetic’ 
concentrations (which in turn were used in the inversion). We have done this exercise and 
presented the results in Section 6.2 along with some performance statistics (i.e. linear least-squares 
fits and correlation coefficient). These new results also lead to a better linkage of this section on 
synthetic inversion to the next section on real inversion. 
Changes in manuscript: As above (lines 535–586). New figures 10 and 11. Modified Figure 9. 
 
P22, L491: I don’t like the terminology "no prior". There is a prior! Why not call the case 
"uniform" prior, which would describe the used PDF.  
Response: We now call it non-informative uniform prior in the text. 
Changes in manuscript: As above. 
 
Section 7.1.3: Again it would be useful to see simulation performance for the three uncertainty 
levels. 
Response: Simulation performance for the three uncertainty levels is now given in new Table 1. 
We thought it was more appropriate to give it in Section 7.2 on validation than in Section 7.1.3. 
Changes in manuscript: As above. 
 
P23, L535: So if the best estimate results from using a Gaussian prior distribution, I wonder why an 
MCMC approach was used at all. Wouldn’t it be much more efficient to use the analytical solution 
of the Bayesian theorem for Gaussian PDFs in this case? 
Response: The Referee is correct with the Gaussian prior distribution. However, our idea was to 
formulate our inverse modelling tool with MCMC so that it is more generally applicable than just 
for the Gaussian PDFs—something that could be useful for future applications that we may 
consider. 
Changes in manuscript: None. 
  
Figure 11b: Why not show the relative posterior uncertainty? Couldn’t this be more directly 
compared to sigma_p? 
Response: Point taken. The plot has been replaced by the relative (%) posterior uncertainty and the 
corresponding text modified accordingly.  
Changes in manuscript: As above. 
 
P25, L551: Not clear which grid point this is referring to. Why is it relevant?  
Response: This is grid point (11, 4), which corresponds to a relatively strong coal mine source in 
the bottom-up inventory (Figure 3d). 
Changes in manuscript: Change made in the text. 
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P26, L577: Give information on which case 3 inversion is used here (sigma_p=?).  
Response: This is Case 3 with 3% prior uncertainty relative to the mean. 
Changes in manuscript: Change made in the text. 
 
P28, L611ff: This argument could also be supported by comparing the emissions from the non-
CSG sub-domain. Do they differ significantly between bottom-up and posterior? If so, what are the 
possible reasons?  
Response: Emissions from the non-CSG subdomain are now compared (lines 739-742), new plot 
17c and Table 2 and the discussion. 
Changes in manuscript: As above. 
 
P29, L629: Which sigma_p level?  
Response: This is Case 3 with 3% prior uncertainty relative to the mean. 
Changes in manuscript: Change made in the text. 
 
Figure 14: Include uncertainties. That would allow judging of how well 3-monthly emissions are 
constraint and if there is a real difference with time. Other studies have shown seasonality in 
agricultural emissions. Could this be a possibility here as well? Or does it have to do with a 
seasonality in the source receptor relationships?  
Response: Uncertainties are now included. There is also an additional plot (Figure 17c) for the 3-
monthly variation of the inferred emissions for the non-CSG area (which is dominated by grazing 
cattle emissions as per the bottom-up inventory). In this plot, we also present a 3-monthly 
climatological average (1992 – current 2020) of rainfall at the Dalby airport, located next to the 
town of Dalby, within the study domain. There is a good correlation (r = 0.79) between the non-
CSG area methane emissions and the rainfall, suggesting that the 3-monthly emission variation 
could possibly be explained in terms of the seasonality in agricultural and wetland emissions 
influenced by rainfall. 
Another potential contributor to the temporal variability in the inferred emissions is the seasonality 
of the winds in the area which influence the source-receptor relationships. We have not explored 
this possibility here. 
Changes in manuscript: As above. Figure 17c included. Lines 772-783. 
 
Technical comments  
 
P1,L21: ’identical TO’ ...  
Response: Correction made. 
 
Figure 5: Add explanation of dashed line to figure caption. 
Response: Point taken. 
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Changes in manuscript: We say ‘…and the dashed line is the 1:1 line (i.e. perfect agreement)’. 
 
Figure 8: It seems to be more logical to start with the bottom-up emissions on the left (8a) and 
show the posterior on the right (8b). 
Response: Point taken.  
Changes in manuscript: The plots have been swapped and the figure caption and text modified 
accordingly. 
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Abstract. Methane (CH4) is a potent greenhouse gas and a key precursor of tropospheric ozone, itself a powerful greenhouse 10 

gas and air pollutant. Methane emissions across Queensland’s Surat Basin, Australia, result from a mix of activities, including 

the production and processing of coal seam gas (CSG). We measured methane concentrations over 1.5 years from two 

monitoring stations established 80 km apart on either side of the main CSG belt located within a study area of 350 × 350 km2. 

Coupling bottom-up inventory and inverse modelling approaches, we quantify methane emissions from this area. The 

inventory suggests that the total emission is 173.2 × 106 kg CH4 yr-1, with grazing cattle contributing about half of that, cattle 15 

feedlots ∼ 25%, and CSG Processing ∼ 8%. Using the inventory emissions in a forward regional transport model indicates that 

the above sources are significant contributors to methane at both monitors. However, the model underestimates approximately 

the highest 15% of the observed methane concentrations, suggesting underestimated or missing emissions. An efficient 

regional Bayesian inverse model is developed, incorporating an hourly source-receptor relationship based on a backward-in-

time configuration of the forward regional transport model, a posterior sampling scheme, and the hourly methane observations 20 

and a derived methane background. The inferred emissions obtained from one of the inverse model setups that uses a Gaussian 

prior whose averages are identical to the gridded bottom-up inventory emissions across the domain with an uncertainty of 3% 

of the averages best describes the observed methane. Having only two stations is not adequate at sampling distant source areas 

of the study domain, and this necessitates a small prior uncertainty. This inverse setup yields a total emission of 165.8 × 106 

kg CH4 yr-1, slightly smaller than that is very similar to the total inventory totalemission. However, in a subdomain covering 25 

the CSG development areas, the inferred emissions are 63.6 × 106 kg CH4 yr-1,  33% larger than those from the inventory. We 

also infer seasonal variation of methane emissions within the full study domain, and CSG and non-CSG subdomainsareas. 
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1 Introduction 

Methane (CH4) is a potent greenhouse gasIt is the second most important anthropogenic greenhouse gas after CO2 in terms of 30 

radiative forcing.  with a global warming potential 84 times greater than carbon dioxide (CO2) over a 20-year period and 28 

times greater over a 100-year period (IPCC, 2014). It is emitted by both anthropogenic activities (e.g. such as coal mining and 

the raising of cattle) and natural sources (e.g. wetlands). Methane (CH4) is a major greenhouse gas, with a global warming 

potential 28 times greater than carbon dioxide (CO2) (over a 100-year period; IPCC, 2013). In terms of anthropogenic radiative 

forcing, methane is the second most important greenhouse gas after CO2. Globally averaged surface CH4 concentrations have 35 

increased by almost 160% since pre-industrial times, from a level of 722 ppb to 1859 ppb in 2018 (WMO, 2018), and this 

increase has been largely due to changes in anthropogenic methane (e.g., IPCC, 20143). Compared to CO2, the atmospheric 

lifetime of methane is muchrelatively shorter (∼ 10 years), which means that the near-term warming of the climate climate 

impact of methane could diminish rapidly following mitigation actions that reduce methaneits emissions.  Being chemically 

reactive, methane also plays an important role as a precursor to tropospheric ozone, itself a greenhouse gas and an air pollutant 40 

affecting human health and plant productivity. Thus, understanding and quantifying methane emissions at various scales is 

crucial to studying changes in atmospheric radiative forcing and air quality. 

Globally, a top-down estimate over the period 2000-20172 suggests that agriculture and waste contribute to about 567% of the 

total anthropogenic methane emissions, followed by fossil fuel production and uses (gas, oil, coal mining and industry) at 

352% (Saunois et al., 202016). However, a study using measurements of carbon-14 in methane recently showed that nearly all 45 

methane from fossil sources is anthropogenic, contrasting with the bottom-up estimates of significant natural geologic seepage 

(Etiope et al., 2019; Etiope and Schwietze, 2019), and that fossil fuel methane emissions may be underestimated by up to 40% 

(Hmiel et al., 2020). However, a study using measurements of carbon-14 in methane recently showed that nearly all methane 

from fossil sources is anthropogenic, and that fossil fuel methane emissions may be underestimated by up to 40% (Hmiel et 

al., 2020). Significant CH4 emissions from conventional and unconventional gas fields have been reported in the scientific 50 

literature (e.g., Brandt et al., 2014; Schneising et al., 2014; Alvarez et al., 2018). 

In the Australian state of Queensland, since the mid-2000s there has been a rapid growth of the production of coal seam gas 

(CSG), which is virtually pure methane (Towler et al., 2016; DNRM, 2017). CSG, also known as coalbed methane, is classed 

as an unconventional natural gas, typically extracted from coal seams at depths of 200–1000 m. As of 2015-16, 96% of the gas 

production in Queensland was CSG, with most of it coming from the Surat Basin (78%, 21187 Mm3) and the rest (18%, 4958 55 

Mm3) from the Bowen Basin (DNRM, 2017). With the sharp rise of CSG production, methane emissions from the Surat Basin 

are a focus, for example, through of Australia’s CSIRO Gas Industry Social and Environmental Research Alliance (GISERA) 

(https://gisera.csiro.au) research in Air Quality and Greenhouse Gas. The Surat Basin is predominantly rural, and methane 

sources other than CSG include agriculture and coal mining. CSG activities that lead to potential methane emissions include 

CSG wells, pumps, pipelines, vents, pneumatic controls, and produced water bodies (see Day et al., 2013).  60 
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The objective of the present paper is to quantify methane emissions from a region of 350 × 350 km2 of Queensland’s side of 

the Surat Basin (Figure 1, covering the area 148° 17’ 43.4”–151° 49’ 30.5” E, 25° 3’ 48.8”–28° 5’ 3.7” S) that encompasses 

the main CSG production and processing areas using a both bottom-up and top-down techniques assisted by a bottom-up 

emission inventory. The latterformer involves deriving emissions through a compilation of sources and activity data and 

application of emission factors. We conducted concurrent in-situ atmospheric monitoring of methane during July 2015 – 65 

December 2016 at two locations, namely Ironbark and Burncluith, 80 km from each other. The two stations were setup such 

that they were on either side of the broad present and projected CSG work area in the Surat Basin. The measuredse 

concentrations data allow for an independent atmospherically based validationverification of the bottom-up inventory 

emissions by using itthe latter in a forward mesoscale meteorological and transport model and comparing the predicted methane 

concentrations with the measurements at the two sitesdata. 70 

TheA maingreater focus in the paper is on the formulation of an efficient top-down, or inverse, modelling methodology for 

regional scale (~ 100–1000 km), and its application to quantify CH4 emissions in the Surat Basin. It combines a Bayesian 

inference approach, an hourly-averaged high-resolution backward-in-time construction of the forward mesoscale 

meteorological and transport model, and a posterior probability density function (PDF) sampling scheme. A method to correct 

for time-lag effects in the backward plume methodology is presented. The 1.5 years long hourly methane measurements from 75 

the two stations are combined in a Bayesian calculation to derive a top-down emission distribution. Methane background 

calculation and filtering methodologies are devised. Various Bayesian priors and their uncertainties, including the use of the 

bottom-up emissions to act as a prior, are tested. The inferred top-down CH4 emissions are examined alongside the bottom-up 

inventory emissions for the whole study domain as well as a subdomains containing the CSG and non-CSG activities. We also 

compare the performance of the top-down emissions by comparing the modelled methane concentrations obtained using them 80 

in forward modelling with the observed concentrations. To our knowledgeAs far as we know, this studywork is the first in 

Australia to quantify regional scale CH4 emissions through a top-down approach employing transport modelling and 

concentration measurementsthis top-down approach., although studies at other spatial scales with broadly similar approaches 

have been reported, e.g. by Luhar et al. (2014) and Feitz et al. (2018) for single point sources at local scale and by Wang and 

Bentley (2002) at continental scale with Australian methane emissions divided into eight source regions. 85 
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Figure 1.  (a) Map of Australia, showing the 350 × 350 km2 study domain (red square) of Queensland’s part of the Surat Basin. The 
base relief map is from https://www.mapsland.com/oceania/australia/large-relief-map-of-australia (used under Creative Commons 
Attribution-ShareAlike 3.0 Licence); (b) orography of the study domain, with terrain elevation ranging approximately between 100 90 
m (green) and 1140 m (red) above sea level; (c) a Google Earth map of the study domain showing the surface characteristics. The 
Ironbark and Burncluith monitoring sites, and the three biggest towns of Dalby, Roma and Chinchilla (population ∼ 12700, 6850 
and 6600, respectively) in the area are also shown. 

2 Monitoring and data filtering 

We set up two monitoring stations, namely Ironbark (150° 14’ 37.6” E, 27° 8’ 6.6” S; 226.806 km east, 6995.596 km north 95 

MGA (Map Grid Australia), Zone 56) and Burncluith (150° 42’ 5.4” E, 26° 34’ 2.4” S; 271.051 km east, 7059.430 km north 

MGA, Zone 56), located about 80 km apart on two sides of the main coal seam gas belt of the Surat Basin (Figure 1b). The 

selection of the site locations was largelypartly based on a meteorological and dispersion modelling study (Day et al., 2015; 

Etheridge et al., 2016) that suggested that with the prevailing winds from the north-east and south-west quadrants, long-term 

continuous monitoring of greenhouse gas concentrations at these two locations would optimise the size and frequency of 100 

detection of methane emissions from the broader CSG source region without being unduly impacted by individual sources in 

the proximity of the measurement sites. There were other practical considerations, such as access, power, security, and land 

cover and topography.namely access, power, security, land owner assistance and possible future developments that would 

impact the site. 

Continuous high frequency (∼ 0.3 Hz) measurements of the concentrations of CH4, CO2 and water vapour (and also carbon 105 

monoxide (CO) at Burncluith) were made at the two sites for about three years with an overlapping period of 1.5 years (July 

2015 to December 2016) using Picarro cavity ring down spectrometers (model G2301 at Ironbark, and G2401 at Burncluith) 

with inlets placed on masts at a height of 10 m. The installations are described by Etheridge et al. (2016). Measured 

concentrations (strictly speaking, mole fractions in dry air, also volumetric mixing ratios) from each site can be exactly 

intercompared due to identical calibrations and measurement methodologies. The additional CO measurements at Burncluith 110 

are useful in detecting combustion sources of CO2 and CH4. Measurement accuracy was better than ± 0.1 ppm for CO2 and ± 

(a) (c) (b) 
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1 ppb for CH4 (Etheridge et al., 2014). Concurrent meteorological observations included winds measured at 5.8 m AGL (above 

ground level) at Ironbark and at 7.6 m AGL at Burncluith using sonic anemometers. 

The Burncluith station was located on a private farm and there were 30–40 cattle in the paddocks next to it. Occasionally, 

under suitable meteorological conditions with the cattle upwind of the inlet, the emissions from the local cattle caused one or 115 

many sharp peaks in the observed methane signal, typical of a nearby point source. We developed a method which removes 

these sharp, transient peaks but does not alter the underlying signals from the numerous, region-wide feedlots, grazing cattle 

or other sources. This filtering method is described in the Supplement S1.1 and, for consistency, was also applied to the data 

from Ironbark, although local cattle are less in number and further away at this site. 

Frequently, high methane concentrations at the two sites were observed at night under light wind stable conditions, particularly 120 

at Burncluith. In spite ofDespite being of much practical interest, however, light winds are difficult to represent in a mesoscale 

meteorological and transport model. The causes for that include inadequate physical understanding of light-wind processes, 

flow properties being very sensitive to local topography, and model resolution constraints (Luhar and Hurley, 2012). As a 

practical measure, we filtered out the nighttime sampling hours for light wind conditions, and this method is described in the 

Supplement S1.2. 125 

Methane emissions due to biomass burning are not part of the bottom-up inventory that we consider in the present modelling 

due to their being sporadic and highly unpredictable. Enhanced levels of CH4 and CO were detected at Burncluith in the course 

of forest fires in the northern sector of Burncluith and wood-heater operations from the property located in the proximity of 

the monitoring station. The observed CO was used to filter out these occasional biomass burning events from the measured 

concentration time series, which is an approach similar to that used by Jeong et al. (2012). Details of the CO filter are given in 130 

the Supplement S1.3. 

The number of data hours after the filtering was 6432 for Ironbark and 4149 for Burncluith (cf. the original, valid number of 

data points of 10938 and 12660, respectively).  Unless stated otherwise, the filtered CH4 data were used for our analysis and 

modelling. 

3 Bottom-up emission inventory 135 

Activity data for the year 2015 were used to develop a bottom-up emission inventory for methane for the Surat Basin. The 

emission inventory covered a domain of 345 × 345 km2 with a spatial resolution of 1 × 1 km2. Standard methodologies were 

generally adopted with data from various State and Federal Government Departments (e.g. (National Pollutant Inventory (NPI), 

National Greenhouse and Energy Reporting (NGER), and National Resource Management (NRM)). The bottom-up inventory 

included the following fourteen emission sectors: (1) feedlots, (2) grazing cattle, (3) piggeries, (4) poultry farms, (5) power 140 

stations, (6) coal mining, (7) CSG processing, (8) CSG production, (9) domestic woodheating, (10) vehicular traffic, (11) land-

fills, (12) sewage treatment plants, (13) river seepage, and (14) geological seepage. The first four can be grouped as agricultural 
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activities. The inventory excluded CH4 emissions from burning of biomass, land clearing, termites, ground-water wells (that 

were registered), wetlands, or fuel consumption and any material handling related to mining activities. Additional details 

pertaining to the bottom-up inventory compilation are briefly given in the Supplement S2, with a full report given in the 145 

Supplement S5. 

Figure 2 presents the bottom-up inventory emissions attributed to the various sectors in the Surat Basin, with the total emissions 

being 173.2 × 106 kg CH4 yr-1. Grazing cattle has the largest contribution, followed by cattle feedlots and CSG processing. We 

use this emission inventory for our study duration, July 2015–December 2016, with the assumption that any emission changes 

from the year 2015 to 2016 were insignificant. It is also assumed that all emissions are invariant with time. Although diurnal 150 

and seasonal variations for some emissions, viz. wood-heating, traffic, and power plant, are available in the raw data used in 

the inventory, contributions from these emissions are amongst the smallest and, therefore, we averaged these emissions over 

the full year for the purpose of computational efficiency in the modelling conducted here. 

 

 155 

Figure 2. Bottom-up methane inventory emissions from the Surat Basin by sector/source; % of the total also shown. The total 
emission is 173.2 × 106 kg CH4 yr-1. 

 

Figure 3a presents the distribution of inventory methane emissions (kg yr-1 gridcell-1) at a grid resolution of 5 × 5 km2 (69 × 

69 grid points). There are localised sources as well as extensive, uniformly distributed source areas. The latter are emissions 160 

due to grazing cattle. These emissions are plotted in Figure 3b in which four different coloured areas are the so-called National 
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Resource Management (NRM) regions. In each of these regions the available total number of grazing cattle was distributed 

uniformly, with the total number of grazing cattle in the study area being 1,086,059. There were 235 cattle feedlots and Figure 

3c shows the distribution of their emissions. These are localised, but distributed throughout the region, with some located 

between the two monitoring stations. Two mining source areas are also located between the two monitoring stations (Figure 165 

3d). 

The CSG emissions are shown in Figure 3e (processing) and Figure 3f (production). The CSG production emissions are from 

wellhead (separators, wellhead control equipment, maintenance and leaks), combustion (flaring, well head pumps, backup 

generators, and diesel used by vehicles) and pipeline emissions (high point vents on produced water pipelines and pipeline 

control equipment) (Day et al., 2013). The CSG processing sources consist of processing facility emissions (control equipment, 170 

compressor venting, and gas conditioning units), combustion emissions (flaring, plant compressors, backup generators, and 

diesel used by vehicles), and collection and storage of water produced. Emissions from some of the CSG sources are continuous 

while others are intermittent (however, the inventory assumes all CSG emissions are time invariant). There were 5 CSG 

operators with 13 processing facilities and 4628 wells within the study domain. The well numbers included CSG producing (∼ 

85%) as well as exploration/appraisal/capped wells. Because of insufficient information, methane emissions from two of the 175 

five operators are not part of the inventory, but it was established that these two operators, with a total of 256 wells, only 

accounted for about 1.5% of the CSG activities that may be related to emissions related to CSG activities (which include a 

total of 256 wells). The biggest contributor to the total CSG methane emissions was venting (88%) from processing, followed 

by flaring (8%) from both processing and production. Methane from pProduced -water is a component of both CSG production 

and processing is an important source (e.g. Iverach et al., 2015) and is calculated at These emissions are calculated at 1.63 × 180 

106 kg /yr-1 (∼ 10% of the total CSG emissions).., Contribution from flaring wasis about 8%. 

All major sources considered in the bottom-up emissions, namely from grazing cattle, feedlots, CSG processing and 

production, and coal mining, have potential considerable uncertainty, which arisinges from uncertainty in both the activity 

data and emission factors, for example their potential temporal variation and how up to date they are with respect to the study 

period considered. It is difficult to calculate the uncertainty accurately, but a rough estimate of the upper bound of uncertainty 185 

in each of these source emissions is ± 50%. 
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   190 

Figure 3. Bottom-up methane inventory emissions from the Surat Basin (kg CH4 yr-1 gridbox-1, the grid-box size is 5 × 5 km2). Also 
shown are the Ironbark and Burncluith monitoring sites, and the three biggest towns. (a) All emissions, and those due to (b) grazing 
cattle, (c) cattle feedlots, (d) coal mining, (e) CSG processing, and (f) CSG production. 
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4 Modelling regional methane using the bottom-up inventory 

We use the above inventory emissions in a (forward) regional meteorological and transport model and compare the modelled 195 

methane with the ambient measurements from the two sites. 

4.1 Model and configurationsetup 

The prognostic, nestable, mesoscale model used is The Air Pollution Model (TAPM vn4.0.54) developed by CSIRO, which 

has coupled meteorological and dispersion components and which is designed for applications ranging in scale from local to 

regional (~ < 1000 km) (Hurley et al., 2005; Hurley, 2008 Hurley and Luhar, 2009). The dispersion module makes use of the 200 

predicted finer-scale meteorology and turbulence fields and comprises an Eulerian grid-based conservation equation for species 

concentration (Hurley et al., 2005).  

The meteorological component of TAPM predicts the local-scale flow against a background of larger-scale meteorology 

provided by the input synoptic-scale analyses (or forecasts). It solves momentum equations for horizontal wind components; 

the incompressible continuity equation for the vertical velocity in a terrain-following coordinate system; and scalar equations 205 

for potential virtual temperature, specific humidity of water vapour, cloud water/ice, rainwater and snow. Explicit cloud 

microphysical processes are included. Pressure is determined from the sum of hydrostatic and optional non-hydrostatic 

components, and a Poisson equation is solved for the non-hydrostatic component (not used here). Turbulence closure in the 

mean prognostic equations uses a gradient diffusion approach with non-local or counter-gradient corrections, which depends 

on eddy diffusivity (K) and gradients of mean variables and a mass-flux approach. The eddy diffusivity K is determined using 210 

prognostic equations for the turbulent kinetic energy (E) and its dissipation rate (ε). A vegetative canopy, soil scheme, and 

urban scheme are used at the surface, while radiative fluxes, both at the surface and at upper levels, are also included. Surface 

boundary conditions for the turbulent fluxes are determined using the Monin-Obukhov similarity theory and parameterisations 

for stomatal resistance. 

The dispersion module makes use of the predicted finer-scale meteorology and turbulence fields from the meteorological 215 

component, and comprises a defaultn Eulerian grid-based conservation equation for species concentration (Hurley et al., 2005). 

TAPM uses the synoptic-scale meteorological reanalyses given for horizontal winds, moisture and temperature and available 

from the U.S. NCEP (National Centers for Environmental Prediction) every 6 hours at a spatial resolution of 2.5° × 2.5° on 

several levels.  

The model has previously been applied to a variety of flow, turbulence and dispersion problems at various scales, such as those 220 

reported by Luhar and Hurley (2003), Luhar et al. (2008), Hurley and Luhar (2009), Luhar and Hurley (2012),, and Luhar et 

al. (2014),. Matthaios et al. (2017), and Luhar et al. (2020), which include model evaluation studies..,  

TAPM can be used in a one-way nestable mode to improve efficiency and resolution. The global databases input to the model 

include land use, terrain height, leaf-area index, synoptic-scale meteorological reanalyses, and sea-surface temperature (SST). 
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We applied TAPM for the duration 1 July 2015 – 31 December 2016 by using two nested domains for both meteorology and 225 

dispersion: 370 × 370 km2 with grid resolution 5 × 5 km2 and 1110 × 1110 km2 with grid resolution 15 × 15 km2. Both domains 

had 75 × 75 grid points and were centred on (150°4.5’ E, 26°35’ S), which is equivalent to 208.657 km east and 7056.383 km 

north in MGA. There were 25 vertical levels, of which the lowest four were 10 m, 25 m, 50 m and 100 m AGL. The input 

synoptic-scale fields of the horizontal wind components, temperature and moisture required as boundary conditions for the 

outermost model domain were sourced from the U.S. NCEP (National Centers for Environmental Prediction) reanalysis 230 

database given at a resolution of 2.5° latitude × 2.5° longitude at 6-hourly intervals (Kalnay et al., 1996; 

https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html). The model outputs hourly-averaged fields of meteorology and 

concentration. 

The bottom-up inventory emissions lie within the inner model domain. In this model setup, each inventory emission grid cell 

(at 5 × 5 km2) was considered as an area source, apart from the emissions from the power stations which were taken as point 235 

sources together with specification of their stack heights and plume-rise parameters. For computational efficiency, rather than 

considering  all 14 emission categories plotted in Figure 2 as separate sources, we aggregated them into 9 sectors with each 

sector taken as a tracer source: Grazing cattle (Source 1); Feedlot, Piggeries and Poultry (Source 2); CSG Processing (Source 

3); CSG Production (Source 4); Mining (Source 5); River seeps (Source 6); Domestic wood heating, Wastewater treatment 

and Motor vehicles (Source 7); Ground seeps and Landfill (Source 8); and Power stations (Source 9). The relative emissions 240 

(%) of the above nine Sources are 53.8, 25.8, 8.4, 1.1, 8.3, 0.21, 0.82, 1.2 and 0.37%. 

4.2 Estimation ofed background methane concentration 

Since the simulated methane does not include the background levels that are representative of methane emissions located 

outside the bottom-up inventory, we devised a method for estimating hourly varying background CH4 for each site involving 

concentrations under high atmospheric mixing conditions and the hourly standard deviation of concentration (see details in the 245 

Supplement S3. The estimated background concentration can be either added to the simulated methane or subtracted from the 

observed methane. 

The estimated background methane concentration time series for Ironbark and Burncluith looks very similar (not shown), and 

in. Figure 4 we presents (green line) the average (green line) of theestimated time series of the two background time series. 

The plot CH4 concentration for Ironbark, showsing a marked seasonal variation in the background methane with a peak in 250 

September (early spring) and a minimum in February (late summer). To view the background variation with respect to the 

measured methane signal, we also present in Figure 4 as dot points the unfiltered hourly mean observations (clipped at 2100 

ppb) at Ironbark. The estimated background concentration time series for Burncluith looks very similar (not shown). The 

uncertainty in the background CH4 is 3.6 ppb and 3.3 ppb for Ironbark and Burncluith, respectively. The difference between 

the estimated background at Ironbark and that at Burncluith (purple line in Figure 4) is small and within ± 5 ppb. Any difference 255 

between the two backgrounds could be due to different sites in the study area getting impacted by different out-of-domain 
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emissions depending on the transport meteorology. On average, the background concentration at Ironbark is greater by 1 ppb, 

and the standard deviation of the difference is 1.4 ppb. We take tThe average of the two background time series is taken to 

represent the regional hourly background CH4 concentration, with an average uncertainty of 3.5 ppb. 

 260 
 

 
 

Figure 4. Estimated average hourly-averaged background CH4 concentration time series at Ironbark (green line), and the difference 
between the estimated backgrounds between Ironbark and Burncluith (purple line). The data points are the hourly mean 265 
measurements at Ironbark without any filtering (clipped at 2100 ppb to make the background concentration variation stand out 
better). 

 

4.3 Model performance for meteorology 

Accurate modelling of the flow field over our region of interest is important as it controls the atmospheric plume transport and 270 

dispersion which in turn influences the accuracy of prediction of CH4, and conversely the accuracy of inferred emissions. The 

hourly-averaged predicted winds extracted from the model output for the inner nest at the lowest model vertical levela height 

(of 10 m) at the grid point nearest to each of the two monitoring stations were compared with the observations from the two 
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monitoring stations for the duration of the simulation, with the missing data hours not considered. The details of the model 

performance for meteorology is given in the Supplement S4. At both sites, the measured winds were most frequent from the 275 

north-east sector, with those at Burncluith being generally weaker in strength than those at Ironbark. As judged from the 

correlation coefficient (r) and index of agreement (IOA) values, the performance of TAPM for wind speed and wind direction 

was comparable to that obtained in other TAPM modelling studies. 

4.4 Modelled methane compared to observations 

The monitoring sites were selected to avoid potential large, sustained methane sources within 10-20 km or even small sources 280 

within about a kilometre of the measurement inlet. Small sources that were closer to the inlets (mainly Burncluith) were 

identified and their signals filtered from the data as described in Section 2. As a result, we expect that the hourly-averaged 

filtered data are as representative as possible of the atmospheric methane concentration across the 5 × 5 km model grid cell 

containing the observation site, and can be directly compared to the model simulations. 

The hourly-averaged modelled methane concentrations on the innermost grid domain were extracted at the lowest model level 285 

at the grid point nearest to each of the monitoring sites for comparison with the observations. The hourly-averaged methane 

concentrations simulated for individual 9 source categories were aggregated and added to the estimated background 

concentration to compare with the observed, filtered CH4 concentrations. 

The scatter plots in Figure 5 comparing the modelled and observed CH4 at the two sites display a substantial  degree of scatter, 

which is not unusual for atmospheric transport and diffusion models driven by predicted meteorology and using hourly-290 

averaged concentrations paired in both time and space (e.g. Luhar et al., 2008). While the correlation coefficient values of 0.57 

and 0.74 for Ironbark and Burncluith, respectively, imply a reasonable model prediction (see Table 1 for additional model 

performance statistics for the inventory emissions), it is clear that the modelled levels are generally lower than the observations, 

particularly the higher-end concentrations at Ironbark. 

There could be various reasons for the differences between the modelled and observed methane, including uncertainty 295 

associated with the bottom-up emission inventory, its potential temporal variation, sources missing from the emission 

inventory, potential changes to the 2015 bottom-up inventory used here in the year 2016 (see Section 7.4), and the general 

modelling uncertainty, including that related to in the model’s ability representing point measurements by grid-cell averaged 

model valuesto fully represent the atmospheric processes within the study domain. 

 300 
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Figure 5. Hourly-averaged observed methane plotted against the simulated methane for the two monitoring stations. The solid line 
is the least-squares fit, and the dashed line is the 1:1 line (i.e. perfect agreement). 

 

The comparison in Figure 5 involving hourly methane paired in time and space enables a simple, yet stringent, validation 305 

check of a transport model, especially one that is driven by  turbulent flow fields predicted by a prognostic meteorological 

model instead of observations. A complementary but less stringent approach in validating air quality models is the quantile-

quantile (q-q) plot, which is a graphical technique for testing “goodness of fit” between two distributions. In such a plot, 

typically, sorted modelled concentrations are plotted against sorted observed values (i.e. unpaired in time) at a monitoring 

location (e.g., Venkatram et al., 2001; Luhar and Hurley, 2003; 310 

http://www.itl.nist.gov/div898/handbook/eda/section3/qqplot.htm). If the two sets come from a population with the same 

distribution, the data points should fall approximately along the 1:1 line. The principal advantage of a q-q plot is that a “good 

fit” is easy to recognize, and various distributional aspects, such as shape, tail behaviour and outliers, can be simultaneously 

examined. 

In the q-q plot in Figure 6 for Ironbark, the observed CH4 distribution is modelled well for measurements  < 1820 ppb, but for 315 

higher observed concentrations, which account for approximately 25% of the sample size, the modelled values are smaller  For 

Burncluith, the q-q plot shows a substantially better model performance, with the model underestimation of higher-end (> 

1820 ppb) methane observations, which is approximately 10% of the sample size, much reduced compared to Ironbark. Overall, 

TAPM is largely predicting the observed CH4 distribution correctly, except for a relatively few higher-end concentrations. 

 320 
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Figure 6. Q-q plot showing the sorted hourly-averaged observed CH4 concentrations versus the sorted modelled ones at Ironbark 
and Burncluith. The line of perfect agreement (dashed line) is also shown. 

 325 

4.5 Contribution to the modelled methane by various source categories 

The top four source categories based on their contribution to the modelled CH4 averaged over the full study period at Ironbark 

were Source 1 (45%, Grazing cattle), Source 2 (25%, Feedlot, Piggeries and Poultry), Source 3 (19%, CSG Processing), and 

Source 5 (5.5%, Mining). These were the same at Burncluith, but with their respective contributions being 69%, 17%, 6.4% 

and 4.1%. The CSG Production (Source 4) contributions are 2.2% and 0.73%, respectively, at the two sites. 330 

In contrast, the largest four contributors to the highesttop 5% of the modelled hourly-averagedsimulated methane 

concentrations (i.e. all the concentrations above the 95th percentile) at Ironbark turn out to be Source 3 (35%), Source 2 (27%), 

Source 1 (25%) and Source 5 (7%). These at Burncluith are Source 1 (28%), Source 2 (25%), Source 3 (22%) and Source 5 

(13%). The CSG Production (Source 4) contributes 3.8% and 2.5%, respectively, at the two sites. The Source 2 grouping is 

dominated by Feedlots. 335 

The CSG Processing (Source 3) emissions are localised near the two sites which result in methane spikes under favourable 

winds and thus contribute more to the higher-end modelled methane than to the overall average methane. In contrast, the 

simulation average methane is dominated by Sources 1 and 2 because concentration enhancements due to these sources occur 

under most wind conditions as a result of their very wide distribution across the region. 
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5 Regional top-down, or inverse, modelling for emission estimation 340 

Given that the bottomtop-updown emission inventory underestimates the observed methane in the Surat Basin, then one may 

ask what is the quantity and distribution of methane emissions that is implied by the methane concentration measurements at 

Ironbark and Burncluith? This is addressed by the inverse modelling approach for regional emissions formulated and applied 

below. 

5.1 Bayesian inverse modelling approach 345 

Our inverse model uses a Bayesian inference approach that incorporates, a source-receptor relationship, concentration 

measurements, and prior information on source parameters (i.e. source information obtained independently of the 

measurements) (Rao, 2007; Singh et al., 2015). The approach updates the source prior as concentration measurements are 

considered, and accounts for both model and observational uncertainties. 

Several applications using the Bayesian approach have previously been conducted for methane source estimation, including 350 

those at local scale (Yee and Flesch, 2010; Luhar et al., 2014; Feitz et al., 2018) and regional scale (Jeong et al., 2012; Miller 

et al., 2014; Henne et al., 2016; Cui et al., 2017). 

The approach hinges on Bayes’ theorem (Jaynes, 2003): 

 𝑝(𝐪|𝐜) = 𝑝(𝐜|𝐪) . 𝑝(𝐪)𝑝(𝐜) , (1) 

where the prior PDF 𝑝(𝐪)  reflects our knowledge of the source parameter vector 𝐪 prior to receiving the concentration 

observations 𝐜; 𝑝(𝐜|𝐪) is the likelihood function which is the probability of experiencing 𝐜 for a given 𝐪 and is typically 355 

obtained using a model-derived source-receptor linkage; the posterior 𝑝(𝐪|𝐜)  relates to the update of  𝑝(𝐪)  by its modulation 

by 𝑝(𝐜|𝐪) which contains the new information brought in by the concentration measurements 𝐜; and 𝑝(𝐜) [=∫ 𝑝(𝐜|𝐪)𝑝(𝐪)𝑑𝐪] 

is the evidence and is basically a normalisation constant in the present application (Yee and Flesch, 2010). The likelihood 

function, also termed the source-receptor relationship, is derived using a transport and dispersion model. 

It is assumed that the number of sources (Ns) and their locations ൫𝐱௦,ଵ, … , 𝐱௦,௝, … , 𝐱௦,ேೄ൯ where 𝐱௦,ଵ ≡ ൫𝑥௦,ଵ, 𝑦௦,ଵ, 𝑧௦,ଵ൯ are given 360 

a priori and the source emissions are non-zero. The emission rates of these sources are to be estimated, and these are 

represented by 𝐪 ≡ ൫𝑞ଵ, … , 𝑞௝, … , 𝑞ேೄ൯ with a total of 𝑁ௌ  unknown emission rates. Assuming each source emission to be 

independent, the prior PDF can be written as: 

 𝑝(𝐪) = ෑ 𝑝൫𝑞௝൯ேೞ
௝ୀଵ . (2) 
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Assuming that the model and measurement uncertainties are independent and distributed normally, the total likelihood of all 

c for a given hypothesis of q is calculated as (Yee, 2012) 365 

 𝑝(𝐜|𝐪) = ෑ 1√2𝜋൫𝜎௜ଶ + 𝜎௠,௜ଶ ൯ଵ ଶൗ
ே೘
௜ୀଵ exp ൝− ൫𝑐௠,௜(𝐪) − 𝑐௜൯ଶ2൫𝜎௜ଶ + 𝜎௠,௜ଶ ൯ ൡ, (3) 

𝐜 ≡ ൫𝑐ଵ, … , 𝑐௜, … , 𝑐ே೘൯, 𝑐௜ is the observed concentration at i-th instant (time and location), 𝑐௠,௜ is the corresponding modelled 

concentration for a given hypothesis of q, 𝜎௜ is the independent measurement error, 𝜎௠,௜ is the independent model error, 𝑁௠ is 

the number of concentration data (which can be time series from several independent monitors). 𝑐௠,௜ for all hypotheses, or 

possible values, for q is calculated and used in constructing the likelihood distribution 𝑝(𝐜|𝐪). Hence the posterior PDF for a 

given source hypothesis q is calculated as: 370 

 𝑝(𝐪|𝐜) = 1𝑍଴ ෑ 𝑝൫𝑞௝൯ேೞ
௝ୀଵ   ෑ 1√2𝜋൫𝜎௜ଶ + 𝜎௠,௜ଶ ൯ଵ ଶൗ

ே೘
௜ୀଵ exp ൝− ൫𝑐௠,௜(𝐪) − 𝑐௜൯ଶ2൫𝜎௜ଶ + 𝜎௠,௜ଶ ൯ ൡ, (4) 

where 𝑍଴ is equivalent to 𝑝(𝐜) and is essentially a normalisation constant. The posterior yields probabilities of all emission 

rates (q) considered. 

The total modelled concentration at a given location 𝐱௥ and time is determined as  

 𝑐௠,௜ = ෍ 𝑐௠,௜௝.ேೞ
௝ୀଵ  (5) 

Because methane is treated as a passive tracer, the concentration field simulated for one rate of emission can be scaled linearly 

for another without the need to re-run the model. Thus 375 

 𝑐௠,௜௝ = 𝑞௝𝛼௜௝൫𝐱௦,௝, 𝐱௥,௜൯, (6) 

for each emission rate component of q. The quantity 𝛼௜௝൫𝐱௦,௝, 𝐱௥,௜൯ is the source-receptor relationship or coupling coefficient 

and is equivalent to the modelled mean concentration at a given time and location 𝐱௥,௜ due to j-th source release at location 𝐱௦,௝ 

with a unit emission rate. 

In Eq. (4), in the absence of an informative prior, a uniform prior PDF can be used with the given limits (𝑞௠௔௫, 𝑞௠௜௡) 

 𝑝൫𝑞௝൯ = 1𝑞௠௔௫,௝ − 𝑞௠௜௡,௝, (7) 

with the probability being zero outside these bounds. 380 

If the prior is Gaussian, then 
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 𝑝൫𝑞௝൯ = 1√2𝜋 𝜎௣,௝ exp ൝− ൫𝑞௝ − 𝑞௣,௝൯ଶ2𝜎௣,௝ଶ ൡ, (8) 

where 𝑞௣ and 𝜎௣ are the prior mean emission rate and its standard deviation, respectively. 

High dimensionality of the posterior makes its direct computation and the subsequent integration (the ‘brute-force’ method) 

over the source-parameter space very expensive or perhaps even impossible. For Gaussian priors and uncertainties, the 

posterior can be solved for the mean and variance with their analytical matrix forms (Tarantola, 2005; Jeong et al., 2012). To 385 

make the inverse approach more generally applicable and efficient, we use a Markov chain Monte Carlo (MCMC) technique 

incorporating the Metropolis-Hastings algorithm to sample the posterior PDF (Tarantola, 2005; Yee, 2012). With MCMC, 

non-Gaussian priors or uncertainties, or parameters with known physical constraints can also be included (Miller et al., 2014). 

The normalization constant 𝑍଴ in Eq. (4) need not be known before MCMC samples can be drawn from the posterior PDF. 

This ability to generate a sample without knowing this constant of proportionality (which is often extremely difficult to 390 

compute) is a major feature of MCMC algorithms (Luhar et al., 2014). The frequency distribution of the MCMC-generated 

samples represents the posterior. 

The posterior PDF can be marginalized to obtain the mean emissions rate for each source as follows: 

 𝑞ത௝ = ∫ 𝑞௝  𝑝(𝐪|𝐜) 𝑑𝐪, (9) 

and likewise, the variance can also be determined. 

5.2 Construction of the hourly source-receptor relationship 395 

In order to use hourly measurements, the source-receptor relationship needs to be calculated every hour for every source (real 

or potential) location and every monitor location using either forward or backward transport modelling (Rao, 2007). Generally 

speaking, if the number of source locations under consideration is greater than the number of receptor locations (as for the 

present case) then the backward approach is much more computationally efficient (Luhar et al., 2014). 

In the backward approach, source matter is tracked backwards in time from a monitor treated as a source. The value at a given 400 

point of the constructed backward concentration field is analogous to the magnitude of contribution made by an emitting source 

at that point to the true (i.e. forward) modelled concentration at the monitor. Hence, we can use a single backward source-

receptor relationship distribution determined every hour to get the contribution made by each real or potential source located 

in the domain. This contrasts with the forward modelling approach in which each source location has tomust be considered as 

a unique, separate source and its dispersion computed for every hour. Essentially, the source-receptor relationship furnishes a 405 

way to chart the distribution of source potential within given geographical domain. However, it does not quantitatively allocate 

the real contribution of sources within the domain to the concentration levels detected at monitoring stations— this is done by 

the Bayesian inference (Eq. (4)). 
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One backward approach for regional scale is to use backward trajectories constructed by only using three-dimensional winds 

computed from a meteorological model (e.g., Cheng et al., 1993). However, such wind trajectories only represent advective 410 

transport and do not account for turbulent mixing which causes a plume to disperse as it travels in the atmosphere. If 

measurements given at a high temporal resolution, e.g. hourly averages, are to be used for inversion it is necessary that the 

influence of atmospheric flow and dispersion processes that occur at such scales is considered. This can only be properly done 

by simulating backward tracer plumes which considers both advection and turbulent mixing.  

We modify TAPM to construct backward dispersing plumes. The Eulerian dispersion module in TAPM comprises a solution 415 

of the advection-diffusion equation for the ensemble mean concentration c, which for a passive species is (e.g. Yee et al., 

2008): 

 𝜕𝑐𝜕𝑡  + 𝐮ഥ . 𝛻𝑐 − 𝛻.  (𝐊 𝛻𝑐) = 𝑆, (10) 

in which the unknown turbulent flux terms are closed using the K-theory or gradient transport approach. The forcing term S 

represents species emissions. The elements of the eddy diffusivity tensor K are zero except along its main diagonal (Kx, Ky, 

Kz). The diffusion is assumed to be symmetric in the horizontal plane, so 𝐾௫ = 𝐾௬ = 𝐾ு (say). KH and Kz are determined using 420 

the modelled turbulent kinetic energy (TKE) and the TKE dissipation rate. 

The vertical component 𝑤ഥ  of the mean wind vector 𝐮ഥ (≡ 𝑢ത, 𝑣̅, 𝑤ഥ) in Eq. (10) is determined by using the continuity equation 

after the mean horizontal wind velocity components (𝑢ത, 𝑣̅) are calculated. 

The Eulerian adjoint of Eq. (10) describes the backward evolution of a scalar field (𝑐∗), and is also termed backward or retro 

plume, adjoint function, sensitivity function, or influence function, and is given as (Marchuk, 1995; Pudykiewicz, 1998; 425 

Hourdin and Talagrand, 2006; Yee et al., 2008) 

 − 𝜕𝑐∗𝜕𝑡 − 𝐮ഥ . 𝛻𝑐∗ − 𝛻. (𝐊 𝛻𝑐∗) = 𝑀, (11) 

where M is the forcing term representing the measurement distribution, which is treated as a source at the measurement (or 

receptor) location. Therefore, 𝛼௜௝ in Eq. (6) is equivalent to 𝑐∗ derived for a unit emission rate. 

The implementation of Eq. (11) in TAPM is done through changes in the forward model code as follows. The meteorological 

and turbulence fields calculated by the model at every hour (not hourly-averaged) are stored for the full simulation period. The 430 

modelled horizontal components (𝑢ത, 𝑣̅) of wind are reversed (i.e. by sign change). The (inverted) vertical wind component (𝑤ഥ) 

is then calculated by solving the continuity equation given the reversed horizontal wind components. The turbulence 

parameters remain the same. The diffusivities in the dispersion component are positive and do not have any correction for 

counter-gradient flux in the vertical, and, therefore, they were not modified for the backward mode. The two monitor locations 

were treated as separate ‘sources’ each having unit emission, and hourly-averaged plume dispersion fields due to these 435 
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‘sources’ was determined by running the TAPM dispersion module backwards in time for the entire simulation duration by 

using the reversed winds calculated previously. The meteorological and turbulence fields were linearly interpolated in time for 

dispersion calculations for model time steps lying between two successive hours. The resulting hourly-averaged backward 

concentration fields were used as the source-receptor relationship. Since we assume that all methane sources are located near 

the ground within the lowest model level (i.e. 10 m AGL), only the 10-m hourly source-receptor relationship was required. 440 

One complexity with doing a backward dispersion calculation using one continuous release over the full simulation period 

over a large domain, as done here, is that the source-receptor field at a given hour is a superposition of plume footprints from 

the current hour as well as previous hours (typically up to 4–5 hours for the present domain size). So, there is a time history in 

the source-receptor field at a given time (whose influence becomes smaller and smaller as the distance between the source and 

the receptor becomes smaller, the domain size decreases, or the averaging time is increased, or when the winds are strong). 445 

However, this time history in a backward run corresponds to future hours in a forward run, so at a given hour there can be a 

time mismatch between the forward concentration at a grid point and the backward concentration at that point. One way to 

deal with this problem is to do a backward simulation for every hour separately; however, this is extremely expensive 

computationally. As a practical and approximate solutionfix to this issue, at a particular backward travel hour (t) the plume 

travel time (tr) from the release point (i.e. the monitor location) to a grid point (x) is determined by releasing a second tracer 450 

(with concentration 𝑐∗ = 𝑐ଶ∗) backwards from the monitor simultaneously with the main tracer (with concentration 𝑐∗ = 𝑐ଵ∗) 

with the same tracer properties except that it decays exponentially with a decay rate of λ (= 10-6 s-1), so 

 𝑐ଶ∗ (𝐱, 𝑡) = 𝑐ଵ∗(𝐱, 𝑡) exp(−𝜆𝑡௥), (12) 

which gives 

 𝑡௥(𝐱, 𝑡) = 1𝜆 ln ቈ 𝑐ଵ∗(𝐱, 𝑡)𝑐ଶ∗(𝐱, 𝑡)቉. (13) 

The source-receptor value (𝑐∗ = 𝑐ଵ∗) calculated at a grid point location 𝐱 at a given backward travel hour 𝑡 = 𝑡௕ is then taken 

equal to that calculated at the same location at 𝑡 = 𝑡௕ + 𝑡௥ (where tr rounded to the nearest hour). The forward travel hour for 455 

a grid point is then equal to the total hours in a simulation period minus tb. Therefore, the source-receptor relationship (𝑐∗) for 

the grid points at time t is constructed from the output of 𝑐ଵ∗ at different times according to the value of tr at individual grid 

points. A maximum value for tr needs to be specified, which we take 15 h – approximately the time taken by the backward 

plume from either monitor to leave the (innermost) model domain (beyond this value, 𝑐∗ is zero). This is needed to avoid 

occasional spurious smearing in the spatial patterns of 𝑐∗ caused by a diluted, turning, or recirculating plume that has travelled 460 

longer than tr overlapping the direct plume at a particular location. 

To illustrate the modelled forward and backward relationship and the impact of accounting for tr, Figure 7a presents the hourly-

averaged forward modelled 10-m concentration field (c) in the innermost model domain on 20 June 2016 at 2300 h (local 
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standard time) due to a sample of 12 point sources, all emitting at the same fixed rate and whose locations correspond to some 

of the feedlots. Figure 7b is the backward modelled 10-m concentration field (𝑐∗) for Ironbark (I) at the same time without the 465 

travel time correction (i.e. tr = 0), and Figure 7c is the same field with the travel time correction. Essentially, the value at any 

point in the backward field is equivalent to the forward model concentration value at Ironbark if there were a source at that 

point with the same emission rate (as the backward emission rate). The backward concentration value at a given location 

represents the probability (including both frequency and intensity) a source emission at that location adds to the concentration 

at the monitoring site. The backward field is mainly determined by flow the field across the domain and the separation between 470 

the receptor and the source. Figure 7a suggests that only one source, S1, contributes to concentration at Ironbark. Figure 7c is 

consistent with this, in which the backward plume from Ironbark only impacts S1 with the same magnitude, and not any other 

source location. On the other hand, the backward plume in Figure 7b does not pass through any of the 12 sources, meaning no 

impact of these sources at Ironbark, which obviously is not correct as S1 does impact Ironbark. Figure 7c is the source-receptor 

relationship (normalised by the fixed emission rate) for Ironbark for the hour under consideration. 475 

 

 

Figure 7. (a) Forward modelled hourly-averaged 10-m concentration field on 20 June 2016 at 2300 h (local standard time) due to 12 
point sources, with the 10-m modelled winds also shown; (b) backward modelled 10-m concentration field for Ironbark (I) at the 
same time without the travel time correction (tr = 0); and (c) backward modelled 10-m concentration field for Ironbark with the 480 
travel time correction. Each source point has the same emission rate. The plume contours (white) and colours represent the same 
concentration values. The black contours represent the topography. The model domain size is 370 × 370 km2, and the Ironbark (I) 
and Burncluith (B) locations are shown. 

 

A hourly-averaged modelled backward concentration field (𝑐∗/𝑞, s m-3) at the lowest model level (i.e. 10 m AGL), an example 485 

of which is shown in Figure 7c,  obtained for a unit emission rate (𝑞 = 1 g s-1) is in essence the required hourly source-receptor 

relationship which can be linearly scaled for any other emission rate (q). We use the hourly-averaged backward fields computed 

at the lowest model level (i.e. 10 m AGL) for the innermost model domain in our inverse methodology, an example of which 

is shown in Figure 7c. 
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As an example, Figure 8a presents the modelled backward concentration field (/𝑞, s m-3) due to a unit point release (𝑞 = 1 g s-1) 490 

averaged over all hourly fields over the simulation period for Ironbark. Essentially, the value at any point in Figure 8a is 

equivalent to the simulation-average forward model concentration value at this monitoring location if there were a source at 

that point with unit emission. Put differently, tThe backward concentration value at a given location represents the probability 

(including both frequency and intensity) a source emission at that location adds to the concentration at the monitoring site. The 

backward field is mainly determined by flow the field across the domain and the separation between the receptor and the 495 

source. 

 

 
       
Figure 8. Normalised modelled backward distribution of near-surface concentration (𝒄∗/𝒒, × 10-9 s m-3), which is an average over 500 
the entire study period: (a) Ironbark, and (b) Burncluith. 

 
The modelled backward concentration field (𝑐∗/𝑞, s m-3) averaged over all hourly fields over the simulation period for Ironbark 

is shown in Figure 8a, which suggests that, It is apparent from Figure 8a that overall, any sources located farther from the 

monitoring station would contribute less as plume concentrations decrease with increasing distances, and vice versa. The 505 

directional distribution of the backward field is also a function of the distribution of regional winds which determine how often 

the receptor is downwind of a source (see wind roses in Figure S3). The values in the south-east and north-west corners of the 

study domain are particularly low, so potential sources there would, on average, have low probability of being sampled at 

Ironbark. 

The backward distribution for Burncluith (Figure 8b) is very similar, but since it is located north of Ironbark it would sample 510 

potential sources in the north-east better. 
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The two monitoring sites combined sample most part of the CSG sources in the domain (which was the prime objective of our 

monitoring). 

5.3 Bayesian inversion setup 

Assuming that emission rates are time invariant, we use all hourly methane data (Nm) from the two monitoring stations together 515 

in one combined Bayesian calculation to determine the total emission rates from gridded sources using Eq. (4). Since each 

hour corresponds to a unique meteorological condition, the use of all hours simultaneously provides the meteorological 

variability needed to achieve a better “triangulation” for source estimation. The greater the number of useful measurement 

hours, the greater the variability, and hence the better the constraining of the source. This approach is similar to that used by 

Luhar et al. (2014) in the context of a local point source. It requires the source-receptor matrix (𝑐∗(𝐱, 𝑡)) for each hour for each 520 

measurement site (e.g. Figure 7c). 

For the purposes of inferring emissions using our Bayesian methodology, tThe source array of 69 × 69 used in the forward 

modelling above is rather too large a source number for the inverse methodology to explore all the source possibilities (i.e. 

hypotheses), on hourly basis, even with use of the MCMC sampling. , and, mMoreover, there is only a limited amount of 

information available from justonly two monitoring sites. A coarser array of sources is more practicable, and cConsequently, 525 

we consider an array of 11 × 11 localised sources (𝑁௦ = 121, cell size ∼ 31 × 31 km2) is considered within the same model 

domain, whose total emission rates are time invariant.  during a given simulation period.  No sub-grid variability of these 

emission rates is considered. The hourly source-receptor relationships calculated at 5 × 5 km2 resolution for Ironbark and 

Burncluith were used. Our inverse methodology used does not distinguish between different source categories. This is mainly 

because the concentration of methane alone was monitored and not tracers specific to methane source types. Therefore, there 530 

are no separate sources categories in the inferred emissions, unlike what was done for the forward simulation, and only total 

emissions are optimised. 

We assume that all source emissions are time invariant during a given simulation period – this allows the utilisation of all valid 

hourly concentrations available during that period in a single Bayesian calculation to determine the (time invariant) emission 

rates. 535 

To reduce serial correlations in the sequence of MCMC samples drawn from the posterior using the Metropolis-Hastings 

algorithm, we only retained every 5th sample. The total number of useable samples was 21,000 for each source, of which the 

first 1,000 samples were discarded as “burn-in” samples. The selected samples were then used in the calculation of the source 

statistics. 
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6 Inversion using the ‘synthetic’ concentration data 540 

A ‘synthetic’ inverse run is first performed by using the simulated hourly time series of concentration at Ironbark and 

Burncluith  involving the bottom-up inventory (regridded to 11 × 11 sources, see Figure 9ab) to investigate whether the inverse 

methodology is able to retrieve the bottom-up emissions and under what type of priors and their uncertainties. The results of 

this exercise provide a useful guidance to the subsequent inversion using the real-world data, particularly. The given modelled 

(or synthetic) time series do not directly possess any background, instrumental, and model errors and, therefore, prove very 545 

useful in validating an inversion methodology. The results from an inversion of synthetic data can provide guidanceabout the 

selection of the prior and its uncertainty specification for an inversion using real-world data.  

Only the forward modelled (or synthetic) concentrations at the two monitoring sites were used at times when valid (or filtered) 

methane observations were available (𝑁௠ = 10581). The measurement uncertainty was taken as σ = 3.5 ppb based on the 

previous calculation, and the uncertainty in the transport model was assumed to be σm = 20% of the modelled concentration 550 

(Yee and Flesch, 2010; Luhar et al., 2014). (These values will also be used later for the inversion based on the methane data.) 

All hourly synthetic concentrations modelled for the full simulation period at the two sites (i.e. 𝑁௠ = 2 × 13200) were used 

in one single Bayesian inversion to derive the emission rates. 

6.1 Selection of the prior 

Specifying the prior PDF 𝑝(𝐪) is an important step, even for the present synthetic case because we are still limited to the same 555 

degree of information available (i.e. the modelled concentration time series from only two sites), the number of unknown 

sources to estimate, and the domain size as in the inversion case with the real concentration data considered subsequently. We 

specify the following two Gaussian priors: 

- An identical (or uniform) Gaussian 𝑝(𝐪) for each source with a mean methane emission rate 𝑞௣ = 45.4 g s-1 (= 1.43 

× 106 kg yr-1) per source is specified, with a specified standard deviation 𝜎௣. This mean value is essentially the total 560 

bottom-up emission from the domain divided by the number of sources (i.e. 121).  

- The bottom-up inventory emissions as a Gaussian prior. The inventory emissions shown in Figure 9a are taken as the 

mean values of a Gaussian prior for each source, with a specified standard deviation 𝜎௣. 

6.2 Results for the synthetic case 

The emission rates inferred by the inverse model are shown in Figure 9a, with the total emission being 162 × 106 kg yr-1, a 565 

figure very similar to the bottom-up inventory total 173 × 106 kg yr-1. 

In Figure 10a, the methane emission rates inferred by the top-down methodology for the uniform Gaussian prior case with a 

prior uncertainty of 𝜎௣ = 5% of the mean for each source are plotted against the bottom-up inventory sources used to construct 

the synthetic concentration time series for the inversion (the number of sources is 11 × 11). Ideally, the data points should fall 
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along the 1:1 line, but due to the limited amount of information supplied via the modelled concentrations from only two 570 

monitors and the prior being narrow and not very informative, most inferred emission emission rates are scattered around the 

prior mean, i.e. 𝑞௣ = 45.4 g s-1, although it is apparent that a few inferred emission rates are greater than this value and tending 

to the corresponding bottom-up emission rates. The spatial distribution of the inferred emissions is presented in Figure 9b, 

which, as expected, is much more uniform than the inventory emissions in Figure 9a.   

When the prior uncertainty is increased to 𝜎௣ = 10% of the mean(Figure 10b), the scatter increases, but most inferred emissions 575 

stay around the prior mean, barring some higher-end ones which move further closer to the corresponding bottom-up emission 

rates. Further increase in 𝜎௣ leads to a larger increase in scatter, with no improvement in the inferred emissions. 

The total infrared emissions are 179.3 × 106 and 175.7 × 106 kg yr-1 for 𝜎௣ = 5% and 10% of the mean, respectively – values 

very similar to the bottom-up inventory total 173.2 × 106 kg yr-1. 

Figure 11a is the same as Figure 10a except that the Gaussian prior with the individual bottom-up inventory emissions as its 580 

mean values has been used. The inversion retrieves the bottom-up emissions very well with a little scatter in the data points. 

The spatial distribution of the inferred emissions is presented in Figure 9c for this case, which is very similar to that of the 

inventory emissions in Figure 9a. As the prior uncertainty is increased to 𝜎௣ = 10% of the mean (Figure 11b), the uncertainty 

in the retrieved emissions gets larger, with a slight decrease in the correlation. 

The total infrared emissions corresponding to Figure 11a and Figure 11a are 164.8 × 106 and 156.9 × 106 kg yr-1, respectively 585 

– values somewhat smaller than the inventory total 173 × 106 kg yr-1. 

A comparison of Figure 9ca with the bottom-up inventory (Figure 9ab) indicates that some regions in the south-east, for 

example the strong coal mining source at the grid location (11, 4), and north west corners are not replicated as well bythat the 

inverse model is able to simulate the  large emission rate in the region located just north of the Ironbark site. There is a strong 

inventory emission on the eastern domain boundary which the model does not replicate. This is despite a perfect/strong prior 590 

with a relatively small uncertainty, and could be due to the fact that A possible reason for this is that the two monitoring 

locationsstations do not sample this source area sufficiently (see Figure 8). Extra monitoring stations and/or separate, narrower  

priors for sources that make very small contributions to methane at the two sites would be needed to cover these areas 

betterreduce the differences between Figure 9a and Figure 9b.  

The above synthetic case results suggest that with only two monitoring locations the bottom-up inventory Gaussian prior works 595 

well and is, indeed, needed. Obviously, a small prior uncertainty biases the inferred emission distribution towards the prior 𝑝(𝐪), and what uncertainty level is selected depends on the available information supplied to the inversion. The synthetic case 

reveals that 𝜎௣ ∼ 5% of the mean is needed to retrieve the bottom-up emissions. Thus, for a real inversion using the methane 

measurements one may expect that a tighter prior uncertainty would be needed. Further guidance on 𝜎௣ can also comes from 
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comparison of the forward modelled methane concentrations using the inferred emissions with the methane observations from 600 

the two sites. 

The synthetic case results also demonstratedsuggest that the regional inverse model formulated wasis stable and, feasible with 

MCMC., and credible as evident from its getting the total emissions nearly right and replicating the largest emission area 

reasonably well with only a broad prior and two monitoring locations, but at the same time requiring a relatively small prior 

uncertainty. The synthetic case considered is an overly demanding case because the prior used is not very informative, 605 

compared to the real inversion cases considered in the next section in which the bottom-up inventory emissions allow the 

option of a better prior. 

 

          

Figure 9. (a) Emission rates of CH4 (kg yr-1 gridcell-1) (a) based on the bottom-up inventory, (b) estimated by the synthetic inversion 610 
using a uniform Gaussian prior with an uncertainty of 𝝈𝒑 = 5% of the mean for each source, and (b) bottom-up inventory emission 
rates, and (c) estimated by the synthetic inversion using the bottom-up inventory in (b) as a Gaussian prior with an uncertainty of 𝝈𝒑 = 5% of the mean for each source. There are 11 × 11 sources. 
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Figure 10. Scatter plot of the bottom-up inventory methane emission rates (g s-1 per source) versus those inferred from the inverse 
(top-down) methodology for the synthetic case involving a uniform Gaussian prior with a prior uncertainty of (a) 𝝈𝒑 = 5% and (b) 𝝈𝒑 = 10% of the mean for each source. The number of sources is 11 × 11. The dash-dot line is the mean value of the prior, the dashed 
line is the 1:1 line (i.e. perfect agreement) and the solid line is the least-squares fit. 

 620 

 

Figure 11. Scatter plot of the bottom-up inventory methane emission rates (g s-1 per source) versus those inferred from the inverse 
(top-down) methodology for the synthetic case involving the inventory source emissions as the mean of a Gaussian prior with a prior 
uncertainty of (a) 𝝈𝒑 = 5% and (b) 𝝈𝒑 = 10% of the mean for each source. The number of sources is 11 × 11. The dashed line is the 
1:1 line (i.e. perfect agreement) and the solid line is the least-squares fit. 625 

7 Inversion using the methane measurements 

We now use the filtered methane measurements from the two monitoring stations to quantify emissions using our inverse 

methodology. The above synthetic case results have revealed that a good, tight prior is needed to infer emissions within the 

selected domain using concentrations from the two monitoring locations. One may, of course, ask as to how the source 

inference using the real-world measurements is influenced depending on the type of prior that may be available, ranging from 630 

a non-informative one to the most informative we have, i.e. the bottom-up inventory. 

We use tThe same filtered methane observations as used in the forward transport modelling (so 𝑁௠ = 10581) are used in aone 

single Bayesian inverse run. , with tThe uncertainty in the measurements is σ = 3.5 ppb based on previous calculation and the 

modelled uncertainty is σm = 20% of the meanmodelled concentration, as used in the synthetic inversion(Yee and Flesch, 2010; 

Luhar et al., 2014). 635 

7.1 Priors and inferred emissions 

Three cases involving different priors are considered. 
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7.1.1 Non- informative uniform prior (Case 1) 

A case of virtually no prior, or non-uninformative prior, is first considered, in which the only constraint is that the emission 

rate for each source lies within the broad range 10–10,000 g s-1, with uniform probability, where the upper limit is nearly 640 

double the total domain-wide bottom-up inventory. 

The inferred emissions (Figure 12a) between the two monitoring sites and around the centre of the region are qualitatively in 

accordance with the bottom-up inventory emissions (Figure 9ab), but with larger magnitudes. In contrast, the inverse estimates 

in locations farther from these source areas are smaller than the inventory emissions. Remarkably, the total inferred emission 

with the non-informative prior is 162 × 106 kg yr-1 which compares well with the inventory total. The largest emission rate of 645 

about 1100 g s-1 in Figure 12a is about 10% of the upper bound of the specified prior range. 

 

 

Figure 12. Emission rates of CH4 (kg yr-1 gridcell-1) estimated by the inversion: (a) with a non-informative uniform prior (Case 1); 
and (b) with a uniform Gaussian prior (Case 2). 650 

 

7.1.2 Uniform Gaussian prior (Case 2) 

Next, a more realistic prior PDF is specified with a Gaussian distribution having an identical mean of 45.4 g s-1 and 𝜎௣ = 10% 

of the mean, for each source. The mean is the same as that is used in one of for the synthetic runs. 

The inferred emissions for this case shown in Figure 12b are qualitatively similar to Figure 12a; however, in the former the 655 

high emission sources are relatively less pronounced, with emissions from other source locations generally being larger. The 

total annual emission from the Surat Basin obtained using this inversion is 143 × 106 kg yr-1. 
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7.1.3 Gaussian prior with the bottom-up inventory emissions (Case 3) 

In this case, the inventory emissions shown in Figure 9ab are taken as the mean values of a Gaussian prior for each source.  As 

every source prior now has a more realistic specification of the mean value compared Case 2, the uncertainty in the prior is 660 

chosen to be smaller than that specified in Case 2. A small prior uncertainty is also guided by the synthetic case results 

presented earlier. 

The inferred emission rates in Figure 13a obtained for Case 3 with 𝜎௣ = 1% of the mean (Case 3a) appear very similar to the 

inventory emission rates (Figure 9ab). The fact that even the intense emission on the eastern boundary of the domain present 

in the inventory is mostly reproduced despite this area being not sampled relatively sufficiently by the two network locations 665 

means that the chosen prior with a very small uncertainty is somewhat too inflexible which forces the inversion towards a 

result that is very similar to the prior itself, thus in essence overriding the information inherent in the concentration 

observations. 

 

   670 
 

Figure 13. Emission rates of CH4 (kg yr-1 gridcell-1) estimated by the inversion with a Gaussian prior involving  mean values equal 
to the bottom-up  emissions (Figure 9ab) and the standard deviation equal to (a) 1%, (b) 5% and (c) 3% of the mean values. 

 

Figure 13b is obtained using the same inverse model setup as Figure 13a, except that the prior is relaxed somewhat by 675 

increasing  𝜎௣ to 5% of the mean (Case 3b). This leads to the source areas in the centre of the Surat Basin and those between 

Ironbark and Burncluith becoming more conspicuous. In contrast, the source areas near the eastern boundary of the domain 

nearly fade, with the concentration observations applying greater influence in areas where the source-receptor relationship, 

shown in Figure 8, is stronger. Clearly, the inversion is sensitive to 𝜎௣, however, it is apparent that 𝜎௣ = 1% to 5% of the mean 

yields a reasonable trade-off between the benefit of the inversion approaching the prior in areas where the chances of the two 680 

monitoring stations detecting methane signal is small and simultaneously making sure that the selected prior would not unduly 

overrule the information supplied by the concentration measurements. Consequently, another inversion was performed for  𝜎௣ 
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= 3% of the mean (Case 3c). The inferred emission from this run presented in Figure 13c in essence stand between the inferred 

emissions for 𝜎௣ = 1% and those for 5% of the mean. This Case 3c inversion with 𝜎௣ = 3% is our best estimate, which gives 

an annual total CH4 emission of 165.8 × 106 kg yr-1. The fine tuning of prior uncertainty also has some trial and error component 685 

driven by the need that the inferred emissions are able to describe the measured concentrations when used in a forward model 

simulation (see the validation Section 7.2).  

As noticed in the synthetic inversion case, and in Figure 13a and Figure 13b, a large prior uncertainty biases the inversion 

towards emission rates that have high probability, which may indicate that the number of monitoring stations is insufficient  

for the uncertainty in the prior to be relaxed. 690 

Figure 14a presents the difference between the inferred methane emissions given in Figure 13c and the bottom-up inventory 

emissions in Figure 9ab. The largest difference is found for the grid box between Ironbark and Burncluith, with the inferred 

emissions (22.9 × 106 kg yr-1) being larger by approximately a factor of three than the latter (7.3 × 106 kg yr-1). The total 

inventory emission for this source grid is controlled by CSG Processing (51%); feedlots, poultry and piggeries combined 

(32%); and CSG Production (6%) sectors. 695 

The calculated posterior uncertainty (standard deviation) relative to the inferred mean emissions (%) The calculated standard 

deviation of the inferred emissions corresponding to the case shown in Figure 13c (Case 3c, 𝜎௣ = 3% of the prior mean) is 

presented in Figure 14b. Most of tThese values are very similar to the relative uncertainty in the prior (i.e. 𝜎௣ = 3% of the prior 

mean).approximately 1-2 orders of magnitude lower than the mean emission rates in Figure 13c. In general, the standard 

deviations are larger for larger inferred emissions. One reason as to why these uncertainties in the emission posterior are quite 700 

low, as discussed above, is the very small prescribed uncertainty that needs to be specified in the prior. Interestingly, the 

farthest grid point east of Ironbark (11, 4), which corresponds to a relatively strong coal mine source in the bottom-up inventory 

(Figure 3d), has a disproportionally large uncertainty (∼ 25%compared to the mean) emission rate in Figure 13c.  
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     705 
 

Figure 14. (a) Difference between the inferred methane emissions (Figure 13c) and the bottom-up inventory emissions (kg yr-1 
gridbox-1), and (b) posterior uncertainty (standard deviation) relative to the(uncertainty) of the inferred mean emissions (%kg yr-1 
gridbox-1) presented in Figure 13c (Case 3c). 

 710 

7.2 Validation of the inverse emission estimates 

To examine to what extent the inferred emissions represent the methane concentration measurements compared to the bottom-

up emissions, we conducted three separate forward transport model runs using the inferred emissions from the above inverse 

modelling Cases 1, 2, and 3 (i.e. Figure 12a, Figure 12b and Figure 13c, respectively). 

Figure 15a presents The q-q plots of the observed data against the modelled CH4 computed using the Case 1 inferred emissions 715 

(Figure 15a, d) show that. tThere is an overestimation of methane at both monitoring stations for the higher-end concentrations, 

but the simulated CH4 at Ironbark is much better reproduced than when using the bottom-up emissions (grey lines). For 

Burncluith, the overestimation is almost as large in magnitude as the underestimation obtained when the inventory emissions 

are used. 

As demonstrated by Figure 15b, Tthe Case 2 inferred emissions involving a proper, but still crude, prior lead to a significant 720 

improvement in the methane simulation, especially at Burncluith (Figure 15b, e).  

As apparent from Figure 15c, f, the use of the bottom-up inventory as further refinement in the  the prior in Case 3c with 3% 

prior uncertainty relative to the mean yields emission estimates that further improve the simulation of methane, especially at 

Ironbark. Comparatively, the use of 1% prior uncertainty leads to a better performance at Ironbark but worse at Burncluith. 

With 5% prior uncertainty, the performance is other way round. With the exception of about 4 outlying data points at the 725 

higher-end of the concentration distribution, the Case 3c inversion with 3% prior uncertainty (corresponding to Figure 12c 
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Figure 13c) leads to the best overall model reproduction of the measured CH4 from the two monitoring sites. The 

underprediction seen when the inventory emissions are used (grey curves in Figure 15) is nearly eliminated. 

Table 1 presents performance statistics for the three Case 3 inversions and for the bottom-up emissions as to how well they 

describe the methane concentration measurements at the two sites when used in the forward modelling. The observed (O) and 730 

modelled (M) concentrations are paired in time for these statistics, which are: r = correlation coefficient, IOA = index of 

agreement, a = slope and b = intercept of the linear best fit line, FB = fractional bias, and RMSE = root mean square error. FB 

= 2(𝑂ത − 𝑀ഥ)/(𝑂ത + 𝑀ഥ), which varies between -2 (overestimation) and +2 (underestimation); and IOA = 1 − [(𝑀 − 𝑂)ଶതതതതതതതതതതതത/(|𝑀 − 𝑂ത| + |𝑂 − 𝑂ത|)ଶതതതതതതതതതതതതതതതതതതതതതതതതതതതത], where 0 = no agreement and 1 = perfect agreement. The IOA, unlike r, is sensitive to differences 

between the observed and model means as well as to certain changes in proportionality.  735 

Compared to the bottom-up emissions, the inferred emissions improve the prediction of methane at Ironbark, except for a 

slight decrease in correlation. At Burncluith, the improvement is limited to the slope. Note that these statistics are dominated 

by lower-end concentrations which are much more numerous than the higher-end concentrations. The q-q plots in Figure 15 

on the other hand tend to emphasise more model performance for a small number of higher-end concentrations.  

Some deterioration in the model performance when the inferred emissions are used could be caused by the 11 × 11 source 740 

distribution representing the emissions in the domain being rather coarse (compared to 69 × 69 used for the bottom-up 

emissions). Considering the performance statistics in Table 1 and the q-q plots in Figure 15c and f, the Case 3c inversion is 

our best estimate of emissions. 

 

Table 1: Performance statistics for the emissions from the Case 3 inversions and for the bottom-up emissions as to how well they 745 
describe the methane concentration measurements when used in the forward modelling (r = correlation coefficient, IOA = index of 

agreement, a = slope, b = intercept, FB = fractional bias, RMSE = root mean square error). 

Emissions 
Ironbark (N = 6432) Burncluith (N = 4149) 

r IOA a b 
(ppb)

FB RMSE
(ppb) r IOA a b 

(ppb) 
FB RMSE

(ppb) 
Case 3a (𝜎௣ = 1% 𝑞௣) 0.53 0.68 0.36 1153 0.61×10-3 25.5 0.69 0.82 0.71 527 -0.45×10-3 11.1 

Case 3b (𝜎௣ = 5% 𝑞௣ 0.49 0.66 0.55 863 -1.98×10-3 32.0 0.58 0.71 0.87 244 -1.26×10-3 16.8 

Case 3c (𝜎௣ = 3% 𝑞௣ 0.51 0.68 0.48 954 -0.72×10-3 28.4 0.63 0.76 0.79 381 -0.86×10-3 14.0 

Bottom-up  
emissions   

0.57 0.59 0.25 1360 3.36×10-3 25.4 0.74 0.84 0.61 707 0.35×10-3 9.4 

 

Clearly, differences between the model and observations remain, and the possible causes for that include differences between 

the observed and modelled regional meteorology, only two monitoring sites within a relatively large study domain, the selected 750 
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11 × 11 source distribution representing the emissions in the domain being rather coarse, and potential temporal variation of 

source emissions. 

 

 

 755 
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Figure 15. Q-q plots showing the sorted hourly observed versus the sorted modelled CH4 at the Ironbark and Burncluith monitoring 
stations. The modelled concentrations utilise emission estimates from (a) Case -1 inversion, (b) Case -2 inversion, and (c) Case -3 
inversions (i.e. with 1, 3, and 5% uncertainty in the prior relative to the mean). The forward model concentrations from Figure 6 760 
predicted using the bottom-up emissions are shown as grey lines. Dashed line represents perfect agreement. 

7.3 Emissions from the CSG area 

Given the focus on CSG activity related emissions in the Surat Basin, we compare the aggregate bottom-up and inferred 

emissions from the CSG areas, many of which are concentrated near and between the two monitoring stations. The subdomain 

that includes all the CSG sources in the study area is shown Figure 16, which is an area of about 18260 km2, and covers 15% 765 

of the study domain, covers 19 of the 121 source grids considered. The CSG subdomain also contains emissions from other 

sectors (see Figure 3). 
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 770 

Figure 16. A subdomain of the study area that corresponds to all the CSG source areas (shaded grid cells) in the bottom-up emission 
inventory. It coversconsists of 19 of the 121 source gridsgridcells (each with a source footprint of 31 × 31 km2) considered in the 
inverse modelling.and is considered for aggregating emission rates. 

 
The total bottom-up inventory emissions from the CSG sub-domain is 47.7 × 106 kg yr-1 (cf. 173.2 × 106 kg yr-1 for the domain) 775 

whereas that obtained using the inversion (Case 3c, Figure 13c) is 63.6 × 106 kg yr-1 (cf. 165.8 × 106 kg yr-1 for the domain) 

which is 33% larger than the former. The total bottom-up emission for this subdomain is dominated by CSG (34.7%, of which 

30.6% is due to CSG Processing), followed by grazing cattle (29.9%), feedlots (23.5%) and coal mines (7.7%), which together 

account for 95.8% of the emissions from this area. Since the inverse methodology does not differentiate between source sectors, 

emissions from individual sectors cannot be inferred. Considering that the grazing cattle emissions are diffuse sources and thus 780 

not responsible for peaks in the measurements that dominate the inverse estimates, and since feedlots are scattered throughout 

the domain (Figure 3c) including the non-CSG areas from where there is no general inference of higher emissions, it is plausible 

that the increase in the inferred emissions would mainly correspond to CSG as the source sector. 

A considerable portion of the CSG emissions is in the area between the two monitoring stations. The inferred emissions in this 

area are much greater than the corresponding bottom-up inventory emissions. This area also has significant coal mining 785 

emissions nearby (Figure 3d). It is possible that the methane emissions from a combination of these two source sectors are 

much larger than the inventory emissions. 

Conversely, the total bottom-up inventory emissions from the non-CSG area is 125.5 × 106 kg yr-1 whereas that obtained using 

the inversion (Case 3c) is 102.2 × 106 kg yr-1 which is 18.5% lower than the former. The total bottom-up emission for this area 

is dominated by grazing cattle (62.7%), followed by feedlots (24.8%) and coal mines (8.6%), which together account for 96.1% 790 
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of the emissions from this area. It is possible that the emission factor of 84 kg CH4 animal-1 yr-1 for Australian grazing cattle 

(Harper et al., 1991) used in the bottom-up inventory (see the Supplement S6) is an overestimate (cf. 51 kg CH4 animal-1 yr-1 

for beef cattle (pasture) used by the Australian National Inventory Report (NIR, 2017) or 63 kg CH4 animal-1 yr-1 for non-dairy 

cattle for the Oceania (IPCC, 2019)), and that would be consistent with the lower top-down methane emission from the non-

CSG area compared to the inventory. This also means that the CSG component of the top-down emissions in CSG sub-domain 795 

could be higher to compensate for the lower grazing cattle emissions if a lower emission factor for grazing cattle is used. 

Apart from the uncertainties associated with the bottom-up emissions, potential methane emissions from some sources, namely 

wetlands (the amount of which in the area is very limited; https://wetlandinfo.des.qld.gov.au), land clearing, termites, material 

handling and fuel usage related to mining activities, ground-water wells, and biomass burning are not part of the bottom-up 

emissions. In contrast, all CH4 sources are implicitly represented in the inversions, apart from the biomass burning events 800 

which have been filtered using the CO filter. It is difficult to pinpoint which source sectors might be underrepresented in the 

bottom-up inventory without some kind of source discrimination, for instance, through the use of tracers such as the CH4 

isotopes.  

7.4 Temporal variation of the inferred emission 

In the previous inverse calculations, all filtered methane measurements obtained during July 2015–December 2016 were 805 

combined in a singleone Bayesian calculation to derive a time invariant top-down emission distribution. Here we apply the 

inverse model with the Case 3c settings (as used for Figure 13c with 3% prior uncertainty relative to the mean) to 3-monthly 

measurement blocks within the above period in order to examine potential temporal variation of the inferred emissions. 

Obviously, for a 3-monthly simulation the amount of concentration data supplied to the Bayesian inversion is much less than 

that for the full simulation. Figure 17a presents the 3-monthly variation of the inferred emissions as kg CH4 yr-1 (bar plots), 810 

along with the (constant) bottom-up inventory emissions (red line) and the (constant) inferred emissions from Case 3c (blue 

line). The 3-monthly emission rates are within 165–180 kg yr-1 and are generally larger than when the full measurement 

duration is considered. This is because as the amount of information supplied to the inverse model reduces, the inferred 

emissions are not modulated to the same extent as that for the full period, and thus they tend to move closer to the bottom-up 

inventory which is used as a prior with a tight uncertainty. (Time-varying inventory emissions, if available, would act as a 815 

better prior, together with additional measurement sites). 

Figure 17b is the same as Figure 17a but for the CSG subdomain. The 3-monthly inferred emissions lie between the bottom-

up inventory value and the inferred value obtained when the measurements from the full period are used. Again, as in Figure 

17a, 3-monthly inferred emissions push towards the inventory value as the information supplied to the inverse model reduces. 

Figure 17c is the same as Figure 17a but for the non-CSG subdomain (which is dominated by grazing cattle emissions (62.7%) 820 

as per the bottom-up inventory). In this plot, we also present a 3-monthly climatological average (1992 – current 2020) of 

rainfall at the Dalby airport (location 27.16°S, 151.26°E), located next to the town of Dalby, within the study domain. The 
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rainfall data were obtained from the Australian Bureau of Meteorology 

(http://www.bom.gov.au/climate/averages/tables/cw_041522.shtml). There is a good correlation (r = 0.79) between the 3-

monthly inferred non-CSG methane emission and the rainfall, suggesting that the inferred emission variation could, to some 825 

extent, be attributed to the seasonality of pasture growth and wetlands,  influenced by rainfall. This correlation for the 3-

monthly inferred emissions from the full domain (Figure 17a) is 0.71 and it is -0.06 for those from the CSG subdomain (Figure 

17b). Assuming that the higher the rainfall the higher the grazing cattle (and wetland) emissions, these r values indicate that 

the seasonal variability of the inferred emissions within the full domain is also influenced by grazing cattle, but the inferred 

emission seasonality for the CSG area cannot be linked with grazing cattle seasonality. 830 

Another potential contributor to the temporal variability in the inferred emissions in Figure 17 is the seasonality of the winds 

in the area which influence the source-receptor relationships. We have not explored this possibility here. 

The uncertainties in the inferred seasonal emissions Figure 17 is around 5% of the mean – a relatively small value largely the 

result of a tight prior. 

To test how well the The temporal variations of the inferred emissions represents reality, in Figure 17a and Figure 17b are 835 

qualitatively similar. It is difficult to know whether these variations truly represent reality. Again, we conducted a forward 

TAPM run using these 3-monthly  emissions from the above inversion, and the resulting q-q plots (red dots) are shown in 

Figure 18. The methane data at Burncluith are best described by these 3-monthly varying emissions compared to any other 

emission setup, but at Ironbark, these emissions underestimate the methane data (the inversion setup corresponding to Figure 

15c best describes the Ironbark data).   Additional measured parameters (e.g. tracers), as well as more monitoring stations and 840 

other additional data (e.g. about the prior), would be useful in further constraining the emissions.  

 

 

Figure 17. 3-monthlyTemporal variation of the inferred emissions (bar plots), including  one standard deviation uncertainty (∼5% 
of the mean), for (a) the full study domain, and (b) the CSG subdomain, and (c) the non- CSG subdomain. The respective constant 845 
bottom-up inventory emissions (red line) and the constant inverse/inferred emissions from Case 3c (Figure 13c) are also shown. Note 
the emission units.  
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Figure 18. Q-q plots showing the sorted hourly observed versus the sorted modelled CH4 at the two monitoring stations. The modelled 850 
values (blue dots) are predicted using the emissions from Case -3c inversion (with 3% uncertainty in the prior relative to the mean); 
the red dots are produced from 3-monthly inversions; and the forward model concentrations from Figure 6 predicted using the 
bottom-up emissions are shown as grey lines. Dashed line represents perfect agreement. 

 
Given the rapid rise in the CSG productiondevelopment in the Surat Basin, one may deduce that the 2016 CSG methane 855 

emissions were larger than the 2015 bottom-up emissions and, therefore, could potentially explain the top-down emissions in 

the CSG area being higher than the inventory emissions. Figure 19 shows that compared to July–December 2015, the total 

CSG produced was higher by 32% during January–June 2016 and by 45% during July–December 2016, (which correlates with 

an increase in the number of CSG production wells in the area). However, Figure 19 also shows that there is a downward trend 

in the amount of flared/vented gas. Considering, based on the bottom-up inventory in Section 3, that venting (from processing) 860 

is the biggest contributor (88%) followed by flaring (8%) (from both processing and production) to the total CSG methane 

emissions, it is plausible that despite the increase in the CSG development in the area the CSG-related methane emissions have 

not increased, and that they may have even gone down. The temporal variation of the inferred emissions in However, 

notwithstanding the limited number of data available in deriving the top-down trend in Figure 17b and the 2015 bottom-up 

inventory used as the prior and assuming that the CSG area remains the same, this figure for the CSG dominated area also 865 

does not indicatesupport any consistent increase in emissions from 2015 to 2016. As stated in Section 3, the main contributor 

to the total inventory CSG methane emissions was venting, followed by flaring. Figure 16 suggests that although the amount 

of CSG produced steadily increased until 2017, the amount of venting/flaring does not show any such trend. As a matter of 

fact, overall, there is a decreasing trend in venting/flaring. Therefore, an increase in the amount of CSG produced doesmay not 

necessarily mean that the methane emissions would have increased proportionally. Thus, the 33% higher top-down emission 870 

estimate from the CSG area compared to the inventory estimate cannot be explained in terms of the growth in the CSG 

production from 2015 to 2016 and is possibly related to underestimated or missing emissions in the inventory. This also implies 

that the emissions from CSG may be more closely related to practices in the industry than to the amount of CSG produced. 
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 875 

 
Figure 19. Six-monthly trends of the total CSG produced, and the amount of flared/vented gas, and number of wells in the Surat 
Basin (data from https://www.data.qld.gov.au/dataset/petroleum-gas-production-and-reserve-statistics1). 

 

7.5 Sensitivity to background methane 880 

Figure 4 shows that there is a slight difference in the estimated background CH4 levels between the two monitoring locations, 

with the Ironbark background methane larger by 1 ppb on average than Burncluith and the standard deviation of the background 

differences being 1.4 ppb, the latter is comparable to the background concentration uncertainty (= 3.5 ppb) considered in the 

inversion. 

We conducted an inverse modelling sensitivity test with the same model setup as that for Figure 13c (Case 3c, with the bottom-885 

up inventory as a Gaussian prior with σp = 3% qp), except that instead of using the background times series that was averaged 

over the two sites we used the respective background timeseries for these sites. The results were virtually the same compared 

to Figure 13c, other than some insignificant changes in areas with low emissions. Table 2 gives the annual inferred emissions, 

which show no sensitivity. 

Our background concentration calculation methodology (Supplement S3) assumes that under very vigorous atmospheric 890 

mixing conditions in the daytime, the measured concentrations within study domain represent methane levels both within and 

outside the domain boundaries, so that the measured concentrations can be taken to represent the background under such 

conditions. Because the background concentration is calculated from the measurements within the source region under study, 

 
1 This data file places the gas fields of Spring Gully and Peat within the Bowen Basin whereas in our bottom-inventory these 
are part of the Surat Basin. This is because of how the gas field zones and basin boundaries are defined. The gas fields 
included in our study are based on their geographic locations relative to the square study domain selected. Adding these two 
gas fields to the Surat Basin does not change the trends shown in Figure 19. 
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there is a possibility that the real background is potentially lower than what we have used. To examine this, another inversion 

sensitivity test was conducted by using an alternate methane background (with all other settings the same as the final Case 3c) 895 

and this is described in detail in the Supplement S5. The alternate background was constructed using the averaged background 

from the two sites and the marine baseline methane measurements from the Cape Grim Baseline Air Pollution Station 

(https://capegrim.csiro.au), located on the north-west tip of Tasmania (40.7ºS, 144.7ºE). The marine baseline methane 

represents concentration levels without the direct influence of the continental sources. The alternate background falls between 

the average Surat background as used in the paper and the Cape Grim baseline and is, on average, lower than the Surat 900 

background by 2.8 ppb. 

The inversion results in Table 2 show that compared to the inferred emissions obtained using the original background methane 

the alternate background gives total emissions that are 6.8% higher, whereas the increase is the smallest at 3.9% in the CSG 

subdomain, and is largest at 8.5% in the non-CSG region. Overall, this increase is expected because the increase in the 

concentration signal by 2.8 ppb as a result of the use of the alternate background (which is 2.8 ppb lower than the original 905 

background) needs to be to accounted for by the inversion by increasing the amount of inferred emissions. We also find that 

the amount of increase in the inferred emissions with the alternate background is almost uniformly spread through the study 

domain, and there are no significant spatial distributional shifts in the inferred emissions with the two background choices. 

This means that if these emissions are used in a forward model simulation, they would lift the modelled concentrations 

throughout the region by a very similar amount (probably by 2.8 ppb). 910 

 

Table 2: Inferred emissions (×106 kg yr-1) obtained using: the methane background averaged over the two sites (as used in the 
paper, Case 3c), the individual methane background from the two sites, and the alternate methane background calculated using 

the Cape Grim baseline methane data (see Supplement S5). The values in the parentheses are % change over the inferred 
emissions using the averaged background. The bottom-up inventory emissions are also included for comparison. 915 

 

Methane background Total 
 

CSG subdomain
 

Non-CSG 
subdomain  

Average background 
(as used in this paper)

165.8 63.6 102.2 

Separate backgrounds
from the two sites  

164.8 
(-0.6%) 

62.7 
(-1.4%) 

102.1 
(-0.1%) 

Alternate background
(see Supplement S5) 

177.0 
(+6.8%)

66.1 
(+3.9%) 

110.9 
(+8.5%) 

Bottom-up inventory 173.2 47.7 125.5 
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8 Conclusions 

This paper presenteds both top-down and bottom-up quantification of gridded methane emissions from the CSG producing 

Surat Basin, an area of 350 × 350 km2 in Queensland, Australia. The 2015 bottom-up methane emission inventory served as a 920 

very useful prior in our regional top-down methodology based on a Bayesian inference approach that utilised hourly-mean 

CH4 concentrations monitored at the Ironbark and Burncluith stations for 1.5 years, hourly source-receptor relationship, and 

an MCMC technique for posterior PDF sampling. 

The largest contribution to the emissions in the bottom-up methane inventory is from grazing cattle (∼50%), cattle feedlots 

(∼25%), and CSG processing (∼8%), with the aggregate emissions in the study area being approximately 173.2 × 106 kg CH4 925 

yr-1. Although the forward transport modelling with the bottom-up emissions yielded a credible simulation of the suitably 

filtered observed methane concentrations, about 15% of the higher-end concentration observations were underestimated. 

The top-down Bayesian inverse approach demonstrated that even when we do not specify an informative prior, the source 

signal inherent in the methane observations from only two sites constrains the total emission well. But, in contrast to the 

inventory emissions, the inferred emissions are more intensely located in the centre of the study region and less in regions that 930 

are farther. The importance of specifying a suitable prior in the Bayesian inference was apparent, with the bottom-up inventory 

proving very valuable for that purpose. Particularly, a Gaussian prior having mean values taken the same as the bottom-up 

emissions with an uncertainty equal to 3% of the mean yielded the best emission distribution, as evident from its performance 

in faithfully reproducing the measured methane concentration timeseries. This inverse setup yielded a domain-wide emission 

of 165.8 × 106 kg CH4 yr-1 which is very slightly less than the one obtained from the bottom-up inventory. However, within a 935 

subdomain covering all the CSG source areas, the inferred emissions 63.6 × 106 kg CH4 yr-1areis  33% larger than thatose 

deduced from the bottom-up inventory. The dominant localised inventory emissions in this area are from CSG, followed by 

feedlots. Since feedlots are scattered throughout the domain including the non-CSG areas from where there is no inference of 

higher emissions, it is plausible that the increase in the inferred emissions would mainly correspond to CSG as the source 

sector. 940 

The source-receptor relationship showed that having only two monitoring stations is inadequate for sampling distant source 

areas within the large study domain, especially areas in the south-east and north-west corners (the network design for the two 

monitoring stations mainly focused on the central CSG regions). Lengthening the measurement period to sample these areas 

better would not have helped because the wind climatology of the area is not likely to change considerably. When source areas 

are not sampled well, one may impose stricter priors that are more credible than the inferred emissions, or alternatively increase 945 

the number of stations. The former strategy is probably reflected in our use of a small uncertainty in the prior (i.e. 3% of the 

mean) for the best inversion case. A smaller prior uncertainty pushes the inversion more towards the prior itself with distant 

source areas not sampled sufficiently by the network sites looking like the prior distribution. A larger prior uncertainty results 

in the inversion moving towards higher emissions for sources that are close to the monitoring stations. 
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The inverse methodology could not distinguish between different source categories, mainly because the concentration of 950 

methane alone was monitored and not tracers specific to methane source types. To do source discrimination and attribution, 

monitoring of tracer species such as methane isotopes (13CH4, CH3D and 14CH4), or other hydrocarbons in cases where they 

are associated with the source gas, would prove useful when suitable sampling systems or instrumentation for field deployment 

become available. 

The methods developed in this study could be used to improve the monitoring and management of greenhouse gas and other 955 

air emissions from the onshore gas industry, including that in the Surat Basin. They provide independent information to 

industry and communities living in gas development regions on one of the main environmental impacts potentially arising 

from onshore gas developments. Improved quantification of methane emissions on the regional scale is an important step in 

emissions reductions from the onshore gas sector and possibly other industries. The present top-down method is particularly 

suited to distributed emissions with potentially unknown locations across a large geological gas reservoir and gas production 960 

infrastructure. If monitoring is deployed before gas exploration and production begins then a baseline would be established 

from which emissions from the industry might be detected. Ongoing top-down quantification, with monitoring stations located 

close to where emissions appear and with source-specific information from tracers could provide the information necessary to 

validate emissions from the gas industry to support greenhouse gas inventories.   
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Abstract. Methane (CH4) is a potent greenhouse gas and a key precursor of tropospheric ozone, itself a powerful greenhouse 10 

gas and air pollutant. Methane emissions across Queensland’s Surat Basin, Australia, result from a mix of activities, including 

the production and processing of coal seam gas (CSG). We measured methane concentrations over 1.5 years from two 

monitoring stations established 80 km apart on either side of the main CSG belt located within a study area of 350 × 350 km2. 

Using an inverse Coupling bottom-up inventory and inverse modelling approaches coupled with a bottom-up inventory, we 

quantify methane emissions from this area. The inventory suggests that the total emission is 173.2 × 106 kg CH4 yr-1, with 15 

grazing cattle contributing about half of that, cattle feedlots ∼ 25%, and CSG Processing ∼ 8%. Using the inventory emissions 

in a forward regional transport model indicates that the above sources are significant contributors to methane at both monitors. 

However, the model underestimates approximately the highest 15% of the observed methane concentrations, suggesting 

underestimated or missing emissions. An efficient regional Bayesian inverse model is developed, incorporating an hourly 

source-receptor relationship based on a backward-in-time configuration of the forward regional transport model, a posterior 20 

sampling scheme, and the hourly methane observations and a derived methane background. The inferred emissions obtained 

from one of the inverse model setups that uses a Gaussian prior whose averages are identical to the gridded bottom-up inventory 

emissions across the domain with an uncertainty of 3% of the averages best describes the observed methane. Having only two 

stations is not adequate at sampling distant source areas of the study domain, and this necessitates a small prior uncertainty. 

This inverse setup yields a total emission of 165.8 × 106 kg CH4 yr-1, slightly smaller than the inventory total. However, in a 25 

subdomain covering the CSG development areas, the inferred emissions are 63.6 × 106 kg CH4 yr-1, 33% larger than those 

from the inventory. We also infer seasonal variation of methane emissions and examine its correlation with climatological 

rainfall in the area.within the full study domain, and CSG and non-CSG subdomains. 

  



2 
 

1 Introduction 30 

Methane (CH4) is a potent greenhouse gas with a global warming potential 84 times greater than carbon dioxide (CO2) over a 

20-year period and 28 times greater over a 100-year period (IPCC, 2014). It is emitted by both anthropogenic activities (e.g. 

such as coal mining and the raising of cattle) and natural sources (e.g. wetlands). In terms of anthropogenic radiative forcing, 

methane is the second most important greenhouse gas after CO2. Globally averaged surface CH4 concentrations have increased 

by almost 160% since pre-industrial times, from a level of 73122 ppb (by volume) in 1750 to 1859 ppb in 2018 (Meinshausen 35 

et al., 2017; WMO, 2018; Rubino et al., 2019), and this increase has been largely due to changes in anthropogenic methane 

(e.g., IPCC, 2014). Compared to CO2, the atmospheric lifetime of methane is much shorter (∼ 10 years), which means that 

near-term warming of the climate could diminish following mitigation actions that reduce methane emissions.  Being 

chemically reactive, methane also plays an important role as a precursor to tropospheric ozone, itself a greenhouse gas and an 

air pollutant affecting human health and plant productivity. Thus, understanding and quantifying methane emissions at various 40 

scales is crucial to studying changes in atmospheric radiative forcing and air quality. 

Globally, a top-down estimate over the period 20080-2017 suggests that agriculture and waste contribute to about 560% of the 

total anthropogenic methane emissions, followed by fossil fuel production and use (gas, oil, coal mining and industry) at 315% 

(Saunois et al., 2020). However, a study using measurements of carbon-14 in methane recently showed that nearly all methane 

from fossil sources is anthropogenic, contrasting with the bottom-up estimates of significant natural geologic seepage (Etiope 45 

et al., 2019; Etiope and Schwietze, 2019), and that fossil fuel methane emissions may be underestimated by up to 40% (Hmiel 

et al., 2020). Significant CH4 emissions from conventional and unconventional gas fields have been reported in the scientific 

literature (e.g., Brandt et al., 2014; Schneising et al., 2014; Alvarez et al., 2018). 

In the Australian state of Queensland, since the mid-2000s there has been a rapid growth of the production of coal seam gas 

(CSG), which is virtually pure methane (Towler et al., 2016; DNRM, 2017). CSG, also known as coalbed methane, is classed 50 

as an unconventional natural gas, typically extracted from coal seams at depths of 200–1000 m. As of 2015-16, 96% of the gas 

production in Queensland was CSG, with most of it coming from the Surat Basin (78%, 21187 Mm3) and the rest (18%, 4958 

Mm3) from the Bowen Basin (DNRM, 2017). With the sharp rise of CSG production, methane emissions from the Surat Basin 

are a focus of Australia’s CSIRO Gas Industry Social and Environmental Research Alliance (GISERA) (https://gisera.csiro.au) 

research in Air Quality and Greenhouse Gas. The Surat Basin is predominantly rural, and methane sources other than CSG 55 

include agriculture and coal mining. CSG activities that lead to potential methane emissions include CSG wells, pumps, 

pipelines, vents, pneumatic controls, and produced water bodies (Day et al., 2013).  

The objective of the present paper is to quantify methane emissions from a region of 350 × 350 km2 of Queensland’s side of 

the Surat Basin (Figure 1Figure 1, covering the area 148° 17’ 43.4”–151° 49’ 30.5” E, 25° 3’ 48.8”–28° 5’ 3.7” S) that 

encompasses the main CSG production and processing areas using a top-down approachtechnique coupled withassisted by a 60 

bottom-up emission inventory that serves as a prior. The latter involves deriving emissions through a compilation of sources 
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and activity data and application of emission factors. We conducted concurrent in-situ atmospheric monitoring of methane 

during July 2015 – December 2016 at two locations, namely Ironbark and Burncluith, 80 km from each other. The two stations 

were setup such that they were on either side of the broad present and projected CSG work area in the Surat Basin. The 

measured concentrations allow for an atmospherically based validation of the bottom-up inventory by using it in a forward 65 

mesoscale meteorological and transport model , namely TAPM (see Section 4.1), and comparing the predicted methane 

concentrations with the measurements at the two sites. 

The main focus in the paper is on the formulation of aAn efficient top-down, or inverse, modelling methodology for regional 

scale (~ 100–1000 km) is formulated, and its appliedcation to quantify CH4 emissions in the Surat Basin. It combines a 

Bayesian inference approach, an hourly-averaged high-resolution backward-in-time construction of the forward mesoscale 70 

meteorological and transport model TAPM, and a posterior probability density function (PDF) sampling scheme. A method to 

correct for time-lag effects in the backward plume methodology is presented. The 1.5 years long hourly methane measurements 

from the two stations are combined in a Bayesian calculation to derive a top-down emission distribution. Methane background 

calculation and filtering methodologies are devised. Various Bayesian priors and their uncertainties, including the use of the 

bottom-up emissions to act as a prior, are tested. The inferred top-down CH4 emissions are examined alongside the bottom-up 75 

inventory emissions for the whole study domain as well as subdomains containing the CSG and non-CSG activities. We also 

compare the performance of the top-down emissions method by comparing the modelled methane concentrations obtained 

using the top-down derived emissionsthem in forward modelling with the observed concentrations. To our knowledge, this 

study is the first in Australia to quantify regional scale CH4 emissions through a top-down approach employing transport 

modelling and concentration measurements, although studies at other spatial scales with broadly similar approaches have been 80 

reported, e.g. by Luhar et al. (2014) and Feitz et al. (2018) for single point sources at local scale and by Wang and Bentley 

(2002) at continental scale with Australian methane emissions divided into eight source regions. 
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Figure 1.  (a) Map of Australia, showing the 350 × 350 km2 study domain (red square) of Queensland’s part of the Surat Basin. The 
base relief map is from https://www.mapsland.com/oceania/australia/large-relief-map-of-australia (used under Creative Commons 
Attribution-ShareAlike 3.0 Licence); (b) orography of the study domain, with terrain elevation ranging approximately between 100 
m (green) and 1140 m (red) above sea level; (c) a Google Earth map of the study domain showing the surface characteristics. The 
Ironbark and Burncluith monitoring sites, and the three biggest towns of Dalby, Roma and Chinchilla (population ∼ 12700, 6850 90 
and 6600, respectively) in the area are also shown in (b) and (c). 

2 Monitoring and data filtering 

We set up two monitoring stations, namely Ironbark (150° 14’ 37.6” E, 27° 8’ 6.6” S; 226.806 km east, 6995.596 km north 

MGA (Map Grid Australia), Zone 56) and Burncluith (150° 42’ 5.4” E, 26° 34’ 2.4” S; 271.051 km east, 7059.430 km north 

MGA, Zone 56), located about 80 km apart on two sides of the main coal seam gas belt of the Surat Basin (Figure 1Figure 95 

1b,c). The selection of the site locations was largely based on a meteorological and dispersion modelling study (Day et al., 

2015; Etheridge et al., 2016) that suggested that with the prevailing winds from the north-east and south-west quadrants, long-

term continuous monitoring of greenhouse gas concentrations at these two locations would optimise the size and frequency of 

detection of methane emissions from the broader CSG source region without being unduly impacted by individual sources in 

the proximity of the measurement sites. There were other practical considerations, namely access, power, security, landowner 100 

assistance and possible future developments that would impact the site. 

Continuous high frequency (∼ 0.3 Hz) measurements of the concentrations of CH4, CO2 and water vapour (and also carbon 

monoxide (CO) at Burncluith) were made at the two sites for about three years with an overlapping period of 1.5 years (July 

2015 to December 2016) using Picarro cavity ring down spectrometers (model G2301 at Ironbark, and G2401 at Burncluith) 

with inlets placed on masts at a height of 10 m. The installations are described by Etheridge et al. (2016). Measured 105 

concentrations (strictly speaking, mole fractions in dry air, also volumetric mixing ratios) from each site can be exactly 

intercompared due to identical calibrations and measurement methodologies. The additional CO measurements at Burncluith 

are useful in detecting combustion sources of CO2 and CH4. Measurement accuracy was better than ± 0.1 ppm for CO2 and ± 

(a) (c) (b) 
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1 ppb for CH4 (Etheridge et al., 2014). Concurrent meteorological observations included winds measured at 5.8 m AGL (above 

ground level) (AGL) at Ironbark and at 7.6 m AGL at Burncluith using sonic anemometers. 110 

The Burncluith station was located on a private farm and there were 30–40 cattle in the adjoining paddocks next to it. 

Occasionally, under suitable meteorological conditions with the cattle upwind of the inlet, the emissions from the local cattle 

caused one or many sharp peaks in the observed methane signal, typical of a nearby point source. We developed a method 

which removes these sharp, transient peaks but does not alter the underlying signals from the numerous, region-wide feedlots, 

grazing cattle or other sources. This filtering method is described in the Supplement S1.1 and, for consistency, was also applied 115 

to the data from Ironbark, although local cattle are less in number and further away at this site. 

Frequently, high methane concentrations at the two sites were observed at night under light wind stable conditions, particularly 

at Burncluith. Despite being of much practical interest, however, light winds are difficult to represent in a mesoscale 

meteorological and transport model. The causes for that include inadequate physical understanding of light-wind processes, 

flow properties being very sensitive to local topography, and model resolution constraints (Luhar and Hurley, 2012). As a 120 

practical measure, we filtered out the nighttime sampling hours for light wind conditions, and this method is described in the 

Supplement S1.2. 

Methane emissions due to biomass burning are not part of the bottom-up inventory that we consider in the present modelling 

due to their being sporadic and highly unpredictable. Enhanced levels of CH4 and CO were detected at Burncluith in the course 

ofduring forest fires in the northern sector of Burncluith and wood-heater operations from the property located in the proximity 125 

of the monitoring station. The observed CO was used to filter out these occasional biomass burning events from the measured 

concentration time series, an approach similar to that used by Jeong et al. (2012). Details of the CO filter are given in the 

Supplement S1.3. 

The number of data hours after the filtering was 6432 for Ironbark and 4149 for Burncluith (cf. the original, valid number of 

data points of 10938 and 12660, respectively).  Unless stated otherwise, the filtered CH4 data were used for our analysis and 130 

modelling. 

3 Bottom-up emission inventory 

Activity data for the year 2015 were used to develop a bottom-up emission inventory for methane for the Surat Basin. The 

emission inventory covered a domain of 345 × 345 km2 with a spatial resolution of 1 × 1 km2. Standard methodologies were 

generally adopted with data from various State and Federal Government Departments (e.g. (National Pollutant Inventory (NPI), 135 

National Greenhouse and Energy Reporting (NGER), and National Resource Management (NRM)). The bottom-up inventory 

included the following fourteen emission sectors: (1) feedlots, (2) grazing cattle, (3) piggeries, (4) poultry farms, (5) power 

stations, (6) coal mining, (7) CSG processing, (8) CSG production, (9) domestic woodheating, (10) vehicular traffic, (11) land-

fills, (12) sewage treatment plants, (13) river seepage, and (14) geological seepage. The first four can be grouped as agricultural 
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activities. The inventory excluded CH4 emissions from burning of biomass, land clearing, termites, ground-water wells (that 140 

were registered), wetlands, or fuel consumption and any material handling related to mining activities. Additional details 

pertaining to the bottom-up inventory compilation are briefly given in the Supplement S2, with a full report (Katestone, 2018) 

given in the Supplement S65. 

Figure 2Figure 2 presents the bottom-up inventory emissions attributed to the various sectors in the Surat Basin, with the total 

emissions being 173.2 × 106 kg CH4 yr-1. Grazing cattle has the largest contribution, followed by cattle feedlots and CSG 145 

processing. We use this emission inventory for our study duration, July 2015–December 2016, with the assumption that any 

emission changes from the year 2015 to 2016 were insignificant. It is also assumed that all emissions are invariant with time. 

Although diurnal and seasonal variations for some emissions, viz. wood-heating, traffic, and power plant, are available in the 

raw data used in the inventory, contributions from these emissions are amongst the smallest and, therefore, we averaged these 

emissions over the full year for the purpose of computational efficiency in the modelling conducted here. 150 

 

 

Figure 2. Bottom-up methane inventory emissions from the Surat Basin by sector/source; % of the total also shown. The total 
emission is 173.2 × 106 kg CH4 yr-1. 

 155 

Figure 3Figure 3a presents the distribution of inventory methane emissions (kg yr-1 gridcell-1) regridded at a grid resolution of 

5 × 5 km2 (69 × 69 grid points). There are localised sources as well as extensive, uniformly distributed source areas. The latter 

are emissions due to grazing cattle. These emissions are plotted in Figure 3Figure 3b in which four different coloured areas 
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are the so-called National Resource Management (NRM) regions. In each of these regions the available total number of grazing 

cattle was distributed uniformly, with the total number of grazing cattle in the study area being 1,086,059. There were 235 160 

cattle feedlots and Figure 3Figure 3c shows the distribution of their emissions. These are localised, but distributed throughout 

the region, with some located between the two monitoring stations. Two mining source areas are also located between the two 

monitoring stations (Figure 3Figure 3d). 

The CSG emissions are shown in Figure 3Figure 3e (processing) and Figure 3Figure 3f (production). The CSG production 

emissions are from wellhead (separators, wellhead control equipment, maintenance and leaks), combustion (flaring, well head 165 

pumps, backup generators, and diesel used by vehicles) and pipeline emissions (high point vents on produced water pipelines 

and pipeline control equipment) (Day et al., 2013). The CSG processing sources consist of processing facility emissions 

(control equipment, compressor venting, and gas conditioning units), combustion emissions (flaring, plant compressors, 

backup generators, and diesel used by vehicles), and collection and storage of water produced. Emissions from some of the 

CSG sources are continuous while others are intermittent (however, the inventory assumes all CSG emissions are time 170 

invariant). There were 5 CSG operators with 13 processing facilities and 4628 wells within the study domain. The well numbers 

included CSG producing (∼ 85%) as well as exploration/appraisal/capped wells. Because of insufficient information, methane 

emissions from two of the five operators are not part of the inventory, but it was established that these two operators, with a 

total of 256 wells, only accounted for about 1.5% of the CSG activities that may be related to emissions. The biggest contributor 

to the total CSG methane emissions was venting (88%) from processing., Methane from produced water is a component of 175 

both CSG production and processing is an important source (e.g. Iverach et al., 2015). It was included under ventingI and 

wasis calculated at 1.63 × 106 kg yr-1 (∼10% of the total CSG emissions). Contribution from flaring was about 8%. 

All major bottom-up emissions, namely from grazing cattle, feedlots, CSG processing and production, and coal mining, have 

potentially significant uncertainty, arising from uncertainty in both the activity data and emission factors, for example their 

potential temporal variation and how up to date they are with respect to the study period considered. 180 
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Figure 3. Bottom-up methane inventory emissions from the Surat Basin (kg CH4 yr-1 gridbox-1, the grid-box size is 5 × 5 km2). Also 185 
shown are the Ironbark and Burncluith monitoring sites, and the three biggest towns. (a) All emissions, and those due to (b) grazing 
cattle, (c) cattle feedlots, (d) coal mining, (e) CSG processing, and (f) CSG production. 
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4 Modelling regional methane using the bottom-up emission inventory 

We use the above inventory emissions in a (forward) regional meteorological and transport model and compare the modelled 

methane with the ambient measurements from the two sites. 190 

4.1 Model and configuration 

The prognostic, nestable, mesoscale model used is The Air Pollution Model (TAPM vn4.0.5) developed by CSIRO, which has 

coupled meteorological and dispersion components and which is designed for applications ranging in scale from local to 

regional (~ < 1000 km) (Hurley et al., 2005; Hurley, 2008).  

The meteorological component of TAPM predicts the local-scale flow against a background of larger-scale meteorology 195 

provided by the input synoptic-scale analyses (or forecasts). It solves momentum equations for horizontal wind components; 

the incompressible continuity equation for the vertical velocity in a terrain-following coordinate system; and scalar equations 

for potential virtual temperature, specific humidity of water vapour, cloud water/ice, rainwater and snow. Explicit cloud 

microphysical processes are included. Pressure is determined from the sum of hydrostatic and optional non-hydrostatic 

components, and a Poisson equation is solved for the non-hydrostatic component (not used here). Turbulence closure in the 200 

mean prognostic equations uses a gradient diffusion approach with non-local or counter-gradient corrections, which depends 

on eddy diffusivity (K) and gradients of mean variables and a mass-flux approach. The eddy diffusivity K is determined using 

prognostic equations for the turbulent kinetic energy (E) and its dissipation rate (ε). A vegetative canopy, soil scheme, and 

urban scheme are used at the surface, while radiative fluxes, both at the surface and at upper levels, are also included. Surface 

boundary conditions for the turbulent fluxes are determined using the Monin-Obukhov similarity theory and parameterisations 205 

for stomatal resistance. 

The dispersion module makes use of the predicted finer-scale meteorology and turbulence fields from the meteorological 

component, andcomponent and comprises a default Eulerian grid-based conservation equation for species concentration 

(Hurley et al., 2005).  The model has previously been applied to a variety of flow, turbulence and dispersion problems at 

various scales, such as those reported by Luhar and Hurley (2003), Luhar et al. (2008), Hurley and Luhar (2009), Luhar and 210 

Hurley (2012), Luhar et al. (2014), Matthaios et al. (2017), and Luhar et al. (2020), which include model evaluation studies. 

TAPM can be used in a one-way nestable mode to improve efficiency and resolution. The global databases input to the model 

include land use, terrain height, leaf-area index, synoptic-scale meteorological reanalyses, and sea-surface temperature (SST). 

We applied TAPM for the duration 1 July 2015 – 31 December 2016 withby using two nested domains for both meteorology 

and dispersion: 370 × 370 km2 with grid resolution 5 × 5 km2 and 1110 × 1110 km2 with grid resolution 15 × 15 km2. Both 215 

domains had 75 × 75 grid points and were centred on (150°4.5’ E, 26°35’ S), which is equivalent to 208.657 km east and 

7056.383 km north in MGA. There were 25 vertical levels, of which the lowest four were 10 m, 25 m, 50 m and 100 m AGL. 

The input synoptic-scale fields of the horizontal wind components, temperature and moisture required as boundary conditions 
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for the outermost model domain were sourced from the U.S. NCEP (National Centers for Environmental Prediction) reanalysis 

database given at a resolution of 2.5° latitude × 2.5° longitude at 6-hourly intervals (Kalnay et al., 1996; 220 

https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.html). The model outputs hourly-averaged fields of meteorology and 

concentration. 

The bottom-up inventory emissions lie within the inner model domain. In this model setup, each inventory emission grid cell 

(at 5 × 5 km2) was considered as a surfacean area source, apart from the emissions from the power stations which were taken 

as point sources together with specification of their stack heights and plume-rise parameters. For computational efficiency, 225 

rather than considering  all 14 emission categories plotted in Figure 2Figure 2 as separate sources, we aggregated them into 9 

sectors with each sector taken as a tracer source: Grazing cattle (Source 1); Feedlots, Piggeries and Poultry (Source 2); CSG 

Processing (Source 3); CSG Production (Source 4); Mining (Source 5); River seeps (Source 6); Domestic wood heating, 

Wastewater treatment and Motor vehicles (Source 7); Ground seeps and Landfill (Source 8); and Power stations (Source 9). 

The relative emissions (%) of the above nine Sources are 53.8, 25.8, 8.4, 1.1, 8.3, 0.21, 0.82, 1.2 and 0.37%. 230 

4.2 Estimation of background methane concentration 

Since the simulated methane does not include the background levels that are representative of methane emissions located 

outside the bottom-up inventory, we devised a method for estimating hourly varying background CH4 for each site involving 

concentrations under high atmospheric mixing conditions and the hourly standard deviation of concentration (see details in the 

Supplement S3). The estimated background concentration can be either added to the simulated methane or subtracted from the 235 

observed methane. 

The estimated background methane concentration time series for Ironbark and Burncluith look very similar, and in Figure 

4Figure 4 we present the average (green line) of the two background time series. The plot shows a marked seasonal variation 

in the background methane with a peak in September (early spring) and a minimum in February (late summer). To view the 

background variation with respect to the measured methane signal, we also present in Figure 4Figure 4 as dot points the 240 

unfiltered hourly mean observations (clipped at 2100 ppb) at Ironbark. The uncertainty (one standard deviation) in the 

background CH4 is 3.6 ppb and 3.3 ppb for Ironbark and Burncluith, respectively. The difference between the estimated 

background at Ironbark and that at Burncluith (purple line in Figure 4Figure 4) is small and within ± 5 ppb. Any difference 

between the two backgrounds could be due to different sites in the study area getting impacted by different out-of-domain 

emissions depending on the transport meteorology. On average, the background concentration at Ironbark is greater by 1 ppb, 245 

and the standard deviation of the difference is 1.4 ppb. The average of the two background time series is taken to represent the 

regional hourly background CH4 concentration, with an average uncertainty of 3.5 ppb. Sensitivity of the inferred emissions 

to other choices of the background concentration is examined in Section 7.4. 

 
 250 
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Figure 4. Estimated average hourly-averaged background CH4 concentration time series (green line), and the difference between 
the estimated backgrounds between Ironbark and Burncluith (purple line). The data points are the hourly mean measurements at 
Ironbark without any filtering (clipped at 2100 ppb to make the background concentration variation stand out better). 255 

 

4.3 Model performance for meteorology 

Accurate modelling of the flow field over our region of interest is important as it controls the atmospheric plume transport and 

dispersion which in turn influences the accuracy of prediction of CH4, and conversely the accuracy of inferred emissions. The 

hourly-averaged predicted winds extracted from the model output for the inner nest at the lowest model vertical level (10 m) 260 

at the grid point nearest to each of the two monitoring stations were compared with the observations from the two stations for 

the duration of the simulation, with the missing data hours not considered. The details of the model performance for 

meteorology is given in the Supplement S4. At both sites, the measured winds were most frequent from the north-east sector, 

with those at Burncluith being generally weaker in strength than those at Ironbark. As judged from the correlation coefficient 

(r) and index of agreement (IOA) values, the performance of TAPM for wind speed and wind direction was comparable to 265 

that obtained in other TAPM modelling studies (see the Supplement S4). 
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4.4 Modelled methane compared to observations 

The monitoring sites were selected to avoid potential large, sustained methane sources within 10-20 km or even small sources 

within about a kilometre of the measurement inlet. Small sources that were closer to the inlets (mainly Burncluith) were 

identified and their signals filtered from the data as described in Section 2. As a result, we expect that the hourly-averaged 270 

filtered data are as representative as possible of the atmospheric methane concentration across the 5 × 5 km model grid cell 

containing the observation site, and can be directly compared to the model simulations. 

The hourly-averaged modelled methane concentrations on the innermost grid domain were extracted at the lowest model level 

at the grid point nearest to each of the monitoring sites for comparison with the observations. The hourly-averaged 

concentrations simulated for the individual 9 source categories were aggregated and added to the estimated background 275 

concentration to compare with the observed, filtered CH4 concentrations. 

The scatter plots in Figure 5Figure 5 comparing the modelled and observed CH4 at the two sites display a substantial  degree 

of scatter, which is not unusual for atmospheric transport and diffusion models driven by predicted meteorology and using 

hourly-averaged concentrations paired in both time and space (e.g. Luhar et al., 2008). While the correlation coefficient values 

of 0.57 and 0.74 for Ironbark and Burncluith, respectively, imply a reasonable model prediction (see Table 1Table 1 for 280 

additional model performance statistics for the inventory emissions), it is clear that the modelled levels are generally lower 

than the observations, particularly the higher-end concentrations at Ironbark. 

There could be various reasons for the differences between the modelled and observed methane, including uncertainty 

associated with the bottom-up emission inventory, its potential temporal variation, sources missing from the emission 

inventory, potential changes to the 2015 bottom-up inventory used here in the year 2016 (see Section 7.4), and the general 285 

modelling uncertainty, including that related to representing point measurements by grid-cell averaged model values. 

 

 

Figure 5. Hourly-averaged observed methane plotted against the simulated methane for the two monitoring stations. The solid line 
is the least-squares fit, and the dashed line is the 1:1 line (i.e. perfect agreement). 290 
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The comparison in Figure 5Figure 5 involving hourly methane paired in time and space enables a simple, yet stringent, 

validation check of a transport model, especially one that is driven by  turbulent flow fields predicted by a prognostic 

meteorological model instead of observations. A complementary but less stringent approach in validating air quality models 

is the quantile-quantile (q-q) plot, which is a graphical technique for testing “goodness of fit” between two distributions. In 295 

such a plot, typically, sorted modelled concentrations are plotted against sorted observed values (i.e. unpaired in time) at a 

monitoring location (e.g., Venkatram et al., 2001; Luhar and Hurley, 2003; 

http://www.itl.nist.gov/div898/handbook/eda/section3/qqplot.htm). If the two sets come from a population with the same 

distribution, the data points should fall approximately along the 1:1 line. The principal advantage of a q-q plot is that a “good 

fit” is easy to recognize, and various distributional aspects, such as shape, tail behaviour and outliers, can be simultaneously 300 

examined. 

In the q-q plot in Figure 6Figure 6 for Ironbark, the observed CH4 distribution is modelled well for measurements  < 1820 ppb, 

but for higher observed concentrations, which account for approximately 25% of the sample size, the modelled values are 

smaller.  For Burncluith, the q-q plot shows a substantially better model performance, with the model underestimation of 

higher-end (> 1820 ppb) methane observations, which is approximately 10% of the sample size, much reduced compared to 305 

Ironbark. Overall, TAPM is largely predicting the observed CH4 distribution correctly, except for a relatively few higher-end 

concentrations. 

 

 
 310 

Figure 6. Q-q plot showing the sorted hourly-averaged observed CH4 concentrations versus the sorted modelled ones at Ironbark 
and Burncluith. The line of perfect agreement (dashed line) is also shown. 
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4.5 Contribution to the modelled methane by various source categories 

The top four source categories based on their contribution to the modelled CH4 averaged over the full study period at Ironbark 315 

were Source 1 (45%, Grazing cattle), Source 2 (25%, Feedlots, Piggeries and Poultry), Source 3 (19%, CSG Processing), and 

Source 5 (5.5%, Mining). These were the same at Burncluith, but with their respective contributions being 69%, 17%, 6.4% 

and 4.1%. The CSG Production (Source 4) contributions are 2.2% and 0.73%, respectively, at the two sites. 

In contrast, the largest four contributors to the highest 5% of the modelled hourly-averaged methane concentrations (i.e. all the 

concentrations above the 95th percentile) at Ironbark turn out to be Source 3 (35%), Source 2 (27%), Source 1 (25%) and 320 

Source 5 (7%). These at Burncluith are Source 1 (28%), Source 2 (25%), Source 3 (22%) and Source 5 (13%). The CSG 

Production (Source 4) contributes 3.8% and 2.5%, respectively, at the two sites. The Source 2 grouping is dominated by 

Feedlots. 

The CSG Processing (Source 3) emissions are localised near the two sites which result in methane spikes under favourable 

winds and thus contribute more to the higher-end modelled methane than to the overall average methane. In contrast, the 325 

simulation average methane is dominated by Sources 1 and 2 because concentration enhancements due to these sources occur 

under most wind conditions as a result ofbecause of their very wide distribution across the region. 

5 Regional top-down, or inverse, modelling for emission estimation 

Given that the bottom-up emission inventory underestimates the observed methane in the Surat Basin, then one may ask what 

is the magnitudequantity and distribution of methane emissions that is implied by the methane concentration measurements at 330 

Ironbark and Burncluith? This is addressed by the inverse modelling approach for regional emissions formulated and applied 

below. 

5.1 Bayesian inverse modelling approach 

Our inverse model uses a Bayesian inference approach that incorporates, a source-receptor relationship, concentration 

measurements, and prior information on source parameters (i.e. source information obtained independently of the 335 

measurements) (Rao, 2007; Singh et al., 2015). The approach updates the source prior as concentration measurements are 

considered, and accounts for both model and observational uncertainties. 

Several applications using the Bayesian approach have previously been conducted for methane source estimation, including 

those at local scale (Yee and Flesch, 2010; Luhar et al., 2014; Feitz et al., 2018) and regional scale (Jeong et al., 2012; Miller 

et al., 2014; Henne et al., 2016; Cui et al., 2017). 340 

The approach hinges on Bayes’ theorem (Jaynes, 2003): 
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 𝑝(𝐪|𝐜) = 𝑝(𝐜|𝐪) . 𝑝(𝐪)𝑝(𝐜) , (1) 

where the prior PDF 𝑝(𝐪)  reflects our knowledge of the source parameter vector 𝐪 prior to receiving the concentration 

observations 𝐜; 𝑝(𝐜|𝐪) is the likelihood function which is the probability of experiencing 𝐜 for a given 𝐪 and is typically 

obtained using a model-derived source-receptor linkage; the posterior 𝑝(𝐪|𝐜)  relates to the update of  𝑝(𝐪)  by its modulation 

by 𝑝(𝐜|𝐪) which contains the new information brought in by the concentration measurements 𝐜; and 𝑝(𝐜) [=∫ 𝑝(𝐜|𝐪)𝑝(𝐪)𝑑𝐪] 345 

is the evidence and is basically a normalisation constant in the present application (Yee and Flesch, 2010). The likelihood 

function, also termed the source-receptor relationship, is derived using a transport and dispersion model. 

It is assumed that the number of sources (Ns) and their locations ൫𝐱௦,ଵ, … , 𝐱௦,௝, … , 𝐱௦,ேೄ൯ where 𝐱௦,ଵ ≡ ൫𝑥௦,ଵ, 𝑦௦,ଵ, 𝑧௦,ଵ൯ are given 

a priori and the source emissions are positive and non-zero. The emission rates of these sources are to be estimated, and these 

are represented by 𝐪 ≡ ൫𝑞ଵ, … , 𝑞௝, … , 𝑞ேೄ൯ with a total of 𝑁ௌ unknown emission rates. Assuming each source emission to be 350 

independent, the prior PDF can be written as: 

 𝑝(𝐪) = ෑ 𝑝൫𝑞௝൯ேೞ
௝ୀଵ . (2) 

Assuming that the model and measurement uncertainties are independent and distributed normally, the total likelihood of all 

c for a given hypothesis of q is calculated as (Yee, 2012) 

 𝑝(𝐜|𝐪) = ෑ 1√2𝜋൫𝜎௜ଶ + 𝜎௠,௜ଶ ൯ଵ ଶൗ
ே೘
௜ୀଵ exp ൝− ൫𝑐௠,௜(𝐪) − 𝑐௜൯ଶ2൫𝜎௜ଶ + 𝜎௠,௜ଶ ൯ ൡ, (3) 

𝐜 ≡ ൫𝑐ଵ, … , 𝑐௜, … , 𝑐ே೘൯, 𝑐௜ is the observed concentration at i-th instant (time and location), 𝑐௠,௜ is the corresponding modelled 

concentration for a given hypothesis of q, 𝜎௜ is the independent measurement error, 𝜎௠,௜ is the independent model error, 𝑁௠ is 355 

the number of concentration data (which can be time series from several independent monitors). 𝑐௠,௜ for all hypotheses, or 

possible values, for q is calculated and used in constructing the likelihood distribution 𝑝(𝐜|𝐪). Hence the posterior PDF for a 

given source hypothesis q is calculated as: 

 𝑝(𝐪|𝐜) = 1𝑍଴ ෑ 𝑝൫𝑞௝൯ேೞ
௝ୀଵ   ෑ 1√2𝜋൫𝜎௜ଶ + 𝜎௠,௜ଶ ൯ଵ ଶൗ

ே೘
௜ୀଵ exp ൝− ൫𝑐௠,௜(𝐪) − 𝑐௜൯ଶ2൫𝜎௜ଶ + 𝜎௠,௜ଶ ൯ ൡ, (4) 

where 𝑍଴ is equivalent to 𝑝(𝐜) and is essentially a normalisation constant. The posterior yields probabilities of all emission 

rates (q) considered. 360 

The total modelled concentration at a given location 𝐱௥ and time is determined as  
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 𝑐௠,௜ = ෍ 𝑐௠,௜௝.ேೞ
௝ୀଵ  (5) 

Because methane is treated as a passive tracer, the concentration field simulated for one rate of emission can be scaled linearly 

for another without the need to re-run the model. Thus 

 𝑐௠,௜௝ = 𝑞௝𝛼௜௝൫𝐱௦,௝, 𝐱௥,௜൯, (6) 

for each emission rate component of q. The quantity 𝛼௜௝൫𝐱௦,௝, 𝐱௥,௜൯ is the source-receptor relationship or coupling coefficient 

and is equivalent to the modelled mean concentration at a given time and location 𝐱௥,௜ due to j-th source release at location 𝐱௦,௝ 365 

with a unit emission rate. 

In Eq. (4)(4), in the absence of an informative prior, a uniform prior PDF can be used with the given limits (𝑞௠௔௫, 𝑞௠௜௡) 

 𝑝൫𝑞௝൯ = 1𝑞௠௔௫,௝ − 𝑞௠௜௡,௝, (7) 

with the probability being zero outside these bounds. 

If the prior is Gaussian, then 

 𝑝൫𝑞௝൯ = 1√2𝜋 𝜎௣,௝ exp ൝− ൫𝑞௝ − 𝑞௣,௝൯ଶ2𝜎௣,௝ଶ ൡ, (8) 

where 𝑞௣ and 𝜎௣ are the prior mean emission rate and its standard deviation, respectively. 370 

High dimensionality of the posterior makes its direct computation and the subsequent integration (the ‘brute-force’ method) 

over the source-parameter space very expensive or perhaps even impossible. For Gaussian priors and uncertainties, the 

posterior can be solved for the mean and variance with their analytical matrix forms (Tarantola, 2005; Jeong et al., 2012). To 

make the inverse approach more generally applicable and efficient, we use a Markov chain Monte Carlo (MCMC) technique 

incorporating the Metropolis-Hastings algorithm to sample the posterior PDF (Tarantola, 2005; Yee, 2012). With MCMC, 375 

non-Gaussian priors or uncertainties, or parameters with known physical constraints can also be included (Miller et al., 2014). 

The normalization constant 𝑍଴ in Eq. (4)(4) need not be known before MCMC samples can be drawn from the posterior PDF. 

This ability to generate a sample without knowing this constant of proportionality (which is often extremely difficult to 

compute) is a major feature of MCMC algorithms (Luhar et al., 2014). The frequency distribution of the MCMC-generated 

samples represents the posterior. 380 

The posterior PDF can be marginalized to obtain the mean emissions rate for each source as follows: 

 𝑞ത௝ = ∫ 𝑞௝  𝑝(𝐪|𝐜) 𝑑𝐪, (9) 
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and likewise, the variance can also be determined. 

5.2 Construction of the hourly source-receptor relationship 

In order to use hourly measurements, the source-receptor relationship needs to be calculated every hour for every source (real 

or potential) location and every monitor location using either forward or backward transport modelling (Rao, 2007). Generally 385 

speaking, if the number of source locations under consideration is greater than the number of receptor locations (as for the 

present case) then the backward approach is much more computationally efficient (Luhar et al., 2014). 

In the backward approach, source emissions arematter is tracked backwards in time from a monitor treated as a source. The 

value at a given point of the constructed backward concentration field is analogous to the magnitude of contribution made by 

an emitting source at that point to the true (i.e. forward) modelled concentration at the monitor. Hence, we can use a single 390 

backward source-receptor relationship distribution determined every hour to get the contribution made by each real or potential 

source located in the domain. This contrasts with the forward modelling approach in which each source location must be 

considered as a unique, separate source and its dispersion computed for every hour. Essentially, the source-receptor 

relationship furnishes a way to chart the distribution of source potential within given geographical domain. However, it does 

not quantitatively allocate the real contribution of sources within the domain to the concentration levels detected at monitoring 395 

stations— this is done by the Bayesian inference (Eq. (4)(4)). 

One backward approach for regional scale is to use backward trajectories constructed by only using three-dimensional winds 

computed from a meteorological model (e.g., Cheng et al., 1993). However, such wind trajectories only represent advective 

transport and do not account for turbulent mixing which causes a plume to disperse as it travels in the atmosphere. If 

measurements given at a high temporal resolution, e.g. hourly averages, are to be used for inversion it is necessary that the 400 

influence of atmospheric flow and dispersion processes that occur at such scales is considered. This can only be properly done 

by simulating backward tracer plumes which considers both advection and turbulent mixing.  

We modify TAPM to construct backward dispersing plumes. The Eulerian dispersion module in TAPM comprises a solution 

of the advection-diffusion equation for the ensemble mean concentration c, which for a passive species is (e.g. Yee et al., 

2008): 405 

 𝜕𝑐𝜕𝑡  + 𝐮ഥ . 𝛻𝑐 −  𝛻.  (𝐊  𝛻𝑐) = 𝑆, (10) 

in which the unknown turbulent flux terms are closed using the K-theory or gradient transport approach. The forcing term S 

represents species emissions. The elements of the eddy diffusivity tensor K are zero except along its main diagonal (Kx, Ky, 

Kz). The Ddiffusion is assumed to be symmetric in the horizontal plane, so 𝐾௫ = 𝐾௬ = 𝐾ு (say). KH and Kz are determined 

using the modelled turbulent kinetic energy (TKE) and the TKE dissipation rate. 
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The vertical component 𝑤ഥ  of the mean wind vector 𝐮ഥ  (≡ 𝑢ത, 𝑣̅, 𝑤ഥ) in Eq. (10)(10) is determined by using the continuity 410 

equation after the mean horizontal wind velocity components (𝑢ത, 𝑣̅) are calculated. 

The Eulerian adjoint of Eq. (10)(10) describes the backward evolution of a scalar field (𝑐∗), and is also termed backward or 

retro plume, adjoint function, sensitivity function, or influence function, and is given as (Marchuk, 1995; Pudykiewicz, 1998; 

Hourdin and Talagrand, 2006; Yee et al., 2008) 

 − 𝜕𝑐∗𝜕𝑡 − 𝐮ഥ . 𝛻𝑐∗ − 𝛻. (𝐊 𝛻𝑐∗) = 𝑀, (11) 

where M is the forcing term representing the measurement distribution, which is treated as a source at the measurement (or 415 

receptor) location. Therefore, 𝛼௜௝ in Eq. (6)(6) is equivalent to 𝑐∗ derived for a unit emission rate. 

The implementation of Eq. (11)(11) in TAPM wasis done through changes in the forward model code as follows. The 

meteorological and turbulence fields calculated by the model at every hour (not hourly-averaged) wereare stored for the full 

simulation period. The modelled horizontal components (𝑢ത, 𝑣̅) of wind wereare reversed (i.e. by sign change). The (inverted) 

vertical wind component (𝑤ഥ) wasis then calculated by solving the continuity equation given the reversed horizontal wind 420 

components. The turbulence parameters values remained the same. The diffusivities in the dispersion component are positive 

and do not have any correction for counter-gradient flux in the vertical, and, therefore, they were not modified for the backward 

mode. The two monitor locations were treated as separate ‘sources’ each having unit emission, and hourly-averaged plume 

dispersion fields due to these ‘sources’ was determined by running the TAPM dispersion module backwards in time for the 

entire simulation duration by using the reversed winds calculated previously. The meteorological and turbulence fields were 425 

linearly interpolated in time for dispersion calculations for model time steps lying between two successive hours. The resulting 

hourly-averaged backward concentration fields were used as the source-receptor relationship. For inversion, Since wwe assume 

that all methane sources are located near the ground within the lowest model level (i.e. 10 m AGL), and, therefore, only the 

10-m hourly source-receptor relationship was required. 

One complexity with doing a backward dispersion calculation using one continuous release over the full simulation period 430 

over a large domain, as done here, is that the source-receptor field at a given hour is a superposition of plume footprints from 

the current hour as well as previous hours (typically 4–5 hours for the present domain size). So, there is a time history of the 

plume in the source-receptor field at a given time (whose influence becomes smaller and smaller as the distance between the 

source and the receptor becomes smaller, the domain size decreases, the averaging time is increased, or when the winds are 

strong). However, this time history in a backward run corresponds to future hours in a forward run, so at a given hour there 435 

can be a time mismatch between the forward concentration at a grid point and the backward concentration at that point. One 

way to deal with this problem is to do a separate backward runsimulation for eachevery hour separately for the whole 

simulation period; however, this is extremely expensive computationally. As a practical and approximate solution to this issue, 

at a particular backward travel hour (t) the plume travel time (tr) from the release point (i.e. the monitor location) to a grid 
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point (x) is determined by releasing a second tracer (with concentration 𝑐∗ = 𝑐ଶ∗) backwards from the monitor simultaneously 440 

with the main tracer (with concentration 𝑐∗ = 𝑐ଵ∗) with the same tracer properties except that it decays exponentially with a 

decay rate of λ (taken as= 10-6 s-1), so 

 𝑐ଶ∗ (𝐱, 𝑡) = 𝑐ଵ∗(𝐱, 𝑡) exp(−𝜆𝑡௥), (12) 

which gives 

 𝑡௥(𝐱, 𝑡) = 1𝜆 ln ቈ 𝑐ଵ∗(𝐱, 𝑡)𝑐ଶ∗(𝐱, 𝑡)቉. (13) 

The source-receptor value (𝑐∗ = 𝑐ଵ∗) calculated at a grid point location 𝐱 at a given backward travel hour 𝑡 = 𝑡௕ is then taken 

equal to that calculated at the same location at 𝑡 = 𝑡௕ + 𝑡௥ (where tr rounded to the nearest hour). The forward travel hour for 445 

a grid point is equal to the total hours in a simulation period minus tb. Therefore, the source-receptor relationship (𝑐∗) for the 

grid points at time t is constructed from the output of 𝑐ଵ∗ at different times according to the value of tr at individual grid points. 

A maximum value for tr needs to be specified, which we take 15 h – approximately the time taken by the backward plume 

from either monitor to leave the (innermost) model domain (beyond this value, 𝑐∗ is zero). This is needed to avoid occasional 

spurious smearing in the spatial patterns of 𝑐∗ caused by a very diluted, turning, or recirculating backward plume that has 450 

travelled longer than tr overlapping the direct backward plume at a particular location. 

To illustrate the modelled forward and backward relationship and the impact of accounting for tr, Figure 7Figure 7a presents 

the hourly-averaged forward modelled 10-m concentration field (c) in the innermost model domain on 20 June 2016 at 2300 

h (local standard time) due to a sample of 12 point sources, all emitting at the same fixed rate and whose locations correspond 

to some of the feedlots. Figure 7Figure 7b is the backward modelled 10-m concentration field (𝑐∗) for Ironbark (I) at the same 455 

time without the travel time correction (i.e. tr = 0), and Figure 7Figure 7c is the same field with the travel time correction. 

Essentially, the value at any point in the backward field is equivalent to the forward model concentration value at Ironbark if 

there were a source at that point with the same emission rate (as the backward emission rate). The backward concentration 

value at a given location represents the probability (including both frequency and intensity) a source emission at that location 

adds to the concentration at the monitoring site. The backward field is mainly determined by flow the field across the domain 460 

and the separation between the receptor and the source. Figure 7Figure 7a suggests that only one source, S1, contributes to 

concentration at Ironbark. Figure 7Figure 7c is consistent with this, in which the backward plume from Ironbark only impacts 

S1 with the same magnitude, and not any other source location. On the other hand, the backward plume in Figure 7Figure 7b 

does not pass through any of the 12 sources, meaning no impact of these sources at Ironbark, which obviously is not correct 

as S1 does impact Ironbark (Figure 7a). Figure 7Figure 7c is the source-receptor relationship (normalised by the fixed emission 465 

rate) for Ironbark for the hour under consideration. 
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Figure 7. (a) Forward modelled hourly-averaged 10-m concentration field on 20 June 2016 at 2300 h (local standard time) due to 12 
point sources, with the 10-m modelled winds also shown; (b) backward modelled 10-m concentration field for Ironbark (I) at the 470 
same time without the travel time correction (tr = 0); and (c) backward modelled 10-m concentration field for Ironbark with the 
travel time correction. Each source point has the same emission rate. The plume contours (white) and colours represent the same 
concentration values. The black contours represent the topography. The model domain size is 370 × 370 km2, and the Ironbark (I) 
and Burncluith (B) locations are shown. 

 475 

A hourly-averaged modelled backward concentration field (𝑐∗/𝑞, s m-3) at the lowest model level (i.e. 10 m AGL), an example 

of which wasis shown in Figure 7Figure 7c, obtained for a unit emission rate (𝑞 = 1 g s-1) is in essence the required hourly 

source-receptor relationship which can be linearly scaled for any other emission rate (q). 

 

 480 

       
Figure 8. Normalised modelled backward distribution of near-surface concentration (𝒄∗/𝒒, × 10-9 s m-3), which is an average over 
the entire study period: (a) Ironbark, and (b) Burncluith. 
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The modelled backward concentration field (𝑐∗/𝑞, s m-3) averaged over all hourly fields over the simulation period (i.e. 1.5 485 

years) for Ironbark is shown in Figure 8Figure 8a, which suggests that, overall, any sources located farther from the monitoring 

station would contribute less as plume concentrations decrease with increasing distances, and vice versa. The directional 

distribution of the backward field is also a function of the distribution of regional winds which determine how often the receptor 

is downwind of a source (see wind roses in Figure S3). The values in the south-east and north-west corners of the study domain 

are particularly low, so potential sources located there would, on average, have relatively low probability of being sampled at 490 

Ironbark. 

The backward distribution for Burncluith (Figure 8Figure 8b) is very similar, but since it is located north of Ironbark it would 

sample potential sources in the north-east better. 

The two monitoring sites combined would sample the bulkmost part of the CSG sources between and around them in the 

domain (which was the prime objective of our monitoring). 495 

5.3 Bayesian inversion setup 

Assuming that emission rates are time invariant, we use all hourly methane data (Nm) from the two monitoring stations together 

in one combined Bayesian calculation to determine the total emission rates from gridded sources using Eq. (4)(4). Since each 

hour corresponds to a unique meteorological condition, the use of all hours simultaneously provides the meteorological 

variability needed to achieve a better “triangulation” for source estimation. The greater the number of useful measurement 500 

hours, the greater the variability, and hence the better the constraining of the source. This approach is similar to that used by 

Luhar et al. (2014) in the context of a local point source. It requires the source-receptor matrix (𝑐∗(𝐱, 𝑡)) for each hour for each 

measurement site (e.g. Figure 7Figure 7c). 

For the purposes of inferring emissions using our Bayesian methodology, the source array of 69 × 69 used in the forward 

modelling above is rather too large a source number to explore all the source possibilities (i.e. hypotheses) on hourly basis, 505 

even with use of the MCMC sampling. Moreover, there is only a limited amount of information available from just two 

monitoring sites. A coarser array of sources is more practicable, and consequently we consider an array of 11 × 11 localised 

sources (𝑁௦ = 121, cell size ∼ 31 × 31 km2) within the same model domain, whose total emission rates are time invariant 

during a given simulation period.  No sub-grid variability of these emission sourcesrates is considered. The hourly source-

receptor relationships calculated at 5 × 5 km2 resolution for Ironbark and Burncluith were used. Our inverse methodology as 510 

used does not distinguish between different source categories. This is mainly because the concentration of methane alone was 

monitored and not tracers specific to methane source types. Therefore, there are no separate sources categories in the inferred 

emissions, (unlike what was done for the forward simulation), and only total emissions are optimised. 
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To reduce serial correlations in the sequence of MCMC samples drawn from the posterior using the Metropolis-Hastings 515 

algorithm, we only retained every 5th sample. The total number of useable samples was 21,000 for each source, of which the 

first 1,000 samples were discarded as “burn-in” samples. The selected samples were then used in the calculation of the source 

statistics. 

6 Inversion using the ‘synthetic’ methane concentration data 

A ‘synthetic’ inverse run is first performed by using the modelledsimulated hourly-averaged time series of methane 520 

concentration at Ironbark and Burncluith  obtained usinginvolving the bottom-up inventory (regridded to 11 × 11 sources, see 

Figure 9Figure 9a, to be consistent with the source number considered in the inversion) to investigate whether the inverse 

methodology is able to retrieve the bottom-up emissions and under what type of priors and their uncertainties. The results of 

this exercise provide a useful guidance to the subsequent inversion using the actual measuredreal-world methane data, 

particularly about the selection of the prior and its uncertainty specification.  525 

Only the forward modelled (or synthetic) concentrations at the two monitoring sites were used at times when valid (or filtered) 

methane observations were available (𝑁௠ = 10581). The background measurement uncertainty was taken as σ = 3.5 ppb 

based on the previous calculation, and the uncertainty in the transport model was assumed to be σm = 20% of the modelled 

concentration (Yee and Flesch, 2010; Luhar et al., 2014). (These values arewill also be used later in Section 7 for the inversions 

based on the methane data.)  530 

6.1 Selection of the prior 

Specifying the prior PDF 𝑝(𝐪) is an important step, even for the present synthetic case because we are still limited to the same 

degree of information available (i.e. the modelled concentrations time series from only two sites), the same number of unknown 

sources to estimate, and the same domain size as in the inversion case with the real concentration data considered subsequently. 

We specify the following two Gaussian priors: 535 

- An identical (or uniform) Gaussian 𝑝(𝐪) for each source with a mean methane emission rate 𝑞௣ = 45.4 g s-1 (= 1.43 

× 106 kg yr-1) per source is specified, with a specified standard deviation 𝜎௣. This mean value is essentially the total 

bottom-up emission from the domain divided by the number of sources (i.e. 121).  

- The bottom-up inventory emissions as a Gaussian prior. The inventory emissions shown in Figure 9Figure 9a are 

taken as the mean values of a Gaussian prior for each source, with a specified standard deviation 𝜎௣. 540 

6.2 Results for the synthetic case 

In Figure 10Figure 10a, the methane emission rates inferred by the inversetop-down methodology for the uniform Gaussian 

prior case with a prior uncertainty of 𝜎௣ = 5% of the mean for each source are plotted against the bottom-up inventory sources 



23 
 

used to construct the synthetic concentration time series for the inversion (the number of sources is 11 × 11). Ideally, the data 

points should fall along the 1:1 line, but due to the limited amount of information supplied via the modelled concentrations 545 

from only two monitors and the prior being narrow and not very informative, most inferred emission emission rates are 

scattered around the prior mean, i.e. 𝑞௣ = 45.4 g s-1, although it is apparent that a few inferred emission rates are greater than 

this value and tending to the corresponding bottom-up emission rates. The spatial distribution of the inferred emissions is 

presented in Figure 9Figure 9b, which, as expected, is much more uniform than the bottom-up inventory emissions in Figure 

9Figure 9a.   550 

When the prior uncertainty is increased to 𝜎௣ = 10% of the mean (Figure 10Figure 10b), the scatter increases, but most inferred 

emissions still stay around the prior mean, barring some higher-end ones which move further closer to the corresponding 

bottom-up emission rates. Further increase in 𝜎௣ leads to a larger increase in scatter, with no improvement in the inferred 

emissions. 

The total inferred methane emissions are 179.3 × 106 and 175.7 × 106 kg yr-1 for 𝜎௣ = 5% and 10% of the mean, respectively 555 

– values very similar to the bottom-up inventory total of 173.2 × 106 kg yr-1. 

Figure 11Figure 11a with 5% prior uncertainty is the same as Figure 10Figure 10a except that the Gaussian prior with the 

individual bottom-up inventory emissions (Figure 9a) have been used as theits mean values of the Gaussian priorhas been 

used. The inversion retrieves the bottom-up emissions very well with a little scatter in the data points. The spatial distribution 

of the inferred emissions is presented in Figure 9Figure 9c for this case, which is very similar to that of the inventory emissions 560 

in Figure 9Figure 9a. As the prior uncertainty is increased to 𝜎௣ = 10% of the mean (Figure 11Figure 11b), the uncertainty in 

the retrieved emissions gets larger, with a slight decrease in the correlation. 

The total inferarred emissions corresponding to Figure 11Figure 11a and Figure 11Figure 11ba are 164.8 × 106 and 156.9 × 

106 kg yr-1, respectively – values somewhat smaller than the inventory total 173.2 × 106 kg yr-1. 

A comparison of Figure 9Figure 9c with the bottom-up inventory (Figure 9Figure 9a) indicates that some regions in the south-565 

east, for example the strong coal mining source on the eastern boundary at the grid location (11, 4), and north west corners are 

not replicated as well by the inverse model. This is despite a perfect/strong prior with a relatively small uncertainty, and could 

be due to the fact that the two monitoring locations do not sample this source area sufficiently (see Figure 8Figure 8) (bcause 

they were sited to optimally sample the CSG region). Extra monitoring stations and/or separate, narrower priors for such 

sources that make very small contributions to methane at the two sites would be needed to cover these areas better.  570 

The above synthetic case results suggest that with only two monitoring locations the bottom-up inventory Gaussian prior works 

well and is, indeed, needed. Obviously, a small prior uncertainty biases the inferred emission distribution towards the prior 𝑝(𝐪), and what uncertainty level is selected depends on the available information supplied to the inversion. The synthetic case 

reveals that 𝜎௣ ∼ 5% of the mean is needed to retrieve the bottom-up emissions. Thus, for a real inversion using the methane 
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measurements one may expect that an evena narrowertighter prior uncertainty maywould be needed. Further guidance on 𝜎௣ 575 

can also comes from a comparison of the forward modelled methane concentrations using the inferred emissions with the 

methane observations from the two sites. 

The synthetic case results also demonstrated that the regional inverse model formulated was stable and feasible with MCMC.  

 

          580 

Figure 9. Emission rates of CH4 (kg yr-1 gridcell-1) (a) based on the bottom-up inventory, (b) estimated by the synthetic inversion 
using a uniform Gaussian prior with an uncertainty of 𝝈𝒑 = 5% of the mean for each source, and (c) estimated by the synthetic 
inversion using the bottom-up inventory in (b) as a Gaussian prior with an uncertainty of 𝝈𝒑 = 5% of the mean for each source. 
There are 11 × 11 sources, and the grid cell size is 31 × 31 km2. 

 585 

 

Figure 10. Scatter plot of the bottom-up inventory methane emission rates (g s-1 per source) versus those inferred from the inverse 
(top-down) methodology for the synthetic case involving a uniform Gaussian prior with a prior uncertainty of (a) 𝝈𝒑 = 5% and (b) 𝝈𝒑 = 10% of the mean for each source. The number of sources is 11 × 11. The dash-dot line is the mean value of the prior, the dashed 
line is the 1:1 line (i.e. perfect agreement) and the solid line is the least-squares fit. 590 
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Figure 11. Scatter plot of the bottom-up inventory methane emission rates (g s-1 per source) versus those inferred from the inverse 
(top-down) methodology for the synthetic case involving the bottom-up inventory source emissions as the mean of a Gaussian prior 
with a prior uncertainty of (a) 𝝈𝒑 = 5% and (b) 𝝈𝒑 = 10% of the mean for each source. The number of sources is 11 × 11. The dashed 595 
line is the 1:1 line (i.e. perfect agreement) and the solid line is the least-squares fit. 

7 Inversion using the methane measurements 

We now use the filtered methane measurements from the two monitoring stations to quantify emissions  (withso 𝑁௠ = 10581,)  
in a single Bayesian inverse run. The uncertainty in the measurements is σ = 3.5 ppb and the modelled uncertainty is σm = 20% 

of the mean concentration,using our inverse methodology). The above synthetic case results have revealed that a good, tight 600 

prior is needed to infer emissions within the selected domain using concentrations from the two monitoring locations. We 

consider several casesOne may, of course, ask as to to examine how the source inference using the real-world measurements 

is influenced using the real-world measurements depending on the type of prior that may be available, ranging from a non-

informative one to the most informative we have, i.e. the bottom-up inventory. 

We use the same filtered methane observations as used in the forward transport modelling (so 𝑁௠ = 10581)  in a single 605 

Bayesian inverse run. The uncertainty in the measurements is σ = 3.5 ppb and the modelled uncertainty is σm = 20% of the 

mean concentration, as used in the synthetic inversion. 

7.1 Priors and inferred emissions 

Three cases involving different priors are considered. 
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7.1.1 Non-informative uniform prior (Case 1) 610 

A case of non-informative prior is first considered in which the only constraint is that the emission rate for each source lies 

within the broad range 10–10,000 g s-1 with uniform probability, where the upper limit is nearly double the total domain-wide 

bottom-up inventory. 

The inferred emissions (Figure 12Figure 12a) between the two monitoring sites and around the centre of the region are 

qualitatively in accordance with the bottom-up inventory emissions (Figure 9Figure 9a), but with larger magnitudes. In 615 

contrast, the inverse estimates in locations farther from these source areas are smaller than the inventory emissions. 

NotablyRemarkably, the total inferred emission with the non-informative prior is 162.0 × 106 kg yr-1 which compares well 

with the inventory total. The largest emission rate of about 1100 g s-1 per grid cell in Figure 12Figure 12a is about 10% of the 

upper bound of the specified prior range. 

 620 

 

Figure 12. Emission rates of CH4 (kg yr-1 gridcell-1) estimated by the inversion: (a) with a non-informative uniform prior (Case 1); 
and (b) with a uniform Gaussian prior (Case 2). There are 11 × 11 sources, and the grid cell size is 31 × 31 km2. 

 

7.1.2 Uniform Gaussian prior (Case 2) 625 

Next, a more realistic prior PDF is specified with a Gaussian distribution having an identical mean of 45.4 g s-1 and 𝜎௣ = 10% 

of the mean, for each source. The mean is the same as that is used in one of the synthetic runs. 

The inferred emissions for this case shown in Figure 12Figure 12b are qualitatively similar to Figure 12Figure 12a; however, 

in the former the high emission sources are relatively less pronounced, with emissions from other source locations generally 

being larger. The total annual emission from the Surat Basin obtained using this inversion is 143.1 × 106 kg yr-1. 630 
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7.1.3 Gaussian prior usingwith the bottom-up inventory emissions (Case 3) 

In this case, as in the synthetic case corresponding to Figure 9c, the bottom-up inventory emissions shown in (Figure 9Figure 

9a) are used intaken as the mean values of a Gaussian prior for each source.  A small prior uncertainty is also guided by the 

synthetic case results presented earlier, .As every source prior now has a more realistic specification of the mean value 

compared Case 2, the the uncertainty in the prior needs to be relatively is chosen to be small.er than that specified in Case 2. 635 

A small prior uncertainty is also guided by the synthetic case results presented earlier. 

The inferred emission rates in Figure 13Figure 13a obtained for Case 3 with 𝜎௣ = 1% of the mean (Case 3a) appear very similar 

to the inventory emission rates (Figure 9Figure 9a). The fact that even the intense emission on the eastern boundary of the 

domain present in the inventory is mostly reproduced despite this area being not sampled preferentiallyrelatively sufficiently 

by the two network locations means that the chosen prior with a very small uncertainty is somewhat too inflexible thatwhich 640 

forces the inversion towards a result that is very similar to the prior itself, thus in essence likely overriding the information 

inherent in the concentration observations. 

 

   
 645 

Figure 13. Emission rates of CH4 (kg yr-1 gridcell-1) estimated by the inversion with a Gaussian prior involving  mean values equal 
to the bottom-up  emissions (Figure 9Figure 9a) and the standard deviation equal to (a) 1% (Case 3a), (b) 5% (Case 3b) and (c) 3% 
(Case 3c) of the mean values. There are 11 × 11 sources, and the grid cell size is 31 × 31 km2. 

 

Figure 13Figure 13b is the sameobtained using the same inverse model setup as Figure 13Figure 13a, except that the prior is 650 

relaxed somewhat by increasing  𝜎௣ to 5% of the mean (Case 3b). This leads to the source areas in the centre of the Surat Basin 

and those between Ironbark and Burncluith becoming more conspicuous. In contrast, the source areas near the eastern boundary 

of the domain nearly fade, with the concentration observations applying greater influence in areas where the source-receptor 

relationship, shown in Figure 8Figure 8, is stronger. Clearly, the inversion is sensitive to 𝜎௣, however, it is apparent that a 𝜎௣ 

between= 1% andto 5% of the mean would yields a reasonable trade-off between the benefit of the inversion approaching the 655 

prior in areas where the chances of the two monitoring stations detecting methane signal is small and simultaneously making 
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sure that the selected prior would not unduly overrule the information supplied by the concentration measurements. 

Consequently, another inversion was performed for  𝜎௣ = 3% of the mean (Case 3c). The inferred emissions from this run 

presented in Figure 13Figure 13c in essence stand between thosethe inferred emissions for 𝜎௣ = 1% and those for 5% of the 

mean. This Case 3c inversion is our best estimate, which gives an annual total CH4 emission of 165.8 × 106 kg yr-1. The fine 660 

tuning of the prior uncertainty is alsoalso has guided some trial and error component driven by the need that the inferred 

emissions are able to describe the measured concentrations when used in a forward model simulation (see the validation Section 

7.2).  

As noticed in the synthetic inversion case, and in Figure 13a and Figure 13b, a large prior uncertainty biases the inversion 

towards emission rates that have high probability, which may indicate that the number of monitoring stations is insufficient  665 

for the uncertainty in the prior to be relaxed. 

Figure 14Figure 14a presents the difference between the inferred methane emissions given in Figure 13Figure 13c and the 

bottom-up inventory emissions in Figure 9Figure 9a. The largest difference is found for the grid box between Ironbark and 

Burncluith, with the inferred emissions (22.9 × 106 kg yr-1) being larger by approximately a factor of three than the latter (7.3 

× 106 kg yr-1). The total inventory emission for this source grid is controlled by CSG Processing (51%); feedlots, poultry and 670 

piggeries combined (32%); and CSG Production (6%) sectors. 

The calculated posterior uncertainty (standard deviation) relative to the inferred mean emissions (%)  corresponding to Figure 

13Figure 13c (Case 3c, 𝜎௣ = 3% of the prior mean) is presented in Figure 14Figure 14b. Most of these values are very similar 

to the relative uncertainty in the prior (i.e. 𝜎௣ = 3% of the prior mean). Interestingly, the farthest grid point due east of Ironbark 

(11, 4), which corresponds to a relatively strong coal mine source in the bottom-up inventory (Figure 3Figure 3d), has a 675 

disproportionally large uncertainty (∼ 25%), probably due to limited sampling. 
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Figure 14. (a) Difference between the Case 3c inferred methane emissions (Figure 13Figure 13c) and the bottom-up inventory 680 
emissions in Figure 9a (kg yr-1 gridbox-1), and (b) posterior uncertainty (standard deviation) relative to the Case 3c inferred mean 
emissions (%) presented in Figure 13c (Case 3c). There are 11 × 11 sources, and the grid cell size is 31 × 31 km2. 

 

7.2 Validation of the inferred emissions estimates 

To examine to what extent the inferred emissions represent the methane concentration measurements compared to the bottom-685 

up emissions, we conducted three separate forward transport model runs using the inferred emissions from the above 

inversioninverse modelling Cases 1, 2, and 3 (i.e. Figure 12a, Figure 12b and Figure 13, respectively). 

The q-q plots for of the observed data against the modelled CH4 computed using thethe Case 1 inferred emissions (Figure 

15Figure 15a, d) show that there is an overestimation of methane at both monitoring stations for the higher-end concentrations, 

but the simulated CH4 at Ironbark is much better reproduced than when using the bottom-up emissions (grey lines). For 690 

Burncluith, the overestimation is almost as large in magnitude as the underestimation obtained when the inventory emissions 

are used. 

The Case 2 inferred emissions obtained with a better involving a proper, but still crude, prior lead to a significant improvement 

in the methane simulation, especially at Burncluith (Figure 15Figure 15b, e).  

As apparent from Figure 15Figure 15c, f, the use of the bottom-up inventory as  the prior in Case 3c with 3% prior uncertainty 695 

relative to the mean yields emission estimates that further improve the simulation of methane, especially at Ironbark. 

Comparatively, the use of 1% prior uncertainty leads to a better performance at Ironbark but worse at Burncluith. With 5% 

prior uncertainty, the performance is other way round. With the exception of about 4 outlying data points at the higher-end of 

the concentration distribution, the Case 3c inversion with 3% prior uncertainty (corresponding to Figure 13Figure 13c) leads 



30 
 

to the best overall model reproduction of the measured CH4 from the two monitoring sites. The underprediction seen when the 700 

inventory emissions are used (grey curves in Figure 15Figure 15) is nearly eliminated. 

Table 1Table 1 presents performance statistics for the three Case 3 inversions and for the bottom-up emissions as to how well 

they describe the methane concentration measurements at the two sites when used in the forward modelling. The observed (O) 

and modelled (M) concentrations are paired in time for these statistics, which are: r = correlation coefficient, IOA = index of 

agreement, a = slope and b = intercept of the linear best fit line (with observations along the x-axis), FB = fractional bias, and 705 

RMSE = root mean square error. FB = 2(𝑂ത − 𝑀ഥ)/(𝑂ത + 𝑀ഥ) , which varies between -2 (overestimation) and +2 

(underestimation); and IOA = 1 − [(𝑀 − 𝑂)ଶതതതതതതതതതതതത/(|𝑀 − 𝑂ത| + |𝑂 − 𝑂ത|)ଶതതതതതതതതതതതതതതതതതതതതതതതതതതതത], where 0 = no agreement and 1 = perfect agreement. 

The IOA, unlike r, is sensitive to differences between the observed and model means as well as to certain changes in 

proportionality.  

Compared to the case with the bottom-up emissions, the inferred emissions improve the prediction of methane concentration 710 

at Ironbark, except for a slight decrease in correlation. At Burncluith, the improvement is limited to the slope. Note that these 

statistics are dominated by lower-end concentrations which are much more numerous than the higher-end concentrations. The 

q-q plots in Figure 15Figure 15 on the other hand tend to emphasise more model performance for a relatively small number of 

higher-end concentrations.  

Some deterioration in the model performance when the inferred emissions are used could be caused by the 11 × 11 source 715 

distribution representing the emissions in the domain being rather coarse (compared to 69 × 69 used for the bottom-up 

emissions). Considering the performance statistics in Table 1Table 1 and the q-q plots in Figure 15Figure 15c and f, the Case 

3c inversion is our best estimate of emissions. 

 

Table 1: Performance statistics for the emissions from the Case 3 inversions and for the bottom-up emissions as to how well they 720 
describe the methane concentration measurements at the two sites when used in the forward modelling (r = correlation coefficient, 

IOA = index of agreement, a = slope, b = intercept, FB = fractional bias, RMSE = root mean square error). 

Emissions 
Ironbark (N = 6432) Burncluith (N = 4149) 

r IOA a b 
(ppb) 

FB RMSE
(ppb) r IOA a b 

(ppb)
FB RMSE

(ppb) 
Case 3a (𝜎௣ = 1% 𝑞௣) 0.53 0.68 0.36 1153 0.61×10-3  25.5 0.69 0.82 0.71 527 -0.45×10-3 11.1 

Case 3b (𝜎௣ = 5% 𝑞௣ 0.49 0.66 0.55 863 -1.98×10-3  32.0 0.58 0.71 0.87 244 -1.26×10-3 16.8 

Case 3c (𝜎௣ = 3% 𝑞௣ 0.51 0.68 0.48 954 -0.72×10-3  28.4 0.63 0.76 0.79 381 -0.86×10-3 14.0 

Bottom-up inventory 
emissions   

0.57 0.59 0.25 1360 3.36×10-3 25.4 0.74 0.84 0.61 707 0.35×10-3 9.4 
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Figure 15. Q-q plots showing the sorted hourly observed versus the sorted modelled CH4 at the Ironbark and Burncluith monitoring 730 
stations. The forward modelled concentrations utilise emission estimates from the (a) Case 1, inversion, (b) Case 2 inversion, and (c) 
Case 3 inversions (i.e. with 1, 3, and 5% uncertainty in the prior relative to the mean). The forward model concentrations from 
Figure 6 obtainedpredicted using the bottom-up emissions are also shown (as grey lines). The dDashed 1:1 line represents perfect 
agreement. 

7.3 Emissions from the CSG area 735 

Given the focus on CSG activity related emissions in the Surat Basin, we compare the aggregate bottom-up and inferred 

emissions from the CSG areas, many of which are concentrated near and between the two monitoring stations. The subdomain 

that includes all the CSG sources in the study area is shown Figure 16Figure 16, which is an area of about 18260 km2, 15% of 

the study domain, and covers 19 of the 121 source grids considered. The CSG subdomain also contains emissions from other 

sectors (see Figure 3Figure 3). 740 
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Figure 16. A Ssubdomain of the study area that coverscorresponds to all the CSG source areas (shaded grid cells) included in the 
bottom-up emission inventory. It covers 19 of the 121 source grids (each with a source footprint of 31 × 31 km2) considered in the 745 
inverse modelling. 

 
The total bottom-up inventory emissions from the CSG sub-domain is 47.7 × 106 kg yr-1 (cf. 173.2 × 106 kg yr-1 for the study 

domain) whereas that obtained using the inversion (Case 3c, Figure 13Figure 13c) is 63.6 × 106 kg yr-1 (cf. 165.8 × 106 kg yr-

1 for the study domain) which is 33% larger than the former. The total bottom-up emission for this subdomain is dominated by 750 

CSG (34.7%, of which 30.6% is due to CSG Processing), followed by grazing cattle (29.9%), feedlots (23.5%) and coal mines 

(7.7%), which together account for 95.8% of the emissions from this area. Since the inverse methodology does not differentiate 

between source sectors, emissions from individual sectors cannot be inferred. Considering that the grazing cattle emissions are 

diffuse sources and thus not likely responsible for peaks in the measurements that dominate the inverse estimates, and since 

feedlots are scattered throughout the domain (Figure 3Figure 3c) including the non-CSG areas from where there is no general 755 

inference of higher emissions, it is plausible that the increase in the inferred emissions would mainly correspond to CSG as 

the source sector. 

A considerable portion of the CSG emissions is in the area between the two monitoring stations. The inferred emissions in this 

area are much greater than the corresponding bottom-up inventory emissions. However, tThis area also has significant coal 

mining emissions nearby (Figure 3Figure 3d) and it. It is possible that the methane emissions from a combination of these two 760 

source sectors are much larger than the inventory emissions. 
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Conversely, the total bottom-up inventory emissions from the rest of the study domain (i.e. the non-CSG subdomain)area is 

125.5 × 106 kg yr-1 , whereas that obtained using the inversion from (Case 3c) is 102.2 × 106 kg yr-1 which is 18.5% lower than 

the former. The total bottom-up emission for the non-CSGis area is dominated by grazing cattle (62.7%), followed by feedlots 

(24.8%) and coal mines (8.6%), which together account for 96.1% of the emissions from this area. It is possible that the 765 

emission factor of 84 kg CH4 animal-1 yr-1 for Australian grazing cattle (Harper et al., 1991) used in the bottom-up inventory 

(see the Supplement S6) is an overestimate (cf. 51 kg CH4 animal-1 yr-1 for beef cattle (pasture) used by the Australian National 

Inventory Report (NIR, 2017) or 63 kg CH4 animal-1 yr-1 for non-dairy cattle for the Oceania (IPCC, 2019)), and that would 

be consistent with thea lower top-down methane emission from the non-CSG area compared to the inventory. This also means 

that the CSG component of the top-down emissions in CSG sub-domain could be higher to compensate for the lower grazing 770 

cattle emissions if a lower emission factor for grazing cattle is used. 

Apart from the uncertainties associated with the bottom-up emissions, potential methane emissions from some sources, namely 

wetlands (the amount of which in the area is very limited; https://wetlandinfo.des.qld.gov.au), land clearing, termites, material 

handling and fuel usage related to mining activities, ground-water wells, and biomass burning are not part of the bottom-up 

emissions. In contrast, all CH4 sources are implicitly represented in the inversions, apart from the biomass burning events 775 

which have been filtered out using the CO filter. It is difficult to pinpoint which source sectors might be underrepresented in 

the bottom-up inventory without some kind of source discrimination, for instance, through the use of tracers such as the CH4 

isotopes.  

7.4 Temporal variation of the inferred emissions 

In the previous inverse calculations, all filtered methane measurements obtained during July 2015–December 2016 were 780 

combined in a single Bayesian calculation to derive a time invariant top-down emission distribution. Here we apply the inverse 

model with the Case 3c settings (as used for Figure 13Figure 13c with 3% prior uncertainty relative to the mean) to 3-monthly 

measurement blocks within the measurementabove period (July 2015–December 2016) in order to examine potential temporal 

variation of the inferred emissions, bearing in mind that. Obviously, for a 3-monthly simulation the amount of concentration 

data supplied to the Bayesian inversion is much less than that for the full simulation. Figure 17Figure 17a presents the 3-785 

monthly variation of the inferred emissions as kg CH4 yr-1 (bar plots), along with the time invariant(constant) bottom-up 

inventory emissions (red line) and the (constant) inferred emissions from Case 3c (blue line). The 3-monthly emission rates 

are within 165–180 kg yr-1 and are generally larger than the time invariant inferred emissions obtained using the when the full 

measurements from the full periodduration is considered. We believe that tThis is at least partly because as the amount of 

information supplied to the inversione model reduces, the inferred emissions are not modulated to the same extent as that for 790 

the full period, and thus they tend to move closer to the bottom-up inventory which is used as a prior with a tight uncertainty. 

(Time-varying inventory emissions, if available, would act as a better prior, together with additional measurement sites). 
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Another related reason could be the narrowing of the amount of source area represented by the source-receptor relationship 

because of seasonal winds falling in relatively narrow directional sectors compared to the broader wind rose for the full period. 

Figure 17Figure 17b is the same as Figure 17Figure 17a but for the CSG subdomain. The 3-monthly inferred emissions lie 795 

between the bottom-up inventory value and the time invariant inferred value obtained when the measurements from the full 

period are used. Again, as in Figure 17Figure 17a, 3-monthly inferred emissions push towards the inventory value as the 

information supplied to the inverse model reduces. 

Figure 17Figure 17c is the same as Figure 17Figure 17a but for the non-CSG subdomain (which is dominated by grazing cattle 

emissions (62.7%) as per the bottom-up inventory). In this plot, we also present a 3-monthly climatological average (1992 – 800 

current 2020) of rainfall at the Dalby airport (location 27.16°S, 151.26°E), located next to the town of Dalby, within the study 

domain. The rainfall data were obtained from the Australian Bureau of Meteorology (from 

http://www.bom.gov.au/climate/averages/tables/cw_041522.shtml). There is a good correlation (r = 0.79) between the 3-

monthly inferred non-CSG methane emission and the rainfall, suggesting that the inferred emission variation could, to some 

extent, be attributed to the seasonality of rainfall which would influence areas such as pasture growth and wetlands and thus 805 

methane emissions from grazing, influenced by rainfall. This correlation for the 3-monthly inferred emissions forfrom the full 

domain (Figure 17Figure 17a) is 0.71 and it is -0.06 for those from the CSG subdomain (Figure 17Figure 17b). It is reasonable 

to assume thatAssuming that  the higher the rainfall the higher the grazing cattle (and wetland) emissions, and in that case 

these r values indicate that the seasonal variability inof the inferred emissions within the full domain is, to a lesser degree, also 

influenced by such emissionsgrazing cattle. However,, but the inferred emission seasonality withinfor the CSG area does not 810 

correlate with rainfall,cannot be linked with grazing cattle seasonality meaning that the emission seasonality is possibly 

dominated by the CSG sources. 

Another potential contributor to the temporal variability in the inferred emissions in Figure 17Figure 17 is the seasonality of 

the winds in the area which influences the source-receptor relationships. We have not explored this possibility here. 

The uncertainties in the inferred seasonal emissions Figure 17Figure 17 is around 5% of the mean – a relatively small value 815 

largely the result of a tight prior. 

To test how well the temporal variation of the inferred emissions represents reality, we conducted a forward TAPM run using 

these emissions , and the resulting q-q plots (red dots) are shown in Figure 18Figure 18. The methane data at Burncluith are 

best described by these 3-monthly varying emissions compared to any other emission setup, but at Ironbark, these emissions 

underestimate the methane data (the inversion setup corresponding to Figure 15Figure 15c best describes the Ironbark data). 820 

Additional measured parameters (e.g. tracers), as well as more monitoring stations and other additional data (e.g. about the 

prior), would be useful in further constraining the emissions.  
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Figure 17. 3-monthly variation of the inferred emissions (bar plots), including one standard deviation uncertainty (∼ 5% of the 825 
mean), for (a) the full study domain, (b) the CSG subdomain, and (c) the non- CSG subdomain. The respective time-
invariantconstant bottom-up inventory emissions (red line) and the time invariant the constant inverse/inferred emissions from the 
Case 3c inversion (Figure 13Figure 13c) are also shown. Note the emission units. In (c), a 3-montthly climatological average (1992 – 
current 2020) of rainfall at the Dalby airport located within the study domain is also shown. 

 830 

 

Figure 18. Q-q plots showing the sorted hourly observed versus the sorted modelled CH4 at the two monitoring stations. The modelled 
concentrationsvalues (blue dots) are predicted using: the time-invariant inferred emissions from the Case 3c inversion (with 3% 
uncertainty in the prior relative to the mean) (blue dots); the red dots are theproduced from 3-monthly inferred emissionsinversions 
(red dots); and the  bottom-up inventory emissions (grey dots).forward model concentrations from Figure 6 predicted using the 835 
bottom-up emissions are shown as grey lines. The dDashed 1:1 line represents perfect agreement. 

 
Given the rapid rise in the CSG production in the Surat Basin, one may deduce that the 2016 CSG methane emissions were 

larger than the 2015 bottom-up emissions and, therefore, could potentially explain the top-down emissions in the CSG area 

being higher than the inventory emissions. Figure 19Figure 19 shows that compared to July–December 2015, the total CSG 840 

produced was higher by 32% during January–June 2016 and by 45% during July–December 2016, which correlates with an 

increase in the number of CSG production wells in the area. However, Figure 19Figure 19 also shows that there is a downward 

trend in the amount of flared/vented gas. Considering, based on the bottom-up inventory in Section 3, that venting (from 

processing) is the biggest contributor (88%) followed by flaring (8%) (from both processing and production) to the total CSG 

methane emissions, it is plausible that despite the increase in the CSG development in the area the CSG-related methane 845 
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emissions have not increased, and that they may have even gone down. The temporal variation of the inferred emissions in 

Figure 17Figure 17b  for the CSG dominated area also does not indicate any consistent increase in emissions from 2015 to 

2016. Thus, the 33% higher top-down emission estimate from the CSG area compared to the inventory estimate cannot be 

explained in terms of the growth in the CSG production from 2015 to 2016 and is possibly related to underestimated or missing 

emissions in the inventory. This also implies that the emissions from CSG may be more closely related to practices in the 850 

industry than to the amount of CSG produced. 

 

 
 

Figure 19. Six-monthly trends of the total CSG produced, amount of flared/vented gas, and number of wells in the Surat Basin (data 855 
from https://www.data.qld.gov.au/dataset/petroleum-gas-production-and-reserve-statistics1). 

 

7.5 Sensitivity of inversion to background methane 

Figure 4Figure 4 shows that there is a slight difference in the estimated background CH4 levels between the two monitoring 

locations, with the Ironbark background methane larger by 1 ppb on average than Burncluith and the standard deviation of the 860 

background differences being 1.4 ppb, the latter is comparable to the background concentration uncertainty (= 3.5 ppb) 

considered in the inversion. 

 
1 This data file places the gas fields of Spring Gully and Peat within the Bowen Basin whereas in our bottom-inventory these 
are part of the Surat Basin. This is because of how the gas field zones and basin boundaries are defined. The gas fields 
included in our study are based on their geographic locations relative to the square study domain selected. Adding these two 
gas fields to the Surat Basin does not change the trends shown in Figure 19Figure 19. 
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We conducted an inversioninverse modelling sensitivity test with the same model setup as that for Figure 13Figure 13c (Case 

3c, with the bottom-up inventory as a Gaussian prior with σp = 3% qp), except that instead of using the background times series 

that was averaged over the two sites we used the respective background time series for the twose sites. The results were 865 

virtually the same compared to Figure 13Figure 13c, other than some insignificant changes in areas with low emissions. Table 

2Table 2 gives the annual inferred emissions, which show no sensitivity. 

Our background methaneconcentration calculation methodology (Supplement S3) assumes that under very vigorous 

atmospheric mixing conditions in the daytime, the measured concentrations within study domain represent methane levels both 

within and outside the domain boundaries, so that the measured concentrations can be taken to represent the background under 870 

such conditions. Because the background concentration is calculated from the measurements within the source region under 

study, there is a possibility that the real background is potentially lower than what we have used. To examine this, another 

inversion sensitivity test was conducted by using an alternate methane background times series (with all other settings the 

same as the final Case 3c inversion) and this is described in detail in the Supplement S5. Essentially, tThe alternate background 

was constructed using the original averaged background from the two sites and the marine baseline methane measurements 875 

from the Cape Grim Baseline Air Pollution Station (https://capegrim.csiro.au), located on the north-west tip of Tasmania 

(40.7ºS, 144.7ºE). The marine baseline methane represents concentration levels without the direct influence of the continental 

sources. The alternate background falls between the average Surat background as used in the paper and the Cape Grim baseline 

and is, on average, lower than the original Surat background by 2.8 ppb. (On average, the Cape Grim marine baseline was 8.4 

ppb lower than the original Surat background used). 880 

The inversion results in Table 2Table 2 show that compared to the inferred emissions obtained using the original background 

methane the alternate background gives total emissions that are 6.8% higher, while the increase is smaller at 3.9% in the CSG 

subdomain and larger at 8.5% in the non-CSG region. The overall increase is expected because the increase in the measured 

concentrations by 2.8 ppb as a result of the use of the alternate background needs to be accounted for by the inversion by 

enhancing the amount of inferred emissions. We also find that the amount of increase in the inferred emissions with the 885 

alternate background is almost uniformly spread through the study domain relative to the total emission, and that there are no 

significant spatial distributional shifts in the inferred emissions with the two background choices. This means that if these 

emissions are used in a forward model simulation, they would lift the modelled concentrations throughout the region by a very 

similar amount (probably by 2.8 ppb). 

There are possibly other and better ways of calculating the background methane concentration, such as having methane 890 

measurements at many locations around the perimeter of the study domain (which is often subject to operational and budget 

constraints) or modelling methane at much larger scale, preferably global, with data assimilation, which could then provide 

concentration boundary conditions needed for the regional modelling. 
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Table 2: Inferred emissions (×106 kg yr-1) obtained using: the methane background averaged over the two sites (as used in the 895 
paper, Case 3c), the individual methane background from the two sites, and the alternate methane background calculated using 

the Cape Grim baseline methane data (see Supplement S5). The values in the parentheses are % change over the inferred 
emissions using the averaged background. The bottom-up inventory emissions are also included for comparison. 

 

SelectedMethane background Total 
 

CSG subdomain
 

Non-CSG 
subdomain  

Average background  
(as used in this paper) 

165.8 63.6 102.2 

Separate backgrounds 
from the two sites  

164.8 
(-0.6%) 

62.7 
(-1.4%) 

102.1 
(-0.1%) 

Alternate background 
(see Supplement S5) 

177.0 
(+6.8%) 

66.1 
(+3.9%) 

110.9 
(+8.5%) 

Bottom-up inventory 
emissions 

173.2 
(+4.5%) 

47.7 
(-25%) 

125.5 
(+22.8) 

 900 

8 Conclusions 

This paper presented quantification of methane emissions from the CSG producing Surat Basin, an area of 350 × 350 km2 in 

Queensland, Australia. The 2015 bottom-up methane emission inventory served as a very useful prior in our regional 

inversetop-down methodology based on a Bayesian inference approach that utilised hourly-mean CH4 concentrations 

monitored at the Ironbark and Burncluith stations for 1.5 years, hourly source-receptor relationship, and an MCMC technique 905 

for posterior PDF sampling. 

The largest contribution to the emissions in the bottom-up methane inventory wasis from grazing cattle (∼50%), cattle feedlots 

(∼25%), and CSG processing (∼8%), with the aggregate emissions in the study area being approximately 173.2 × 106 kg CH4 

yr-1. Although the forward transport modelling with the bottom-up emissions yielded a credible simulation of the suitably 

filtered observed methane concentrations, about 15% of the higher-end concentration observations were underestimated. 910 

The top-down Bayesian inverse approach demonstrated that even when we do not specify an informative prior, the source 

signal inherent in the methane observations from only two sites constrains the total emission well. But, in contrast to the 

inventory emissions, the inferred emissions are more intensely located in the centre of the study region and less in regions that 

are farther. The importance of specifying a suitable prior in the Bayesian inference was made apparent by the synthetic 

inversion, demonstrating with the use of the bottom-up inventory with a narrow uncertainty as being a good choiceproving 915 

very valuable for that purpose when only two monitoring locations available. For inversion with the real methane 

measurementsParticularly, a Gaussian prior having mean values taken the same as the bottom-up emissions with an uncertainty 
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equal to 3% of the mean yielded the best emission distribution, as evident from its performance in faithfully reproducing the 

measured methane concentration time series. This inverse setup yielded a domain-wide emission of 165.8 × 106 kg CH4 yr-1 

which is very slightly less than the one obtained from the bottom-up inventory. However, within a subdomain covering all the 920 

CSG source areas, the inferred emission 63.6 × 106 kg CH4 yr-1is 33% larger than that deduced from the bottom-up inventory. 

The dominant localised inventory emissions in this area are from CSG, followed by feedlots. Since feedlots are scattered 

throughout the domain including the non-CSG areas from where there is no indicationinference of higher emissions, it is 

plausible that the increase in the inferred emissions would mainly correspond to CSG as the source sector. 

Despite the amount of concentration data going into the seasonal inversion being relatively limited, the We also inferred 925 

seasonal variation of methane emissions fromwithin the non-CSGfull study domain, and CSG and non-CSG subdomain 

correlated well with climatological seasonal rainfall in the areas, suggesting a possible link with the seasonality of agricultural 

emissions. This correlation was almost zero for the CSG subdomain, possibly due to the CSG sources dominating the 

seasonality. 

There was some sensitivity to the background methane concentration observed in the inversion, and we believe that further 930 

approaches to the background calculation are necessary for regions like the Surat Basin. 

The source-receptor relationship showed that having only two monitoring stations is inadequate for sampling distant source 

areas within the large study domain, especially areas in the south-east and north-west corners (the network design for the two 

monitoring stations mainly focused on the central CSG regions). Lengthening the measurement period to sample these areas 

better would not have helped because the wind climatology of the area is not likely to change considerably. When source areas 935 

are not sampled well, one may impose stricter priors that are more credible than the inferred emissions, or alternatively increase 

the number of stations. The former strategy is probably reflected in our use of a small uncertainty in the prior (i.e. 3% of the 

mean) for the best inversion case. A smaller prior uncertainty pushes the inversion more towards the prior itself with distant 

source areas not sampled sufficiently by the network sites looking like the prior distribution. A larger prior uncertainty results 

in the inversion moving towards higher emissions for sources that are close to the monitoring stations. 940 

The inverse methodology could not distinguish between different source categories, mainly because the concentration of 

methane alone was monitored and not tracers specific to methane source types. To do source discrimination and attribution, 

monitoring of tracer species such as methane isotopes (13CH4, CH3D and 14CH4), or other hydrocarbons in cases where they 

are associated with the source gas, would prove useful when suitable sampling systems or instrumentation for field deployment 

become available. 945 

The methods developed in this study could be used to improve the monitoring and management of greenhouse gas and other 

air emissions from the onshore gas industry, including that in the Surat Basin. They provide independent information to 

industry and communities living in gas development regions on one of the main environmental impacts potentially arising 

from onshore gas developments. Improved quantification of methane emissions on the regional scale is an important step in 
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emissions reductions from the onshore gas sector and possibly other industries. The present top-down method is particularly 950 

suited to distributed emissions with potentially unknown locations across a large geological gas reservoir and gas production 

infrastructure. If monitoring is deployed before gas exploration and production begins then a baseline would be established 

from which emissions from the industry might be detected. Ongoing top-down quantification, with monitoring stations located 

close to where emissions appear and with source-specific information from tracers could provide the information necessary to 

validate emissions from the gas industry to support greenhouse gas inventories.   955 
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